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A Discrete-Time Model for Uncompensated
Single-Channel Fiber-Optical Links

Lotfollah Beygi, Erik Agrell, Pontus Johannisson, Magnus Karlsson, and Henk Wymeersch

Abstract—An analytical discrete-time model is introduced
for single-wavelength polarization multiplexed nonlinear fiber-
optical channels based on the symmetrized split-step Fourier
method (SSFM). According to this model, for high enough symbol
rates, a fiber-optic link can be described as a linear dispersive
channel with additive white Gaussian noise (AWGN) and a
complex scaling. The variance of this AWGN noise and the
attenuation are computed analytically as a function of input
power and channel parameters. The results illustrate a cubic
growth of the noise variance with input power. Moreover, the
cross effect between the two polarizations and the interaction of
amplifier noise and the transmitted signal due to the nonlinear
Kerr effect are described. In particular, it is found that th e
channel noise variance in one polarization is affected twice as
much by the transmitted power in that polarization than by the
transmitted power in the orthogonal polarization. The effect of
pulse shaping is also investigated through numerical simulations.
Finally, it is shown that the analytical performance results based
on the new model are in close agreement with numerical results
obtained using the SSFM for a symbol rate of 28 Gbaud and
above.

Index Terms—Channel modeling, Nonlinear fiber-optic chan-
nels, Chromatic dispersion, Nonlinear phase-noise, Symmetrized
split-step Fourier method (SSFM), Nonlinear Schr̈odinger equa-
tion (NLSE).

I. I NTRODUCTION

T HE growing demand for high data rates in optical net-
works encourages applying advanced coding and mod-

ulation techniques in fiber-optical channels [1], [2], which
exploit the available bandwidth more efficiently. The design
of advanced coded modulation techniques requires an accurate
channel model [3], [4]. Moreover, the Shannon channel coding
theorem, which is used as a criterion in the design of coded
modulation schemes, also requires an exact channel model and
signal statistics [5]–[7].

The propagation of light in optical fibers is described by the
nonlinear Schrödinger equation (NLSE). These channels are
nonlinear with non-Gaussian noise, and due to the lack of an-
alytical solutions and the complexity of numerical approaches,
deriving the statistics of such channels is in general cumber-
some. Hence, many efforts have been devoted to computing the
statistics for simplified models, e.g., memory-less nonlinear
channels with single- [8], [9, p. 225] and dual-polarization
(DP) [10] signals, partially coherent linear channels [11]–[13],
and a channel with intra-channel four-wave mixing (IFWM)
[14], [15].

The authors are with Chalmers University of Technology, Swe-
den (email: beygil, agrell, pontus.johannisson, magnus.karlsson, and
henkw@chalmers.se). The research supported by the SwedishFoundation for
Strategic Research, SSF, under grant RE07-0026 and by VINNOVA under
grant 2010-01238.

Considering linear and nonlinear effects, an analytical ex-
pression for the variance of nonlinear phase noise [16] was
introduced in [17]. This result was based on a first-order
perturbation technique. Ho and Wang [18] analyzed the vari-
ance of the nonlinear phase noise by including the effect of
intrachannel cross-phase modulation and chromatic dispersion
(CD). A model based on a combined regular-logarithmic
perturbation method [19] was proposed for the simultaneous
presence of nonlinear and dispersive effects. Moreover, an
approximate expression for the probability density function
(pdf) of the phase difference of an optical and electrical
filtered signal has been proposed in [20]. The time domain, fre-
quency domain, and Fourier series method based on the saddle
point approximation were compared in [21] for intensity- and
phase-modulated direct-detection optically amplified systems.
A discrete-time model based on a Volterra series transfer
function method was proposed in [22], which is suitable for
time-division multiplexed transmission at high symbol rate.

Although the above-mentioned approaches clarified many
aspects of a fiber-optical channel, an accurate statisticalchan-
nel model with known pdf of the received signal was lacking
for a channel without inline CD compensation. However,
according to [23], an optical fiber channel with electronic dis-
persion compensation (EDC) at the receiver and without inline
CD compensation, which is operating at high symbol rates,
can be modeled as an additive white Gaussian noise (AWGN)
channel. Later, an analytical model was proposed for a fiber-
optic link using wavelength-division multiplexing (WDM)
[24]–[26]. The power spectral density of nonlinear noise was
given by a closed-form formula and the theoretical results were
in close agreement with the numerical simulations. Bononi
et al. [27] derived a nonlinear interference coefficient for
the IFWM-dominant regime and showed that their result is
consistent with [25] for the cross-phase modulation (XPM)
dominant regime.

The aim of this paper is to derive an analytical channel
model for a polarization-multiplexed single-channel fiber-optic
link without inline CD compensation. We show analytically
that for high symbol rates (as illustrated in Fig. 1(c)), the
fiber-optic link depicted in Fig. 1(a) can be modeled as
a linear AWGN channel with a complex multiplication as
shown in Fig. 1(b). In the analysis, we take into account the
cross effect of the signals in both polarizations. In contrast
to previous works [25], [26], [28], we include the inline
interaction between the transmitted signal and the amplified
spontaneous emission (ASE) noise in different spans due to
the Kerr effect. Moreover, a closed-form expression for the
variance of the AWGN noise and the channel attenuation are
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Fig. 1. (a) A fiber-optical link withN spans. Each span consists of an SMF
and an EDFA (the modulator (Mod) converts the discrete-timesignal from the
signal space to a continuous-time optical signal and the demodulator (DeMod)
converts the received optical signal to a baseband discrete-time signal). (b)
The introduced discrete-time equivalent model (ζ is a complex vector). (c)
The contours of the two-dimensional histograms for the received QPSK signal
simulated by the SSFM for the symbol rate 14 Gbaud on the left side and 28
Gbaud on the right side.

derived as a function of the transmitted power and the channel
parameters. It is also shown that the channel noise variancein
one polarization is affected twice as much by the transmitted
power in that polarization than by the transmitted power in the
orthogonal polarization. This fact has been previously reported
in [26] and implicitly in [29], [30]. The power loss in the fiber-
optic link is compensated by inline amplifiers, and therefore
the above mentioned attenuation is coming from the fact that
the nonlinear effect converts a part of the transmitted power
to noise-like interference [13].

The symbol error rate (SER) of a DP quadrature phase shift
keying (DP-QPSK) system is computed both analytically and
using the split-step Fourier method (SSFM). The performance
comparison shows a close agreement between the results.
Finally, it is shown both analytically and numerically thatthe
system performance will be improved by increasing the CD.

