arXiv:0907.2984v1 [cs.IT] 17 Jul 2009

1
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Abstract

This paper considers fountain communication over disdigte memoryless channels. We extend concatenated
coding schemes to fountain systems and derive the ach&f@lohtain error exponents for one-level and multi-level
concatenated fountain codes. Encoding and decoding caitipéeof the concatenated fountain codes are linear in
the number of transmitted symbols and the number of recayetbols, respectively. Performances of concatenated
fountain codes in rate compatible fountain communicatiod gBountain communication over an unknown channel

are discussed.

Index Terms
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I. INTRODUCTION

Fountain communication [1] is a new classical communicatitodel originally proposed for reliable
data transmission over erasure channels. In a point-tat-fmintain communication system, the transmitter
maps a message into an infinite sequence of channel symhlbkeads them to the receiver. The receiver
decodes the message after the number of received symbagdsxcertain threshold. Due to random
symbol erasures, communication duration in a fountainesyss determined by the receiver, rather than
by the transmitter. The first realization of fountain codeasw.T codes introduced by Luby [2] for
erasure channels. LT codes can recaveénformation symbols fromk(1 + ¢) encoded symbols at high
probability with a complexity ofD(k%/4¢'/2), for anye > 0 [2]. Shokrollahi proposed Rapter codes [3] by
combining appropriate LT codes with a pre-code. Raptor sa@m recovefk information symbols from
k(1 + ¢) encoded symbols at high probability with complex@yk log(1/¢)). For erasure channels, both
LT codes and Raptor codes can achieve optimum rate irregpedtthe erasure statistics. Generalization
of Raptor codes from erasure channels to binary symmetaoratls (BSCs) was studied by Etesami and
Shokrollahi in [4]. In [5], Shamai, Telatar and Vérdgsystematically extended fountain communication
to arbitrary channels and showed that fountain capacityafi§] Shannon capacity take the same value
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for stationary memoryless channels. Achievability of ftain capacity was demonstrated in [5] using
a random coding scheme whose coding complexity is expaentithe number of received symbols.

This consequently motivated the question whether fourtapacity of a stationary memoryless channel
is achievable with a linear coding complexity.

In classical point-to-point communication over discreétee memoryless channels, Feinstein [6] demon-
strated that communication error probability can be madietoease exponentially in the codeword length.
The corresponding exponent is known as the error exponeght Tower and upper bounds on error
exponent were obtained by Gallager [7], and by ShannonaGel] Berlekamp [8], respectively. In [9],
Forney proposed a one-level concatenated coding schemeoth&ines a Hamming-sense error correction
outer code with Shannon-sense random inner channel codesle@el concatenated codes can achieve
a positive error exponent, known as Forney’s exponent, figr rate less than Shannon capacity with a
polynomial complexity [9]. Forney’s concatenated codeseangeneralized by Blokh and Zyablov [10] to
multi-level concatenated codes, whose maximum achiewabbe exponent is known as the Blokh-Zyablov
error exponent. In [11], Gurusawmi and Indyk introduced asslof linear complexity near maximum
distance separable (MDS) error-correction codes. By uSoguswami-Indyk’s codes as outer codes in
concatenated coding schemes, achievability of ForneydsBiokh-Zyablov exponents with linear coding
complexity was proved in [12].

In this paper, we extend concatenated coding schemes t@afoutommunication over discrete-time
memoryless channels, as modeled in Sedtibn Il. Randomdounbdes are briefly introduced in Section
[ By defining error probability scaling law with respea the number of received symbols, we derive
in Section[ 1V the error exponents achievable by one-level mlti-level concatenated fountain codes,
and show that their encoding and decoding complexitiesiaear in the number of transmitted symbols
and the number of received symbols, respectively. In Sepwe consider rate compatible fountain
communication where part of the source message is knowneateteiver. With the transmitter still
encoding the complete message, we show that concatenatetéifo codes can achieve the same rate and
error performance as if only the unknown part of the messagencoded. We briefly discuss fountain
communication over an unknown channel in Sectioh VI.

All logarithms in this paper are natural based.

1. THE FOUNTAIN COMMUNICATION MODEL

Consider the fountain communication system illustrateligure[1. Assume the encoder uses a fountain
coding scheme [5] withl” codewords to map the source message {1, 2, ..., W} to an infinite channel
input symbol sequencér,, Tys,-- -, }. Assume the channel is discrete-time memoryless, chaizede

by the conditional point mess function (PMF) or probabilitgnsity function (PDF)pyx(y|x), where
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Fig. 1. Fountain communication over a memoryless channel.

x € X andy € Y are the input and output symbols, andY are the channel input and output alphabets,
respectively. Define schedul®” = {i1,4,,...,i} as a subset of positive integers, whei¢| is the
cardinality of A/ [5]. Assume the erasure device generates an arbitrary sieh&d whose elements are
indices of the received symbolg .., Yuwis, - - - s Ywin }» Where N = |N|. We say fountain rate of the
system isRk = (log W) /N, if the decoder outputs an estimateof the source message after observivig
channel symbols, based dW.;,, Yuwi, - - - » Yuwiy } @aNdN. Decoding error happens whei # w. Define
error probability P.(N) as in [5],

P.(N)= sup Pr{w# w|N}. (1)

