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Abstract

Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy

feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed,

and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected

multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information

feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems

and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional

fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and

distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-

diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback

systems in Rayleigh fading conditions.

Index Terms

Opportunistic scheduling, reduced feedback, multiuser switched diversity, achievable rate region, proportional

fairness.

I. INTRODUCTION

The concept ofmultiuser diversity (MUD) has been well studied in the literature, e.g. [1, Chapter 6],

and exploited in the design of channel-aware “opportunistic” scheduling schemes that control in a dynamic
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way how the users access the shared air-link resources in wireless systems. This concept was originally

initiated in [2] where it was shown that in order to maximize the sum capacity (bits/sec) of the network, we

should always schedule the user with the best instantaneouschannel quality. The design of opportunistic

schedulers has been further studied in the literature taking into consideration key factors such as fairness

among users and maintaining the quality-of-service (QoS) constraints, e.g. [3].

In virtually all modern wireless communication systems, explicit training sequences (i.e. pilot signals)

are used to enable the receivers to measure and/or predict (e.g. [4]) the instantaneous channel conditions in

order to use it in the coherent detection of the transmitted signals. Opportunistic schedulers that are capable

of exploiting the full MUD gains are based on having continuously-updated channel state information (CSI)

of all back-logged mobile users in the network at the centralscheduler (i.e. at the base station). Thus,

all mobile terminals inform the central scheduler about their CSI using explicit feedback messages. As

a result, a considerable portion of the air-link resources and a significant share of the battery energy of

the mobile terminals are used for the CSI feedback instead ofuseful data traffic. This fact has motivated

many researchers to examine the feedback load of opportunistic scheduling schemes1 and to search for

alternative schemes which can trade off some of the MUD gainsfor considerable savings of the feedback

load. In [6] and [7], extensive surveys on feedback reduction methods are provided. Note that the CSI

feedback load is a common challenge in wireless communication systems [8]. At present there is no

general theory of single or multiuser wireless feedback communication networks [7]. We can classify the

solutions for the multiuser case into two main approaches: (i) compression of the CSI messages by using

quantization methods or source coding techniques to exploit the channel correlation across the air-link

resource units, and (ii) reduction of the feedback load by selectively choosing when to acquire a CSI

feedback message based on its likelihood to be useful in obtaining MUD gains. The latter approach is

generally more effective in reducing the feedback load significantly and it is less complex to implement.

Under the theme of reduced-feedback opportunistic scheduling, Holter et al. proposed the multiuser

“switched-diversity” (MUSwiD) scheduling scheme [9]. Thebasic principle in MUSwiD scheduling

schemes is to findany acceptable user (i.e. having good channel condition) instead of findingthe

best user among all. The term “multiuser switched diversity” was suggested in [9], because the proposed

scheduling scheme has a similar principle of operation to the “switch-based” antenna selection scheme

used long-time ago in multiple-antenna receivers [10]. It was suggested in [9] to use a scheduling strategy

1Similar to other papers in the literature such as [5], we refer to the systems that are based on full CSI feedback as multiuser selection
diversity (MUSelD) scheduling schemes.



3

based onexamining the CSI of the users sequentially instead of jointly. Once a “good-channel” user

is found, the process of examining the channel conditions terminates, and that user is scheduled. The

decision whether the channel condition of a specific user is acceptable or not is assessed by a predefined

threshold. After the pioneer work [9], several modifications and enhancements have been proposed in

the literature (e.g. [11], [12], [13] and [14]). The sate-of-the-art in this field are the recent works in [13]

and [14] in which fundamental concepts were suggested to enhance the performance of the MUSwiD

schemes; namely the per-user thresholds [13] and the post-user selection strategy [14]. In this paper, we

basically build upon the per-user threshold approach adopted in [13].

The operation mode (i.e. protocol) of the MUSwiD schedulingschemes [13] is based on using a tiny-

slotted feedback channel that is shared by all active users in the network. The shared feedback channel was

called the guard period in [12], [13]. Each mini time-slot ofthe shared feedback channel can be used to

send a 1-bit flag signal2. Furthermore, each mini-slot can be firmly accessed by a single user. The users are

ordered into a sequence and assigned access to the mini-slots of the shared feedback channel accordingly.

Per-user channel state thresholds are used. After a pilot signal is detected and a channel measurement is

done, each user compares its current channel condition withrespect to its associated channel threshold. A

user sends a flag signal in its associated mini time-slot if ithas above threshold channel condition, and all

users before it in the feedback sequence have not sent flag signals. The first user to send a flag signal is

the scheduled user to access the next resource unit. If the system adopts adaptive modulation and coding

transmission [15], the selected user sends a full CSI message after the 1-bit flag signal in order for the

base station to adapt the transmission rate accordingly.

The feedback in MUSwiD systems is reduced significantly intoonly one feedback channel per resource

unit instead of per-user feedback channels due to the distributed scheduling mechanism that makes the

mobile terminals participate in the scheduling process by comparing their channel condition locally against

a pre-defined threshold, and sending feedback flag signals using an ordered strategy which resolves

contention. Another advantage of the system is that a user sends CSI feedback only ahead of the

resource units that it will be allocated instead of sending feedback for all resource units, and this provides

considerable savings in terms of battery life of mobile terminals.