Notation: We usex[n] , x(nT ) to denote the samples
of any signalx(t) at t = nT . All continuous- and discrete-
time random variables and random processes are shown with
capital letters. DP signals are denoted by a boldface vector.
∠x denotes the angle of the complex variablex. The real and
imaginary parts of a complex variablex are denoted byRe(x)
andIm(x), respectively.⌊x⌋ represents the greatest integer less
than or equal tox. The squared Euclidean norm of a complex
vector x is denoted by‖x‖2 and E{} denotes expectation.
Finally, all deterministic signals have lowercase letters, as have
outcomes (realizations) of random processes and variables.

II. CONTINOUS-TIME MODEL

The NLSE describes the light propagation in an optical fiber
as [31, ch. 6]

j
∂u(t, z)

∂z
− β2

2

∂2
u(t, z)

∂t2

+ γ(u(t, z)u(t, z)†)u(t, z) + j
α

2
u(t, z) = 0, (1)

whereu is the DP electric field with complex components
(ux, uy), γ is the fiber nonlinear coefficient,α is the attenua-

tion coefficient,β2 is the group velocity dispersion,† denotes
Hermitian conjugation,t is the time coordinate in a co-moving
reference frame andz is the propagation distance. Here, we
used equations (6.1.22) and (6.1.23) of [31] withB = 1
based on the Manakov model [32] andβ1x = β1y = 0,
which is an approximation obtained by averaging over fast
polarization rotations in the Manakov equation. This equation
automatically prevents taking into account polarization mode
dispersion (PMD) effects and therefore restricts the analysis
to the (practically relevant) case of low-PMD fibers. A fiber-
optical link withN spans of lengthL is considered according
to Fig. 1(a). Each span consists of a standard single-mode fiber
(SMF) followed by an erbium-doped fiber amplifier (EDFA).

In this paper, we use the SSFM [31, eq. 2.4.10] both to
construct the analytical discrete-time model as well as to
simulate a fiber-optic channel numerically. In fact, the SSFM
provides an appropriate mathematical model which can be
used to derive the signal statistics by following an analytical
approach. In this method, each SMF span is modeled by
a concatenation ofM segments with linear and nonlinear
effects as shown in Fig. 2. The length of each segment,L/M ,
should be chosen small enough to ensure that the linear and
nonlinear effects act independently. The linear propagation can
be described in the time domain [33], [34] as a solution of (1)
for γ = 0 byu(t, z) = e−αz/2

u(t, 0)∗h(t, z), where∗ denotes
convolution andh(t, z) = ej(t

2/(2β2z))/
√
j2πβ2z is the dis-

persive impulse response1. As shown in Fig. 2, the linear effect
in each segment is considered in two steps, the linear propa-
gation in the first (linear) stage of each segment is described
by u (t, (m− 1/2)L/M) = e−αL/(4M)

u (t, (m− 1)L/M) ∗
h (t, L/(2M)) , m = 1, . . . ,M . The nonlinear effect of each
segment, described by the solution of (1) forβ2 = 0, is given
by

ũ(t, (m− 1
2 )

L
M )=u(t, (m− 1

2 )
L
M )ejµ‖u(t,(m− 1

2 )
L
M )‖2

, (2)

where m = 1, . . . ,M and µ = 2γα−1 sinh(αL/(2M))
[31, sec 4.1.1]2. Finally, CD and attenuation operate on the
output of the nonlinear unit in the second stage of the
segment asu(t,mL/M) = e−αL/4M

ũ(t, (m − 1/2)L/M) ∗
h(t, L/(2M)), m = 1, . . . ,M . The symbolsS[n] =
(Sx[n], Sy[n]), e.g., DP-QPSK, are transmitted everyT sec-
onds with a pulse shaping filterg(t). It is assumed that
E{|Sx[n]|2} = PxT , wherePx is the transmitted power in
polarization x. The statistics of the received signal are derived
for a given transmitted symbolSx[0] = sx at time instant
t = 0.

We assume that each EDFA compensates for the attenuation
in each fiber span and adds a circular white complex Gaussian
ASE noise vector,Zi(t) = (Zi

x(t), Z
i
y(t)) in each span with

varianceσ2 = GFnhνopt/(2T ) in each polarization [35, eq.
8.1.15], whereG is the required gain to compensate for the
attenuation in a span,Fn = 2nsp(1 − G−1) is the noise

1The CD filter has the all-pass frequency responseH(f, z) =

e−j2π2β2zf
2

[34].
2In contrast to [31, sec 4.1.1], the nonlinear phase noise is written as a

function of the signal at the mid-point of the segment and a factor eαL/(2M)

compensates for the signal attenuation at this point.
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Fig. 2. A baseband continuous-time model for a fiber-opticallink with N spansi = 1, . . . , N , each consists ofM segmentsm = 1, . . . ,M , and electronic
chromatic post compensation (for simplicity, fiber attenuations and amplifier gains have been dropped).

figure, in which nsp is ASE noise factor, andhνopt is the
photon energy. The linear SNR in polarization x is denoted
by ρx , Px/(Nσ2). We also defineη , L/(MLD), in which
LD = T 2/|β2| is the dispersion length [31, p. 55]. The optical
bandwidth of the EDFAs is assumed to be equal to the signal
bandwidth. The dispersion is compensated for by electronic
dispersion compensation (EDC). This EDC filter,h(t,−NL),
is theN -fold convolution of the inverse of the CD filter of each
span with itself. In order to apply an analytical approach, we
considersinc-shaped pulses. However, the numerical results
show the accuracy of the proposed model for other pulse
shapes, e.g., raised cosine and Gaussian pulses. A matched
filter to the pulse shape with a Nyquist sampler is assumed at
the receiver.3 Due to the symmetry, we perform the derivations
only for one polarization, denoted x, except where otherwise
stated.

III. D ISCRETE-TIME MODEL

In this section, the continuous-time SSFM is used to derive
a discrete-time model. To find the distribution of the received
signal for a transmitted symbol, we assume the complex
symbol s = (sx, sy) is transmitted at time instantt = 0 and
symbols before and after this time instant are unknown to the
detector, i.e., no nonlinear pre- or post-compensation technique
such as digital backpropagation [36] is used. First, we describe
the signal propagation for segmentm from spani shown in
Fig. 3(a) from the fiber-optical link described in Fig. 2 and the
statistics of the received signal for this segment are derived in
Section IV. Then, in Section V, we extend the results for one
segment to a fiber-optical link withN spans.