NIN|>N
We say a fountain rat® is achievable if there exists a fountain coding scheme wiith y ., P.(N) = 0 at
rate R [5]. The exponent rate at which error probability vanistedefined as the fountain error exponent,
Er(R),
Ep(R) = lim —% log P.(N). 2)

N—oo
Define fountain capacitfr as the supremum of all achievable fountain rates. It was shaw5] that

Cr equals the Shannon capacity of a stationary memorylessiehan

IIl. RANDOM FOUNTAIN CODES

In a random fountain coding scheme [5], encoder and decddee s fountain code librarg = {Cj :
6 € ©}, which is a collection of fountain code books with 6 being the index. All code books in
the library have the same number of codewords and each coddves an infinite number of channel
input symbols. LeCy(m); be the;j codeword symbol of message in Cy. To encode the message, the
encoder first generatésaccording to a distributiost, such that the random variables, ; : 0 — Cy(m);
are i.i.d. with a pre-determined input distributipr [5]. Then the encoder uses codebadkto map the
message into a codeword. We assume the actual realizati@msdénown to the decoder but is unknown
to the erasure device. Maximum likelihood decoding is assim

Theorem 1: Consider fountain communication over a discrete-time mgtass channepy|x. Let Cr

be the fountain capacity. For any fountain rate< Cr, random fountain codes achieve the following



random-coding fountain error exponety,. (R).
Ep.(R) = max Epr(R,px), 3)
where Er (R, px) is defined as follows

Erp(R,px) = Ofgggl{—PR + Eo(p, px)},

(1+p)
Eolpspx) 1ogz(sz Doy y|:c>1+~) . (@)

If the channel is continuous, then summationslin (4) shoelddplaced by integrals

Theorenm 1L was claimed implicitly in, and can be shown by, tr@opof [5, Theorem 2].

Er.(R) given in (3) equals the random-coding exponent of a classmamunication system over
the same channel [7]. For binary symmetric channels (BS€s¢e random linear codes simultaneously
achieves the random-coding exponent at high rates and fhegated exponent at low rates [13], it can
be easily shown that the same fountain error exponent ieeable by random linear fountain codes.
However, because it is not clear whether there exists anrgapan operation, such as the one proposed
in [7], that is robust to the observation of any subset of deamutputs, whether expurgated exponent
is achievable for fountain communication over a generatrdig-time memoryless channel is therefore

unknown.

IV. CONCATENATED FOUNTAIN CODES

Consider a one-level concatenated fountain coding schdomrated in Figure 2. Assume source
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Fig. 2. One-level concatenated fountain codes.

messagev can takeexp (/N R) possible values with an equal probability, whéteas the targeted fountain
information rate, and decoder decodes the source mesdagesgkivingN channel symbols. The encoder
first encodes the message using an outer code into an outewe {&;, &, - - -, &n, }, With N, outer
symbols. We assume the outer code is a linear-time encddabt&lable near MDS error-correction code

of rater, € [0, 1]. That is, the outer code can recover the source message footesvord withd symbol



erasures and symbol errors, so long && + d < (1 —r, — {y)N,, where(, > 0 is a positive constant
that can be made arbitrarily small. An example of such lineamplexity error-correction code was
presented by Guruswami and Indyk in [11]. Each outer synghbaan takeexp (Nﬁrﬁ) possible values.
Define N; = Nﬁ R, = %. The encoder then uses a set of random fountain codes edtlkexwitV; R;)
codewords to map each outer symiplinto an inner codeword, which is an infinite sequence of ckhnn
input symbols{xy, zx2, - - -}. Let C(gk) (&); be thej* codeword symbol of thé" inner code in codebook
C(gk), whered is the codebook index as introduced in Secfidn Il. We asstifisegenerated according to
a distribution?y such that random variables, ¢ ; : 6 — Ce(k)(gk)j are i.i.d. with a pre-determined input
distributionpy. To simplify the notations, we have assumEd N,, N R, andN; R; should all be integers.
We also assumé/, > N; > 1.

After encoding, the inner codewords are regarded/ashannel symbol queues, as illustrated in Figure
2. In thel®™ time unit, the encoder uses a random switch to pick one inode with indexk;(#) uniformly,
and sends the first channel input symbol in the corresporgliegie through the channel. The transmitted
symbol is then removed from the queue. We assume randonblesia : 0 — {1,2,..., N,} are i.i.d.
uniform. We assume the decoder knows the outer codebookhancbte libraries of the inner codes. We
also assume the encoder and the decoder share the realighticuch that the decoder knows the exact
codebook used in each inner code and the exact order in whahnel input symbols are transmitted.

Decoding starts aftev = N,N; channel output symbols are received. The decoder firstilulists
the received symbols to the corresponding inner codewdkgsumez;, N; channel output symbols are
received from thée:th inner codeword, wherg, > 0 and z;,NV; is an integer. We term, the normalized
effective codeword length of theth inner code. Based og)., and the received channel output symbols,
{Ykiy > Yriny - - - ,ykizwi}, the decoder computes the maximum likelihood estiré;atea‘ the outer symbof,
together with an optimized reliability weight, € [0, 1]. We assume, gives, and{y,, Yxis - - - » Yki., x, }»
reliability weight oy, is computed using Forney’s algorithm presented in [9, $acii.2]. After that, the
decoder carries out a generalized minimum distance (GMDBydiag of the outer code and outputs an
estimatew of the source message. GMD decoding of the outer code helne saime as that in a classical
communication system, the detail of which can be found ir].[12

Compared to a classical communication system where allricndes have the same length, in a
concatenated fountain coding scheme, numbers of recejwmbads from different inner codes may be
different. Consequently, error exponent achievable bylenel concatenated fountain codes is less than
Forney’s exponent.

