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Abstract—We describe the application of edge-local comple-
mentation (ELC) to a Tanner graph associated with a binary
linear code, C. Various properties of ELC are described, mainly
the special case of isomorphic ELC operations and the rela-
tionship to the automorphism group of the code, Aut(C), and
the generalization of ELC to weight-bounding ELC (WB-ELC)
operations under which the number of edges remains upper-
bounded. ELC generates all systematic parity-check matrices (the
orbit) of the code, so WB-ELC facilitates a restriction to low-
weight matrices of this orbit. We propose using ELC and WB-
ELC as a source of diversity, to improve iterative soft-input soft-
output decoding of high-density parity-check (HDPC) codes, with
the sum-product algorithm (SPA). A motivation of ELC-enhanced
SPA decoding is locality; that diversity is achieved by local graph
action, and is well suited to the local actions that constitute the
SPA and allows for parallel software implementation. Simulation
data on the error-rate performance of the proposed SPA-ELC
and SPA-WBELC iterative decoding algorithms is shown for
several HDPC codes. A gain is reported over SPA decoding, and
over a recently proposed algorithm to decode HDPC codes using
permutations from Aut(C). ELC-enhanced decoding extends the
scope of iterative decoding to codes with trivial Aut(C).

Index Terms—Iterative Decoding, Codes on Graphs

I. INTRODUCTION

Iterative soft decision decoding algorithms, applied to suit-

ably designed codes, have been shown to give results which,

asymptotically, closely approach the theoretical limits estab-

lished by Shannon. The advent of turbo codes in 1993 [1]

and the rediscovery of low-density parity-check (LDPC) codes

at around the same time [2] (LDPC codes were actually

invented by Gallager in 1962 [3]) caused much attention to

be focused on iterative decoding of large, random or pseudo-

random, sparse linear block codes. The sum-product algorithm

(SPA) [4] is the standard soft decision iterative algorithm

for decoding of LDPC codes on Tanner graphs. The sparse,

random nature of these codes makes them well-suited for SPA

decoding, using efficient software implementations (factor
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graphs). Asymptotically, optimum decoding performance is

approximated at a complexity linear in code length. However,

the large size and random nature of turbo and LDPC codes has

negative implications when these are to be used in practice.

This inspired researchers to adapt SPA decoding to small-

size linear block codes, with blocklengths in the hundreds of

bits or below. At small blocklengths, one has the benefit of

using strong, nonrandom codes – “classical codes” – for which

useful properties are known, such as large minimum distance

and nontrivial automorphism group. It is, however, known that

many families of codes – e.g., Bose-Chaudhuri-Hocquenghem

(BCH) and Reed-Solomon (RS) codes – do not have Tanner

graphs without cycles of length 4 [5]. Furthermore, these codes

typically do not have sparse duals (i.e., sparse parity-check

matrices) [6], so, when such codes are revisited from the

context of iterative soft decoding, these are commonly referred

to as high-density parity-check (HDPC) codes. Recently, the

adaptation of iterative soft-input soft-output (SISO) decoding

techniques to HDPC codes has received much attention [7–

13].

This paper describes the pseudorandom use of a simple-

graph operation known as edge-local complementation (ELC)

[14, 15] to improve the performance of SPA decoding. One

advantage of ELC-enhanced SPA decoding is the locality

argument; diversity is achieved by local graph action, and

so is well-suited to the local actions that constitute the SPA.

Diversity stems from the change in Tanner graph due to the

complementation of edges in a local subgraph. The locality

also allows for an efficient parallel software implementation

of ELC, in a similar way as for the SPA. The local complemen-

tations (which correspond to row-additions on the associated

parity-check matrix) which comprise an ELC operation may

be performed in parallel. Also, we will show that disjoint ELC

operations are independent, and may be performed simultane-

ously. The effect of ELC on a graph is explored, and we define

a subset of ELC operations under which the edge weight of

the graph remains upper-bounded (to within some threshold

value). We identify and describe all possible occurrences of

single and double application of ELC as weight-bounding

ELC (WB-ELC). We also present a further specialization of

WB-ELC to isomorphic ELC (iso-ELC), under which the

structure of the (simple) graph is invariant. We also propose

a notion of Tanner graph equivalence, and explore when ELC

preserves also the Tanner graph. These properties (weight and

structure) are important from an iterative decoding perspective,
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and are targeted to improve the error-rate performance of a

SISO HDPC decoder based on interleaving SPA iterations with

random ELC or WB-ELC operations, giving a novel SPA-

ELC and a SPA-WBELC decoding algorithm. ELC-enhanced

decoding is a very general technique, and may be applied

to a wider range of codes than other algorithms which rely

on strong structural properties of the code (e.g., a large

automorphism group). For other applications of WB-ELC, e.g.,

weight reduction, we refer to [16].

A. Outline

This paper is organized as follows. The ELC operation,

which is typically defined for a simple graph, is described

in Section II. A discussion on the action of ELC, in terms

of the resulting graphs, focuses, firstly, on structurally distinct

graphs, and, secondly, on isomorphic graphs with a link to the

automorphism group of the code. Section III presents WB-

ELC, where the action of ELC is discussed in terms of a

maximum permitted weight of the resulting graphs. Finally,

in Section IV, the use of ELC and WB-ELC as sources of

diversity during SPA decoding is described. Two proposed

decoding algorithms – SPA-ELC and SPA-WBELC – are

described, simulated, and compared against other relevant

decoding algorithms on several HDPC codes.

B. Preliminaries

A binary linear code C of length n, dimension k, and

minimum distance dmin is denoted by [n, k, dmin], where dmin

is defined as the minimum Hamming weight of any nonzero

codeword. The dual code is C⊥, containing the codewords or-

thogonal to C, and if C = C⊥ we say the code is self-dual. Per-

mutations are written in cycle notation, where we only specify

the indices of the affected positions. For example, given a

length-6 vector v and a permutation π = (0, 1, 2)(3, 4), then
u = π(v) means v0 → u1, v1 → u2, v2 → u0, v3 → u4,

and v4 → u3, while v5 → u5. Similarily, π(H) permutes the

columns of a matrix, H . The identity permutation, affecting

no positions, is, then, π = ∅. The automorphism group of

the code, Aut(C), is the group of permutations, σ, which

preserve the code, Aut(C) = {σ : σ(C) = C}. It is

well-known that Aut(C) = Aut(C⊥), and permutations are

typically applied to H (which generates C⊥) during decoding,

or (more conveniently) to the soft-input vector containing the

a posteriori probability (APP) values [9]. If Aut(C) consists

of the identity permutation alone, we say Aut(C) is trivial.
Let Ik be the identity matrix of size k, where we use the

shorthand notation I when the dimension is not important.