Despite the evident feedback-reduction advantage of the state-of-the-art MUSwiD schemes, there are

some fundamental technical challenges that should be addressed adequately before MUSwiD schemes can

2The time duration of the feedback channel is not long, and hence the MUSwiD scheduling scheme does not cause additional delay to
the scheduling process.
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lend themselves for practical implementation. In our opinion, there are mainly three technical challenges:

• Fairness: Maximizing the sum capacity is not always an appropriate optimization criterion for realistic

network scenarios since users usually have asymmetric channel statistics. Furthermore, in MUSwiD

schemes, the users’ ordering strategy gives an advantage tothe users who are placed in the first

positions in the feedback sequence. It becomes likely that users placed in the latter positions of the

sequence may not get channel access despite having very strong channel. So, is it possible to achieve

fairness in MUSwiD schemes? and how? The current proposals in the topic (e.g. [14], [11]) suggest

to keep changing the feedback sequence continuously in order to achieve fairness. We demonstrate

in this paper that we can maintain fairness without this requirement.

• Centralized optimization: As discussed in [13], the optimization of the feedback thresholds in

MUSwiD systems is done at the central scheduler and it requires the knowledge of the statistics

(i.e. probability density functions (PDF)) of all users’ channels. However, due to the CSI feedback

reduction, the central scheduler will not be able to have accurate estimates of the PDFs of the users’

channels. This will affect the optimality of the assigned per-user thresholds and will consequently

degrade the system performance.

• Capacity-feedback tradeoff: A comparison of MUSwiD schemes with full-feedback (MUSelD)

opportunistic scheduling schemes is needed to evaluate howmuch rate do we lose due to the feedback

savings. Such analysis is not provided in the available literature.

In this paper we provide a comprehensive study to answer the aforementioned technical challenges.

Furthermore, we aim in this work to persuade that MUSwiD scheduling systems are actually attractive

options for practical implementation in emerging mobile broadband communication systems. Toward

this end, we take the following steps; We provide detailed discussions to enhance our understanding

about the attributes of the system and how to optimize its performance. In particular, we characterize

the achievable rate region of MUSwiD systems. Also, we show that the achievable rates in MUSwiD

systems are comparable with selection-based systems although they are significantly more economic in

terms of CSI feedback load. Furthermore, we propose a novel MUSwiD scheduling scheme that achieves

the proportional fairness criterion ([16], [17]), which ispreferable for practical implementation [18]. We

show that this can be achieved by proper per-user threshold optimization based on the objective function

of maximizing the sum of the logarithms of the achievable rates. We demonstrate that our proposed

scheme has a special interesting feature that the solution of the corresponding optimization problem
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yields independent equations for each user, and hence the threshold optimization can be decentralized,

which overcomes the centralized optimization challenge.

The remainder of this paper is organized as follows. We provide in Section II detailed discussion about

the achievable rates using MUSwiD scheduling schemes and their optimization procedure. We, then,

provide in Section III a motivation case study of the achievable rate region in a 2-user scenario. After

that, we propose in Section IV a novel proportional fair MUSwiD scheduling scheme and we discuss its

optimization procedure and demonstrate its practical advantages. Next, we provide in Section V several

numerical examples to compare the performance of MUSwiD schemes with respect to full-feedback

MUSelD scheduling schemes. Finally, we summarize the main conclusions in Section VI.

II. A CHIEVABLE RATES USING MUSWID SYSTEMS

A. System Model and General Assumptions

We consider the downlink3 in a single cell of a wireless communication system, and we consider best-

effort services so that delay constraints are not taken intoconsideration in the scheduling decisions. The

base station communicates with the users through wireless block-fading channels. We assume orthogonal

access scheme in which the air-link resource units (i.e. thechannel blocks) are slotted in time and possibly

in frequency as well. One user only can be scheduled per resource unit. The time duration and the frequency

bandwidth of one resource unit are assumed to be less than thecoherence time and the coherence bandwidth

of the fading channels so that the channels can be modeled as constant additive white Gaussian noise

(AWGN) channels within one resource unit and varies randomly and independently from one resource unit

to another. Furthermore, we assume that the base station transmits with constant power over all resource

units.

Assume that we have a numberM of active users in the network. The users are ordered according to

a strategyπ which is an injective (one-to-one) function. Useri has the positionπ(i) within the feedback

sequence which defines the order by which the users can send flag signals to request being scheduled.

For simplicity of notation, we assume that the users indicesare consistent with their locations within the

feedback sequence (i.e.π(i) = i). A user is scheduled if (i) its current channel condition isbetter than its

associated channel threshold, and (ii) all users ahead of itin the feedback sequence have below-threshold

3The proposed scheduling schemes can be applied to the uplinkas well based on the reciprocity of the uplink and downlink. The receiver
(i.e. base station) transmits pilot signals prior to every resource block, and the users (i.e. mobile terminals) estimate the uplink CSI from
their measurements of the downlink channel condition.
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channel condition. In a mathematical context, the two conditions for a useri to be scheduled4 are:

ri ≥ r∗i (1a)

r ∈ Si, (1b)

where ri is the achievable rate by useri, r∗i is the channel threshold associated with useri, and r =

[r1 r2 · · · rM ] is the vector of acheivable rates of all users. The per-user thresholds were presented in

terms of SNR in [13]. However, we prefer in this paper to present the thresholds in terms of achievable

rates (i.e. channel capacity) because it is a more generic framework and enables extending the results into

multiple antenna scenarios. The eventSi in (1b) is defined as:

Si
.
=
{

r ∈ RM
+ | rj < r∗j ∀j < i

}

. (2)

Note thatS1 = RM
+ and thatSM ⊂ SM−1 ⊂ · · · ⊂ S1. As an alternative mathematical representation,

we can combine the two conditions in (1) into one expressionr ∈ Si \ Si+1. We assume that the fading

processes of the users’ channels are stationary, independent of each other and have continuous PDF of

the achievable rates (fR(r)). As such, we can writefR1···RM
(r1, · · · , rM) =

∏M

i=1 fRi
(ri).