In the continuous-time model consideringg(t) =
sinc(t/T )/

√
T as a pulse shape, wheresinc(x) =

(sin πx)/(πx), the transmitted signal is band-limited to
[− 1

2T ,
1
2T ]. Hereafter, we assume a quasi-linear fiber-optical

data transmission [37], therefore we neglect the spectral
broadening due to the nonlinear effects, i.e., the bandwidth
of Ux(t)e

jµ‖U(t)‖2

is assumed to be limited to1/T . This
assumption helps us to obtain the discrete-time model depicted
in Fig. 3(a) for segmentm from spani, consisting of Stages
1 and 2. In this figure, the band-limited CD filter is given4 by

h[n] = h
(

t, L
2M

)

∗ sinc
(

t
T

)

∣

∣

∣

t=nT
. (3)

3Perfect carrier and timing synchronization are assumed.
4For a sinc(·) pulse,g†(−t) = g(t).

The output of Stage 1 in Fig. 3(a) for inputVi,m−1[n] =
(Vxi

m−1
[n], Vyim−1

[n]), is

Ui,m[n] = A
∞
∑

k=−∞
Vi,m−1[n− k]h[k], (4)

where Ui,m[n] = (Uxim [n], Uyim [n]) and A = e−
α
4 ηLD .

According to the discrete-time model given in Fig. 3(a), the
output signal of Stage 2,Vi,m[n], can be decomposed into
a linear termVLi

m
[n] = (VLxi

m
[n], VLyi

m
[n]) and a nonlinear

termVNLi
m
[n] = (VNLxi

m
[n], VNLyi

m
[n]) as

Vi,m[n] = VLi
m
[n] +VNLi

m
[n], (5)

where
VLxi

m
[n] = Aζxim [n]Uxim [n] ∗ h[n], (6)

VNLxi
m
[n] = ABxim [n] ∗ h[n], (7)

in which Bxim [n] = Uxim [n]
(

ejµ‖Ui,m[n]‖2 − ζxim [n]
)

. The
term VNLxi

m
will be referred to asnonlinear noise[24].

In a similar way, equations (6)–(7) can be written for po-
larization y. Clearly, (5)–(7) hold for any complex vector
ζi,m = (ζxim

, ζyim
), however we will choose this complex

vector such that the mean ofVNLxi
m

and VNLyi
m

is zero. An
equivalent linear discrete-time model for Stage 2 of Fig. 3(a)
is shown in Fig. 3(b) exploiting (5)–(7).

IV. STATISTICS OF THE PROPAGATED SIGNAL

We proceed with the derivation of the statistics of segment
m shown in Fig. 3(a), for an asymptotic case of strong
dispersive effects, i.e.,η → ∞. Although this scenario is not
exactly valid for a real system, it helps us to get some insight
into the qualitative channel behavior in a real fiber-optical link.

A. Signal statistics for the case of strong dispersive effects

For a given transmitted symbolSx[0] = sx andη → ∞, we
investigate the signal statistics of the single-segment scheme
shown in Fig. 3(a).

Lemma 1: In segmentm of span i shown in Fig. 3(a),
the samplesUxim [n] are a sequence of complex independent
Gaussian random variables.

Proof: See Appendix A.
The mean of the nonlinear noise is given by
E
{

VNLxi
m
[n]

∣

∣Sx[0]
}

= AE
{

Bxim
[n]

∣

∣Sx[0]
}

∗ h[n]. Using



4

Stage 1 Stage 2

Ui,m

ejµ‖Ui,m‖2

Vi,m−1 Vi,m

Ah[n] Ah[n]

(a)

Stage 2

Vi,mUi,m

ζi,m

VNLim

VLim
Ah[n]

(b)

Fig. 3. (a) An equivalent discrete-time channel model of segmentm from spani of the fiber-optical link given in Fig. 2. (b) The equivalent linear model of

Stage 2 in Fig. 3(a) with an additive nonlinear noiseVNLi
m
[n] and a complex scalingζi,m, which depends onUi,m. The filter attenuation isA = e−

α
4
ηLD .

Proposition 1 in Appendix B, we get

E

{

Bxim [n]
∣

∣

∣
Sx[0]

}

= Ūxim [n]

[

Φ2
xim

[n]Φyim
[n]

× e
jµ

(

Φxim
[n]|Ūxim

[n]|2+Φyim
[n]|Ūyim

[n]|2
)

− ζxi
m
[n]

]

,

whereŪxim [n] = E{Uxim [n]
∣

∣Sx[0]},

Φ−1
xim

[n] = 1− jµVar
(

Uxim [n]
)

,

Φ−1
yim

[n] = 1− jµVar
(

Uyim [n]
)

. (8)

Here, we find the channel complex scaling such that the mean
of the nonlinear noise is zero. Thus,

ζxim [n] = Φ2
xim

[n]Φyim [n]e
jµ

(

Φxim
[n]|Ūxim

[n]|2+Φyim
[n]|Ūyim

[n]|2
)

.

(9)
Lemma 2:The nonlinear noise,VNLxi

m
and VNLyi

m
, are

independent zero-mean proper5 [38] complex AWGNs. More-
over, the linear termsVLxi

m
andVLyi

m
are independent of the

nonlinear noisesVNLxi
m

andVNLyi
m

.
Proof: See Appendix C.

B. Signal statistics for a segment length applicable to SSFM

In this section, we investigate the results for finite values
of η. Although the convergence to a Gaussian distribution in
Lemma 1 is proven for an asymptotic case with asinc(·) pulse
shape, the signal distribution can be approximated very well
by a Gaussian distribution for a fiber-optical link also with
a root raised cosine (RRC) pulse shape or a Gaussian pulse
shape.

We note a subtle point in the selection of the segment length.
In contrast to the numerical SSFM, the segment length cannot
be chosen arbitrarily small. Each output sample of the CD filter
is written as a sum of input symbols weighted by CD filter
coefficients. Since the minimum required independent sample
size to sum to a Gaussian distribution varies for different input
pdfs, the generalized criterion may not be applicable. By an
empirical approach, we found thatL/M > 0.5LD is necessary
to get a Gaussian distribution at the output of the CD filter. On
the other hand, it is observed thatL/M < LD gives enough
accuracy for the numerical solution of the NLSE based on the
SSFM. Therefore, in the rest of the analysis, we set0.5 < η <
1 and

5A complex random variableZ is proper if its pseudo-covariance,E{(Z−
Z̄)2}, is zero or equivalently its real and imaginary part are uncorrelated and
have the same variance ofE{| Z − Z̄ |2}/2.

L

M
= ηLD. (10)

In contrast, for the numerical SSFM, it is better to use a very
small segment size.