The generator matrix, G, generates C, which gives GHT = 0
where ( · )T denotes the transpose of its argument. H is said to

be systematic if its columns can be reordered into the standard

form

π(H) = [ In−k | P ] (1)

by some column permutation π (not necessarily in Aut(C)).
The column indices 0, 1, . . . , n − 1 are referred to as the

coordinates of the code. An information set, I, of the code

corresponds to any set of k columns inG which can be reduced

to an identity submatrix by means of Gaussian elimination

(GE). The n−k columns at positions P := {0, 1, . . . , n−1}\I
form a parity set. Note that an information set corresponds to

a parity set of the dual code, such that I refers to the P -part of

H . In a systematic parity-check matrix, the columns indexed

by P are referred to as systematic (i.e., weight-1) columns,

while the remaining columns (of weight greater than 1) are

nonsystematic. The (row) index of the single nonzero entry

of a systematic column hi, i ∈ P , is denoted by row(i) ∈
[0, n−k). In standard form (1), row(i) = i, 0 ≤ i < n−k. The
weight of a matrix, H , (i.e., the number of nonzero entries) is

denoted by |H|.
The Tanner graph, TG(H), associated with H is a (2n −

k)-node bipartite graph with adjacency matrix TG(H) =
[

0 H
HT 0

]

. (At some abuse of notation, we denote both graph

and adjacency matrix by TG(H).) From now on we will

assume that H is systematic. We will also assume no pairwise

identical columns, i.e., dmin > 2. The n “variable” nodes,

denoted by vi, 0 ≤ i < n and corresponding to columns of

H , are partitioned into |P| = n − k systematic and |I| = k
nonsystematic nodes, where the former have degree one. The

n−k “check” nodes of TG(H), denoted by fj , 0 ≤ j < n−k
and corresponding to rows of H , each have an associated

(adjacent) systematic variable node. By grouping each check

node with its associated systematic (variable) node, an n-node,
(n − k, k)-bipartite, simple (i.e., undirected, with no double

edges or loops) graph (BSG) is produced, with adjacency

matrix, G = (U ∪ V, E) = π−1
[

0 P
PT 0

]

, where π−1 undoes

the reordering in (1). E is the set of edges. The bipartition

(U , V) contains the n− k grouped check/systematic variable

nodes and the nonsystematic variable nodes, respectively.

Furthermore, a permutation (here, π−1) acts on both columns

and rows of G. By keeping a record of the bipartition at

all times, we have a one-to-one mapping between a Tanner

graph and a BSG. In summary, given a code represented by

some TG(H), we construct a BSG by ignoring the systematic

variable nodes – see Fig. 2. The number of edges in G is

|G| = |E| = |H|−(n−k) which we refer to as the weight of G.
If nodes in U and V have average degree ρ̄ and γ̄, respectively,
we have that |G| = kγ̄ = (n− k)ρ̄. The local neighborhood of

a node v is the set of nodes adjacent to v, and is denoted by

Nv , while N u
v is shorthand notation for Nv \ {u}. Let EA,B

denote the subgraph induced by the nodes in A ∪ B – i.e., a

set of |EA,B | edges. Furthermore, Eu,v is shorthand notation

for ENv
u
,Nu

v
, the local neighborhood of the edge (u, v). We use

the notation {(u, v), . . . , (u′, v′)} for an ordered list of edges.

Define the distance between edges (or nonedges) (u, v) and

(u′, v′) as the shortest path between the sets of nodes, {u, v}
and {u′, v′}.

II. EDGE-LOCAL COMPLEMENTATION

ELC is defined on an edge of a simple graph, G [14]. We

consider only bipartite graphs in this work, which simplifies

the description. ELC on an edge (u, v) ∈ G will complement

the edges of Eu,v (replacing edges with nonedges and vice

versa) followed by swapping the nodes u and v – see Fig. 1.

In this sense ELC is a local operation as it only affects edges
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Fig. 1. ELC on edge (u, v) of a BSG. Curved links indicate arbitrary
edges. Bold links mean that the edges connecting the two sets have been
complemented; edges are replaced by nonedges, and vice versa. This graph
may be a subgraph of a larger graph, in which case the rest of the graph
remains unchanged.
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Fig. 2. Example of ELC on a small [9, 4, 4] code, showing also the
corresponding Tanner graphs. White and grey nodes correspond to V and
U , respectively.

within distance 1 from the ELC edge, (u, v). The resulting

graph, after ELC, is denoted by G(u,v). ELC (on a simple

graph) is a self-invertible operation as two ELC operations on

the same edge is the identity operation, G{(u,v),(u,v)} = G.
The number of edges affected (inserted or removed) by the

application of ELC is, on average,

|N v
u ||N

u
v | ≈ (γ̄ − 1)(ρ̄− 1). (2)

For decoding purposes it is convenient to interpret ELC as

an operation directly on TG(H), implicitly considering the

corresponding simple graph. From this perspective, it is easily

seen that one ELC operation implements the reduction stage of

GE (i.e., row additions) on a single column of H . On TG(H),
ELC is invertible but not self-invertible.

Example 1: Consider the optimal (in terms of dmin) [9, 4, 4]
code, and the Tanner graph shown in Fig. 2(a). Fig. 2(b) shows

the corresponding BSG. Fig. 2(d) shows G(0,5) after ELC on

(0, 5) ∈ G, with the resulting Tanner graph in Fig. 2(c). ELC

applied directly to edge (f0, v5) ∈ TG(H) amounts to adding

row 0 to rows 1, 2, and 3 of H , to get H ′

H =

[

1 0 0 0 0 1 1 1 1
0 1 0 0 1 1 0 1 1
0 0 1 0 1 1 0 0 0
0 0 0 1 1 1 1 1 0

]

+
+
+

→

[

1 0 0 0 0 1 1 1 1
1 1 0 0 1 0 1 0 0
1 0 1 0 1 0 1 1 1
1 0 0 1 1 0 0 0 1

]

= H ′.

Column 5 has been reduced to systematic form, and row

additions have effectively swapped columns 0 and 5 between

I and P , giving a new information (and parity) set of the

code. The inverse of ELC on (f0, v5) is ELC on (f0, v0), due
to the changed bipartition. �

The link to GE emphasizes that ELC always preserves the

code (i.e., the null space of H). Implemented on the Tanner

graph, the inverse operation must reflect the changed informa-

tion set (bipartition), as shown in Fig. 2. In this work, we refer

to ELC on G and on TG(H) interchangeably, using the simple

graph definition to simplify descriptions and proofs, whilst

using the Tanner graph version for practical implementation

in software. We shall use the shorthand notation (u, v) in the

following also when referring to an edge in a Tanner graph

(omitting the notation ‘f ’ and ‘v’). From a Tanner graph

perspective, ELC can be implemented locally and concurrently

in software by letting each check node, u ∈ Nv , complement

its subset of Eu,v .

A. Minimum-Length ELC Sequence Between Two Structures

The set of structurally distinct graphs which arise by itera-

tively doing ELC on all edges of a BSG, G, pruning the recur-

sion tree on repeated graphs, is known as the orbit of the graph.

This orbit is the same for all graphs corresponding to the same

code, so we may refer to it as the orbit of the code. Structural

distinctness is with respect to graph isomorphism. By using the

software package Nauty [17], we obtain a canonical form of a

simple graph, denoted by N(G). Thus, for two simple graphs

G and G′, we have that G
iso
= G′ ⇔ N(G) = N(G′). The one-

to-one relationship between a graph and a parity-check matrix

(up to node labelling) means that we may also speak of the

orbit as a set of parity-check matrices.

If a code has only one graph in its orbit, we say that it is

an ELC-preserved code (or, equivalently, since this graph is

unique, we may say that the graph is ELC-preserved) [18].