Theorem 2: Consider fountain communication over a discrete-time nmgfass channepy|y with

fountain capacityCr. For any fountain rateR < Cp, the following fountain error exponent can be



arbitrarily approached by one-level concatenated founntades.

1+7r,
2

R
Bro(R) = max  (1=r,) (=p=+ Bolp.px) |1 -

P, <ro<1,0<p<1 Eo(p’pX)D ' ©)
where Ey(p, px) is defined in[(#).

Encoding and decoding complexities of the one-level carattd codes are linear in the number of
transmitted symbols and the number of received symbolpectisely.m

The proof of Theorer]2 is given in AppendiX A.

Corollary 1: Er.(R) is upper-bounded by Forney’s error exponén{ R) given in [9]. Er.(R) is
lower bounded by .(R), defined by

Bro®) = max  (1=1,) (=07 + Ealp.p) [~ Eolp.px)]) ©)

LV SP >

The lower bounds is asymptotically tight in the sense that

1. EFC(R)
1m

—1. 7)

]
The proof of Corollany 1l is given in Appendix]B.
In Figure[3, we illustratefp.(R), E.(R), and Er.(R) for a BSC with crossover probability.1. We
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Fig. 3. Comparison of fountain error exponefit.(R), its upper boundZ.(R), and its lower boundr.(R).

can see that'r.(R) is closely approximated bﬁFc(R).

Extending the one-level concatenated fountain codes tanihié-level concatenated fountain codes is
essentially the same as in classical communication sysfg@jEL2] except random fountain codes are
used as inner codes in a fountain system. Achievable erfmresnt of ann-level concatenated fountain

codes is given in the following Theorem.



Theorem 3: Consider fountain communication over a discrete-time nmgfass channepy|y with
fountain capacityCr. For any fountain rateR < Cp, the following fountain error exponent can be

arbitrarily approached by am-level concatenated fountain codes,

(m) . R
Ep. (R) = max e =
B T T () Eopa)
EFL (Zlf,px) = max (_px+E0(p7pX)[1_EO(papX)]) (8)

0<p<1
where Ey(p, px) is defined in[(#).
For a givenm, encoding and decoding complexities of thelevel concatenated codes are linear in the
number of transmitted symbols and the number of receivecheisra
Theoreni B can be proved by following the analysisrefevel concatenated codes presented in [10][14]
and replacing the inner code error exponent in the analysisthve error exponent lower bound given in
Corollary[1.
Corollary 2: The following fountain error exponent can be arbitrarilypegached by multi-level con-
catenated fountain codes with linear encoding/decodimgptexity.
o R 2 dx -
B (R) = px,gixrogl <7“_o - R) l o Epp (x,Px)] ’ ©
where Erp (x,px) is defined in[(B)m
In Figurel4, we iIIustrat@fff)(R) and the Blokh-Zyablov exponeit>(R) for a BSC with crossover
probability 0.1. It can be seen thaE}of)(R) is not far away from the Blokh-Zyablov exponent.
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Fig. 4. Comparison of mulit-level fountain error exponén °C°)(R) and the Blokh-Zyablov exponerEﬁ“)(R).



V. RATE COMPATIBLE FOUNTAIN COMMUNICATION

Consider the application of software patch distributionh@f a significant number of patches are
released, the software company may want to combine the gmtdgether as a service pack. However,
if a user already have some of the patches, he may only wardvimldad the new patches, rather than
the whole service pack. For the convenience of the patclesall patches of the service pack should be
encoded jointly. But for the communication efficiency of egmarticular user, we also want the fountain
system to achieve the same rate and error performance adyiftie novel part of the service pack
is transmitted. We require such optimality be achieved #sneously for all users, and define such a
fountain communication model the rate compatible fountmimmunication.

Assume a source message which takesexp(/NR) possible values, can be partitioned intosub-
messages = [w, wy, ..., wy], Wherew;, Vi, can takeexp(Nr;) possible valuesy, ; = R. Consider the
following extended one-level concatenated fountain cpdicheme. For all € {1,..., L}, the encoder
first uses a near MDS outer code with length and rater, to encode sub-message into an outer

codeword{¢,1, ..., &n, }, as illustrated in Figurel5. Next, for all € {1,..., N,}, the encoder combines
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Fig. 5. Concatenated fountain codes for rate compatiblenwamication.

outer codeword symbolyy, . .., &1, } into @ macro symbafy, = [k, - - ., £2k]- A random fountain code
is then used to mag, into an infinite channel input sequen¢ey, zxo, . . .}.

Without loss of generality, we assume the decoder alreadyshh-messagegu,, 1, ..., wr}, where
[ € [1,L — 1] is an integer. The decoder estimates the source messageNafte N% channel
output symbols are received. From the decoder point of vé&wge the unknown messages, .. ., w|
can only takeexp(N Y°!_, r;) possible values, theffective fountain information rate of the system is
Ry = % = R. According to the known messages 1, . .., w;], the decoder first strikes out from
fountain codebooks all codewords corresponding to the gvnoressages. The one-level concatenated
fountain code is then decoded using the same procedure asbaeksin Sectiom V. Assume the average

« ! Ty o«
number of symbols received by each inner codewdrd—= % = Nﬂ% is large enough to enable



asymptotic error performance analysis. By following a samanalysis given in the proof of Theorédm 2,
it can be seen that error expondnit.(R) given in (8) can still be arbitrarily approached, irrespecof
the value ofi.