In the numerical examples in the paper, we assume that the base station and the users’ terminals are

equipped with a single antenna to transmit/receive and thusthe relation of the achievable rate – i.e. capacity

– (denoted byr) and the SNR (denoted byγ) is given by the classical capacity relation of AWGN channels

ri = log(1+ γi). We can show using simple steps that the PDF of achievable rate fR(r) can be expressed

in terms of the PDF of SNRfΓ(γ) in this case asfR(r) = exp(r) . fΓ (exp(r)− 1).

The extension to multiple antennas is straightforward as long as a single user only is served per resource

unit. The per-user thresholds can still be presented using asingle value instead of multiple SNR thresholds

for every transmit/receive antenna pair. The appropriate capacity formulas should be used in the derivation

of the PDF of the achievable rates in this case.

B. Statistical Analysis of the Users Expected Achievable Rates

The long-term expected (i.e. average) achievable rate by each user in MUSwiD systems was analyzed

in [13] in terms of fΓi
(γi). In this section, we briefly review these results in a variantrepresentation

4The scheduling decision for a resource unit is based on the channel conditions of the users in this particular resource unit only and it is
independent of the channel conditions in other resource units. Thus, in multi-carrier systems, the scheduling for eachcarrier (i.e. frequency
band) is done independently.
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usingfRi
(ri). We denote the conditional expected value of the achievablerate by useri given that (1b)

is satisfied asRc
i defined mathematically as

Rc
i

.
= E[ri|r ∈ Si] =

∫ ∞

r∗i

rfRi
(r)dr, (3)

where E[ ] is the expectation operator. Since we assume that the fadingchannels of the users are

independent, the eventr ∈ Si happens with probabilityPr{r ∈ Si} =
∏

j<i FRj
(r∗j ). Furthermore, the

unconditional expected value of the achievable rate by useri, denoted asRi, equals

Ri
.
= E[ri] = E[ri|r ∈ Si] . Pr{r ∈ Si} =

∫ ∞

r∗i

rfRi
(r)dr .

∏

j<i

FRj
(r∗j ) (4)

Similarly, the expected percentage of resource units scheduled to useri (i.e. channel access ratio ARi) is

given as ARi = (1− FRi
(r∗i )) .

∏

j<i FRj
(r∗j ). The expected achievable rates in single-input-single-output

(SISO) channels can be presented equivalently in terms of SNR threshold values (γ∗
j ) as [13]:

Ri =

∫ ∞

γ∗

i

fΓi
(γ) log(1 + γ)dγ .

∏

j<i

FΓj
(γ∗

j ). (5)

C. Per-User Thresholds Optimization

From (4), it is clear that the system performance is dependent on (i) the chosen strategy to order the

users in the feedback sequence and (ii) the channel thresholds r∗ of all users. The channel threshold

of one user does not only affect its achievable rate alone, but additionally all other users placed next

in the feedback sequence. In this Section we discuss the joint optimization of the per-user thresholds.

However, we assume first that the feedback sequence is fixed beforehand. We discuss in later sections the

selection of the feedback sequence. In [13], the optimization of the per-user thresholds was derived with

the objective of maximizing the aggregate (sum) capacity (achievable rate) of all users in the network. We

first summarize these results in the context of this paper based on representing the per-user thresholds in

terms of achievable rates. We then provide a generalized framework to optimize the per-user thresholds

taking fairness into consideration.

The optimal per-user thresholds are obtained by solving thefollowing optimization problem:

{

r̂∗1, · · · , r̂∗M
}

= arg max
{r∗1 ,··· ,r∗M}

Φ, (6)

where we use the notation̂r∗i to denote the optimal value for the thresholdr∗i under the objective function
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Φ. In the special case of maximizing the sum achievable rate,Φ is defined as

Φ =
M
∑

i=1

Ri, (7)

where the expected achievable ratesRi follow (4). In order to solve (6) with (7), we search at the points

at which the gradient equals zero (i.e. the stationary points):

∂Φ

∂r∗i
= 0, ∀i ≤ M. (8)

The derivative∂Rj

∂r∗i
is obtained as follows:

∂Rj

∂r∗i
=



















0 : i > j

−r∗i fRi
(r∗i )

∏

k<i FRk
(r∗k) : i = j

Rj

FRi
(r∗i )

fRi
(r∗i ) : i < j

(9)

The derivative ofRi with respect tor∗i (second line in (9)) is obtained by applying the first fundamental

theorem of calculus (e.g. [19]). We can alternatively write∂Rj

∂r∗i
: i < j as:

∂Rj

∂r∗i
= Rc

j fRi
(r∗i )

∏

k<j, k 6=i

FRk
(r∗k) : i < j. (10)

By inserting (9) into (8), we obtain̂r∗i fRi
(r̂∗i )

∏

k<i FRk
(r̂∗k) =

fRi
(r̂∗i )

FRi
(r̂∗

i
)

∑M

j>iRj, yielding

r̂∗i =

∑M

j>iRj
∏

k<i+1 FRk
(r̂∗k)

, (11)

where the assumptions (r∗i 6= 0, ∀i < M) and (fRi
(r) 6= 0, : r > 0) are used. We can re-write (11) as

r̂∗i = E
[

Φ|r ∈ Si+1 andr∗j = r̂∗j ∀j > i
]

. (12)

From (12) and using a simple intuitive explanation, we can describe the basic principle for optimizing

the per-user thresholds in switched diversity systems as trying to maximize the outcome (which is

the achievable rate in our case) of a random experiment (which is examining the channel condition,

i.e. achievable rate, of one user in our case) with the possibility to repeat the experiment up to a limited

number of trials (which is the total number of users in our case). After the experiment is executed once

and its output is observed, we can either choose to accept itsoutcome and stop repeating the experiment,

or opt to repeat the random experiment taking into consideration that we will lose the output that is
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already observed and the expected output of the new trial of the experiment will be totally independent

of the previous ones5. As an intuitive guideline to the decision making of choosing whether to repeat the

experiment or to accept the observed output (which corresponds to the decision to send a flag signal by

the corresponding user in our case), we will decide not to repeat the experiment if the observed output is

very good so that we do not expect to obtain such a good output if we repeat the experiment. Similarly,

we will decide to repeat the experiment if the observed output is low so that we expect that most likely

we will obtain a better result by repeating the experiment. The optimal solution to this decision making

problem is that we compare the observed output with the expected value for the outcome of the allowed

number of trials to repeat the experiment. If the current outcome is higher than the expected value for

repeating the experiment, we accept it and stop repeating the experiment and vice versa.