Theorem 1 (ELC sequence): A minimum-length ELC se-

quence e = {(u0, v0), . . . , (ul−1, vl−1)} can be found to

convert a systematic matrix H into another systematic matrix

H ′ (up to row permutations), where H and H ′ span the

same space (they are in the same orbit), by comparing the

corresponding bipartitions as represented by the parity sets

P and P ′. The length, l, of e is 0 ≤ l ≤ min(n − k, k).
Depending on H , the sequence e may not be unique, so

equivalent sequences may be derived from P and P ′.
Proof: ELC generates the entire orbit [15], and in partic-

ular all systematic parity-check matrices for the corresponding

code, so such a sequence e must exist. Since a systematic basis

for a (dual) code is uniquely defined (up to row permutations)

by its parity set, the information set (i.e., the P -part of H)

is a function of the parity set. Thus, by comparing P and

P ′, we determine which coordinates are in opposite parti-

tions, and shall be swapped. Each ELC operation preserves

the (dual) code, and has the effect of swapping a pair of
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Algorithm 1 MIN ELC(H, H ′)

1: L := P \ P ′, S := P ′ \ P , e := ∅
2: while S 6= ∅ do

3: choose and remove any s ∈ S , as well as any r ∈ L
s.t. (row(r), s) ∈ TG(H)

4: ELC on (row(r), s) on TG(H)
5: e := e ∪ (row(r), s)
6: end while

positions between I and P (i.e., columns in H), along with

some “residual” modifications to H resulting from the row-

additions. To modify H into H ′, we may thus focus on

swapping corresponding pairs of columns (via ELC) from P
into P ′, to give the I-part ofH ′, and the residual modifications

must “resolve” into the required P -part (since the P -part

is unique given the I-part). Then, the submatrices I and I ′

are equal, from which it follows that P = P ′, such that

H = H ′ (up to row permutations). Alg. 1 is a constructive

proof of this theorem, showing how P and P ′ are used to

determine a corresponding ELC sequence. ELC has the effect

of swapping exactly one pair of positions between I and P ,

so the length of e must be exactly l = |P \P ′|, upper-bounded
by min(n− k, k).

The difference (coordinates to swap) corresponds to the sets

L = P \ P ′ and S = P ′ \ P . As each position in the identity

(sub) matrix is unique, r ∈ L can be viewed as a row-index,

where r is chosen such that (row(r), s) ∈ TG(H), given
s ∈ S . Theorem 1 shows that at least one such (possibly

empty) sequence of valid choices must exist, if and only if

H and H ′ are in the same orbit. When several valid choices

of r exist, branch points arise in the algorithm which all lead

to equivalent ELC sequences; the resulting Tanner graphs are

exactly the same (although the matrices may be different, but

only in terms of row permutations) – see Section II-B for

further discussion.

Example 2: Consider the [14, 7, 3] doubly circulant

quadratic residue (QR) code. The orbit of this code consists

of 11 graphs. Choosing two distinct graphs, G and G′, we
must have that N(G) 6= N(G′). Let H be a parity-check

matrix corresponding to G, and H ′ correspond to G′;

H = H ′ =






1 0 0 0 1 0 0 1 0 1 0 0 1 1
1 1 0 0 1 0 0 1 1 0 1 0 0 1
1 0 1 0 0 0 0 1 1 0 1 0 0 1
0 0 0 1 1 0 0 1 1 0 1 0 0 1
0 0 0 0 1 0 0 0 1 0 0 1 1 1
1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1






,







0 1 0 0 0 0 0 0 1 1 1 0 1 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 1 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1






.

It is easily seen that G and G′ are indeed nonisomorphic,

simply by verifying that |H| 6= |H ′|. The parity sets are

P = {1, 2, 3, 5, 6, 9, 11} and P ′ = {0, 2, 3, 5, 9, 11, 13}, and
Alg. 1 computes L = {1, 6} and S = {0, 13}. Choosing

(and removing) s = 13, we find that r = 1 gives the edge

(row(1), 13) = (1, 13) ∈ TG(H). LetH(1,13) be the resulting

matrix after ELC. Finally, the remaining value s = 0 gives

r = 6, where edge (row(6), 0) = (6, 0) ∈ TG(H(1,13));

H(1,13) = H{(1,13),(6,0)} =






0 1 0 0 0 0 0 0 1 1 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 1 1 1 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0






,







0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1
0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 1 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0






.

By swapping rows 1 and 6, H{(1,13),(6,0)} equals H
′ so these

give the same Tanner graph. That the ELC sequence e =
{(1, 13), (6, 0)} is not unique is reflected by Alg. 1. Different

choices (of s) would result in the sequences {(1, 0), (6, 13)}
and {(6, 13), (1, 0)}, which both give the “target” matrix,

H ′ (up to row-equivalence). The sequence {(6, 0), (1, 13)},
however, is not possible, since the edge (6, 0) /∈ TG(H).1 �

B. Tanner Graph Invariants

In the context of graph-based, iterative decoding, we are in-

terested in discerning distinct Tanner graphs, when these may

correspond to isomorphic BSGs. A linear code is preserved

under elementary row operations (i.e., row additions and row

permutations) on the associated linear basis (parity-check

matrix). However, columns (code coordinates) correspond to

variable nodes in the Tanner graph, on which channel inputs

are attached. Column permutations which preserve the code,

comprise Aut(C).
We define two Tanner graphs TG(H) and TG(H ′) as

isomorphic if and only if the rows of H ′ can be permuted to

give the exact same matrix H . A parity-check matrix, H , can

be put in canonical form, denoted by R(H), by sorting its rows
in lexicographical order, TG(H) = TG(H ′) ⇔ R(H) =
R(H ′). Here, we define H and H ′ as row-equivalent. From a

decoding perspective, distinct Tanner graphs give increased

diversity. In the case where the BSGs are isomorphic, the

structural properties (e.g., matrix weight, and number and

length of short cycles, etc.) are also preserved. A sequence of

ELC operations connecting two parity-check matrices for the

same code, H 6= H ′, with isomorphic BSGs, N(G) = N(G′),
has previously been defined as an iso-ELC sequence [20]. (The

ELC operation is sometimes referred to as a pivot operation.)

Definition 1: A permutation θ ∈ Aut(C) is called trivial if

and only if TG(H) = TG(θ(H)).
Theorem 2 (ELC finds entire Aut(C)): Each nontrivial

permutation in Aut(C), for a given H , is associated with an

iso-ELC sequence of length l, for 1 ≤ l ≤ min(n − k, k).
The particular sequence depends on the parity set, P , (i.e.,

on H), and is not unique.

Proof: For each nontrivial permutation σ ∈ Aut(C), H
and σ(H) are two (nonisomorphic) systematic parity-check

matrices for C, i.e., they both span the same space, and the

result follows from Theorem 1.

We will now explore the algebraic properties of Aut(C),
as a function of a specific parity-check matrix. Keep in mind

the relationship between Aut(C) and ELC operations derived

in Theorem 2. The “potential diversity” of a parity-check

matrix, H , (i.e., number of distinct matrices attainable via

1These equivalent ELC sequences also follow from [19].
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permutations or ELC, given H) can be used to assess the

suitability of C for diversity decoding, and to search for

an optimal starting matrix. We begin by formalizing which

permutations do not improve diversity (i.e., the Tanner graph

does not change).

Proposition 1 (Trivial permutation): A permutation θ ∈
Aut(C) is trivial if and only if it permutes no positions

between I and P for the given H . Furthermore, the set of

trivial permutations forms a subgroup DH � Aut(C).
Proof: If a permutation θ is trivial for a given parity-

check matrix H , then (by definition) H and θ(H) are row-

equivalent, i.e., R(H) = R(θ(H)). Since H and θ(H) are

row-equivalent, θ is constrained to permute the columns from

P (i.e., the I-part of H) to indices from P , and thus permute

the columns from I (i.e., the P -part of H) to indices from I,
and the result follows.

Conversely, if a permutation θ permutes no positions be-

tween I and P for the given H , then the resulting matrix θ(H)
will have weight-1 columns in exactly the same positions as

H , i.e., in the positions in P . Permuting the rows of θ(H)
such that the I-parts of H and θ(H) become identical will

also make the P -parts identical (the P -part is a function of

the I-part), from which it follows that H and θ(H) are row-

equivalent, and the permutation θ is (by definition) trivial.

