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A Discrete-Time Model for Uncompensated
Single-Channel Fiber-Optical Links

Lotfollah Beyagi, Erik Agrell, Pontus Johannisson, Magnuarlkson, and Henk Wymeersch

Abstract—An analytical discrete-time model is introduced
for single-wavelength polarization multiplexed nonlinea fiber-
optical channels based on the symmetrized split-step Fowet
method (SSFM). According to this model, for high enough symabl
rates, a fiber-optic link can be described as a linear disperge
channel with additive white Gaussian noise (AWGN) and a
complex scaling. The variance of this AWGN noise and the
attenuation are computed analytically as a function of inpu
power and channel parameters. The results illustrate a culu
growth of the noise variance with input power. Moreover, the
cross effect between the two polarizations and the interaiin of
amplifier noise and the transmitted signal due to the nonlinar
Kerr effect are described. In particular, it is found that the
channel noise variance in one polarization is affected twi as
much by the transmitted power in that polarization than by the
transmitted power in the orthogonal polarization. The effect of
pulse shaping is also investigated through numerical simations.
Finally, it is shown that the analytical performance resuls based
on the new model are in close agreement with numerical resudt
obtained using the SSFM for a symbol rate of 28 Gbaud and
above.

Index Terms—Channel modeling, Nonlinear fiber-optic chan-
nels, Chromatic dispersion, Nonlinear phase-noise, Symrrezed
split-step Fourier method (SSFM), Nonlinear Schidinger equa-
tion (NLSE).

|. INTRODUCTION

Considering linear and nonlinear effects, an analytical ex
pression for the variance of nonlinear phase ndisé [16] was
introduced in [[1¥7]. This result was based on a first-order
perturbation technique. Ho and Warng|[18] analyzed the vari-
ance of the nonlinear phase noise by including the effect of
intrachannel cross-phase modulation and chromatic digper
(CD). A model based on a combined regular-logarithmic
perturbation method [19] was proposed for the simultaneous
presence of nonlinear and dispersive effects. Moreover, an
approximate expression for the probability density funti
(pdf) of the phase difference of an optical and electrical
filtered signal has been proposed[in|[20]. The time domaén, fr
guency domain, and Fourier series method based on the saddle
point approximation were compared [n_[21] for intensitydan
phase-modulated direct-detection optically amplifiedeys.

A discrete-time model based on a \olterra series transfer
function method was proposed in_[22], which is suitable for
time-division multiplexed transmission at high symboletat

Although the above-mentioned approaches clarified many
aspects of a fiber-optical channel, an accurate statisticanh-
nel model with known pdf of the received signal was lacking
for a channel without inline CD compensation. However,
according to[[2B], an optical fiber channel with electronit-d

HE growing demand for high data rates in optical neRersion compensation (EDC) at the receiver and withoutenli

works encourages applying advanced coding and mddP compensation, which |s opera}ting at hi_gh symbol rates,
ulation techniques in fiber-optical channels [1]] [2], whic €@n be modeled as an additive white Gaussian noise (AWGN)

exploit the available bandwidth more efficiently. The desigchannel. Later, an analytical model was proposed for a fiber-
of advanced coded modulation techniques requires an decufptic link using wavelength-division multiplexing (WDM)

channel model[[3]/T4]. Moreover, the Shannon channel apdi

#24]-[26]. The power spectral density of nonlinear noiseswa

theorem, which is used as a criterion in the design of cod@yen by a closed-form formula and the theoretical resuéisew
modulation schemes, also requires an exact channel model &h ¢lose_agreement with the numerical simulations. Bononi

signal statistics [5]=]7].

et al. [27] derived a nonlinear interference coefficient for

The propagation of light in optical fibers is described by thf'® IFWM-dominant regime and showed that their result is

nonlinear Schradinger equation (NLSE). These channals &Pnsistent with [25] for the cross-phase modulation (XPM)
nonlinear with non-Gaussian noise, and due to the lack of g2minant regime.

alytical solutions and the complexity of numerical appitves;

The aim of this paper is to derive an analytical channel

deriving the statistics of such channels is in general cumb@'0del for a polarization-multiplexed single-channel fiotic

some. Hence, many efforts have been devoted to computing i Without inline CD compensation. We show analytically
statistics for simplified models, e.g., memory-less narin that for high symbol rates (as illustrated in Flg. 1(c)), the
channels with singleT8],[19, p. 225] and dual-polarizatioficer-optic link depicted in Fig[ 1(r) can be modeled as

(DP) [10] signals, partially coherent linear channgls (18],

a linear AWGN channel with a complex multiplication as

and a channel with intra-channel four-wave mixing (IFwm$hown in Fig[1(H). In the analysis, we take into account the

[14], [15].

cross effect of the signals in both polarizations. In casttra
to previous works [[25],[126],[128], we include the inline
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spontaneous emission (ASE) noise in different spans due to
the Kerr effect. Moreover, a closed-form expression for the
variance of the AWGN noise and the channel attenuation are



S = . D] tion coefficient,3s is the group velocity dispersion,denotes

| viod | |— ) A peMod - EDC ™ Hermitian conjugatiory, is the time coordinate in a co-moving
L reference frame and is the propagation distance. Here, we

used equations (6.1.22) and (6.1.23) lof|[31] with = 1

______ Channel based on the Manakov modél [32] antly = (i, = 0,
@ which is an approximation obtained by averaging over fast
polarization rotations in the Manakov equation. This eiumt
AWGN

