
ar
X

iv
:1

20
1.

01
10

v1
  [

cs
.IT

]  
30

 D
ec

 2
01

1

Weighted-Sum-Rate-Maximizing Linear Transceiver

Filters for the K-User MIMO Interference Channel

Joonwoo Shin and Jaekyun Moon,Fellow, IEEE

Abstract

This letter is concerned with transmit and receive filter optimization for the K-user MIMO inter-

ference channel. Specifically, linear transmit and receivefilter sets are designed which maximize the

weighted sum rate while allowing each transmitter to utilize only the local channel state information.

Our approach is based on extending the existing method of minimizing the weighted mean squared

error (MSE) for the MIMO broadcast channel to the K-user interference channel at hand. For the case

of the individual transmitter power constraint, however, astraightforward generalization of the existing

method does not reveal a viable solution. It is in fact shown that there exists no closed-form solution for

the transmit filter but simple one-dimensional parameter search yields the desired solution. Compared

to the direct filter optimization using gradient-based search, our solution requires considerably less

computational complexity and a smaller amount of feedback resources while achieving essentially the

same level of weighted sum rate. A modified filter design is also presented which provides desired

robustness in the presence of channel uncertainty.

This work was presented in part at IEEE Global Communications Conference 2011 and supported in part by the IT R&D

program of MKE/KEIT (KI0038765,Development of B4G Mobile Communication Technologies for Smart Mobile Services).

The authors are with the School of EECS, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong,

Yuseong-gu, Daejeon, 305-701, Republic of Korea (e-mail: joonoos@etri.re.kr, jmoon@kaist.edu).

http://arxiv.org/abs/1201.0110v1


1

I. INTRODUCTION

To achieve high spectral efficiency, much effort has been focused on improving the achievable

rate of multiple-input multiple-output (MIMO) interference channels [1]–[3]. A notable scheme

in this area, the interference alignment (IA) technique of [4] confines all undesired interferences

from other communication links into a pre-define subspace and achieves a maximum-capacity

scaling. However, it is also known that IA can only offer a suboptimal sum rate at finite signal-

to-noise ratios (SNRs) [3].

In this letter, we aim at maximizing the sum rate in the K-userMIMO interference channel. We

consider two linear transceiver design methods. One is for the sum-power-usage-limit constraint

and the other applies to the per-transmit-node power-usageconstraint. The former can be viewed

as a network-level constraint whereas the latter is more of adevice-level constraint. In both

designs, to maximize the weighted sum rate (WSR), we pursue minimization of the weighted

mean squared error (WMSE). The idea of maximizing the WSR viareceiver-side WMSE

minimization was originally developed for the multi-user MIMO broadcast channel [5]. Our

sum-power-constrained method could be seen as a generalization of the approach of [5] to cover

the K-user MIMO interference channel and can be obtained as adirect extension of the method

in [5]. However, our individual-power-constrained methodis not a direct generalization of the

method of [5] due to multiple power constraints. In fact, unlike in the case of the broadcast

channel, we show that there is no closed-form solution for the minimum WMSE transmit filter,

although a simple one-dimensional search for the power-adjusting parameter leads to the desired

solution. Using simulation results and analysis, we verifythat both proposed schemes achieve

the maximum WSR with lower computational complexity than the gradient-based optimization

of the transmit and receive filters [2]. Also, unlike in [2], [4], [6], our schemes require only the

local channel state information (CSI) (i.e., each transmitter needs to know only the CSI of the

links originating from itself whereas the MIMO interference channel precoder designs in [2],

[4], [6] require the CSI for all links). Additionally, we discuss modified transceiver design that

provides significant robustness in the presence of inaccurate CSI.

Related ideas for the MIMO interference channel can also be found in [3], [6]–[10]. In [3],

[8], the minimum MSE (MMSE) transceiver is designed withoutconsidering different weights

for the MSEs at multiple receivers. In [6] suboptimal MSE weights are used. In contrast, our
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weighted MMSE transceiver design relies on a set of MSE weights that provides a direct link

between the weighted MMSE (WMMSE) and WSR criteria. The WMMSE-based weighted utility

maximization is also considered in [7], but there only a single data stream is assumed between

a given user pair. A very similar idea on maximizing WSR via WMSE minimization under the

individual power constraint has been discussed in [9]. But,unlike in our approach, the inter-

dependency between the transmit-power-adjusting Lagrange multiplier and the precoding matrix

has not been considered in [9]. In our individual-power-constrained transceiver design, this inter-

dependency is handled by introducing one-dimensional search for the Lagrange multiplier. This

means that the method of [9] requires recursive optimization based on exchanges of filter-setting

information among all transmitters. Our method does not require recursive filter adjustment and

no data exchanges are needed among transmitters.1 Finally, we present a modified transceiver

design method for the imperfect-CSI environment and analyze the computational complexity as

well as the required feedback amount in comparison with the gradient descent method [2].

The following notations are used. We employ upper case boldface letters for matrices and

lower case boldface for vectors. For any general matrix,X, XT , X∗, XH , Tr(X), det(X),

vec(X), SVD(X) denote the transpose, the conjugate, the Hermitian transpose, the trace, the

determinant, the stack columns, and the singular value decomposition ofX, respectively. The

symbol|| · ||2 indicates the 2-norm of a vector. The symbolIn denotes an identity matrix of size

n.