1) The channel complex scaling and the nonlinear noise
variance of a segment:In order to apply an analytical ap-
proach, we assume that the results of Lemmas 1 and 2 hold
for a finite segment length, i.e.,L/M = ηLD. Our approach
to derive the signal statistics of segmentm is based on the
discrete-time model given in Fig. 3(a) and it can be simply
described as follows: First, one may use Lemma 1 to conclude
that the signal at the output ofStage 1is a Gaussian random
process. Then, we replaceStage 2with a linear model shown
in Fig. 3(b). According to this transform, the nonlinear effect
has the same effect as converting a part of the signal to noise-
like interference or nonlinear noise. Exploiting Lemma 2, it is
seen that the nonlinear noise,VNLi

m
, is AWGN. Moreover,

we note that using Lemma 2, one can conclude that the
components of this nonlinear noise in the two polarizations
are independent and the nonlinear noise is independent of the
signal term. Finally, the concatenation of Stages 1 and 2 is
modeled by a linear channel with an AWGN and the CD filter
h[n] ∗ h[n].

Here, we introduceφx , γα−1Px; φx ≪ 1. Then, as shown
in Appendix D, the channel attenuation and the nonlinear noise
variance of segmentm from spani can be approximated by

|ζxi
m
|2 ≈ 1− 4 sinh2(α2 ηLD)

[

2 + κ2 + 2(i− 1)2+κ
Nρx

+ (i− 1)2 3
N2ρ2

x

]

φ2
xA

8m−4, (11)

σ2
NLxi

m
≈ (1− |ζxi

m
|2)A4mPx, (12)

whereκ = Py/Px andσ2
NLxi

m
is the variance of the nonlinear

noise for segmentm from spani in polarization x. We note
that the channel attenuation of each segment, (11), is affected
by the signal and the ASE noise. We also note that since the
channel is nonlinear, the signal and the ASE noise cannot be
treated independently.

One may compute the pdf of the signal at the output of
stage 1 (see Fig. 3(a)) for Segments 1 and 4 using numerical
SSFM. As seen in Fig. 4, the pdf of the electric signal at
the output of stage 1 can be approximated very well by a
Gaussian pdf for segments 4 and onward. This fact has been
used in Appendix D to motivate the exploited approximation
in the derivation of equations (11) and (12).
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V. STATISTICS OF THE RECEIVED SIGNAL

In this section, we use (11) and (12) to derive a model
for a general fiber-optical link. Since the SSFM is accurate
for a small segment-length, for a typical span length (50–
120 km), one may considerM segments for each span to
get enough accuracy. On the other hand, as discussed in
Section IV, M must be small enough to obtain a Gaussian
distribution at the output of the CD filter. A segment length
aroundηLD, 0.5 < η < 1, provides enough CD, i.e., a CD
filter with a sufficient number of non-zero coefficients. The
results for a segment, (11) and (12), can be extended to a fiber-
optical link with N spans, each consisting of an SMF and an
EDFA. Consequently, a fiber-optical link withN spans can
be modeled by a linear channel with zero-mean AWGN and
a complex scaling as shown in Fig. 1(b). Here, the channel
complex scaling and the system SNR are derived exploiting
(11) and (12).

Theorem 1:Assuming equalities in (11) and (12), the
squared amplitude of the channel complex scaling in polar-
ization x, shown in Fig. 1(b), is

|ζx|2=1−Nφ2
x

[

2 + κ2 +
(

1− 1
N

)

2+κ
ρx

+
(

2− 3
N + 1

N2

)

1
2ρ2

x

]

× tanh(α2 ηLD)
(

1− e−2αL
)

. (13)

The system SNR in polarization x is SNRx = |ζx|2Px/(Nσ2+
σ2

NLx
), where

σ2
NLx

= Px(1− |ζx|2). (14)

Proof: See Appendix E.
It is clearly seen from (13) and (14) that the contribution
of signal-noise interaction to the variance of the nonlinear
noise is considerably (≈ ρx times for polarization x) smaller
than the contribution of the signal-signal interaction. This
finding is consistent with [25]–[28], which simulate ASE noise
as concentrated at the receiver for uncompensated systems
without nonlinear equalization. The results of Theorem 1 can
be simplified forρx ≫ 1 and neglecting the Taylor expansion
terms of order higher thanφ2

x , as

|ζx|2 ≈ 1−Nφ2
x

(

2 + κ2
)

tanh(α2 ηLD),

σ2
NLx

≈ Nφ2
xPx

(

2 + κ2
)

tanh(α2 ηLD), (15)

where we also used1 − e−2αL ≈ 1. As seen from (15),
the total nonlinear noise variance in a fiber-optical channel
in one polarization gets twice the effect from the power in the
corresponding polarization than the power in the orthogonal
polarization. For linear modulation formats, the minimum
symbol error rate of polarization x (SERx) is attained for
the maximum achievable SNRx. One may find this maximum
SNRx by ∂(SNRx)/∂Px = 0, (κ = 1) and then solving

2P 3
x + 3Nσ2P 2

x − σ2

2 + κ2
coth(α2 ηLD) = 0. (16)

In Fig. 5, the total SNRx (|ζx|2Px/(Nσ2+σ2
NLx

)), the channel
attenuation due to fiber nonlinearities (|ζx|2), and the normal-
ized variance of nonlinear-noise (σ2

NLx
/Px = 1 − |ζx|2) for

System IV in Table I (with a symbol rate of 28 Gbaud and
a dispersion coefficient ofD = 17 ps/nm/km) are plotted
versus the transmitted powerPx. This figure illustrates the
cubic growth of the nonlinear noise variance with the input
power.

VI. N UMERICAL RESULTS

In this section, we evaluate the accuracy of the derived
model for four fiber-optical systems with parameters given in
Table I. The calculation is performed both analytically andnu-
merically. For the numerical SSFM, the Manakov equation is
used to model the nonlinear propagation with two polarizations
with segment size ofLD/10. In the simulations, the receiver is
assumed to have perfect knowledge of the polarization state.
Moreover, the ASE noise with a variance ofσ2 = WS is
added in each span (lumped amplification), whereW is the
bandwidth of the EDFA filters andS = GFnhνopt/2, in which
Fn = 2nsp(1 − G−1) is the noise figure of EDFA amplifier
(see Section II). The EDFA filters are assumed to be unity gain
with double-sided bandwidth equal to the exploited sampling
frequency, which is usually greater than the signal bandwidth.
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TABLE I
FOUR SIMULATED SYSTEMS WITHEDC AT THE RECEIVER.