7 ) automatically prevents taking into account polarizationde
/ . dispersion (PMD) effects and therefore restricts the agisly
) to the (practically relevant) case of low-PMD fibers. A fiber-
optical link with N spans of length. is considered according
5 to Fig.[I(a). Each span consists of a standard single-moele fib
(b) © (SMF) followed by an erbium-doped fiber amplifier (EDFA).
Fig. 1. (a) A fiber-optical link withIV spans. Each span consists of an SMF |n this paper, we use the SSFM [31, eq. 2.4.10] both to
and an EDFA (the modulator (Mod) converts the discrete-tiigeal from the  ~yhotrict the analytical discrete-time model as well as to
signal space to a continuous-time optical signal and theodefator (DeMod) . . . .
converts the received optical signal to a baseband distire¢esignal). (b) Simulate a fiber-optic channel numerically. In fact, the BISF
The introduced discrete-time equivalent modgli¢ a complex vector). (c) provides an appropriate mathematical model which can be
The contours of the two-dimensional histograms for theivedeQPSK signal ; i ot ; ;
simulated by the SSFM for the symbol rate 14 Gbaud on the iidét and 28 used to derive the S|gnal statistics by followmg an anaiytl
Gbaud on the right side. approach. In_th|s method, each SMF. span is modgled by
a concatenation of\/ segments with linear and nonlinear

derived as a function of the transmitted power and the cHanfé€cts as shown in Figl 2. The length of each segment/,
parameters. It is also shown that the channel noise variancéhould be chosen small enough to ensure that the linear and
one polarization is affected twice as much by the transahitt@onlinear effects act independently. The linear propagatan
power in that polarization than by the transmitted powehis t b€ described in the time domaln [33], [34] as a solutiorLbf (1)
orthogonal polarization. This fact has been previouslprea  fory = 0 by u(t, 2) = e_az/_Quz(ta 0)xh(t, z), wherex denotes

in [26] and implicitly in [29], [30]. The power loss in the fibe convolution andh(t, z) = ¢7(*/(2%22) /\/j27 B, > is the dis-
optic link is compensated by inline amplifiers, and therefoiP€rsive impulse responsé\s shown in Figl®, the linear effect
the above mentioned attenuation is coming from the fact tHAt€ach segment is considered in two steps, the linear propa-
the nonlinear effect converts a part of the transmitted pow@ation in the first (linear) stage of each segment is destribe
to noise-like interferencé [13]. by u(t, (m — 1/2)L/M) = e=*2/4Mu (¢, (m — 1)L/M) *

The symbol error rate (SER) of a DP quadrature phase shiftt, L/(2M)), m =1,..., M. The nonlinear effect of each
keying (DP-QPSK) system is computed both analytically arfg@gment, described by the solution [of (1) far= 0, is given
using the split-step Fourier method (SSFM). The perforrean@y
comparison shows a close agreement between the results (e (me Ly Loy
Finally, it is shown both analytically and numerically titae a(t, (m - %)%):u(t’ (m — %)%)ewll iz , ()
system performance will be improved by increasing the CByhere m = 1,...,M and p = 2vya~!sinh(aL/(2M))

Notation: We usexz[n] £ x(nT) to denote the samples[37, sec 4.1.8 Finally, CD and attenuation operate on the

of any signalz(t) att = nT'. All continuous- and discrete- output of the nonlinear unit in the second stage of the
time random variables and random processes are shown V§#yment asi(t,mL/M) = e *L/*Mu(t, (m — 1/2)L/M) *

capital letters. DP signals are denoted by a boldface vectgr; r/(2a1)), m = 1,...,M. The symbolsS[n] =

Zx denotes the angle of the complex variableThe real and (g, [n], Sy[n]), e.g., DP-QPSK, are transmitted eveFysec-

imaginary parts of a complex variabteare denoted bRe(z) onds with a pulse shaping filteg(t). It is assumed that

andIm(z), respectively| z] represents the greatest integer less{| s, [n]|2} = P,T, where P is the transmitted power in

than or equal ta:. The squared Euclidean norm of a comple)olarization x. The statistics of the received signal anévee

vector x is denoted by||x[* and E{} denotes expectation.for a given transmitted symba$y[0] = s, at time instant

Finally, all deterministic signals have lowercase lettesshave ; — ().

outcomes (realizations) of random processes and variables \ye assume that each EDFA compensates for the attenuation
in each fiber span and adds a circular white complex Gaussian

¢

Il. CONTINOUS-TIME MODEL ASE noise vectorZ;(t) = (Z;(t), Zj(t)) in each span with
The NLSE describes the light propagation in an optical fibeariances? = GF,, hvop/(27') in each polarization[35, eq.
as [31, ch. 6] 8.1.15], whereGG is the required gain to compensate for the
Au(t,z) B 82u(t,2) attenuation in a spanf;,, = 2ng(l — G™!) is the noise
0z 2 Ot2

e’ 1The CD filter has the all-pass frequency responsKf,z) =
+A(u(t 2ult )t 2) +igut2) =0, (1) edar gy NEK(f, 2)

. . . 2In contrast to[[31, sec 4.1.1], the nonlinear phase noiseritew as a
whereu is the DP electric field with complex components,nciion of the signal at the mid-point of the segment andctofaeo L/ (2M)

(ux, uy), v is the fiber nonlinear coefficienty is the attenua- compensates for the signal attenuation at this point.
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Fig. 2. A baseband continuous-time model for a fiber-opfiicéd with N spansi = 1,..., N, each consists af/ segmentsn = 1, ..., M, and electronic

chromatic post compensation (for simplicity, fiber atteiores and amplifier gains have been dropped).

figure, in whichnsp is ASE noise factor, andigy is the The output of Stage 1 in Fig. 3{a) for inpM; ,,,—1[n] =

photon energy. The linear SNR in polarization X is denoted}:  [n],Vi: _ [n]), is

by px £ Px/(No?). We also defing) £ L/(M Lp), in which o0
Lp = T?/|$,] is the dispersion length [31, p. 55]. The optical Uim[n] =A Z Vim-1[n — k]h[k], (4)
bandwidth of the EDFAs is assumed to be equal to the signal k=—o0

bandwidth. The dispersion is compensated for by eIectroni% B I
dispersion compensation (EDC). This EDC filte(t, —NL), W1e'€ Uim[n] = (U, [n];Uy; [0]) and A = e 177,

is the N-fold convolution of the inverse of the CD filter of eaCHAccordmg to the discrete-time model given in F@(a)_, the
span with itself. In order to apply an analytical approach, V\put.put signal of Stage 2V m[n], can be decompose_d Into
considersinc-shaped pulses. However, the numerical resuffs/inear termvy. [n] = (Vig [n], Wy [n]) and a nonlinear
show the accuracy of the proposed model for other pul¥™ Vnii, 7] = (Vawg, ], Vi, [0]) as