Finally, we need to prove that the set of trivial permutations

forms a subgroup of Aut(C). This follows directly from the

first result (i.e., that a permutation θ ∈ Aut(C) is trivial if and
only if it permutes no positions between I and P), since the

composition of two such permutations obviously permutes no

positions between I and P .

The subgroup DH is not a code property, but a property of

H . Furthermore, since DH is a subgroup, we can decompose

Aut(C) into a union of cosets of DH ; Aut(C) = {DH ◦σ0}∪
{DH ◦ σ1} ∪ · · · ∪ {DH ◦ σ|Aut(C)|/|DH |−1} where KH =
{σ0, . . . , σ|Aut(C)|/|DH |−1} is a set of coset leaders, given H ,

and σ0 is the identity permutation. We will sometimes use the

shorthand notation D and K when the specific matrix, H , is

not important.

Alg. 1 can be used to convert any σ ∈ Aut(C) into an

equivalent (iso-)ELC sequence, e, by taking as input H and

H ′ = σ(H). The corresponding iso-ELC sequence depends on

both σ and H , and we may emphasize this by the notation,

eσ,H . Then we have that R(σ(H)) = R(eσ,H(H)). For trivial
permutations, θ ∈ DH , R(H) = R(θ(H)) and eθ,H = ∅ (i.e.,

the same Tanner graph).

Proposition 2: Given a parity-check matrix H , eσ,H is an

iso-ELC sequence representation of all permutations in the

coset D ◦ σ, σ ∈ Aut(C).
Proof: The coset decomposition is in terms of row

equivalence, i.e., R(σ(H) = R(σ′(H)) for any σ′ ∈ D ◦ σ,
and the result follows.

Given H , the set KH \ {σ0} contains permutations from

Aut(C) which give a distinct parity-check matrix σ(H), where
σ ∈ KH \ {σ0}. Each coset leader σ corresponds to a

matrix R(σ(H)) representing the |D| row-equivalent matrices

θ(σ(H)), ∀ θ ∈ D. In other words, these all correspond to

the same Tanner graph. In this sense, the set of coset leaders

is not unique (any σ′ ∈ D ◦ σ, where σ 6= σ0, could be used

as a coset leader), which means that KH is not unique even

for a given H . Since σ0 is the identity mapping, KH can be

a group.

The set of (distinct) Tanner graphs resulting from

the permutations in KH comprise the iso-orbit of H ,2

{σ0(H), . . . , σ|K|−1(H)}. These Tanner graphs are all dis-

tinct, but correspond to isomorphic simple graphs, R(H) 6=
R(σ(H)), but N(G) = N(σ(G)), ∀ σ ∈ KH \ {σ0}. The iso-

orbit can be partitioned into disjoint subsets according to the

(minimal) length, 0 ≤ l ≤ min(n−k, k), of the corresponding
ELC sequences: Kl

H = {σ ∈ KH : |P \ σ(P)| = l}. In
particular, K0 = {σ0}. Thus, for l > 0, Kl is not a group

since it does not contain the identity permutation, σ0.

We shall now see how DH and KH relate to H .

Proposition 3: For any permutation α (not necessarily in

Aut(C)) the trivial subgroup Dα(H) = α ◦ DH ◦ α−1, for a
given H . Furthermore, Kα(H) = α ◦ KH ◦ α−1 and Kl

α(H) =

α ◦ Kl
H ◦ α−1, for all l, 0 ≤ l ≤ min(n− k, k).

Proof: Let σ = α◦θ◦α−1 where θ ∈ DH . After applying

α−1 to α(H), the original matrixH is reconstructed. Then, the

effect of applying θ to H is to permute the rows of H . Finally,

the columns are permuted according to α, and the resulting

matrix will be row-equivalent to α(H). Thus, σ is trivial with

respect to α(H), from which it follows that α ◦ DH ◦ α−1 is

a subset of Dα(H). To prove equality, we use this result with

H ′ = α(H), from which it follows that κ ◦ DH′ ◦ κ−1 ⊆
Dκ(H′), where κ is any permutation. Choosing κ = α−1, we
get α−1◦Dα(H)◦α ⊆ DH , from which it follows that Dα(H) ⊆
α ◦ DH ◦ α−1. Since Dα(H) is both a subset and a super-set

of α ◦ DH ◦ α−1, we have equality.

To prove the second part, i.e., to show that Kα(H) =
α ◦ KH ◦ α−1, we use the fact that for any two permutations

σ1 = θ1 ◦ σ ∈ Dα(H) ◦ σ and σ2 = θ2 ◦ σ ∈ Dα(H) ◦ σ
from the same coset (based on Dα(H)), where σ denotes

the coset leader and θ1, θ2 ∈ Dα(H), we must have that

σ1 ◦ σ−12 = θ1 ◦ σ ◦ σ−1 ◦ θ−12 = θ1 ◦ θ−12 ∈ Dα(H). Thus,

if for any two permutations σ1 and σ2 from a given set, the

composition σ1 ◦σ
−1
2 /∈ Dα(H), then σ1 and σ2 belong to two

different cosets (based on Dα(H)). Now, let σ1 = α◦κ1 ◦α
−1

and σ2 = α ◦ κ2 ◦ α−1, where κ1, κ2 ∈ KH , from which it

follows that σ1 ◦ σ−12 = α ◦ κ1 ◦ α−1 ◦ α ◦ κ−12 ◦ α−1 =
α ◦ (κ1 ◦ κ−12 ) ◦ α−1. Since κ1 ◦ κ−12 /∈ DH (κ1 and κ2

are from different cosets based on DH ), we must have that

σ1 ◦σ
−1
2 /∈ Dα(H), and it follows that σ1 and σ2 are from two

different cosets based on Dα(H). The result now follows since

|KH | = |Aut(C)|/|DH | = |Aut(C)|/|Dα(H)| = |Kα(H)|.

To prove the third part, i.e., to show that Kl
α(H) = α◦Kl

H ◦

α−1 for all l, we use the fact that the depth of σ (i.e., the

length of the corresponding ELC sequence) based on H , is

the same as the depth of α ◦ σ ◦α−1 based on α(H), for any
σ in Aut(C). To show this, we write the depth of α ◦σ ◦α−1

2The iso-orbit of H , containing Tanner graphs, should not be confused with
the orbit of C, which contains simple graphs.
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TABLE I
PAIRS OF PERMUTATIONS FROM Aut(C) WHICH GENERATE K FOR THE

[8, 4, 4] EXTENDED HAMMING CODE, SEE EXAMPLE 3. THESE 8 GROUPS

ARE ALL ISOMORPHIC TO ONE GROUP, WHICH IS UNIQUE.

〈(0,4,2,7,6,3,1), (0,6,7,4,5,2,3)〉 〈(0,1,3,6,5,7,2), (0,6,1,7,4,5,2)〉
〈(0,6,4,5,1,2,3), (0,7,5,2,1,4,3)〉 〈(0,6,7,4,2,3,1), (0,4,5,2,7,6,3)〉
〈(0,2,1,6,4,5,3), (0,6,7,5,4,2,1)〉 〈(0,6,2,1,5,7,3), (0,7,5,3,4,2,1)〉
〈(0,5,7,2,4,3,1), (0,2,6,4,7,5,3)〉 〈(0,4,5,1,2,7,3), (0,6,7,5,2,1,3)〉

based on α(H) as,

|{α ◦ σ ◦ α−1(Pα(H)) ∩ Iα(H)}|

=|{α ◦ σ ◦ α−1(α(PH)) ∩ α(IH)}|

=|{α ◦ σ(PH) ∩ α(IH)}|

=|{α(σ(PH) ∩ IH)}|

=|{σ(PH) ∩ IH}|.