System I II III IV
1/T (Gbaud) 44 33.3 33.3 28
D (ps/nm/km) 17 24 17 17

nsp 1.7 1.7 1.7 2
η 0.66 0.6 0.6 0.53
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System I–SP

System I–DP

System IV–SP

System IV–DP

NLSE simulation

Discrete-time model

Fig. 6. The SER of Systems I and IV with single-polarization (SP) and
dual-polarization (DP)-QPSK versus transmitted power perpolarizationPx.
The pulse shape is an RRC pulse with an excess bandwidth of 0.25 and a
truncation length of 32 symbols.

The input bits to the DP-QPSK modulator are generated as
independent, uniform random numbers. The following channel
parameters are used for the numerical simulations: the nonlin-
ear coefficientsγSMF = 1.4 W−1km−1, the optical frequency
νopt = 193.55 THz, the attenuation coefficientsαSMF = 0.2
dB/km,L = 125 km,N = 25, and other parameters according
to Table I. Moreover, we consider two pulse shapes: An RRC
[39, p. 675] with an excess bandwidth of 0.25 and a truncation
length of 32 symbols and a Gaussian pulse shape with a
spectral full width at half maximum (FWHM) of2/T (without
truncation). The CD is compensated by an EDC filter at the
receiver.

In Figs. 6–7, the dashed curves represent the analytical
result with DP-QPSK modulation SER= (SERx + SERy)/2,
where SERx(y) = 2Q(

√

SNRx(y)) − Q2(
√

SNRx(y)) [39, eq.
4.3-15], where SNRx(y) is given by Theorem 1 andQ(·) is the
Gaussian Q-function [39, p. 41]. The solid curves show the
numerical results. As seen in Figs. 6–7, the model is accurate
for high symbol rates (≥ 28 Gbaud). As seen in Fig. 6, the
SSFM SER results for a single-polarization (κ = 0) and DP
(κ = 1) show a close agreement with the analytical results
of the discrete-time model. However, as seen in Fig. 6, the
discrete-time model loses its accuracy at SERs below10−4

for System IV with a single-polarization signal, because the
Gaussian approximation becomes less accurate in the tails of
the distribution for finite values ofη as it was shown in Fig 4. It
is worth mentioning that one may exploit a parameter fitting
approach to find the mapping fromLD to η. According to
our observation from simulations,η decreases by increasing

−5 −4 −3 −2 −1 0 1 2 3 4 5

10
−3

10
−2

10
−1

 

 

Px (dBm)

S
E

R

D = 23.8 ps/nm/km

D = 17 ps/nm/km

NLSE simulation

Discrete-time model

Fig. 7. The SER of systems II and III with DP-QPSK versus transmit-
ted power per polarizationPx (D is the dispersion coefficient). A dual-
polarization signal is used for both systems.

−8 −6 −4 −2 0 2 4

10
−3

10
−2

10
−1

 

 

Px (dBm)

S
E

R

Single polarization

Dual polarization

NLSE Simulation (RRC pulse)

NLSE Simulation (Gaussian pulse)

Discrete-time model (sinc(·) pulse)

Fig. 8. The SER of system IV with single- and DP-QPSK versus transmitted
power per polarizationPx for RRC and Gaussian pulse shapes.

LD = T 2/|β2|, as seen in Table I. Intuitively, a suitable value
for η gives the best trade-off between the accuracy of SSFM
and the Gaussian distribution approximation.

We also note that the system performance is improved by
increasing the CD, in the nonlinear regime. As seen in Fig. 7,
the system performance has been improved by increasing the
dispersion coefficient from 17 to 23.8 ps/nm/km. Analytically,
exploiting the results of Theorem 1, one can readily show that
∂(σ2

NLx
)/∂LD ≤ 0. The impact of pulse shaping on the SER

of the system is investigated in Fig. 8. As expected, its gap
from the theoretical result is larger than the exploited RRC
pulse.

VII. C ONCLUSION

This paper introduced an analytical approach to model
a nonlinear fiber-optic link as an AWGN channel for high
enough symbol rates as shown in Fig. 1(b). The model
was proposed for a single-channel fiber-optic link without
any inline CD compensation. In this model, the channel
linear response was compensated by an EDC filter at the
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receiver. The attenuation and the variance of AWGN were
described as a function of input power and linear and nonlinear
channels parameters. The derived expression clearly revealed
the interaction of a DP signal due to fiber nonlinearity. For
example, the nonlinear noise in one polarization is affected
twice as much by the signal power in that polarization than the
orthogonal polarization. Moreover, according to the derived
model, pre- and post-EDC give the same performance. The
SSFM numerical results justify the accuracy of this model
for a symbol rate of 28 Gbaud and above. Finally, the
extension of the introduced model to a WDM case can be
done by using the SSFM for a multichannel WDM link. As a
future work, we expect to describe the contributions of inter-
channel-interference, signal, and ASE noise interactionsdue
to nonlinearity for a WDM scheme.
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APPENDIX A
THE PROOF OFLEMMA 1

We prove this lemma for the first segment withV1,0[n] =
S[n]/

√
T and it is then straightforwardly extended to the other

segments. To simplify the notation, we drop segment and
span numbers. Here, we first show that the samplesUx[n]
and Ux[n + k] are uncorrelated fork 6= 0 and η → ∞. To
this end, we need to show that their covariance and pseudo-
covariance are zero [38, Lemma 1]. Then we exploit the
central limit theorem under the Lyapunov condition [40, p.
362] to prove that the distribution ofUx[n] converges to
a Gaussian distribution forη → ∞. Finally, we conclude
that the uncorrelated Gaussian samplesUx[n] are independent
Gaussian samples.