We can write (11) alternatively as

r̂∗i =
∑

j>i

[

Rc
j

∏

i<k<j

FRk
(r̂∗k)

]

. (13)

We can see that the optimal threshold of each user depends on the optimal thresholds of all users that

are placed after it according to the feedback sequence. Thus, the per-user thresholds can be obtained

using a backward successive approach starting from the lastuser in the sequence. Note that it is intuitive

to predict that the threshold of the last user in the sequenceis zero since we do not apply a post-user

selection strategy [14] or power control.

ˆr∗M = 0 (14)

Furthermore, by using some mathematical manipulations [13], we can use the following formula for

the backward successive approach for obtaining the per-user thresholds:

r̂∗i =

∫ ∞

ˆr∗
i+1

rfRi+1
(r)dr + ˆr∗i+1 FRi+1

(

ˆr∗i+1

)

. (15)

Also, we can show by simple mathematical manipulations similar to (12) and (15) that the maximum

achievable sum rate is:

maxΦ =

∫ ∞

r̂∗1

rfR1(r)dr + r̂∗1 FR1

(

r̂∗1

)

, (16)

whereΦ is the sum achievable rate (7).

5Note that (12) is invalid in case of post-user selection [14]since the last trial (i.e. post-user selection) is dependent on another trial (the
one related to the post-selected user). Thus, the optimization of MUSwiD systems with post-user selection is not as straightforward as in
the case of MUSwiD systems without post-user selection.
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As well-known, maximizing the sum achievable rate is not always a suitable optimization criterion for

multiuser networks since it creates fairness problems. Motivated by this fact, we provide here a more

generic framework to optimize the performance of MUSwiD systems. From an information-theoretic

point of view (e.g. [20], [21]), the objective in multiuser channels is to operate at the boundary surface

of the achievable-rate region. The points on the boundary surface are Pareto-optimal, which means that

we cannot increase the achievable rate of one user without decreasing the achievable rate of another user.

The objective of scheduling schemes in multiuser networks should be to achieve Pareto-optimality6. The

points on the boundary surface of the achievable rate regionare obtained by maximizing a weighted sum

of the rates. By varying the weights we can scan all points on the boundary surface. Thus, we propose

to use a weighted sum of the achievable rate as the optimization objective for (6):

Φ =
M
∑

i=1

µi Ri. (17)

Note that another common approach is to maximize the sum of concave and monotonically increasing

utility functions of the achievable rates of the usersΦ =
∑M

i=1 U(Ri). As discussed in [3], this is interlinked

with the objective of maximizing a wighted sum of the rates byusingµi = U ′(Ri).

By repeating the same procedure used for maximizing the sum achievable rates case, we obtain the

following results for optimizing the per-user thresholds with the objective of maximizing a weighted sum

of the achievable rates. Equations (11), (13) and (15) are replaced by (18), (19) and (20) respectively.

µi r̂
∗
i =

∑M
j>i µj Rj

∏

k<i+1 FRk
(r̂∗k)

, (18)

µi r̂
∗
i =

∑

j>i

[

µj R
c
j

∏

i<k<j

FRk
(r̂∗k)

]

, (19)

µi r̂
∗
i = µi+1

[

∫ ∞

ˆr∗
i+1

rfRi+1
(r)dr + ˆr∗i+1 FRi+1

(

ˆr∗i+1

)

]

. (20)

6As discussed in [22], there is no contradiction between the two objectives of (i) efficient resource allocation by designing scheduling
schemes leading to operating at the points on the boundary surface of the achievable rate region, and (ii) achieving fairness among the users
as well as maintaining the QoS requirements, which can be done by controlling the operating point of the system based on proper selection
of µµµ (the vector of the users’ weighting factors). The specific selection ofµµµ to meet fairness requirements or QoS constraints is a different
topic that is not specific to this work on MUSwiD schedulers. Few examples of the many possible approaches suggested in theliterature
to select the specific operating point of the system are (i) the fairness-based approach, such as the proportional fairness scheduler [17] and
the flexible resource-sharing constraints scheduler [23],(ii) the utility-maximization-based approach [24], and (iii) the QoS constraints based
approach [3].
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Note that (14) is also valid for the generic case of maximizing a weighted sum of the achievable rates

(17). Equation (12) is replaced by:

µi r̂
∗
i = E

[

Φ|r ∈ Si+1 andr∗j = r̂∗j ∀j > i
]

. (21)

The maximum weighted sum of the achievable rates can be expressed as

maxΦ = µ1

[

∫ ∞

r̂∗1

rfR1(r)dr + r̂∗1 FR1

(

r̂∗1

)

]

, (22)

whereΦ is defined in (17).

For SISO channels, the optimal per-user thresholds in termsof SNR are computed according to

µi log(1 + γ̂∗
i ) = µi+1

[

∫ ∞

ˆγ∗

i+1

fΓi+1
(γ) log(1 + γ)dγ + log(1 + ˆγ∗

i+1)FΓi+1
( ˆγ∗

i+1)

]

, (23)

which is done in a backward successive approach starting with γ̂∗
M = 0.