shapes, e.g., raised cosine and Gaussian pulses. A matched Vim[n] = Vii [n] + Ve 0], (5)
filter to the pulse shape with a Nyquist sampler is assumed at " "

the receive? Due to the symmetry, we perform the derivation¥/here

only for one polarization, denoted x, except where othezwis Vixi, [n] = AGq, [n]Uxi [n] = h[n], (6)
stated. Vi [n] = AByi [n] % hin], (7)
I1l. DISCRETETIME MODEL " "
. . . . 2
In this section, the continuous-time SSFM is used to deri@ which By: [n] = Uy [n] S@“‘UW[”“’ — i, [n])- The
a discrete-time model. To find the distribution of the reeeliv term Vy,: will be referred to asnonlinear noise[24].

signal for a transmitted symbol, we assume the compléx a similar way, equationd(6]3(7) can be written for po-
symbols = (sx, sy) is transmitted at time instarit= 0 and larization y. Clearly, [(){7) hold for any complex vector
symbols before and after this time instant are unknown to tde,, = ((« ,(y: ), however we will choose this complex
detector, i.e., no nonlinear pre- or post-compensatidmiigeie  vector such that the mean &f: and Vyy: is zero. An
such as digital backpropagation[36] is used. First, werilesc equivalent linear discrete-time model for Stage 2 of Fig)3(
the signal propagation for segmemnt from spani shown in is shown in Fig[ 3(8) exploitind{5)E(7).

Fig.[3(a) from the fiber-optical link described in Fig. 2 ahe t

statistics of the received signal for this segment are ddria IV. STATISTICS OF THE PROPAGATED SIGNAL
Sectior{IV. Then, in SectionlV, we extend the results for one we proceed with the derivation of the statistics of segment
segment to a fiber-optical link witlV' spans. m shown in Fig.[3(@), for an asymptotic case of strong
In the continuous-time model considering(t) = dispersive effects, i.en; — co. Although this scenario is not
sinc(t/T)/VT as a pulse shape, whersinc(z) = exactly valid for a real system, it helps us to get some irtsigh

(sin 7mx)/(mx), the transmitted signal is band-limited tdinto the qualitative channel behavior in a real fiber-opfice.

1 - , .
[—57, 7). Hereafter, we assume a quasi-linear fiber-optical

data transmission[ [87], therefore we neglect the spectigl signal statistics for the case of strong dispersive &fec
broadening due to the nonlinear effects, i.e., the bandwidt . .
For a given transmitted symbok[0] = sx andn — oo, we

of Uy(t)eMIVWIF is assumed to be limited ta/7. This . : ) > _
assumption helps us to obtain the discrete-time model tm_picmvesng_ate _the signal statistics of the single-segmenerse
shown in Fig[3(3).

in Fig.[3(a) for segment: from spani, consisting of Stages ; . -
1and 2. In this figure, the band-limited CD filter is gifeny , -S'Ma 1IN segmentn of spani shown in Fig.[3(@),
the sampled/y; [n] are a sequence of complex independent

hin] = h (t, 2% ) * sinc (&) ‘ . (3) Gaussian random variables.
t=nT Proof: See AppendiXA. ]
3perfect carrier and timing synchronization are assumed. The mean of the nonlinear noise is given by

4For asinc(-) pulse,gt(—t) = g(t). E { Vi, [n]|Sx[0]} = AE {By:, [n]|Sx[0]} * h[n]. Using
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Fig. 3. (a) An equivalent discrete-time channel model ofhsegtn from spani of the fiber-optical link given in FidJ2. (b) The equivaleimdar model of

o

Stage 2 in Fig_3(&) with an additive nonlinear no¥g, ; [n] and a complex scaling; ,,,, which depends ofJ; ,,,. The filter attenuation isl = ¢~ 4 ko,

Propositior 1L in Appendik1B, we get % = nLp. (10)

E {Bxi [n]|Sx [0]} = Uy [n] {q))% [n]®y: [n] In contrast, for the numerical SSFM, it is better to use a very
" " " " small segment size.

in( @y [0 [n]P+®y, [0]0, n]*) .
xe (2. " o 10 1) G, [l 1) The channel complex scaling and the nonlinear noise
variance of a segmentln order to apply an analytical ap-

whereUy; [n] = E{Uy; [n]]Sx[0]}, proach, we assume that the results of Lemfdas 1[and 2 hold

@;1[71] -1 —juVar(Uxf, [n]) ’ for a f_inite segment Ieng_th_, e[,/ M = 77LD_- Our approach
o ) ” to derive the signal statistics of segmentis based on the
vy [n] =1~ juVar Uy, [n]) . (8)  discrete-time model given in Fi. 3[a) and it can be simply

Here, we find the channel complex scaling such that the medscribed as follows: First, one may use Leniha 1 to conclude
of the nonlinear noise is zero. Thus that the signal at the output &tage lis a Gaussian random

_ B , B ) process. Then, we repla&tage 2with a linear model shown

G [n] = 2 [n]®y: [n]ew(q’xin T, [n] P42y [n]0y; )17) iy Fig.[3(B). According to this transform, the nonlineareef

" 9) has the same effect as converting a part of the signal to noise
like interference or nonlinear noise. Exploiting Lemat4si
seen that the nonlinear nois®,y. : , is AWGN. Moreover,
we note that using LemmaAl 2, one can conclude that the
components of this nonlinear noise in the two polarizations
are independent and the nonlinear noise is independeneof th
signal term. Finally, the concatenation of Stages 1 and 2 is

odeled by a linear channel with an AWGN and the CD filter
* h[n].

Lemma 2:The nonlinear noiseVyx: and Vyy: , are
independent zero-mean prop88] complex AWGNSs. More-
over, the linear termdq,. andVy,: are independent of the
nonlinear noised/y : and Vyy: .