Therefore, given a rate partitioning = [ry,...,r.], the encoder can encode the complete message
irrespective of the sub-messages known at the decoder. dumgalin system can achieve the same rate
and error performance as if only the unknown sub-messagesrenoded and transmitted. Extending the

scheme to multi-level concatenated codes is straightfierwa

VI. FOUNTAIN COMMUNICATION OVER AN UNKNOWN CHANNEL

In previous sections, we have assumed that concatenatathfiowwodes should be optimized based on
a known memoryless channel mogel x. However, such an optimization may face various challemges
practical applications. For example, suppose a transnbittedcasts encoded symbols to multiple receivers
simultaneously. Channels experienced by different recsivnay be different. Even if the channels are
known, the transmitter still faces the problem of optimgiimuntain codes simultaneously for multiple
channels. For another example, suppose the source messggea Software patch) is available at multiple
servers. A user may collect encoded symbols from multipteess separately over different channels and
use these symbols to jointly decode the message. By regatdensymbols as received over a virtual
channel, we want the fountain system to achieve good rateemod performance without requiring the
virtual channel model at the transmitter. We term the comination model in the latter example the
rate combining fountain communication. In both examplas, tesearch question is whether key coding
parameters can be determined without full channel knovdesighe transmitter.

Consider fountain communication over a memoryless chamngl using one-level concatenated foun-
tain codes. We assume the channel is symmetric, and henagptineal input distributionpy is known
at the transmitter. Other than its symmetry, we assume e@hanformation py|x is unknown at the
transmitter, but known at the receiver. Giver, defineI(px) = I(X;Y) as the mutual information
between the input and output of the memoryless channel. \8leees the transmitter and the receiver
agree on achieving a fountain information rateydfpy) where~ is termed the normalized fountain rate,
known at the transmitter.

Recall from the proof of Theoreml 2 that, ify|x is known at the transmitter, the following error

exponent can be arbitrarily approached.

Epc(v,px) = Jnax, Epc(v,px,70)

) v Eo(p,px) L+
Ere(v,px,70) = Orgl?g;l(l —1o)I(px) <_p7’_0 + I(px) 1- 2

Eo<p,pX>D (10
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Without py|x at the transmitter, we set the outer code rafet r, = 7”2;87_7 and define the corre-

sponding error exponent by

— —@_7) (11)

Ech(%pX) = EFC <77pX7T0 -

The following theorem indicates th&tr..(, px) approaches/r.(v, px) asymptotically.
Theorem 4. Given the memoryless channgj x and a source distributiopy, the following limit

holds,
lim Ech (77 pX)

=1. 12
7—1 EFC(’yva) ( )
|
The proof of Theorerhl4 is given in Appendix C.

In Figure[6, we plotEr.s(,px) and Er.(v,px) for BSC with crossover probabilitg.1. It can be

. A/ 24 8~v— . . . .
seen that setting, at r, = % is near optimal for all normalized fountain rate values.tker

Er (7. px)
"7 Erdpy)
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Fig. 6. Error exponents achieved by optimaland suboptimat, = 7”2+2W versus normalized fountain rate

discussions on fountain communication over unknown chianseoutside the scope of this paper.

VIlI. CONCLUSIONS

We proposed concatenated fountain codes with linear coclmgplexity for fountain communication
over a discrete-time memoryless channel. Fountain erfqporgents achievable by one-level and multi-level
concatenated codes were derived. It was shown that thedouetror exponents are less than but close
to Forney’s and Blokh-Zyablov exponents. In rate compatitmmmunication where decoder knows part
of the message, with the encoder still encoding the compietesage, concatenated fountain codes can

achieve the same rate and error performance as if only theawnk part of the message is encoded. For
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one-level concatenated codes and for some channels, itle@sl@gown that near optimal error exponent

can be achieved with an outer code rate independent of thenehatatistics.

APPENDIX
A. Proof of Theorem[2

Proof: We first introduce the basic idea of the proof.

Assume the decoder starts decoding after receiWng N,N; symbols, whereV, is the length of the
outer codeword)V; is the expected number of received symbols from each inner code. In thevatig
error exponent analysis, we will obtain asymptotic reshitsfirst taking NV, to infinity and then taking
N; to infinity.

Let z be anN,-dimensional vector whoskth elementz, is the normalized effective codeword length
of the kth inner code, from which the conditional empirical distitiilon functionF'zs can be induced, as a
function of variablez > 0, given the random variabkespecified in Sectionlll. Let the conditional density
function of ;s be f,9. Note that the empirical density functigfy, itself is a random variable, whose
distribution is denoted by>r, as a function off;,. Assume, giver?, the conditional error probability
of the concatenated code can be writtenFag(fzj9) = exp(—N;N,E((fz0, R)), where the conditional
error exponents( fz9, R) is a function of ;4. The overall error probability can therefore be written as

P = /0 exp(—NiNoEf (f210, R))dGr(f210). 12
Consequently, error exponent of the concatenated codeés diy

. : 1
EFC(R) = ]\%ILHOONEILHOO—NZ‘NO

log /e exp(—NiNoE¢(fz10, R))dGr(fz0)

log dGr(f7) . (14)

— minlE( R — I
H}in{ sz, B) = i o

where in the second equality we wrofgy, as f, to simplify the notation.