Now, we can conclude that the depth of all coset leaders in

Kl
α(H) (based on Dα(H)) is the same and equal to the depth

of the coset leaders from Kl
H (based on DH ), from which the

result follows.

As discussed above, DH depends on H , so the iso-orbit is

not a code property. The partitioning of permutations in KH

into disjoint subsets according to the length of the correspond-

ing iso-ELC sequence may vary for each H ′ = σ(H), σ ∈
Aut(C). Still, from Proposition 3, |Kl

H | = |Kl
σ(H)|, 0 ≤

l ≤ min(n − k, k) and σ ∈ Aut(C), and we call the set

{|Kl
H |}, 0 ≤ l ≤ min(n − k, k), the profile of the iso-orbit

of H . This profile varies with H , but is invariant over the iso-

orbit of H (one profile per graph in the orbit). Since the profile

varies with H , it may be desirable to search the orbit for a

graph that has certain properties with respect to the profile.

We illustrate this with some examples.

Example 3: For the [8, 4, 4] extended Hamming code,

which is ELC-preserved, the parity-check matrix,

H =

[

1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 1

]

,

has the profile listed in Table II. For this code, there exists only

one conjugacy class of subgroups of Aut(C) of the required

size |K| = |Aut(C)|/|D| = 1344/24 = 56. K can be any of

the eight distinct (but isomorphic) subgroups in this class. The

eight subgroups may all be generated by two permutations, as

listed in Table I. This shows that K can be a group, and the

minimum number of generators is 2 (i.e., K can not be a cyclic

subgroup). DH is 〈(0, 2)(6, 7), (1, 3)(4, 5), (2, 3)(5, 7)〉.
Example 4: The [24, 12, 8] extended Golay code, where

|Aut(C)| = 244 823 040 is a rare [18] example of a code with

only two graphs in its orbit, corresponding to parity-check

matrices;

H0 =















1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1















,

H1 =















1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1
1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1
1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1















.

The weight is 96 and 100, and |D| is 240 and 660, respectively.
The two profiles for K are listed in Table II. No subgroups of

Aut(C) exist of size |K| = |Aut(C)|/|D| for either of the two

graphs (verified in MAGMA), so K can not be a group.

III. WEIGHT-BOUNDING ELC

In the discussion on isomorphic ELC operations, a re-

quirement is that the number of edges in the graph must be

preserved [20]. We generalize this, and introduce a notion

of weight-bounding ELC (WB-ELC) operations, in which the

weight of H after ELC, denoted by |H ′|, is upper-bounded

by |H| + T , where T is some threshold. We give necessary

and sufficient conditions to achieve this bound, both for single

ELC and for two consecutive ELCs. In this work, we restrict

our focus to depth-1 or 2, with respect to the locality argument

of the ELC operation (in the sense that many ELC operations

amount to a global operation). However, the concept of WB-

ELC extends to arbitrary depth. Note that the depth-i iso-

ELC sequences described previously are indeed depth-i WB-

ELC for T = 0, where 0 < i ≤ n − k is the length

of the ELC-sequence. The weight of H greatly affects its

suitability for iterative decoding. In the previous section, graph

isomorphism (and code automorphism) was discussed as a

means for preserving graph properties during decoding. In this

section, we relax this requirement, permitting a certain weight

change in H under ELC. The main motivation for this is to

achieve a tradeoff between graph diversity and weight.

Let A ∼ B be a shorthand notation for the edges in the sub-

graph EA,B , i.e., those connecting nodes in A to nodes in B.

Also, EC
A,B denotes the subgraph after complementing A ∼ B.

The net difference in edges before and after complementation

is ∆EA,B , |EC
A,B | − |EA,B |.

Lemma 1: The number of edges complemented between

sets A and B can be expressed as ∆EA,B , |EC
A,B |−|EA,B | =

|A||B| − 2|EA,B |.
Proof: The complete bipartite graph between A and B has

|A||B| edges. This means that, for any graph between A and

B, |EA,B |+ |EC
A,B | = |A||B|, so ∆EA,B = |EC

A,B | − |EA,B | =
|A||B| − |EA,B | − |EA,B |.

A. Depth-1, Single Edge WB-ELC

If the weight change due to the action of a single ELC is

upper-bounded, we say that the ELC is WB-ELC.

Theorem 3: The weight change of G under ELC on (u, v)
is upper-bounded by a threshold T iff ∆Eu,v = |N v

u ||N
u
v | −

2|Eu,v| ≤ T .
Proof: ELC on (u, v) complements the edges between

N v
u and N u

v , and the inequality follows from Lemma 1. The

weight change of G under ELC on (u, v) is therefore ∆Eu,v .
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TABLE II
PROFILES OF K AS SPLIT INTO SUBSETS ACCORDING TO THE LENGTH OF THE CORRESPONDING ELC SEQUENCE.

Code |H| 0 1 2 3 4 5 6 7 8 9 10 11 12

Ext. Hamming 16 1 12 30 12 1 - - - - - - - -
Ext. Golay 100 1 22 616 6 490 33 935 85 712 117 392 85 712 33 935 6 490 616 22 1

” 96 1 60 1 650 18 140 92 655 236 520 322 044 236 520 92 655 18 140 1 650 60 1

B. Depth-2, Double Edge WB-ELC

For many graphs, it is difficult (or impossible) to upper-

bound the weight change by any reasonable threshold (i.e.,

small T ), using only a single ELC. We now determine the WB-

ELC operations which exist for double application of ELC on

a graph. Given a graph, G, and a threshold, T , the definition of

a depth-2 WB-ELC operation is an ordered sequence of two

ELC operations, where the first ELC operation must change

the weight of G by more than T (to a graph G⋆), whereupon the

second ELC must compensate by reducing the weight of G⋆ by

at least |G⋆|−|G|−T . This amount is always positive, as |G⋆| >
T + |G|; otherwise the first ELC would change the weight by

an amount less than or equal to T . We emphasize that if the

first ELC did not exceed the weight-bounding threshold, then

it would, by itself, be a (depth-1) WB-ELC operation.

An important observation is that the search space for depth-

2 WB-ELC can be significantly reduced from that of checking

all pairs of edges in G. First, ELC on two adjacent edges, i.e.,

at distance 0, reduces to a single ELC operation.

Lemma 2 (Adjacent edges [21], proof omitted): ELC on

{(u, v), (v, v′)}, where v′ ∈ N v
u , gives the same graph as

ELC on (u, v′).
From Lemma 2, we see that ELC on adjacent edges reduces

to a single ELC, which has already been covered by the

discussion of depth-1 WB-ELC. So, in order to find additional

WB-ELC instances at depth-2, we need not consider adjacent

pairs of edges. We now present an important novel result

regarding depth-2 WB-ELC; that the distance between a pair

of edges can not be greater than two, for T ≥ −1.3

Lemma 3 (Disjoint edges): Let T ≥ −1. Any depth-2 WB-

ELC where the two edges are separated by a distance greater

than two will always reduce to either one instance, or two

separate instances, of depth-1 WB-ELC.

Proof: Consider two disjoint subgraphs, Eu,v and Eu′,v′ ,

of the same graph. In this case, ELC on {(u, v), (u′, v′)}
gives the same graph as ELC on {(u′, v′), (u, v)}, since

the neighborhoods do not interact. Let T ≥ −1. The only

possibilities for WB-ELC are: Both ELC operations classify

as depth-1 WB-ELC operations (change weight by no more

than T ), or one ELC operation changes the weight by w,
where w > T , while the other ELC reduces weight by at

least w − T . Since they commute, we can assume without

loss of generality that ELC on (u, v) is the operation which

reduces weight, but then this, by itself, classifies as a (depth-1)

WB-ELC operation.