Proof: See AppendiX L.

B. Signal statistics for a segment length applicable to SSF

In this section, we investigate the results for finite values ) s
of 1. Although the convergence to a Gaussian distribution in Here, we introducey = ya™"F; ¢x < 1. Then, as shown
Lemma1 is proven for an asymptotic case witkima:(-) pulse N AppendiXD, the channel attenuation and the nonlineasenoi
shape, the signal distribution can be approximated very w¥priance of segment. from spani can be approximated by
by a Gaussian distribution for a fiber-optical link also with 2 - [ 2 . 9

. . . i |~ 1—4sinh*($nlp)|2 2(i — 1)t

a root raised cosine (RRC) pulse shape or a Gaussian pulse G, sinh™(3nLp) |2+ 17 + 20 )pr
shape. . _ + (i = 1)y |4 A%m (11)

We note a subtle point in the selection of the segment length. ) ot am
In contrast to the numerical SSFM, the segment length cannot Onwxi, = (1= [Ga, 1) A™ B, (12)
be ch_osen arbitrarily smgll. Each output sa_mple of the C@f_f'ltwheren — B,/B, and U’%L . is the variance of the nonlinear
is written as a sum of input symbols weighted by CD fllte?ﬁ11 X

ficients. Si the mini red ind dent oise for segment from ‘Spani in polarization x. We note
coeflicients. Since the minimum required Independaent SAMy, ; ihe channel attenuation of each segmént, (11), istaffec

size to sum to a Gaussian distribution varies for differaptit by the signal and the ASE noise. We also note that since the

pdfs{ _the generalized criterion may not be appllcable. By Wannel is nonlinear, the signal and the ASE noise cannot be
empirical approach, we found thayM > 0.5Lp is necessary treated independently

to get a Gaussian distribution at the output of the CD filter. O
the other hand, it is observed thaf M < Lp gives enough ~ One may compute the pdf of the signal at the output of
accuracy for the numerical solution of the NLSE based on tistage 1 (see Fi§. 3{a)) for Segments 1 and 4 using numerical
SSFM. Therefore, in the rest of the analysis, welsgt< n < SSFM. As seen in Fid.]4, the pdf of the electric signal at
1 and the output of stage 1 can be approximated very well by a

s _ _ L _ Gaussian pdf for segments 4 and onward. This fact has been

A complex random variablé¢’ is proper if its pseudo-covarianc{ (Z — . . . . . .
Z)?}, is zero or equivalently its real and imaginary part are uretated and IUSEd n A_ppe_nd|ED to m_0t|Vate the exploited approximation
have the same variance Bf| Z — Z |2}/2. in the derivation of equation§ (111) arld{(12).



Theorem 1:Assuming equalities in[[(11) and_(12), the

8 1q0 || —NLSE simulation Seg'l, squared amplitude of the channel complex scaling in polar-
2 - - - Gaussian pdf ization x, shown in Figl_1(h), is
g / |Cx|2=1—N¢)2({2+I€2+(1—%)2;'{-1—(2—%4—#)2;3}
gl oy N x tanh(2nLp) (1 —e~2°F). (13)
-0.04 -0.03 -0.02 -0.0 0 0.0 0.02 0.03 0.0 . . . .
: ' ' : The system SNR in polarization x is SNR |(x|? P/ (No? +
2 here

—~ 1.2 NLSE simulation ORL,)» W
‘%; 11 = = = Gaussian pdf UI%ILX = PB(1- |<X|2) (14)
“ o8t .
8 o6l Proof: See AppendikE. [
‘% 0.4 It is clearly seen from[{13) and{lL4) that the contribution
2 02 of signal-noise interaction to the variance of the nonlinea

e Y Y Y noise is con&d_eraply:( Px t|mes_ for pqlanzafuon X) _sma_ller
Re(Ux[n]) than the contribution of the signal-signal interaction.isTh
finding is consistent witH [25]£[28], which simulate ASE sei
Fig. 4. The pdf ofRe(Ux[n]) at the output of stage 1 (see Fg. 3(a)) inas concentrated at the receiver for uncompensated systems
segments 1 and 4 of span 1 for System IV introduced in TEbleith(@ \ ikt nonlinear equalization. The results of Theof@m A ca

span length of 125 km and a symbol rate of 28 Gbaud). The solides ) - . .
are the results of NLSE simulation with SSFM and the dashedesiare the D€ Simplified forpx >> 1 and neglecting the Taylor expansion

approximated Gaussian distributions. terms of order higher tha¢>2(’ as
10° - &2~ 1= N¢g (2+ &) tanh($nLp),
| Vaas | o2, ~ NPy (2 + 2) tanh(%nLp), (15)
1015’ E where we also used — e~2%L ~ 1. As seen from[(I5),
! the total nonlinear noise variance in a fiber-optical channe

o i in one polarization gets twice the effect from the power i@ th
g : mQ ' corresponding polarization than the power in the orthofona
%) X

polarization. For linear modulation formats, the minimum
symbol error rate of polarization x (SKRis attained for
the maximum achievable SNNROne may find this maximum
SNR( by 9(SNR,) /0P = 0, (x = 1) and then solving

—s— Total SNR

——e— Channel NL attenuation 02
} i, / P 2P +3No*P? - Sy coth($nLp) =0.  (16)
Ys 4 s 2 a1 o 1 2 3 4 s
B (dBm) In Fig.[d, the total SNR(|¢«[*P/(No? + 0§, )), the channel