The rest of the proof contains three parts. In Part |, we ddhe expression dfmy, y, -0 ﬁ log dGr(fz).
In Part I, we derive the expression &f;(f~, R). In Part lll, we use the results of the first two parts to
optimize [14) and to obtai®'r.(R).

Part |I: Let dz > 0 be a small constant. We defife,|z, = ndz,n = 0,1,...,} as the set of “grid
values” each can be written as an non-negative integer phutg dz. Given a normalized effective inner
codeword length vectot, the empirical density; is induced as follows. We first quantize the elements
of z, sayz, to the closest grid value no larger thap i.e., z, < z;. Denote the quantized vector by

2(9. For any grid value;,, we defineZ,, = {i\zi(q) = z,} as the set of indices corresponding to which the



12

elements ofz(@ vector equal the particular,. Given z, the empirical densityf, is a discrete function

defined on the grid values, witfy,(z,) = ]‘\fjgi. According to thef, definition, we have
Zfz(zg)dz = 1. (15)

Let z(z) be anN,-dimensional vector with only one non-zero element comeasing to theith received
symbol. If theith received symbol belongs to thi¢h inner code, then we let thith element ofz(7)
equall and let all other elements equal Since the random switch (illustrated in Figlie 2) pickseinn
codes uniformly, we have

Bl2(9) = 31 covz(i)] = -, ~ 1

where1l is an N,-dimensional vector with all elements being one. Accordimghe definitions, we have

117, (16)

z = Ni ZZN:{V z(i). Since the total number of received symbols egiaVN,, we must havel”z = N,
This implies that for all empirical density functiorfs, we have
> zfz(zg)dz € [1 — dz, 1]. a7)
Sincez equals the summation &¥; NV, independently distributed vectozsi), the characteristic function
of ,/%(z — 1), denoted byp(t), can be written as

os(t) = |1 - e L e 4o Il )]
z 2" N2N; Nt N2N; ’

(18)
wheret = [ty, -, ty, 1|7 is an(N,—1)-dimensional VeCth\Nith bounded elements, i.enax; <x<n,—1 |tx| <
«, for some constant > 0. (18) implies that

li { t ( L tTt)} =0 (19)
Nolinoo wz(t) — exp _2No =0.

Consequently, for larg&/;, N,, N, > N;, the probability that: gives a particular quantized vectet?
is upper bounded by

No—1 No—1
Pr{z@} < (dz &> (Qﬁ) exp (—% (BT 3No(dz)2}> .
T

(20)
The first term on the right hand side 6f{20) is the volume ofrie@ghborhood oﬁ/%(z —1) in which
the quantized codeword length vector ofequalsz(9. The second term is a revised Gaussian density

INote that because” z = N,, z has onlyN, —1 linearly independent elements. The characteristic fonds obtained by first projecting

z to an (N, — 1)-dimensional space. The detailed derivation is skipped.
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derived from the characteristic equationp (—5+-£t). Note that the offset-3N,(dz)? in the second
term is necessary to ensure the validity of the upper bound.
Let f, be the empirical density induced from a particular quadtizedeword length vector'@. It can

be shown that the probability for to follow an empirical density, is upper bounded by

Pr{f;} = Ko(N;, N,)Pr{z@}

No—1
< Ky(N;, N,) (dz\/§> exp (—% [||z<q> —1)? - 3No(dz)2}>
No—1
= Ko(N;, N,) (dq/%) exp (gNZ-NO(dZ)Q) exp (_ Ni2]Vo > (2 — 1)2fZ(zg)dz> ;

(21)
where K, (N;, N,) is a permutation term that satisfiéichy, v, o0 W = OB
From (21), we can see that for gl}; the following inequality holds,
. log Pr{fz} _ 1 3
TN TN, g & T ) ) 22
Part I1: Next, we will derive the expression df;(f,, R), which is the error exponent conditioned

on an empirical inner codeword length densjty.

Let z be a particularN,-dimensional inner codewords length vector, which follale density func-
tion f;. Given a finitedz, since error probability conditioned ofi; can be written asP.(f;) =
exp(—N;N,E¢(fz, R)), error probability givenz can be written as

Pz) = exp(—N;N,E(fz, R))

BN 0w, KGN No) =0, (23)

where K (N;, N,) is a permutation term. Consequently, we can obfgjiff,, R) by assuming a particular
inner codeword length vectat, whose corresponding inner codeword length density;is

A strict error exponent derivation should proceed by firstuasing a fixeddz. For each grid value,,
error performances of inner codes whose effective codewrgthes belong tdz,, z, + dz] should be
bounded as function ok andz,. After obtaining the overall error exponent of the concated fountain
code based on a fixett, asymptotic result can then be obtained by taking— 0. The order thatlz — 0
should be taken at the end is necessary since otherwise ¢kimps derivations such as (20), (21),1(23)
are no longer valid. However, under the assumptions thgpixdous derivations are valid, takinlg — 0
first does not affect the validity of the rest of the proof. fidfere, in order to simplify the notations,

from now on, we will first takedlz — 0.