Theorem 4 (Reduced search space): Let T ≥ −1. All

depth-2 WB-ELC can be found by considering pairs of edges

spaced by a distance one or two.

Proof: The proof follows from Lemmas 2 and 3.

3A special case exists for T < −1, which is accounted for in Proposition 4.

In this sense, we define WB-ELC (both depth-1 and depth-

2) as a local graph operation, in that its effect is confined to a

subgraph of diameter at most 4. The corresponding subgraphs

are shown in Figs. 3 and 4. We have restricted the search

space considerably, and shall now cover all possible cases for

depth-2 WB-ELC, for T ≥ −1.
Let us first consider the case where the pair of edges are

at a distance of exactly two edges apart, see Fig. 3. Given an

edge (u, v), let u′, v′ /∈ Nu ∪ Nv be such that (u′, v′) ∈ G,
Q = N v

u ∩ N v′

u′ 6= ∅, and, similarily, Q′ = N u′

v′ ∩ N u
v 6= ∅.

Theorem 5 (Distance 2): The weight change of G under

ELC on {(u, v), (u′, v′)} is upper-bounded by a threshold T iff

∆Eu,v+∆Eu′,v′−2∆EQ′,Q ≤ T . This case covers all instances
of depth-2 WB-ELC where the edges are at a distance two

apart.

Proof: See Fig. 3, and [16] for a detailed proof.

We now consider distance one. Given an edge (u, v) and

two nodes u′ and v′, we denote by B = N u,u′

v ∩ N u,u′

v′ ,

A = N u,u′

v \B, C = N u,u′

v′ \B, E = N v,v′

u ∩ N v,v′

u′ ,

D = N v,v′

u \ E, and F = N v,v′

u′ \ E, see Fig. 4. We consider

the case where both u′ and v′ are in the neighborhood of

(u, v), and where (u′, v′) /∈ G is created by the first ELC.

Theorem 6 (Distance 1): The weight change of G under

ELC on {(u, v), (u′, v′)} is upper-bounded by a threshold T iff

∆EA,E∪F+∆EB,D∪E+∆EC,D∪F+|C|+|F |−|B|−|E| ≤ T .
This case covers all instances of depth-2 WB-ELC where the

edges are at distance one apart.

Proof: See Fig. 4, and [16] for a detailed proof.

We have shown that, for T ≥ −1, the depth-2 WB-ELC

cases must occur on pairs of edges spaced by distance at most

two. Let us now for completeness consider T < −1.
Proposition 4: Let T < −1. In this case a pair of edges

spaced by a distance of more than two may give depth-2 WB-

ELC that does not reduce to (neither a single, nor a double

instance of) depth-1 WB-ELC.

Proof: A small example proves the proposition. For T =
−2, two independent ELC operations may each reduce the

weight by −1.

IV. ELC-ENHANCED SISO HDPC DECODING

For this work, the most important application is the use

of WB-ELC operations during SISO HDPC decoding, where

the aim is to have increased diversity, i.e., more distinct

Tanner graphs for the same code which are all well-suited

for use in iterative decoding. Other applications are discussed

in [16]. Several parameters of a parity-check matrix affect its

suitability for decoding, where one of these is the weight, or

density, of the matrix. Let the received noisy channel vector be

y = (−1)x + n, where x is a codeword and n is additive white

Gaussian noise (AWGN). In the log-likelihood ratio (LLR)
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EL
C (u

,v) ELC (u',v')

ELC (u',v') EL
C (u

,v)

Fig. 3. Proof of Theorem 5. A special case of commutativity gives the equivalent sequence, (u′, v′), (u, v); although the local subgraphs Eu,v, Eu′,v′ are

not independent, the overlap is confined to Q,Q′ (which is complemented twice) [19].

Fig. 4. Proof of Theorem 6 (using one of the three equivalent cases described in [16]) showing the complementations which give the expression.

domain, the initial LLR at position v is Lv
0 , 2

η2 yv , where η
is the standard deviation of the AWGN.

A. Generalized SISO HDPC Decoder

The idea of using permutations (from a cyclic subgroup of

Aut(C)) to gain diversity during iterative decoding originates

from [10]. This was recently generalized to using the full

Aut(C) (and for noncyclic codes) with the random redundant

iterative decoder (SPA-PD) in [9]. It consists of three nested

loops. After I1 SPA (flooding) iterations, a random permuta-

tion from Aut(C) is applied (to the input vector, L) followed

by a damping stage [10]. This is repeated I2 times, before

the damping coefficient, α, is incremented and the decoder

restarts from y. This can be thought of as making I2 new

attempts at decoding y, with increased damping coefficient.

This is all repeated I3 times, and unless SPA converges to

a valid codeword within τ = I1I2I3 iterations, the decoder

outputs a failure.

Generalizing this algorithm, we propose a generalized SISO

HDPC decoder. The permutation may be replaced by any

operation to achieve diversity (e.g., random ELC or WB-ELC),

and we do p such operations at a time. Using this framework,

we propose the novel SPA-ELC and SPA-WBELC decoders.

While the SPA-ELC decoder may do ELC on any edge in

G, the SPA-WBELC decoder must search the graph during

decoding for a WB-ELC operation (which is either one or

two ELC operations). As we have discussed, the search space

is significantly reduced from searching all pairs of edges in

the graph. Further heuristics are used to improve search time,

and the search stops as soon as the first (random) WB-ELC

operation is found. We refer to [16] for a detailed description

and theoretical analysis of a search algorithm.

The most important difference between SPA-PD and ELC-

enhanced decoding (SPA-ELC and SPA-WBELC) is that ELC

does not require any specific structural properties of the code.

As n increases, the probability of a randomly chosen code

of blocklength n to have a nontrivial Aut(C) goes to zero

(when the rate is not too high, or too low) [22]. So among

the main contributions of this work is in this sense to extend

the range of SISO HDPC decoding to codes for which SPA-

PD does not work (“reduces” to SPA). Compared to other

decoding algorithms, we emphasize how SPA-ELC does not

require any preprocessing – not counting the search for a

reduced or minimum-weight initial graph/matrix, as this is a

common component of most iterative decoding algorithms. For

SPA-WBELC, an initial Tanner graph should also be verified

to have a sufficiently large (in terms of diversity) “sparse

sub-orbit.” This sub-orbit is understood as an initial Tanner

graph, TG(H), and all distinct Tanner graphs reachable via

(repeated action of) WB-ELC, all within some threshold, T ,
i.e., graphs of weight upper-bounded by |H| + T . The size

of this sub-orbit will depend on TG(H) and T , so these are

determined in a preprocessing stage [16]. Both SPA-ELC and

SPA-WBELC are online algorithms, based on local decisions,

and no memory overhead is incurred (the graph is modified

in-place, as opposed to storing multiple redundant matrices,

e.g., as in multiple-bases belief propagation (MBBP) decoding

[23]).
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B. Edge-Local Damping Rule

The purpose of damping is to scale down the extrinsic

contribution (i.e., messages on edges), typically to moderate

the impact of some global change to the graph [7, 9, 10].

Every I1 iterations a diversity stage is executed, in which

the extrinsic contribution of the LLRs, Γv
j , of each variable

node, v, at iteration j is scaled down by a damping coefficient,

α, 0 < α < 1, and accumulated on the input to the next

iteration according to the damping rule Lv
j+1 = Lv

j + αΓv
j .