. . ; o )
Fig. 5. The total SNR (G2 B /(No? 2, ), the channel attenuation due attenuation due to fiber nonlinearitigg,(*), and the normal

to fiber nonlinearities (Channel NL attenuation), and themradized variance 12€d variance of non"near'nOise’Eﬁ_x/Px = 1— [&[*) for
of nonlinear-noise 4§ /P = 1 — |¢x|?) for System IV in Tabldll with a System IV in Tabledl (with a symbol rate of 28 Gbaud and
symbol rate of 28 Gbaud and a dispersion coefficienDof 17 ps/nm/km. a dispersion coefficient oD = 17 ps/nm/km) are plotted

versus the transmitted powet. This figure illustrates the

V. STATISTICS OF THE RECEIVED SIGNAL cubic growth of the nonlinear noise variance with the input
In this section, we usd_(ll1) anf{12) to derive a modEPWer.
for a general fiber-optical link. Since the SSFM is accurate VI. NUMERICAL RESULTS

for a small segment-length, for a typical span length (50—In this section, we evaluate the accuracy of the derived
120 km), one may considet!/ segments for each span tomodel for four fiber-optical systems with parameters given i
get enough accuracy. On the other hand, as discussedréble]. The calculation is performed both analytically awnd
Section[1V, M must be small enough to obtain a Gaussiamerically. For the numerical SSFM, the Manakov equation is
distribution at the output of the CD filter. A segment lengtiysed to model the nonlinear propagation with two polariresi
aroundnLp, 0.5 < n < 1, provides enough CD, i.e., a CDwith segment size ofp/10. In the simulations, the receiver is
filter with a sufficient number of non-zero coefficients. Thessumed to have perfect knowledge of the polarization.state
results for a segmenf, (IL1) and12), can be extended to a fit@breover, the ASE noise with a variance of = WS is
optical link with N spans, each consisting of an SMF and asdded in each span (lumped amplification), wh#feis the
EDFA. Consequently, a fiber-optical link with/ spans can pandwidth of the EDFA filters anfl = G F}, hvp/2, in which

be modeled by a linear channel with zero-mean AWGN amd, = 2n,(1 — G~') is the noise figure of EDFA amplifier

a complex scaling as shown in Fig. I(b). Here, the channeke Sectiofll). The EDFA filters are assumed to be unity gain
complex scaling and the system SNR are derived exploitipgth double-sided bandwidth equal to the exploited sangplin
(I1) and [(IP). frequency, which is usually greater than the signal bantiwid



TABLE | !
FOUR SIMULATED SYSTEMS WITHEDC AT THE RECEIVER. — NLSE simulation

System | I " \V/ : - o- Discrete-time model /;
1/T (Gbaud) 44  33.3 333 28 5
D (ps/nm/km) 17 24 17 17

TNsp 1.7 1.7 1.7 2
n 0.66 0.6 0.6 0.53

SER

T T T T

—=— NLSE simulation

- -o- - Discrete-time mode -

~ YD

= 23.8 ps/inm/km

5 -4 -3 -2 -1 0
Py (dBm)

SER

Fig. 7. The SER of systems Il and Ill with DP-QPSK versus tnaits
ted power per polarization? (D is the dispersion coefficient). A dual-
polarization signal is used for both systems.

a = ]
= T

J : —»— NLSE Simulation (Gaussian pulse)
\S :
ystem [V-SP

I I I I
-5 -4 -3 -2

System |1-SF

- ©- Discrete-time modelsinc(-) pulse

-1 0 1 2 3 4 5 : . /
P, (@Bm) 10,1 —e— NLSE Simulation (RRC pulse)
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Fig. 6. The SER of Systems | and IV with single-polarizatid®P) and
dual-polarization (DP)-QPSK versus transmitted power paarization P.
The pulse shape is an RRC pulse with an excess bandwidth fah@ a o

truncation length of 32 symbols. 107}

The input bits to the DP-QPSK modulator are generated
independent, uniform random numbers. The following chanr
parameters are used for the numerical simulations: thamon! 107}
ear coefficientsysur = 1.4 W~ 'km™!, the optical frequency
vopt = 193.55 THz, the attenuation coefficientssyr = 0.2 ‘ ‘ ‘ ‘ ‘ ‘
dB/km, L = 125 km, N = 25, and other parameters according - a
to Tablel]. Moreover, we consider two pulse shapes: An RRe
[39, p. 675] with an excess bandwidth of 0.25 and a truncatiey. 8. The SER of system IV with single- and DP-QPSK versasgmitted
length of 32 symbols and a Gaussian pulse shape withpawer per polarization’ for RRC and Gaussian pulse shapes.
spectral full width at half maximum (FWHM) dof /T (without
truncation). The CD is compensated by an EDC filter at the, = 7/|32|, as seen in Tabl@ I. Intuitively, a suitable value
receiver. for n gives the best trade-off between the accuracy of SSFM
In Figs.[BEY, the dashed curves represent the analytiéaid the Gaussian distribution approximation.
result with DP-QPSK modulation SER (SER + SER))/2, We also note that the system performance is improved by
where SERy) = 2Q(,/SNRy,) — Q*(/SNRgy)) [39, eq. increasing the CD, in the nonlinear regime. As seen in[Hig. 7,
4.3-15], where SNR,) is given by Theorerfll1 an@(-) is the the system performance has been improved by increasing the
Gaussian Q-functiorf [39, p. 41]. The solid curves show ttspersion coefficient from 17 to 23.8 ps/nm/km. Analytigal
numerical results. As seen in Fig$[$-7, the model is aceurgiploiting the results of Theorefm 1, one can readily show tha
for high symbol rates¥ 28 Gbaud). As seen in Figl 6, thed(ofi,)/0Lo < 0. The impact of pulse shaping on the SER
SSFM SER results for a single-polarization £ 0) and DP of the system is investigated in Figl 8. As expected, its gap
(v = 1) show a close agreement with the analytical resulfgom the theoretical result is larger than the exploited RRC
of the discrete-time model. However, as seen in Elg. 6, tilse.
discrete-time model loses its accuracy at SERs below! VII. CONCLUSION
for System IV with a single-polarization signal, because th This paper introduced an analytical approach to model
Gaussian approximation becomes less accurate in the failsaononlinear fiber-optic link as an AWGN channel for high
the distribution for finite values of as it was shown in Figl4. It enough symbol rates as shown in F[g. 1(b). The model
is worth mentioning that one may exploit a parameter fittinggas proposed for a single-channel fiber-optic link without
approach to find the mapping frothp to n. According to any inline CD compensation. In this model, the channel
our observation from simulations, decreases by increasinglinear response was compensated by an EDC filter at the