In the numerical examples used in this paper, we assume SISO Rayleigh block-faded channels. We show

in Table I the closed-form formulas to characterize the performance of the system and the optimization

of the thresholds. In order to obtain simple closed-form expressions, the formulas are presented in terms

of the SNR-based thresholdsγ∗
i .

III. M OTIVATION CASE STUDY – ACHIEVABLE RATE REGION IN 2 USER SCENARIO

Studying the achievable rate region in 2-user scenario is a useful tool in order to get basic insights

regarding the performance limits of the system and the tradeoff between maximizing the sum capacity

and maintaining fairness among the users. In order to characterize the achievable rate region in MUSwiD

schemes, we solve (6) with the objective function (17) for different values of the weighting factorsµ,

ranging from (µ1 = 1, µ2 = 0) to (µ1 = 0, µ2 = 1).

In the numerical example of 2-user scenario shown in Fig. 1, we assume that both users as well as the

base station are equipped with single antennas. Furthermore, we assume that both users have Rayleigh

block-fading channels but with different expected averagevalues. Table I summarizes the main formulas

under these particular assumptions. We show in Fig. 1 the achievable rate region for the two possible

feedback sequences. In the first case, the user with better average SNR is placed in the first position of

the sequence. While in the second case, the user with lower average SNR is placed first. Furthermore,

we compare with the achievable rate region of the full feedback selection-based MUSelD scheme, which
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is known from the literature (e.g. [25], [22]). A summary of the formulas to characterize the achievable

rates in MUSelD schemes is provided in Section V-A. We show inFig. 1 some special cases including the

maximum sum rate and the proportional fairness operating points. Detailed discussion about proportional

fair MUSwiD scheduling is provided in Section IV. The main conclusions obtained from this motivation

case study carry over to the general case ofM users. We summarize below the key learnt messages.

The achievable rates by MUSwiD scheduling schemes are always close to the achievable rates with full

feedback MUSelD scheduling schemes. The little loss in the achievable rates is an acceptable trade-off

for evident reductions in the CSI feedback load. Also, the maximum sum rate is an unfair operating

point in MUSelD scheme as well as in MUSwiD schemes. Changingthe feedback sequence in MUSwiD

systems, while optimizing the thresholds to maximize the sum rate, does not solve the fairness issues.

Furthermore, unlike the common belief in early works in MUSwiD schemes such as [14] and [11], Fig. 1

demonstrates that we can actually achieve fairness in MUSwiD schemes without the need of alternating

between feedback sequences. However, the per-user channelthresholds should be adjusted properly to

allow achieving fairness. Also, we can achieve fairness regardless of the used feedback sequence.

We observe also that alternating between feedback sequences can in some cases (the lineBC in

Fig. 1) be the optimal solution. However, the optimization of a MUSwiD scheduler including alternating

between the feedback sequences as a degree of freedom is not simple and require complex algorithms

with significant computation load in order to find the optimalper-user thresholds for each used sequence

as well as the average time percentage of each used sequence since some sequences may need to be used

more frequently than others. Furthermore, the real-time implementation of MUSwiD schedulers with the

option of mixing up between different feedback sequences adds more control messages communication

since the base station should inform the users about all usedfeedback sequences and their associated

per-user thresholds. On the other hand, Fig. 1 demonstratesthat it is almost sufficient to use one sequence

to operate on or close to the achievable rate region limits. Furthermore, it provides a practical scheduler

design with low computation complexity and feasible implementation procedure. The loss in terms of

performance will be void for most operating points and negligible for some ranges of Pareto-optimal

operating points.

Finally, we observe that choosing the proper feedback sequence is important in order to operate at

the boundary of the achievable rate region. However, for a number M of users, we have a number

M ! of possible feedback sequences. Thus, even for a relativelysmall number of users, comparing the
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performance for all possible feedback sequences in order tofind the optimal one is computationally

expensive. To simplify this task, we propose instead a very simple rule based on Fig. 1 and the numerical

results in Section V-C. This rule is that when the objective is to maximize the sum achievable rate in the

network, we should use a feedback sequence in which the usersare sorted in descending order of their

expected channel condition. On the other hand, when fairness is taken into consideration, we should use

a feedback sequence in which the users are sorted in ascending order of their expected channel condition.

IV. PROPOSEDSCHEME – PROPORTIONAL FAIR SCHEDULER

Proportional fairness [16] is a well-known fairness criterion that provides a good trade-off between the

aggregate rate over the network and fairness among users. Proportional fairness resolves this conflict by

allocating to each user a transmission rate relative to its channel condition without affecting the rates of

other users. Proportional fairness was suggested for full-feedback MUSelD scheduling schemes in [17],

and it was applied in industry such as in the IS-856 standard [18]. In this paper, we propose to apply

proportional fairness into MUSwiD scheduling schemes.