The extrinsic contribution to variable node v (the sum of all

incoming messages, µv←u
j ) in iteration j is

Γv
j =

∑

u∈Nv

µv←u
j (3)

where we define Γv
0 , 0. The initial contribution from the

received noisy channel vector is never damped, which is

apparent if we rewrite Lv
j+1 = Lv

0 + αΣj
j′=1 Γ

v
j′ . These new,

damped LLRs are then used to re-initialize the decoder. So,

after resetting all messages, µv←u
j := 0 ∀ (u, v) ∈ G, iteration

j+1 begins by forwarding the new, damped input towards the

check nodes. This “global reset stage” is necessary when the

operation used in the SISO HDPC decoder acts on the variable

node level, e.g., as in SPA-PD, which permutes L [9]. After

this, relationship (3) between extrinsic information (on edges)

and LLRs (in nodes) no longer holds. The global stage of

accumulating the input followed by re-initializing all edges,

is referred to as global damping (GD). In contrast to GD,

we have previously proposed edge-local damping schemes

more suited to the edge-local action of ELC [12, 24]. The

damping rule can be generalized to include and take advantage

of extrinsic information on an edge (u, v), µv←u
j , in iteration

j;

µv→u
j+1 = Lv

j + α(Γv
j − µv←u

j ). (4)

Each edge adjacent to v is damped individually. Note how

µv←u
j is subtracted, to adhere to the extrinsic principle of the

SPA. Thus, less information is lost than is the case with GD.

ELC on (u′, v′) complements the edges of Eu′,v′ – the

“internal” edges with both endpoints in N v′

u′ ∪ N u′

v′ . By

defining a flooding SPA iteration as the update of all check

nodes followed by all variable nodes, we ensure that all soft

information (on edges) is stored in Γv, for all variable nodes v,
before ELC. Thus, the information loss due to edges removed

by ELC is reduced, and we need only focus on edges inserted

by ELC; precisely (u, v) ∈ Eu′,v′ . These new edges must

be initialized with some outgoing message, µv→u
j+1 , before the

next SPA iteration (iteration j + 1, which begins with check

nodes), so (4) implements a damping-and-initialization rule.

However, since µv←u
j = 0 for new edges, (4) reduces to

µv→u
j+1 = Lv

j + αΓv
j = Lv

j+1 (GD). We emphasize that edges

connected to Nv \ Nv′ , i.e., those unaffected by ELC on

(u′, v′), are not damped and retain their extrinsic messages for

the next iteration. Restricting damping to the edges affected

by ELC is referred to as edge-local damping (LD) [12].

C. Error-Rate Observations

We will show the effectiveness of the proposed ELC-based

decoding algorithms, SPA-ELC and SPA-WBELC, by com-

paring against the benchmark SPA-PD algorithm. These are

all implemented using the generalized SISO HDPC decoder.

For all decoders, we ensure the same maximum number of

SPA iterations, τ = I1I2I3. In the diversity stage (every I1
iterations), p random operations are applied. These can be

permutations from Aut(C) (as in SPA-PD), or ELC operations

(recall that one WB-ELC operation consists of one or two

ELC operations). The values of p, I1, I2, and I3 are chosen

empirically, based on frame error-rate (FER) simulations. As

discussed in [16], the performance is most sensitive to p and

I1, and optimal performance appears to be when these are both

low. To emphasize the effect of various operations, we also

compare against the standard SPA decoder. The most general

observation is that SPA decoding of HDPC codes benefits from

increased diversity, see Fig. 5. For all codes and decoders

simulated, we observe a significant gain in FER over SPA

decoding, especially in the high signal-to-noise (SNR) region

(for a lowered “error floor”).

Since any ELC operation must either preserve the graph (up

to isomorphism) or give a different graph from the orbit, a

small orbit must imply a large (relative to code size) Aut(C).
Generally, SPA-ELC can be described as a combination of

SPA-PD (when ELC is iso-ELC) and MBBP (otherwise). The

extended Hamming and Golay codes are famous examples

of codes with very strong structure (orbit size 1 and 2,

respectively), and we see that the performance of SPA-ELC

matches closely that of SPA-PD (see Fig. 5(a) and also [20]).

From a decoding perspective, diversity is in terms of Tanner

graphs. We can express the probability of gaining diversity

when using SPA-PD by 1−|D|/|Aut(C)|; i.e., the probability
of not drawing a trivial permutation from Aut(C). For such
strongly structured codes, the size of Aut(C) will ensure good
diversity. Using SPA-ELC, any ELC operation will swap a

pair of columns between I and P (in H), and will thus

necessarily give a distinct Tanner graph. However, a sequence

of p > 1 ELC operations may cancel, and give the same

Tanner graph (no diversity); p − 1 ELC operations work to

“undo” the swap induced by the first ELC. This is to restore

the I-part of H , and thus (by extension) restoring the initial

H (see Alg. 1 and Example 2). The probability of diversity is

1−D(p)/S(p), whereD(p) is the number of such “redundant”

(i.e., nonminimal) length-p ELC-sequences, and S(p) is the

total number of (possibly redundant) length-p ELC-sequences

encountered in a depth-first search (on some graph). Recall

that the extended Golay code has only two graphs in its orbit

(Table II). For G0 we count D(1) = 0, S(1) = 84; D(2) = 84,
S(2) = 7152; and D(3) = 1008, S(3) = 608 640. Similarily,

for G1, D(1) = 0, S(1) = 88; D(2) = 88, S(2) = 7480;
and D(3) = 1144, S(3) = 636 592. Using SPA-ELC, the

probability of diversity remains quite high, also as we increase

p, which gives us the additional benefit of (implicitly) running

SPA-PD on both graphs. For this code, no additional gain can

be achieved by SPA-WBELC (|G| is either 96 or 100).

For such strongly structured codes (where Aut(C) is large),
SPA-PD is known to perform well [9]. ELC-enhanced decod-

ing, however, acting on the entire orbit of the code, can be

made effective on a greater range of codes. When the orbit

is large, the probability of iso-ELC becomes negligible, and
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(a) Ext. Golay = [24, 12, 8], with |Aut(C)| = 244 823 040
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(b) R2 = [36, 18, 8], with |Aut(C)| = 32
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(c) C38,2 = [38, 19, 8], with |Aut(C)| = 1
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(d) EQR48 = [48, 24, 12], with |Aut(C)| = 51 888. MLD data provided
by Alban Goupil.

Fig. 5. Simulation results. Each SNR point is simulated until at least 100 frame-error events are observed (otherwise, error bars indicate a 95% confidence
interval [25]). The union bound is calculated based on the full weight enumerator of the code. Parameters are listed as, (p, I1,I2,I3, α, T ).

SPA-ELC is reminiscent of an online, local-action MBBP.

Consider the extremal (in terms of dmin) self-dual [36, 18, 8]
“R2” code [26] in Fig. 5(b). This code has a small Aut(C),
of size |Aut(C)| ≈ n, which thus hampers the performance

of SPA-PD. For this code, we observe a consistent gain (over

the entire SNR range simulated) of SPA-ELC, especially by

removing a floor effect. The optimal value of p is seen in

Fig. 6(a) to be 3. The gain due to improved diversity depends

on the quality of the resulting Tanner graphs. SPA decoding

is sensitive to short cycles and, more generally, an increase in

graph weight (number of edges). This code has a large orbit,

so we can not expect all graphs to be well-suited for SPA

decoding – and it is easily verifiable that they are not [16].