2validity of this limit can be shown by jointly consider the awterms in [I%). The detail is skipped.



14

By taking dz — 0, (22) becomes
_ lim M - /OOO ﬂfz(z)dz. (24)

dz—0,N;,No—oo  N; N, 2

According to the definition off; and the property that”z = N,, we also have

/°° fa(2) = 1, /°° 2fa(2) = 1. (25)
0 0

Consequently, error exponehi [14) becomes

(= 1)?
2

Er(R)=  min Ef(fs.R)+ [
ro(R) fz,f;zfz<z>:1{ )+

Assume the outer code has ratg and is able to recover the source message fiidfm outer symbol

fz(z)dz} : (26)

erasures andN, outer symbol errors so long as+ 2t < (1 —r, — (y), where(, > 0 is a constant that
can be made arbitrarily small. To simplify the notations, take (;, — 0 firsg. Assume, for allt, the kth
inner code reports an estimate of the outer syngpabgether with a reliability weighty, € [0, 1]. Apply
Forney’s GMD decoding to the outer code [12], the source agssan be recovered if the following

inequality holds [9, Theorem 3.1b].
No

Z Qg > ToNoa (27)

k=1
wherey, = 1 if & = &, andp, = —1 if & # &. Consequently, error probability conditioned on the
given z vector is bounded by

No
P.(R,r,,z) < Pr {Z oy < ’/‘ONO}
k=1

< min £ [eXp (—sN,- N ak#k)]

520 exp(—sN;7,N,) (28)

where the last inequality is due to Chernoff’'s bound.
Given the inner codeword lengthks random variablesy i, for different inner codes are independent.

Therefore, [(2B) can be further written as

P.(R,7,,2z) < min w1 B [exp (—sNiopy)]

5>0 exp(—sN;r,N,)
_exp (Z,vagl log E [exp (—sNiakuk)])
) exp(—sN;r,N,) '

(29)

Now we will derive the expression dbg F [exp (—sN;ay )] for the kth inner code.
Assume the normalized effective codeword length,isGiven z;, depending on the received channel

symbols, the decoder generates the maximum likelihoodr moge estimate,, and generates; using

3Taking ¢o — 0 requires a significant increase &f; [11]. Although the linear complexity argument requirgs — 0 be taken after

N, — oo, switching the order of these asymptotic operations do¢sffiect the validity of the error exponent resullt.
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Forney’s algorithm presented in [9, Section 4.2]. Define djusted error exponent functiof,(z) as

follows.

R
Ez(z) = max _pT_ + ZEO(pva)v (30)

0<p<1
where Ey(p, px) is defined in[(#). By following Forney’s error exponent arsidypresented in [9, Section

4.2], we obtain

— log E [exp (—sN;oypy)] = max[min{ N; E. (z), N;(2E,(z) — s), N;s}, 0].

(31)
Define a functiony(z, s) as follows,
—ST, 2, B, (z) <s/2
P(z,8) = 2E.(2) — (14+14)s 2,8/2<E.(2)<s . (32)
(1 —15)s 2, E.(2) 2 s
Substitute[(3M1) into[(29), we get the expression of the d@il error exponent(fz, R) as
E¢(fz,R) = max /gb(z, s)fz(2)dz. (33)
PX e Sro<1,s20
Part 111: Combining [(38) with [(2B), fountain error exponent of the catenated code is therefore
given by
. (1—2)
Er.(R) = max min / o(z,8) + fz(z)dz. (34)
Px,EE <ro<1,520 f7, [ 2f7(2)de=1 2

Assumef; is the inner codeword length density that minimizés.(R) in (34). Assume we can find
0 < A < 1, and two density functiong'”), %, satisfying [ zf" (2)dz = 1, [ zfP(2)dz = 1, such
that
=M+ =N (35)

It is easily seen thak'r.(R) should be minimized either bﬁg) or f(2), which contradicts the assumption
that f is optimum. In other words, iff; is indeed optimum, then a decomposition likel(35) must not
be possible. This implies thgt; can take non-zero values on at most two differemalues. Therefore,
we can carry out the optimization in_(34) only over the follog class off; functions, characterized by

two variables) < zp <1 and0 <~y < 1.

fz(2) =70(z — z0) + (L — )4 (z 1= ZW) ) (36)

1=
whered() is the impulse function.
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Now let us fixpy, 7., 7, and consider the following optimization &fr.(R, px,7,, 7).

1 — 2y v (1= 20)?
Ere(R, px,70,7) = min maxy$(z,s) + (1~ 7)¢ < T ,s> i (37)

Since givenzg, 7¢(z0,$) + (1 — 7)o (1%(;’7, s) is a linear function ofs, depending on the value af the

optimum s* that maximizes[(37) should either satisfy= E.(z,) or s* = F, (%)

When~ > =2, we haves* = E. (). This yields

Er.(R,px,7,) = min 1 (-« + (1 —=1,)E.(20)] - (38)
Y 0<z00<l |[1—7 2
When~y < 15 =<, we haves* = F, (11:&7’7) we have
B . v (1= 2)? 1— 2
Erc(R,px,ro) =  min lw(zo, S B A2 e

. v (1= 2)? 1— 2
o Jnin_ [27Ez(zo) +1 52 +(1—r,—2y)E, — | (39)