Since h[n] as defined in (3) is an all-pass filter, it does
not affect the power spectrum of the signal, and henceh[n] ∗
h†[−n] = sinc(n). Then using (4) and the fact that the input
symbols are independent and identically distributed (i.i.d.), the
covariance can be expressed as

Cov(Ux[n+ k],Ux[n]
∣

∣Sx[0]) = A2Px

∑

m 6=n+k

h[m]h†[m− k]

= A2Px
(

sinc(k)− h[n+ k]h†[n]
)

, (17)

where Cov(X,Y ) , E{XY †} − E{X}E{Y †}. Here, using
Parseval’s theorem, the filter coefficientsh[n] are computed
using (3) forβ2 < 0 as

h[n] = h(t, η
2LD) ∗ sinc(

t

T
)
∣

∣

∣

t=nT
=

∫ +∞

−∞

e
j
η
(n−τ)2

√
jπη

sinc(τ)dτ

=
1

π
√
η
e

j
η
n2

∫ a+
n

a−
n

e−jf2

df, (18)

where
√
ηa±n = n ± ηπ/2. For η ≫ 1, using [41, eq. 8.255]

and (18), one can show that

|h[n]| <
{

8
π
√
η , |n| ≤ ηπ,
C1√
η|a−

n | , elsewhere,
(19)

whereC1 is a constant factor. Substituting (19) into (17), we
obtain limη→∞ Cov(Ux[n+ k], Ux[n]
∣

∣Sx[0]) = 0, for k 6= 0. Now, we need to show
that their pseudo-covariance is also zero, and this
follows directly from Cov(Ux[n + k], U †

x [n]
∣

∣Sx[0]) =
A2

∑

m 6=n+k E
{

S2
x [n+ k −m]

∣

∣Sx[0]
}

h[m]h[m − k]/T .
Since the input symbols are a sequence of proper complex
random variables,E{S2

x [p]
∣

∣Sx[0]} = 0 for p 6= 0, and
consequently the pseudo-covariance is zero.

Next, we show that the distribution of the samples given in
(4) for the first segment converges to a Gaussian distribution
whenη → ∞. For this purpose, we can apply the central limit
theorem [40, p. 362] for the sum of non-identical variables
h[k]Sx[k] in (4) under the Lyapunov condition. The Lyapunov
condition [40, p. 362]

lim
K→∞

∑K
k=−K
k 6=0

E
{

|h[k]Sx[k]|2+δ
}

(
∑K

k=−K
k 6=0

E {|h[k]Sx[k]|2})1+
δ
2

= 0, (20)

needs to be fulfilled for some positiveδ for the central limit
theorem to be applicable to the independent non-identical
random variablesh[k]Sx[k]. The denominator of (20) can
be written by using the i.i.d. property of the input symbols

and Parseval’s theorem as[(1 − |h[0]|2)PxT ]
1+

δ
2 , which is

independent ofK and η. The numerator of (20) can also
be simplified asC2 limK→∞

∑K
k=−K, k 6=0 |h[k]|2+δ, where

C2 = Ek 6=0

{

|Sx[k]|2+δ
}

is independent ofK and η. Thus,
we can proceed with the Lyapunov condition by exploiting
(19) as

lim
K→∞

K
∑

k=−K,
k 6=0

|h[k]|2+δ =

ηπ
∑

k=−ηπ,
k 6=0

|h[k]|2+δ + lim
K→∞

2
K
∑

k=ηπ

|h[k]|2+δ

< C3η
− δ

2 + 2C2+δ
1 lim

K→∞

K
∑

k=
η
2
π

k−2−δ ,

whereC3 = 27+3δ/π1+δ. Sincek−2−δ is a positive decreasing
function for k > ηπ/2,

lim
K→∞

K
∑

k=−K, k 6=0

|h[k]|2+δ <C3η
− δ

2 + 2C2+δ
1 lim

K→∞

∫ K

x=
ηπ
2

−1

x−2−δdx

< C3η
− δ

2 + 2
C2+δ

1
2+δ−1

( ηπ
2

− 1)−2−δ+1.

The right side of this inequality converges to zero forη → ∞.
Thus, the Lyapunov condition is fulfilled. Finally, it can be
readily concluded that the uncorrelated Gaussian samples are
independent, which completes the proof for the first segment.
Considering the memory-less nonlinear operation in Stage 2
of Fig. 3(a) and applying an analogous approach, it can be
readily shown that the samplesV [n] are i.i.d. for η → ∞.
Therefore, one can conclude that the same proof is valid for
also the other segments (m > 1).

APPENDIX B
PROPOSITION1

Proposition 1: If X is a proper complex Gaussian random
variable with meanX̄ and varianceσ2

X , ξ is a constant real
coefficient, andn is an integer, then
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E

{

|X|2ejξ|X|2
}

=
(

|X̄|2 + σ2
X − jξσ4

X

)

(1− jξσ2
X)

−3e
j

ξ|X̄|2

1−jξσ2
X ,

(21)

E

{

Xnejξ|X|2
}

= X̄n(1− jξσ2
X)

−(n+1)e
j

ξ|X̄|2

1−jξσ2
X , 0 ≤ n ≤ 2.

(22)

Proof: Let X = Xr + jXi, where Xr and Xi are
real, Gaussian random variables with meanµr and µi,
resp., and the same varianceσ2

X/2. ThenE{|X |2ejξ|X|2} =

a2b0 + a0b2, E{ejξ|X|2} = a0b0, E{Xejξ|X|2} = a1b0 +
ja0b1, and E{X2ejξ|X|2} = a2b0 + 2ja1b1 − a0b2, where
an = E{Xn

r e
jξX2

r } and bn = E{Xn
r e

jξX2
i }. The lemma

follows by expressingan and bn for n = 0, 1, 2 as one-
dimensional integrals, calculating these integrals exactly using
[41, eqs. 3.323.2, 3.462.6, 3.462.8], substitutingµr+jµi = X̄,
and simplifying. APPENDIX C

PROOF OFLEMMA 2

By an analogous approach as in the proof of Lemma 1,
we begin with the proof for the first segment and it is then
straightforwardly extended to the other segments. To simplify
the notation, we also drop segment and span numbers. First,
we show that |Ūx[n]|2 and |Ūx[n]Ū

†
y [n]| tend to zero as

η → ∞. To this end, for a given transmitted symbol vector
s = (sx, sy), one may use (4), (17), and the model introduced
in Figs. 2 and 3(a) to get|Ūx[n]|2 = |sx|2|h[n]|2/T and
|Ūy[n]|2 = |sy|2|h[n]|2/T . Now, using (19), it is clearly seen
that

lim
η→∞

|Ūx[n]|2 = 0, lim
η→∞

|Ūx[n]Ū
†
y [n]| = 0. (23)

A. The nonlinear noiseVNLx[n] andVNLy[n] are independent

We first show thatVNLx [n] and VNLy [n] are proper Gaus-
sian random variables. Then, we solely need to show that
both their covariance and pseudo-covariance are zero [38,
Lemma 1]. Since a complex proper random variable after a
linear or affine transformation stays proper [38, Lemma 3],
one can conclude using Lemma 1 thatUx[n] is a sequence
of independent complex proper Gaussian random variables.
Moreover, it is clearly seen from (7) thatB[n] is also a
sequence of independent random variables. Therefore, one can
exploit an analogous approach as in the proof of Lemma 1 to
conclude thatVNLx [n] andVNLy [n] are sequences of indepen-
dent Gaussian random variables. Here, we show thatVNLx [n]
and VNLy [n] are also proper. Hence, we need to show that
E{VNLx [n]VNLx [n]