Especially at the low-SNR range we observe a gain by using

SPA-WBELC over SPA-ELC. This demonstrates the benefit

of restricting decoding to a sparse sub-orbit of the code.

As an example of a nonrandom, constructed HDPC code

with a trivial Aut(C) we consider the [38, 19, 8] “C38,2” code

[26] in Fig. 5(c). This code is related to the “R2” code, and has
otherwise very similar parameters and properties. The most

important practical result of this paper is that we find the

same (large) gain over SPA as for “R2” – despite the trivial

Aut(C). This verifies the benefits of ELC-based decoding on

codes less suited for SPA-PD. For this code we observe a more

consistent gain for SPA-WBELC over SPA-ELC, especially at

the low-SNR range. The break-off point where SPA-WBELC

converges with SPA-ELC depends on the WB-ELC threshold,

T . As we increase T , we allow graphs of higher weight to

participate in the decoding process. Yet the search complexity

of WB-ELC is obviously lower for less restrictive (i.e., higher)

thresholds [16]. Eventually, as we increase T sufficiently, the

weight is no longer bounded (compared to “unbounded” SPA-

ELC). So, with increasing T , the break-off point is shifted to a

higher SNR but the low-SNR gain is reduced, as SPA-WBELC

“reduces” to SPA-ELC.

We also consider the [48, 24, 12] extended QR (EQR) code,

denoted by “EQR48”, as a next step from the extended Golay

code but for which the orbit size is large. Correspondingly,

Aut(C) is relatively small, containing “only” 51 888 permu-

tations. This is nevertheless more than sufficient to ensure a

strong performance of SPA-PD, which is only 0.5dB to 1dB

away from optimal maximum likelihood decoding (MLD).

Yet, simply by interspersing SPA iterations with (p = 2; see
Fig. 6(b)) random ELC operations, we achieve a performance
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Fig. 6. Details for SPA-ELC with I1 = 1, I2 = 30, and I3 = 20. Here,
p = 0 denotes SPA decoding (with no damping). p may be increased to
slightly reduce flooring effects.

only ∼0.25dB away from SPA-PD (and even closer below

an SNR of 4dB). However, the weight increase due to ELC

has an adverse effect on decoding performance, so to close

this gap we use WB-ELC. The minimum weight of any

graph of this code is 288, and we are able to find many

distinct minimum-weight Tanner graphs (including nonisomor-

phic simple graphs) [16]. Fig. 5(d) shows how the peformance

of SPA-WBELC depends on T in a similar way as for “R2.”
We also compare against some other decoding algorithms

(not included in Fig. 5). A simple scheme running SPA

on seven distinct minimum-weight matrices for the extended

Golay code gives an improvement over SPA [27]. We observe

a performance gain of ∼0.5dB at bit-error rate 10−4 over

this scheme (we still observe a gain of ∼0.25dB when we

limit SPA-ELC to τ = 200 iterations). We also observe

an improvement in error-rate on this code over the more

advanced MBBP algorithm, which uses 15 n × n matrices

(based on cyclic shifts of minimum-weight codewords in

C⊥) in a parallel (i.e., list) decoding scheme [23]. At FER

3 · 10−3 we observe a gain of ∼0.2dB when using τ = 600
iterations. In addition to this improvement in performance, we

also achieve a significant reduction in complexity, by avoiding

parallelism, by using fewer iterations (they use a maximum of

1 050 iterations), and by avoiding the storage (in memory) of

redundant parity-check matrices.

D. Complexity Observations

We also report on simulations to determine the average

complexity of the various decoding algorithms. The SPA-

ELC and SPA-WBELC decoders use a systematic matrix and

modify the corresponding graph during decoding, whereas the

SPA and SPA-PD decoders use a single, optimized (reduced-

weight) nonsystematic matrix. Since the weight varies under

ELC decoding, the complexity cannot be reported simply

in terms of the average number of iterations per codeword.

However, the complexity of all stages of SPA decoding

and of the ELC operation is proportional to the number of

edges involved, so decoding complexity may be measured by

the average number of SPA messages [11, 28]. In terms of

messages, the complexity of one (flooding) SPA iteration is

2(|G|+ n− k) = 2(kγ̄ + n− k). For the following argument,

we assume that k = n− k. At “50% weight” the complexity

of one SPA iteration is 2k(γ̄ + 1) = 2k(k/2 + 1) = k2 + 2k,

which is significantly higher (by at least a factor of 4) than the

ELC complexity, k2/4− k+ 1, from (2). As such, we do not

take the overhead of applying ELC operations into account in

the comparisons.

For complexity, we observe the desired effect of bounding

the weight increase due to ELC. Fig. 5 (inset plots) indicates

a general trend where the SPA-PD decoder has the lowest

complexity, while the SPA is the most complex decoder. As

these two algorithms use the exact same graph (for a given

code), any difference must be entirely in terms of number

of iterations used per codeword. In other words, this shows

how the SPA-PD is an important benchmark, as it gives an

improvement in both FER and complexity. Similarily, our

proposed SPA-WBELC algorithm also gives an improvement

in complexity, over SPA and SPA-ELC, and is not far from

this benchmark. The complexity improvement over SPA-ELC

is a direct benefit obtained from bounding weight.

The complexity of finding WB-ELC operations, given a

graph and a threshold, is analyzed theoretically and empiri-

cially in [16]. However, for practical use in the SPA-WBELC

decoding algorithm, the search may be terminated upon finding

the first occurrence of a WB-ELC operation. Simulations show

that finding a random depth-2 WB-ELC operation on the

“EQR48” code with T = 8 requires only an average of 150

edges checked per iteration (where each “check” corresponds

roughly to one ELC operation). This drops to 50 edges for

T = 12, and 20 edges for T = 16. For comparison, Gaussian

elimination (as used in [7] and [24]) can be implemented

using n − k = 24 ELC operations [16]. So this is not an

unmanageable overhead, and we also assume better heuristics

can be designed.

CONCLUSION

In this work, we have presented a mapping from a Tanner

graph to a bipartite simple graph so as to facilitate the use

of a graph operation known as ELC during iterative, graph-

based decoding. ELC modifies locally the structure (i.e., the

edges) of a graph, without changing the associated code,

thus generating the entire orbit (all systematic parity-check

matrices) of the code. We have identified and described how

ELC may induce graph isomorphism, and how this is linked

to code automorphism, i.e., to Aut(C). We have also defined

a notion of Tanner graph isomorphism (row-equivalence of

parity-check matrices), and shown the relationship to the cor-

responding trivial (in terms of decoding) subgroup of Aut(C).
This gives a natural relationship with SPA-PD (a state-of-

the-art decoding algorithm for HDPC codes) which improves

decoding by employing random permutations from Aut(C)
during decoding.

The concept of isomorphic ELC operations has been gen-

eralized to a weight-bounding application of ELC, WB-ELC.

All possible instances of WB-ELC due to single and double

application of ELC on a graph are classified, where we show

that all double instances occur on adjacent edges. This locality

improves search time. We described the usage of ELC (and

WB-ELC) to improve iterative SISO decoding of HDPC codes.

Generally, the orbit of a code contains many matrices which
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are less suitable for SPA decoding, so the generalization to

WB-ELC is a valuable extension of the scope of SISO HDPC

decoding. To facilitate the convergence of the decoder, we

also proposed a novel edge-local damping rule, tailored to

our graph-local context. Extensive simulation data showed a

consistent gain of SPA-ELC and SPA-WBELC over SPA, and

that SPA-WBELC competes closely with the performance of

SPA-PD when Aut(C) is large and outperforms SPA-PD when

Aut(C) is small or trivial.
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