-2 0
P, (dBm)



receiver. The attenuation and the variance of AWGN wemhere(] is a constant factor. Substituting {19) infa17), we
described as a function of input power and linear and noatineobtainlim,, ., Cov(Ux[n + k|, Ux[n]

channels parameters. The derived expression clearlyle&ilee*SX[O]) = 0, for & # 0. Now, we need to show
the interaction of a DP signal due to fiber nonlinearity. Fahat their pseudo-covariance is also zero, and this
example, the nonlinear noise in one polarization is afféctéollows directly from CoyUx[n + k],UXT[nHSX[O]) =
twice as much by the signal power in that polarization than tM> >~ . E{SZ[n + k —m]|S[0]} A[m]h[m — k]/T.
orthogonal polarization. Moreover, according to the dadiv Since the input symbols are a sequence of proper complex
model, pre- and post-EDC give the same performance. Tiedom variablesE{S?[p] |Sx[0]} = 0 for p # 0, and
SSFM numerical results justify the accuracy of this modebnsequently the pseudo-covariance is zero.

for a symbol rate of 28 Gbaud and above. Finally, the Next, we show that the distribution of the samples given in
extension of the introduced model to a WDM case can ifd) for the first segment converges to a Gaussian distributio
done by using the SSFM for a multichannel WDM link. As avhenn — oo. For this purpose, we can apply the central limit
future work, we expect to describe the contributions ofrintetheorem [[4D, p. 362] for the sum of non-identical variables
channel-interference, signal, and ASE noise interactiues %[k]Sx[%] in (@) under the Lyapunov condition. The Lyapunov

to nonlinearity for a WDM scheme. condition [40, p. 362]
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) . k#£0
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eichiiul o ; e - K=o (DI B {[hlk]Sc[K]I2))
ers for the insightful comments and constructive suggestio k20
needs to be fulfilled for some positivefor the central limit
APPENDIXA theorem to be applicable to the independent non-identical
THE PROOF OFLEMMA [I] random variablesh[k]Sx[k]. The denominator of[{20) can
We prove this lemma for the first segment with, o[n] = be written by using the i.i.d. property of the input symbols

S[n]/VT and it is then straightforwardly extended to the othelq parseval's theorem 46 — |h[0]|2)PXT]1+g which is
segments. To simplify the _notation, we drop segment a'inependent ofK and 5. The numerator of[{20) can also
span numbers. Here, we first show that the sampigs] pe simplified asCy limg 00 S5, ito |h[K][2+, where

and Uy[n + k] are uncorrelated fok # 0 andn — co. To Cy = Epzo {|Sx[K][>**} is independent of and 7. Thus,

this end, we need to show that their covariance and pseu% can proceed with the Lyapunov condition by exploiting

covariance are zerd [38, Lemma 1]. Then we exploit ttm) as
central limit theorem under the Lyapunov condition|[40, p.

K nm K
245 __ 2446 . 2495
ST REIPE = 3 (BRIP4 lim 2> (R[]

362] to prove that the distribution of/x[n| converges to i
a Gaussian distribution fop — oo. Finally, we conclude k=—K, k=—nm, k=nm
. . #0 k#0
that the uncorrelated Gaussian samligB:| are independent K
Gaussian samples. < O3y % 420270 lim Z 20,
K—oo

Since h[n] as defined in[{3) is an all-pass filter, it does
not affect the power spectrum of the signal, and hefeg «
ht[—n] = sinc(n). Then using[[¥) and the fact that the inputvhereCs = 2773 /719 Sincek~>~° is a positive decreasing
symbols are independent and identically distributedi(),ithe function fork > nm/2,

k:gﬂ'

covariance can be expressed as K ) K
lim hK]|*T? < Csn™2 4+ 2C7° lim A
Cov(Ux[n + k]aUx[n”Sx[O]) = A’P Z h[m]hT [m — k] KHC"’k};k#lo H K Ko w=" -1
+k s
m#n - 03777% n 2205;1 (= — 1)727(5+1.

= A’ (sinc(k) — h[n + k]hT[n]),  (17)

where Cov(X,Y) & E{XYT} — E{X}E{YT}. Here, using
Parseval's theorem, the filter coefficieritt:] are computed
using [3) forgs < 0 as

The right side of this inequality converges to zerofiors co.
Thus, the Lyapunov condition is fulfilled. Finally, it can be
readily concluded that the uncorrelated Gaussian sampdes a
independent, which completes the proof for the first segment
+oo o5 (n=7)? Considering the memory-less nonlinear operation in Stage 2
ent | WSiDC(T)dT of Fig.[3(@) and applying an analogous approach, it can be
N o readily shown that the sampld$[n] are i.i.d. forn — .
1 odn? /a” eIy, (18) Therefore, one can conclude that the same proof is valid for

t

h[n] = h(t, ZLp) * sinc(T)

2

T/ also the other segmentsi(> 1).
where \/nat = n +nr/2. Forn > 1, using [41, eq. 8.255] APPENDIXB
and [I8), one can show that PROPOSITIONT]
%, In| < n, Proposition 1:If X is a proper complex Gaussian random
h[n]] << (19) variable with meanX and variancer, ¢ is a constant real
—, elsewhere _ . .
Vilan| coefficient, andn is an integer, then



= Ol [C2In] + (1 = 20t [n]) (1 = 2juoy In])

, _elx|? _ T2
E{|XPe XL = (1K + 0% — jeok) (1 — jeog) e TR, ( RO >

{ } ( ) (1) e \THRIOT R ) o6 (0] @8 [n) @y [n]