By substitutingF. (z) = maXOSpgl[—p% + zEy(p, px)] into (39), we have

R
Ere(R.px.ro) = min | max {(1=r,) [=p." + Enlp.px)| -

0<20,7<10<p<1

ﬁ l(l +10) (L — 20) Eo(p, px) — %] } . (40)

Note that if(1+,)(1—z) Eo(p, px) — L5525 < 0, we haveEr (R, px., 7o) > (1=1,) [—pZ + Ey(p, px)]
which is Forney’s exponent givepx,ro. This contradicts with the fact that Forney’s exponent is th
maximum achievable exponent for one-level concatenatddsco a classical system [9]. Therefore, we

must have(1 + r,)(1 — z) Eo(p, px) — (=z0)” 20 > 0. Consequently, bothH_(88) and_{40) are minimized at

v* =1 and

B . 1—7,(1—z)?
Bro(B) = 2L 2,1 px 025051 {<1 —ro)Balz) +
{a=r) (=02 + Bolopx)
= max min —75) | —p— ,
Ci o<1,px,0<p<1 0<20<1 p?“o 0\p, Px
1—7,(1—2)
1-— —2(1 o) Eo(p, . 41
e (1)~ 200 )l @)
The last step is to optimizé (41) ovey. Note that if (1 + r,)Ey > 1, for a fixedr,, we have
R 1—r
Ero(R,7,) < {——1—0 } 42
re(R,7o) < max pro( 7“)+1+T0 (42)

which impliesp = 0. But p = 0 implies(1+r,) Ey = 0 < 1 which contradicts the assumptioh+r,) Ey >
1. Therefore, we can assunfé+ r,)E, < 1. Consequently, substituting, = 1 — (1 + r,) Ep into (41)

gives the desired resultl(5).
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To achieve linear coding complexity, we fi¥; at a large number and only také, to infinity. According
to [11], it is easy to see that the encoding complexity isdma the number of transmitted symbols.
At the receiver, we keep at mo2fV; symbols for each inner code and drop the extra received sgmbo
Consequently, the normalized effective codeword lengtangfinner code is upper-bounded hyBecause
(38) and [(40) are both minimized at = 1‘7’” according tol(36), the empirical density functigp(z) that
minimizes the error exponent takes the fofp(z) = 1526(z — z) + 526 (z - m) The second

147,

Z=ll=ro) — 9 Therefore, upper bounding the effective codeword lengtt lwoes

term impliesz = Tt

not change the error exponent result. However, wjth< 2, Vk, the decoding complexity of any inner
code is upper-bounded by a constanexp(2N;)). According to [12], the overall decoding complexity
of the concatenated code is therefore lineam\iy)y and hence is linear iV. Since fixing N; causes a
reduction of(; > 0 in the achievable error exponent, and bgth(; can be made arbitrarily small as we
increaseV;, we conclude that fountain error exponént.(R) given in [5) can berbitrarily approached

by one-level concatenated fountain codes with a linearngpdomplexity. [ |

B. Proof of Corollary 1

Proof: Because) < r, < 1, it is easy to seeEFC(R) < Er.(R) < E.(R). We will next prove

limR_>cF g;z—gg = 1.
Define
R 147,
9(px,70,p) = (1 —1,) (—PT— + Eo(p,px) |1 — 5 EO(PJ?X)D ; (43)
such that
Er (R) = max 9(Px:T0s P)- (44)

Use Taylor’'s expansion to expandpx,r,, p) atr, =1 andp = 0, we get

ot ) = ¥ 0 3) (= 1) (45)

. oli+i) o,
where3(i, j) = —agégif )

Lo with 7 and j being nonnegative integers. It can be verified that
ro=1,p=

R
5.0 = {5 = Baon) + B3 || =,
o ro=1,p=0
2R
5(2,0) = {—/)—3 + Eg(p,px)} =0,
o ro=1,0=0
1(—1)'R
B(i,0) = {—p%} -0, Vi>3. (46)
Té ro=1,p=0




It can also be verified that

B0.0) = (1 =) (-2 4 S0 OB (141,

ro=1,p=0
ﬁ(07.]> = (1 - To)hj(R7 p7 TO)‘To:17p:O = 07 vj 2 27
whereh;(R, p,r,) is a function ofR, p, r,. We also have
R 0FEy(p, OEo(p,
B(1,1) = {G—MﬂL?T’oEO(P’pX)M} = R — CF,
r2 op Op ro=1,p=0
B(2,1) = —=2R # 0,
& Eo(p, px) dEo(p,px)
= — —2 .
B(1,2) { o 5 #0
p=0
Similarly, define
N R
ixoronp) = (1=12) (=01 + Bop.px) [1 = Eolp.px)])
such that
EFc(R) = R max g(pX7T07p)‘
px,@émél,oﬁpél
Use Taylor’'s expansion to expaidpy,r,, p) atr, =1 andp = 0, we get
1 - o
gp yToy P) = . . ﬁia.j>(ro_1>lpj-
(px ) ; (1+7)! (
S atiti) g Tos -
where 3(i, j) = S rer) o1y It caN be verified that
N R )
B(1,0) = Pz~ Eo(p,px) + Eq(p, px) =0,
o ro=1,p=0
~ 1(—1)¢
B(i,0) = {—pl( ,+ZR} —0, Vi>2.
/ral
o ro=1,p=0
It can also be verified that
~ R 0Fqy(p, OEy(p,
B(0,1) = (1—r,) <—— | 9Blppx) _ 9(p pX)2Eo(p,px)> = 0.
To ap ap ro=1,p=0
B(0,j) = (L =roh(Ropyro)| _ (=0, Vi=2,
whereﬁj(R, p,T,) is a function ofR, p, r,. We also have
~ R 0FEy(p, OEy(p,
By = {5 - 2RO o 2RO g
To p p ro=1,p=0
B(2,1) = —2R # 0,
= 0 Eo(p, px) dE(p,px)
1,2) = - 022, o | R 0
B(1.2) { o o 0
p:

18

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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EFC(R) = im %B< + % =1
R=Cr Epc(R)  R=Crro=10-0 13(1,1)(r, — 1)p + £ 8(2,1)(ro — 1)2p 4+ £ 8(1, 2) (1o — 1)p? '
(55)
|
C. Proof of Theorem 4
Proof: Define
2 2
) 7\, p° [ O°Eolpsp
9o ) = (1-7,) (,oan) (1-1)+2 (% - 212<px>)) ,
o p=0
Ere(v,px,70) = max §(7, 70, p),
Ere(v,px) = max Er(y,px,70)- (56)
We will first prove that
limy Fres(Px) _ (57)
=1 Epe(y,px)
Note thatg(~,r,, p) is maximized atp = p*, with
I(px)(1—2
pr= azEO(f),pi)) ( “)2 , (58)
—28ara) \,,:o +212(py)

where we have assuméd< p* < 1. This assumption is valid when, is also optimized. Consequently,

Epe(7,px, 1) is maximized atr, = r*, with

2 /~2 1+ &~ —
ry = argmax(l —7,) (1 — l) = M (59)
0<ro<1 To 2
Therefore,
E CS ) . E CS bl Y
i Zres(px) o [M _1 (60)
=l EFC(’%pX) =1 g(%an P, 7”0) p=p* ro=r
Following a similar idea as the proof of Corolldry 1, it can dleown that
. EFC(vaX)
lim —————~ =1. 61
=1 EFC(VapX) ( )
Combining [60) and(61), we get
lim Ech(r%pX) — lim Ech(’YapX) lim EFC(VapX) 2 1. (62)

=1 Epc(y,px) 171 Epg(y, px) 71 Ere(7,px)

BecauseF (v, px) < Ere(7y, px), 62) implieslim,_,, % = 1.



20

REFERENCES

[1] J. Byers, M. Luby and A. RegéA Digital Fountain Approach to Reliable Distribution of Bulk Data, ACM SIGCOMM’'98, Vancouver,
Canada, Sep. 1998.

[2] M. Luby, LT codes, IEEE FOCS’02, Vancouver, Canada, Nov. 2002.

[3] A. Shokrollahi, Raptor Codes, IEEE Trans. Infom. Theory, Vol. 52, pp. 2551-2567, Jun.&00

[4] O. Etesami and A. ShokrollahRaptor Codes on Binary Memoryless Symmetric Channels, IEEE Trans. Inform. Theory, Vol. 52, pp.
2033-2051, May 2006.

[5] S. Shamai, I. Teletar and S. Verdepuntain Capacity, IEEE Trans. Inform. Theory, Vol. 53, pp. 4327-4376, Nov020

[6] A. Feinstein,Error Bounds in Noisy Channels Without Memory, IEEE Trans. Inform. Theory, Vol. 1, pp. 13-14, Sep. 1955.

[7] R. Gallager,A Smple Derivation of The Coding Theorem and Some Applications, IEEE Trans. Inform. Theory, Vol. 11, pp. 3-18, Jan.
1965.

[8] C.Shannon, R. Gallager, and E. Berlekampwer Bounds to Error Probability for Coding on Discrete Memoryless Channels, Information
and Control, Vol. 10, pp. 65-103, 522-552, 1967.

[9] G. Forney,Concatenated Codes, The MIT Press, 1966.

[10] E. Blokh and V. Zyablovlinear Concatenated Codes, Nauka, Moscow, 1982 (In Russian).

[11] V. Guruswami and P. IndyN,inear-Time Encodable/Decodable Codes With Near-Optimal Rate, IEEE Trans. Inform. Theory, Vol. 51,
pp. 3393-3400, Oct. 2005.

[12] Z. Wang and J. LuoApproaching Blokh-Zyablov Error Exponent with Linear-Time Encodable/Decodable Codes, to appear in IEEE
Comm. Lettr.

[13] A. Barg, G. ForneyRandom Codes: Minimum Distances and Error Exponents, IEEE Trans. Inform. Theory Vol. 48, pp. 2568-2573,
Sep. 2002.

[14] A. Barg and G. ZémornMultilevel Expander Codes, Algebraic Coding Theory and Information Theory, Ameriddath. Soc. Vol. 68,
AMS-DIMACS series, pp. 69-83, 2005.



	Introduction
	The Fountain Communication Model
	Random Fountain Codes
	Concatenated Fountain Codes
	Rate Compatible Fountain Communication
	Fountain Communication over An Unknown Channel
	Conclusions
	Appendix
	Proof of Theorem ??
	Proof of Corollary ??
	Proof of Theorem ??

	References