∣

∣Sx[0]} = 0 [38, Definition 1]. Using (7),
we get

E
{

VNLx [n]VNLx [n]
∣

∣Sx[0]
}

= A2
∑

m,p

E
{

Bx[n−m]Bx[n− p]
∣

∣Sx[0]
}

× h[m]h[p] = A2
E
{

B2
x [n]

∣

∣Sx[0]
}

∗ h2[n]. (24)

Since Ux is a proper Gaussian random process,
E
{

U2
x [n]

∣

∣Sx[0]
}

= Ū2
x . Then, using Proposition 1, we

obtain

E
{

B2
x [n]

∣

∣Sx[0]
}

= E

{

U2
x [n]e

2jµ‖U[n]‖2
∣

∣Sx[0]
}

− 2ζx[n]

× E

{

U2
x [n]e

jµ‖U[n]‖2
∣

∣Sx[0]
}

+ ζ2x[n]E
{

U2
x [n]

∣

∣Sx[0]
}

(25)

= Ūx[n]
2
[

ζ2x[n] + (1− 2jµσ2
Ux [n])

−3(1− 2jµσ2
Uy [n])

−1

× e
2jµ





|Ūx[n]|2

1−2jµσ2
Ux

[n]
+

|Ūy[n]|2

1−2jµσ2
Uy

[n]





− 2ζx[n]Φ
3
x [n]Φy[n]

× ejµ(Φx[n]|Ūx[n]|2+Φy[n]|Ūy[n]|2)
]

.

By substituting (25) into (24) and using (23), one can read-
ily show that the pseudo-covariance ofVNLx [n] is zero, i.e,
limη→∞ |Cov(VNLx [n], V

†
NLx

[n]
∣

∣Sx[0])| = 0. Thus,VNLx [n] is a
sequence of proper Gaussian random variables. Until now, we
have shown that the complex random sequenceVNLx [n] and
similarly VNLy [n] are sequences of proper Gaussian random
variables. Therefore, to prove that they are uncorrelated,we
need to show that both their covariance and pseudo-covariance
are zero [38, Lemma 1]. Exploiting (7) and Proposition 1, we
obtain

E

{

VNLx [n]V
†

NLy
[n]
∣

∣S[0]
}

= A2
∑

m,p

E

{

Bx[n−m]B†
y [n− p]

∣

∣S[0]
}

× h[m]h†[p] = A2
E

{

Bx[n]B
†
y [n]

∣

∣S[0]
}

∗ |h[n]|2,

E

{

Bx[n]B
†
y [n]

∣

∣S[0]
}

= Ūx[n]Ū
†
y [n]

(

1 + ζx[n]ζy [n]− ζx[n]

× (Φ2
x [n]Φ

2
y [n])

†e−jµ(Φ†
x [n]|Ūx[n]|2+Φ†

y [n]|Ūy[n]|2)ζ†y [n]Φ
2
x [n]Φ

2
y [n]

× ejµ(Φx[n]|Ūx[n]|2+Φy[n]|Ūy[n]|2)
)

. (26)

Proceeding similarly,

E
{

VNLx [n]VNLy [n]
∣

∣S[0]
}

= A2
∑

m,p

E
{

Bx[n−m]By[n− p]
∣

∣S[0]
}

× h[m]h[p] = A2
E
{

Bx[n]By[n]
∣

∣S[0]
}

∗ h2[n],

E
{

Bx[n]By[n]
∣

∣S[0]
}

= Ūx[n]Ūy[n]

[

ζx[n]ζy [n]− (ζx[n] + ζy[n])

× Φ2
x [n]Φ

2
y [n]e

jµ(Φx[n]|Ūx[n]|2+Φy[n]|Ūy[n]|2) + (1− 2jµσ2
Ux [n])

−2

× (1− 2jµσ2
Uy [n])

−2 exp

(

2jµ|Ūx[n]|
2

1− 2jµσ2
Ux
[n]

+
2jµ|Ūy[n]|

2

1− 2jµσ2
Uy
[n]

)]

.

Here, using (23), we obtain limη→∞
|Cov(VNLx [n], V

†
NLx

[n]|S[0])| = 0 andlimη→∞ |Cov
(

VNLx [n],
VNLx [n]

∣

∣S[0]
)

| = 0. Therefore, VNLx [n] and VNLy [n] are
independent.

B. The received signal,VLx[n], and the nonlinear noise,
VNLx[n], are independent

According to Lemma 1,VLx [n] and VNLx [n] are proper
Gaussian random variables. Therefore, we solely need to show
that for η → ∞, their covariance and pseudo-covariance are
both zero. Using (7) and Proposition 1, this follows as

E

{

VNLx [n]V
†

Lx
[n]|Sx[0]

}

= A2ζ†x [n]
∑

m,p

E

{

Bx[n−m]U†
x [n− p]

∣

∣Sx[0]
}

h[m]h†[p] = A2ζ†x [n]E
{

Bx[n]U
†
x [n]

∣

∣Sx[0]
}

∗ |h[n]|2,

E

{

Bx[n]U
†
x [n]

∣

∣Sx[0]
}

= ζ†x [n]

(

E

{

|Ux[n]|
2ejµ‖U[n]‖2

∣

∣Sx[0]
}

− ζx[n]E
{

|Ux[n]|
2
∣

∣Sx[0]
}

)

= |Ūx[n]|
2(ζ†x [n]Φx[n]− ζ†x [n]).
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Proceeding similarly, we get

E {VNLx [n]VLx [n]|Sx[0]} = A2ζ†x [n]E
{

Bx[n]Ux[n]
∣

∣Sx[0]
}

∗ |h[n]|2

= A2Ūx[n]
2(ζx[n]Φx[n]− ζx[n]).

Thus, using (23), we obtainlimη→∞ |Cov
(

VNLx [n], VLx [n]
∣

∣Sx[0]
)

| = 0 and limη→∞ |Cov
(

VNLx [n], V
†

Lx
[n]
∣

∣Sx[0]
)

| = 0. This
concludes thatVNLx [n] andVLx [n] and similarlyVNLy [n] and
VLy [n] are independent. Since by induction, it can be shown
that (23) is valid for all segments, the same proof holds for
also the other segments (m > 1).