The optimization objective functionΦ in case of proportional fairness is to maximize the product of the

expected achievable rates of the users
∏M

i=1Ri, or equivalently, to maximize the sum of the logarithms

of the expected achievable rates:

Φ =

M
∑

i=1

log (Ri) . (29)

In order to optimize the per-user thresholds to achieve proportional fairness, we solve (6) with the

objective function (29). We find the points at which the gradient equals zero, yielding

∂Φ

∂r∗i
=

M
∑

j=1

∂ log(Rj)

∂r∗i
=

M
∑

j=1

∂Rj

∂r∗i

Rj

= 0, ∀i ≤ M, (30)

where ∂Rj

∂r∗i
is obtained in (9). By solving (30) we obtain:

r̂∗i fRi
(r̂∗i )

∏

k<i FRk
(r̂∗k)

Rc
i

∏

k<i FRk
(r̂∗k)

=
M
∑

j>i

fRi
(r̂∗i )

FRi
(r̂∗i )

. (31)

We can simplify (31) as
r̂∗i fRi

(r̂∗i )

Rc
i

∏
k<i FRk

(r̂∗
k
)

∏
k<i FRk

(r̂∗
k
)
=

fRi
(r̂∗i )

FRi
(r̂∗i )

(M − i). With the assumptions that (r∗i 6=

0, ∀i < M) and (fRi
(r) 6= 0, : r > 0) and by substituting forRc

i using (3) we obtain

r̂∗i FRi
(r̂∗i )

∫∞

r̂∗i
rfRi

(r)dr
= M − i (32)



14

We can observe from (32) that the optimization of the proportional fair scheduler has a very interesting

and unique feature. The optimal achievable rate threshold of any user is only dependent on its channel

statistics alone and its location (index) within the feedback sequence. Thus, we can optimize the system

by solvingM independent equations instead of solving dependent equations successively as in the general

case of MUSwiD scheduling schemes which was discussed in Section II-C. Among all Pareto-optimal

operating points, the independent equations feature is uniquely valid in the case of the proportional fair

operating point. This feature has a significant advantage from practical implantation perspective because it

enables every user to obtain its optimal threshold value locally. This overcomes the technical challenge of

centralized threshold optimization of conventional MUSwiD schemes since every user can have accurate

prediction of its channel statistics while the base stationcannot have such accurate measures of the PDFs

of the users’ channels without explicit feedback from all users. This feature is compatible with the main

theme of MUSwiD schemes, which is to limit the feedback load.

Note that the optimization of the proportional fair scheduler (32) is consistent with the optimization

procedure of the generic scheduling criteria of maximizinga weighted sum of the achievable rates

discussed in Section II-C. In the case of proportional fairness, the weighting factor of each user is inversely

proportional with its expected achievable rate [17]. By substitutingµPF
i = 1

Ri
into (18) we obtain (32).

In the case of SISO channels, We can alternatively present (32) in terms of SNR thresholds as:

log(1 + γ̂∗
i ) FΓi

(γ̂∗
i )

∫∞

γ̂∗

i
fΓi

(γ) log(1 + γ) dγ
= M − i (33)

The left hand side of equation (32) is a monotonically increasing function ofr̂∗i . Thus, the solution of

(32) always exists and it is unique. The solution can be obtained using simple numerical methods such as

the bisection method. Alternatively, the results can be obtained for standard channel models and stored in

the mobile terminals using look-up tables versus the user index within the feedback sequence. Fig. 2 and

Fig. 3 show the optimal per-users thresholds in the proportional fair scheduler in terms of achievable rates

and SNR respectively for SISO Rayleigh block-faded channels. The per-user thresholds in both figures

are normalized with respect to the average achievable rate and average SNR respectively.

We observe from Fig. 2 and Fig. 3 that as the number of next users in the sequence increases (meaning

being placed in the first positions in the sequence), the corresponding per-user threshold increases. Thus,

the users in the first places of the sequence are requested to achieve high rates (MUD gains) with low

expected success ratio, while the users at the last places isexpected to achieve lower rate gains but with
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higher success ratio. It is intuitive to predict that placing the users who have wider dynamic range of

channel variations in the first positions of the sequence is advantageous because these users are more

capable of achieving high rate gains when their channel condition is at its peak. Thus, it is better in the

feedback sequence to sort the users in ascending order of their expected (average) SNR. This is due to the

fact that at low SNR, the achievable rate formular = log(1+ γ) becomes almost linear and consequently

more sensitive to the variations in SNR. Fig. 4 shows the PDF of the normalized achievable rates for

SISO Rayleigh block-fading channels with different average values. We can see from Fig. 4 that at high

average SNR (̄γ = 20dB), the user can get a maximum gain of around50% of the achievable rate when

the channel condition is at its peak. On the other hand, at lowSNR (̄γ = −10dB), the achievable rate at

peak channel conditions can exceed four times its average value. The intuitive suggestion of sorting the

users in ascending order of their expected SNR is also supported by the numerical examples shown in

Section V-C.

In order to solve (32) numerically at the mobile terminal,fR(r) should be estimated from the continu-

ously measured channel conditions (after every pilot signal transmitted by the base station). The practical

implementation steps of channel statistics (PDF) estimators is out of the scope of this work and was

discussed in the signal processing literature. As an example, the PDF estimation using order statistic filter

bank was suggested in [26].

A major concern in distributed systems in general is the effect of ill-behaving mobile terminals. In our

proposed proportional fair MUSwiD scheme, the users obtaintheir thresholds locally. However, if one

mobile terminal uses lower threshold than its correct threshold, the performance of all next users in the

sequence will be affected and degraded. We demonstrate herethat it is possible to assign a monitoring

task to the base station in order to detect ill-behaving users without the need of knowing the channel PDF

of every user. The suggested centralized monitoring mechanism works as follows; The users compute

their channel thresholds locally and update the main scheduler at the base station about their thresholds.

This does not produce significant feedback load as the threshold values are re-computed only after sound

variations in the channel PDF. The base station makes sure that the requested rates by the scheduled users

are above their thresholds, and it tracks two quantities (measures) for each mobile user that are updated

in real-time whenever the user has the opportunity to request transmission (i.e. condition (1b)): (i)Rc
i : the

average requested rate of useri when condition (1b) is valid, (ii)Pi: the success ratio of exceeding the

channel threshold when condition (1b) is valid. The base station makes sure that the measured quantities
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are consistent with (32).