. i el « ejM(q’x["]\fjx["]\2+<I>y[7l]\f]y["]\2)}_

E {X"efﬁ‘x‘ } = X"(1— jeod) TR g <n <2
(22) By substituting [2b) into[(24) and usinEQZS),_one can read-
ily show that the pseudo-covariance By, [n] is zero, i.e,
lim, o0 |COM(Viu, [1], VgL [1] [ Sk[0])] = 0. Thus, Vi, [n] is a
sequence of proper Gaussian random variables. Until now, we
) . have shown that the complex random sequeVige [»] and
X1y — X1’y — .. .
azbo + aoba, ]E{gﬂjgl)‘(‘ = aobo, E{Xej Y = b + similarly Vi, [n] are sequences of proper Gaussian random
jaobi, and E{ﬁxi } = azbo + 2113“7,1;;(12_ aoby, Where \ariaples. Therefore, to prove that they are uncorrelateg,
a, = B{X7e/*%r} and b, = E{Xe/S70}). The lemma neeq to show that both their covariance and pseudo-coearian

follows by expressingu, and b, for n = 0,1,2 as one- gre 7ero[[38, Lemma 1]. Exploitingl(7) and Proposifidn 1, we
dimensional integrals, calculating these integrals éxasing  ptain

[47, egs. 3.323.2, 3.462.6, 3.462.8], substitufing-ju; = X,
and simplifying. APPENDIX C [ ]E{VNLX[n]V,ILy[nHS[O]} :A2Z]E{Bx[n—m]BJ[n—pHS[O]}
PROOF OFLEMMA [2 . , T"“” ,

By an analogous approach as in the proof of Lenita 1< k'[Pl = A E{BXMBV [””S[O]} * [h{n]l,
we begin with the proof for the first segment and it is theE{Bx[n]BJ [n]|S[0]} = O[]0} [n](l + Caln]Cyn] — Coln]
straightforwardly extended to the other segments. To s$iynpl Y ot ol 122 |l 2 Ny
the notation, we also drop segment and span numbers. First(®x[n]®y [n])te /(P DO+ @ IO ) o F (1) 2 ] 0 ]
we show that|Ux[n]|? and |Ux[n]U{[n]| tend to zero as s ein(@xinliOxinl*+ey(n]|Oy[n] 2)), (26)
n — oo. To this end, for a given transmitted symbol vector o
s = (s, sy), one may use{4)[{17), and the model introducedroceeding similarly,
in Figs.[2 and3(&) to getUx[n]|* = [s|*|h[n]|?/T and g1y W SI01Y = A2 S™E { Buln — mlByln — pl|S[0
|Uy[n]|? = |sy|?|h[n]|?/T. Now, using [(ID), it is clearly seen [Vl Vi, Inl|S[OT} 2B {Bdn = mIBy[n —p][SI0]}
that x h[m]hlp] = AE { Bx[n] By[n]|S[0]} * h?[n],

im |Uy[n]|? = im |Uy[n]US[n]| = 0. _ _
771_)00|UX[ ]| Ov 771_)00|UX[ ] y[ ]| O (23) E{Bx[n]By[nHS[O]}:Ux[n]Uy[n]

Proof: Let X = X, + jX;, where X, and X; are
real, Gaussian random variables with mean ang i
resp., and the same varianeé /2. Then E{| X |[2e7¢1XI"} =

m,p

CelnlCy[n] = (G [n] + Cy[n])
A. The_ nonlinear noisé&\, [n] and Vi, [n] are independent % @2 [n]02 e (B0l >+ Oyl
We first show thatVi, [n] and Wy, [n] are proper Gaus- <

) 4+ (1 - 2juo?, [n])

2jplOxfn]” 2julTy[ll” Y |
1= 2jpog[n] * 1—2juo? [n]

sian random variables. Then, we solely need to show that(1 — 2jucf, [n]) 2 exp
both their covariance and pseudo-covariance are [38,

Lemma 1]. Since a complex proper random variable afterHgere, using [(2B), we obtain  lim, .
linear or affine transfprmation stays prop[38, Lemma 3&30V(VNLX[H]7VNTLX[”HS[OM = 0 andlim, o |C0V(VNLX[W]7
one can conclude using Lemrha 1 tHat[n] is a sequence VNLX[TLHS[O]N = 0. Therefore, Vi, [n] and Vi, [n] are

of independent complex proper Gaussian random variablggiependent.
Moreover, it is clearly seen fronl](7) tha[n| is also a
sequence of independent random variables. Therefore,ame ¢

exploit an analogous approach as in the proof of Lerfima 1B The received signalVi,[n], and the nonlinear noise,
conclude that/u,, [n] and Vi, [n] are sequences of indepen-NL [n], are independent

dent Gaussian random variables. Here, we show tRat[n] According to LemmallL,Vi.[n] and Vi [n] are proper

and Vi, [n] are also proper. Hence, we need to show thgfayssian random variables. Therefore, we solely need o sho
E{VaL, [n]VaL,[n]|Sx[0]} = 0 [38, Definition 1]. Using [[¥), that for — oo, their covariance and pseudo-covariance are

we get both zero. Using[{7) and Propositibh 1, this follows as
E { Vi, [l Vi, ] [Sx(0]} = 4% " {Beln — m]Buln = pl[ S0} E { o InlV [l Sul0]} = A°¢H ] > B{ Bul — m]Uf [ — p]
x h[m]hlp] = A’E { B{[n]| Sx[0]} * h*[n]. (24) |sx[o]}h[m]m [p] = A%¢] [n]E {Bx[n]UXT [nHSX[O]} « |h[n]|%,
Since Uy is a proper Gaussian random process,

E{Ug[n]|Sx[0]} = U{. Then, using Propositioi]1, we _ ,

obtain E {Bx[n]UxT [n] |Sx[0]} = ¢in] <IE {|Ux[n]|261M||U[n]“ !SX[O]}

E {BE[TLHSX[O]} —-F {UXZ [n]e2jﬂ||U[n]||2 !SX[O]} — 2{95 [n]
x E{UZnle O 5 0} + ClnlE {UZ IS0} 28) T Cﬂn]E{lUdnHQ!SdOH) = (O[] (6 Inlxn] = L m)-



Proceeding similarly, we get Now, for a given transmitted symboig0] = (sx, sy), one
E (Yot (VL (] S60)) = A% [nlE { BunlUs(n] (0]} » w2 MY SUDSHHUEL(Z8) intd (8) to get
= AT (x[n)®x[n] — Gln)). }

Thus, using [(2B), we obtainim,. |Cov(VaL,[n], Vi, [n] , (30)
|Sx[0])| = 0 and lim,, oo [CoV( VA, [n], VLJfx [n]| Sx[0])| = 0. This ’<I>y3n ~ 1+ 44 [/{ + (i — 1)ﬁ] sinh?(2nLp)A®™ ™,
concludes thatjy, [n] and V_ [n] and similarly Vi [n] and

. x N . Co 2 Ty (31)
W, [n] are independent. Since by induction, it can be shown
that [23) is valid for all segments, the same proof holds f
also the other segments:(> 1).