APPENDIX D
THE CHANNEL ATTENUATION AND THE NONLINEAR NOISE

VARIANCE OF A SEGMENT

In this appendix, the derivation of the approximation given
in Section IV-B1 is described. We first show that (23) is
also approximately valid for a system in the linear regime
with a finite η. Then, we use it as an approximation in the
pseudo-linear regime [6] to derive the squared amplitude of
the channel attenuation and the nonlinear noise variance ofa
segment. For a given transmitted symbolSx[0] = sx, the mean
of the input of the first segment isE{Vx10

[n]
∣

∣Sx[0]} = sx/
√
T

at n = 0 and 0 for n 6= 0. Moreover, Var(Vx1
0
[n]

∣

∣Sx[0]) = 0
at n = 0 andPx for n 6= 0. Furthermore, if we assume that
hz[n] is the channel response for a fiber length ofz in the
linear regime,Uxim [n] = A2m−1

∑∞
k=−∞ Vx1

0
[n − k]hℓi,m [k],

whereℓi,m = (2m − 1)ηLD/2 + (i − 1)L is the fiber length
from the beginning of the link to the midpoint of segmentm
in spani. The squared magnitude of the CD filter coefficients,
for a fiber length ofz, can be approximated [34, eq. 9] by

|hz[n]|2 ≈
{

LD

2πz , |n| ≤ πz
LD

,

0, elsewhere.
(27)

Thus, for |n| ≤ πℓi,m/LD,

|Ūxim
[n]|2 = 1

T |hℓi,m [n]|2|sx|2A4m−2 ≈ 1
ℓi,mT |sx|2A4m−2LD

and

Var(Uxim
[n]) = A4m−2Px

∑

k 6=n

|hℓi,m [k]|2 + (i− 1)σ2A4m−2

= A4m−2Px
(

1− |hℓi,m [n]|2
)

+ (i− 1)σ2A4m−2

≈ A4m−2Px

(

1−
LD

2πℓi,m

)

+ (i− 1)σ2A4m−2,

where we used
∑∞

k=−∞ |hℓi,m [k]|2 = 1 becausehℓi,m [k] is an
all-pass filter with unity gain. Here, we note that form ≥ 4,
LD/2πℓi,m ≈ 0 and hence

|Ūxim
[n]|2

Px
≈ 0, (28)

Var
(

Uxim [n]
)

≈
(

Px + (i − 1)σ2
)

A4m−2. (29)

For the sake of simplicity, we apply this approximation for all
segments includingm ≤ 4. Although the approximation for
the first four segments is not accurate, the numerical results
(see section VI) justify that for a large enough number of spans
(N > 10), its effect is negligible.

Now, for a given transmitted symbolss[0] = (sx, sy), one
may substitute (28) into (8) to get
∣

∣

∣Φxim

∣

∣

∣

−2

≈ 1 + 4φ2
x

[

1 + (i− 1) 1
Nρx

]2

sinh2(α
2
ηLD)A

8m−4,

(30)
∣

∣

∣Φyim

∣

∣

∣

−2

≈ 1 + 4φ2
x

[

κ+ (i− 1) 1
Nρx

]2

sinh2(α
2
ηLD)A

8m−4,

(31)

whereκ = Py/Px. Finally, by substituting (28), (30), and (31) into
(9), then doing a Taylor expansion with respect toφx, and neglecting
the terms of order higher thanφ2

x , we get (11).
According to (5), the signal at the output of each segment

can be decomposed into a linear,VLi
m
[n], and a nonlinear,

VNLi
m
[n], term. In addition, using Lemma 2, the linear and

nonlinear terms are independent. Therefore, Var{Vxim [n]} =
Var{VLxi

m
[n]} + Var{VNLxi

m
[n]}. Here, we exclude the ASE

noises from linear and nonlinear terms and the accumulated
ASE noise is considered with the variance of(i − 1)σ2A4m

at the output the segment. Since the channel is nonlinear, the
signal and the ASE noise are not treated independently and we
solely decompose them to describe the received signal as a sum
of three components: the signal without noise and nonlinear
interference, the nonlinear noise, and the ASE noise. Now,
using (6) and (28), it is seen that the signal power (excluding
the ASE noise and the nonlinear interference) is|ζxim

|2A4mPx

and the variance of the nonlinear noise is(1− |ζxim
|2)A4mPx

for polarization x, as given in (12).

APPENDIX E
PROOF OFTHEOREM 1

First, we derive the channel model for spani, where1 ≤
i ≤ N , of an optical-fiber link. Then, we extend the results to
a link with N spans.

Lemma 3:Assuming equalities in (11) and (12), spani of
a fiber-optical link can be modeled by an AWGN channel as
shown in Fig. 1(b). The squared magnitude of the channel
complex scaling in polarization x is given by

|ζix|2=1− tanh(α2 ηLD)
(

1− e−2αL
)

[

2 + κ2 + 2(i− 1)2+κ
Nρx

+ (i− 1)2 3
N2ρ2

x

]

φ2
x . (32)

The accumulated nonlinear noise variance in polarization xis
σ2

NLi
x
= Px(1 − |ζxi |2).
Proof: As shown in Fig. 3(a), spani can be modeled

as M serially concatenated segments. Substituting (11) into
the total complex scaling given byζxi =

∏M
m=1 ζxim and

performing some algebraic manipulations, one can easily get
(32). The variance of the nonlinear noise accumulated from
M segments of spani at the end of this span isσ2

NLi
x
=

Px(1 −
∏M

k=1 |ζxi
k
|2) = Px(1 − |ζxi |2).

We now extend the results to a fiber link withN spans by
following an analogous approach. One may view the channel
given in Fig. 2 as a concatenation ofN channels described
by Lemma 3. The linear noise, which is independent from the
added nonlinear noise, is added with varianceσ2 at the end of
each span. Since multiplication by a constant commutes with
convolution, the channel attenuation in different spans can be



10

moved to the end of the last span. Thus, by following the same
approach as the proof of Lemma 3, one can readily derive the
squared magnitude of the total complex scaling by substituting
ζxi into ζx =

∏N
i=1 ζxi .

As we discussed in Appendix D, the variance of the
accumulated AWGN at the receiver is the sum of the variances
of the amplifier noises added along the fiber-optic link, i.e.,
Nσ2. Moreover, the signal powerPx is split into a linear
part with variance|ζx|2Px and a nonlinear part with variance
σ2

NL = (1− |ζx|2)Px. The nonlinear part acts as an noise-like
interference and is called nonlinear noise. Finally, the system
SNR can be computed as the ratio of the received signal power
to the sum of the linear and nonlinear noise variances.
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