In a mathematical context,Rc
i is defined in (3) andPi is defined asPi = Pr{ri ≥ r∗i |r ∈ Si}. Note that

trackingRc
i andPi does not require any additional feedback load. The base station can detect a wrongly

used threshold if the following condition is true:

∣

∣

∣

∣

r∗i (1− Pi)

Rc
i

− (M − i)

∣

∣

∣

∣

> ǫ, (34)

whereǫ is the tolerance value for the accuracy of achieving condition (32).

V. PERFORMANCEANALYSIS – COMPARISON WITH FULL -FEEDBACK SCHEMES

We provide different numerical examples to compare the performance of MUSwiD scheduling schemes

with the performance of full-feedback MUSelD scheduling schemes. We briefly summarize the achievable

rates using MUSelD schemes which were studied in the literature such as in [5] and [25].

A. Review of Achievable Rates of Full-Feedback Selection-Based Systems

In MUSelD scheduling schemes, the users continuously update the centralized scheduler at the base

station about their instantaneous achievable ratesri, and the scheduler chooses the user that maximizes the

scheduler metric. There are many scheduling metrics suggested in the literature. A survey and comparison

between different schemes is provided in [22]. In a generic form that enables achieving all Pareto-optimal

points, the scheduling criterion is to select a userm with maximum weighted rate metric [3], i.e.m =

argmaxi µiri, whereµi is a weighting factor assigned to useri. In full feedback MUSelD scheduling, the

expected achievable rates in terms of (fΓ(γ)) is known from the literature (e.g. [22], [25]):

Ri =

∫ ∞

0

fΓi
(γ) .

∏

j 6=i

FΓj

(

(1 + γ)
µi
µj − 1

)

. log(1 + γ)dγ. (35)

The average channel access ratio (percentage of being scheduled) is:

ARi =

∫ ∞

0

fΓi
(γ) .

∏

j 6=i

FΓj

(

(1 + γ)
µi
µj − 1

)

dγ. (36)

We present (35) and (36) in an alternative form using the PDF of the achievable ratesfR(r):

Ri =

∫ ∞

0

r fRi
(r)

∏

j 6=i

FRj

(

µi r

µj

)

dr, (37)
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ARi =

∫ ∞

0

fRi
(r)

∏

j 6=i

FRj

(

µi r

µj

)

dr. (38)

B. Network Models and Fairness Measures

We compare MUSwiD and MUSelD schemes using different network scenarios (in terms of the

distribution of the expected channel conditions of the users) and for different number of users. We analyze

the case of independent and identically distributed (i.i.d.) Rayleigh block-faded channels as well the case

of independent and non-identically distributed Rayleigh channels which is more realistic from practical

perspective. We provide numerical examples for the asymmetric channel distribution case using two

models:

Model 1: γ̄i = γmin + (2i− 1).
γmax− γmin

2M
(39a)

Model 2: γ̄i =

[√
γmin +

2i− 1

2M
. (
√
γmax−

√
γmin)

]2

, (39b)

whereγmax and γmin in (39a) and (39b) define respectively the upper and lower limits for the average

SNR in the network. We used in our numerical results 20 dB and 0dB respectively.

We compare two variants of the scheduling criteria: (i) the maximum sum achievable rate, and (ii) our

proposed proportional fair scheduler. We use two performance measures in our comparisons: (i) the sum

achievable rate in the network, and (ii) the degree of fairness (DOF) among the users. There are several

fairness measures suggested in the literature. We opt in this work to use the well-known Jain’s fairness

index [27]:

DOF≡

(

∑M

i=1 xi

)2

M
∑M

i=1 x
2
i

, (40)

wherexi is a user-related metric. In our numerical examples we used two metrics forxi:

• Resource sharing fairness:xi is selected to be the expected channel access ratio ARi.

• Multiuser diversity gains fairness: we propose the following metric as well for the fairness measure:

xi ≡
Ri

∫∞

0
r fRi

(r)dr
, (41)

whereRi is the achievable rate of useri according to the applied scheduling scheme.
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C. Numerical Results

Fig. 5 shows the comparison between MUSwiD and MUSelD schemes under i.i.d. Rayleigh block-fading

conditions for different values of the identical average SNR of the users. The feedback sequence of the

MUSwiD scheme is irrelevant in this case as the channels are identical. The maximum sum achievable

rates are used for the comparison. The sum capacity7 were computed using (28) for the MUSwiD scheme

where the per-user thresholds optimization follows (27). Fig. 5 shows that switched-diversity scheduling

schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in

Rayleigh block-fading conditions over wide range of SNR andfor any number of users. This rate loss is

compensated by significant savings in the CSI feedback load.At high SNR conditions, the ratio between

the sum capacity (i.e. achievable rates) of MUSwiD schemes with respect to the sum capacity of MUSelD

schemes decreases as shown in Fig. 6. Fig 7 and Fig. 8 show a comparison in terms of sum capacity and

degree of fairness under asymmetric channel conditions according to (39a). Both maximum sum capacity

and proportional fairness are used in the comparison. We used the derived analytical formulas in this paper

to calculate the achievable rates for MUSwiD schemes. Another numerical example is provided in Fig. 9

and Fig. 10 for the proportional fair scheduler under the assumption of asymmetric channel distribution

according to (39b). The fairness results in Fig. 8 are based on usingxi = ARi in (40), while (41) is used

for the fairness measure in Fig. 10.

The results in this section support the key messages learnt by studying the achievable rate region in

Section III and demonstrate that they are valid for higher number of users. The performance of switched

diversity is always within 0.3 bits/sec/Hz from the ultimate performance of full feedback schedulers.