2 2 . 1 1% 1204 sm—4
~ 14 4y [1 + (i — 1)N_px] sinh”(5nLp)A ,

-

—2

erex = P,/ P. Finally, by substituting[(28)[(30), anf(31) into

, then doing a Taylor expansion with respectto and neglecting

the terms of order higher thagg, we get [11).

According to [[%), the signal at the output of each segment

APPENDIXD can be decomposed into a lineds,: [n], and a nonlinear,
THE CHANNEL ATTENUATION AND THE NONLINEAR NOISE ~ Vawi [7], term. In addition, using Lemmid 2, the linear and
VARIANCE OF A SEGMENT nonlinear terms are independent. Therefore {Var [n]} =

Var{Vi: [n]} + Var{Va [n]}. Here, we exclude the ASE

In this appendix, the derivation of the approximation givenoises from linear and nonlinear terms and the accumulated
in Section[1V-B1 is described. We first show th&f](23) IASE noise is considered with the variance (of- 1)o2A*™
also approximately valid for a system in the linear regimet the output the segment. Since the channel is nonlinear, th
with a finite . Then, we use it as an approximation in theignal and the ASE noise are not treated independently and we
pseudo-linear regime [6] to derive the squared amplitude §blely decompose them to describe the received signal as a su
the channel attenuation and the nonlinear noise varianee abf three components: the signal without noise and nonlinear
segment. For a given transmitted symi5gl0] = sx, the mean interference, the nonlinear noise, and the ASE noise. Now,
of the input of the first segment B{V} [n]|Sx[0]} = sx/VT  using [8) and[(28), it is seen that the signal power (exclydin
atn = 0 and0 for n # 0. Moreover, VafVy; [n]|Sx[0]) = 0  the ASE noise and the nonlinear interferenceljs [>A*™ P
atn = 0 and P for n # 0. Furthermore, if we assume thatand the variance of the nonlinear noise(is— |(,: |?)A*™ P
h.[n] is the channel response for a fiber lengthzoin the for polarization x, as given il (12). "
linear regimeUy; [n] = A*" 13502 Via[n — Klhy, , [K],
where?; ,,, = (2m — 1)nLp/2 + (i — 1)L is the fiber length
from the beginning of the link to the midpoint of segment
in spani. The squared magnitude of the CD filter coefficients,

for a fiber length ofz, can be approximated [34, eq. 9] by  First, we derive the channel model for spanwherel <
i < N, of an optical-fiber link. Then, we extend the results to

APPENDIXE
PROOF OFTHEOREM[

B ]2 ~ e, |n| < E, 27) @ link with N spans.

70, elsewhere Lemma 3:Assuming equalities if(11) anf{12), spanf

a fiber-optical link can be modeled by an AWGN channel as

Thus, for|n| < 7l /Lo, shown in Fig.[I{0). The squared magnitude of the channel

Ui, (n]|2 = Llhe,,, [n]|?]sx[2AT™ 2 ~ . 71nT|5x|2A4m72LD complex scaling in polarization x is given by
and |Gil? =1 — tanh(§nLp) (1 — e~**%) {2 + R4 20— 1)3EE
Var(Uy; [n]) = A" 2B [he,, [K) + (i — 1)o” A + (1= 1) |6 (32)
k#n

The accumulated nonlinear noise variance in polarizatidg x

Am—2 2 . 2 44m—2
A B AT = B ol
~ ARy (1 -3 ; ) + (i —1)o? A" 2 Proof: As shown in Fig[3(a), span can be modeled
TEm as M serially concatenated segments. Substituting (11) into
where we used_” |k, ,[K]|> = 1 becauséy, , [k]isan the total complex scaling given bg: = [[)_, ¢« and
all-pass filter with unity gain. Here, we note that for > 4, performing some algebraic manipulations, one can easily ge
Lp/2ml; ., =~ 0 and hence (32). The variance of the nonlinear noise accumulated from
Ty [n]]2 M segments of spam at the end of this span is,fu- =
—p =0, (28) BTl (G ?) = Pl — [Ga ). N

(29) We now extend the results to a fiber link wiffi spans by

following an analogous approach. One may view the channel
For the sake of simplicity, we apply this approximation ftir agiven in Fig.[2 as a concatenation &f channels described
segments includingn < 4. Although the approximation for by Lemmd 8. The linear noise, which is independent from the
the first four segments is not accurate, the numerical sudded nonlinear noise, is added with varianéeat the end of
(see section V1) justify that for a large enough number ofhspaeach span. Since multiplication by a constant commutes with
(N > 10), its effect is negligible. convolution, the channel attenuation in different sparrs loa

Var (U [n]) ~ (P + (i — 1)o%) A2



moved to the end of the last span. Thus, by following the sarjze]
approach as the proof of Lemrh 3, one can readily derive the
squared magnitude of the total complex scaling by substgut 21]
Cxi into Cx Hivzl Cxi-

As we discussed in Appendix]D, the variance of th
accumulated AWGN at the receiver is the sum of the varianc%s]
of the amplifier noises added along the fiber-optic link,, i.e
No2. Moreover, the signal poweP; is split into a linear [23]
part with varianceg(x|? P and a nonlinear part with variance
ofL = (1 — |&|?)Px. The nonlinear part acts as an noise-like
interference and is called nonlinear noise. Finally, thetey [24]
SNR can be computed as the ratio of the received signal power
to the sum of the linear and nonlinear noise variances.
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