This is true for both maximum sum capacity and proportional fairness. The proportional fair scheduler

provides very high degree of fairness regardless of the usedfeedback sequence. The differences in

fairness measures of different feedback sequences are negligible. The assessment of the performance

of the sequence strategies is better judged based on achievable rates which demonstrates that sorting

the users in a descending average SNR order is better for maximizing the sum achievable rate, while the

opposite sequence is better for the proportional fair scheduler. These results are consistent with our results

in section III and with our perceptive analysis in section IV.

7In the special case of i.i.d. Rayleigh block-fading channels with identical average SNR, the maximum sum capacity of theMUSelD can
be computed as [25]:

M
∑

i=1

Ri =
M
∑

i=1

(−1)(i−1)

(

M

i

)

exp

(

i

γ̄

)

E1

(

i

γ̄

)

,

whereE1 is the exponential integral function (25).
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VI. CONCLUSIONS

In this paper, we have proposed novel reduced-feedback scheduling schemes that provides significant

reduction of channel state information feedback load at thecost of slight reduction in the achievable

multiuser diversity gains. Our proposed schemes are based on the concept of multiuser switched diversity

that has been recently introduced in the literature. We haveprovided rigorous mathematical treatment to

analyze the performance of switched diversity scheduling schemes as well as to optimize their performance.

We have also characterized the achievable rate region of these scheduling schemes and provided a case

study to understand their main attributes and useful designoptions. We proposed a proportional fair

scheduler that overcomes major technical challenges of thestate-of-the-art proposals in the field. Mainly,

our proposed scheduler maintains fairness among users and interestingly enables simpler optimization

procedure. we have demonstrated that, unlike other schedulers, the optimization procedure of our proposed

proportional fair scheduler can be distributed among the users. We have shown that the distributed

optimization mechanism can be supported by a monitoring mechanism of the base station that enables the

detection of ill-behaving users based on real-time performance measurements. Due to their features and

performance, multiuser switched diversity scheduling systems are actually attractive options for practical

implementation in emerging mobile broadband communication systems.
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TABLE I
MULTIUSER SWITCHED DIVERSITY SYSTEM - SISO RAYLEIGH BLOCK-FADING

Expected achievable rates:

Ri =

[

exp

(−γ∗
i

γ̄i

)

log(1 + γ∗
i ) + exp

(

1

γ̄i

)

E1

(

1 + γ∗
i

γ̄i

)]

.
∏

j<i

(

1− exp

(−γ∗
j

γ̄j

))

, (24)

where γ̄i is the average SNR of useri andE1 is the exponential integral function:

E1(x) ≡
∫ ∞

x

exp(−u)

u
du. (25)

Expected access ratio:

ARi = exp

(−γ∗
i

γ̄i

)

.
∏

j<i

(

1− exp

(−γ∗
j

γ̄j

))

. (26)

The optimal feedback thresholds are computed in a backward successive approach, starting from
γ̂∗
M = 0, according to:

µi log(1 + γ̂∗
i ) = µi+1

[

exp

(

1

γ̄i+1

)

E1

(

1 + ˆγ∗
i+1

γ̄i+1

)

+ log(1 + ˆγ∗
i+1)

]

. (27)

In the special case of maximizing the sum achievable rates, all weighting factorsµi in (27) are equal,
and the maximum sum achievable rate can be expressed as:

max

M
∑

i=1

Ri = exp

(

1

γ̄1

)

E1

(

1 + γ̂∗
1

γ̄1

)

+ log(1 + γ̂∗
1). (28)
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Fig. 2. Normalized achievable rate thresholds to achieve proportional fairness for SISO Rayleigh block-fading conditions with different
values for the average SNR plotted versus the number of next users in the sequence.
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0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Number of Users

M
ax

im
um

 S
um

 C
ap

ac
ity

 (
bi

ts
/s

ec
/H

z)

 

 

18 dB

12 dB

6 dB

0 dB

Switched Diversity System

Selection Diversity System

Fig. 5. Maximum sum achievable rate (capacity) comparison between the selection diversity system (solid blue lines) and the switched
diversity system (dashed red lines) as a function of the number of users over i.i.d. Rayleigh block-fading channels. Results are based on
average SNR of 0, 6, 12 and 18 dB.



25

0 10 20 30 40 50 60 70 80 90 100
0.88

0.9

0.92

0.94

0.96

0.98

1

Number of Users

M
ax

im
um

 S
um

 C
ap

ac
ity

 R
at

io

 

 

18 dB
12 dB
6 dB
0 dB

Fig. 6. The ratio between the maximum sum achievable rate (capacity) of switched diversity system and the maximum sum capacity of
the selection diversity system as a function of the number ofusers over i.i.d. Rayleigh block-fading channels.
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Fig. 7. Sum achievable rate comparison between the selection diversity system (blue lines) and the switched diversity system (red and
green lines) as a function of the number of users for maximum sum rate scheduling (solid lines) and proportional fairnessscheduling (dashed
lines). The users have Rayleigh block-fading channels withaverage SNR distributed according to (39a). Two feedback sequence strategies
are examined: ascending (green lines) and descending (red lines) average SNR order.
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Fig. 8. Fairness measure by applying Jain’s index (40) with (xi = ARi) the average channel access ratio. The users have Rayleigh
block-fading channels with average SNR distributed according to (39a).
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Fig. 9. Sum achievable rate comparison between the selection diversity system and the switched diversity system as a function of the
number of users for proportional fairness scheduling. The users have Rayleigh block-fading channels with average SNR distributed according
to (39b).
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Fig. 10. Fairness measure by applying Jain’s index (40) with(41). The users have Rayleigh block-fading channels with average SNR
distributed according to (39b).
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