II. SYSTEM MODEL

We consider the MIMO interference channel where precoding can only be done over one

transmission slot. As shown in Fig. 1,K source nodes simultaneously transmit independent

data streams to their desired destination nodes and generate co-channel interference to all other

undesired nodes. In this system each source node{Sk} is equipped withM antennas and each

destination node{Dk} has N antennas(k ∈ {1 ∼ K}). The MIMO channels fromSi to

Dj are modelled byHji ∈ CN×M (i, j ∈ {1 ∼ K}) whose coefficients are independent and

1The independently conducted and recently published work of[10], which was brought to our attention by an anonymous

reviewer, also pursues maximization of the WSR via weightedMSE minimization. The transceivers in [10] do become the same

as our proposed individual-power-constrained transceivers when each base station serves a single user. Relative to the work of

[10], this letter includes the sum-power-constrained method as well as a method to handle mismatched CSI.
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identically distributed (i.i.d) complex Gaussian random variables withCN (0, σ2
h). We assume

that the channel information is onlylocally available, i.e., each node knows only the coefficients

for the channel link originating from itself. Note that the precoder designs of [2], [4], [6] are

based on the availability of theglobal channel information. Letsk ∈ Cd×1 denote the symbol

vector fromSk with E[sks
H
k ] = Id whered is the number of data streams forDk, d ≤ M,N

and the value ofd is chosen to meet the feasibility of degree of freedom [11]. AlsoVk ∈ CM×d

denotes the precoding matrix forSk. Then, theN×1 received signal vector atDk is represented

as

yk = HkkVksk +
K
∑

i 6=k

HkiVisi + nk, (1)

wherenk denotes the i.i.d complex Gaussian noise vector atDk with CN (0, σ2
nIN). Then,Dk

combines its received signal withUk ∈ Cd×N to decode the desired signals:

ŝk = Ukyk = UkHkkVksk +Uk

K
∑

i 6=k

HkiVisi +Uknk. (2)

Our goal is to find{Vk} and{Uk} that maximize the WSR under the sum-power constraint and

also the individual-power constraint. We assume a unit noise variance (σ2
n = 1) without losing

generality.

III. W EIGHTED SUM RATE MAXIMIZATION

First consider finding{Vk} that maximizes
K
∑

k=1

µkRk subject to
∑

k

Tr(VkV
H
k ) = PT or Tr(VkV

H
k ) = Pk ∀k (3)

where the subscriptk points the source node and its intended destination node,µk denotes

the weight,Rk is the achievable rate,PT represents the maximum sum power allowed for all

transmitters andPk is the k-th node’s maximum transmit power. With Gaussian signaling, the

achievable rate takes the well-known form:

Rk = log
{

det
(

IN +Φ−1
k HkkVkV

H
k H

H
kk

)}

, (4)

whereΦk = IN +
∑K

i 6=k HkiViV
H
i H

H
ki. We attempt to solve this WSR maximization problem

by minimizing the weighted receiver MSE, as has been done forthe MIMO broadcast channel

[5]. This approach was also attempted for the K-user MIMO interference channel in [9] under

the individual-power constraint, but our solution is different as elaborated below.
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A. Relationship between achievable rate and error covariance matrix

To understand the link between the WSR maximization problemand the WMSE minimization

problem in the K-user MIMO interference channel, we need to clarify the relationship between

the achievable rate and the error covariance matrix. This argument is parallel to one given in [5]

for the MIMO broadcast channel. For the MMSE receive filter atDk, we write

U
(MMSE)
k =argminE||Ukyk − sk||

2
2

=VH
k H

H
kk(

K
∑

i=1

HkiViV
H
i H

H
ki + IN)

−1, (5)

and the error matrix forDk is given by

Ek =E{(U(MMSE)
k yk − sk)(U

(MMSE)
k yk − sk)

H}

=(IN +Φ−1
k HkkVkV

H
k H

H
kk)

−1. (6)

Comparing (4) and (6), the relationship between the achievable rate and the error covariance

matrix is established as:

Rk = log {det(E−1
k )} (7)

which, not surprisingly, is identical to the relationship between the rate and the error covariance

matrix for the case of the MIMO broadcast channel [5]. Apparently, though, the error covariance

matrix Ek here is different from that of the broadcast channel due to the presence of multiple

sources. Note that this relationship between the achievable rate and the error covariance matrix

holds for any{Vk}, implying that (7) is true with either transmit power constraint.

B. MSE weight design

Now consider finding{Vk} that solves the following WMMSE problem:

min
K
∑

k=1

Tr(WkEk) subject to
∑

k

Tr(VkV
H
k ) = PT or Tr(VkV

H
k ) = Pk ∀k, (8)

whereWk ∈ Cd×d represents the MSE weight. Again following the argument of [5], the MSE

weights can be chosen so that both WSR and WMMSE problems havea common solution. For

this, set up the Lagrangians for (3) and (8):

LWSR = −
K
∑

k=1

µkRk + θλ(

K
∑

k=1

Tr(VkV
H
k )− PT ) + (1− θ)

(

K
∑

k=1

λk(Tr(VkV
H
k )− Pk)

)
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and

LWMSE =

K
∑

k=1

Tr(WkEk) + θλ(

K
∑

k=1

Tr(VkV
H
k )− PT ) + (1− θ)

(

K
∑

k=1

λk(Tr(VkV
H
k )− Pk)

)

respectively, whereθ selects the desired power constraint (’θ = 1’ for the sum power constraint

and ’θ = 0’ for the individual power constraint),λ and{λk} denote the Lagrange multipliers for

the two transmit power constraints. Next, equate their gradients obtained via the matrix derivative

formulas:d{ln(det(X))} = Tr{X−1d(X)}, d{Tr(X)} = Tr{d(X)}, vec{d(X)} = d{vec(X)},

Tr(XTY) = vec(X)Tvec(Y). Subsequently, the resulting MSE weight can be found as

Wk =
µk

ln(2)
E−1

k . (9)

Note that the choice of the MSE weights{Wk} is irrelevant to the transmit power constraint,

which makes sense as{Wk} are receiver-side design parameters.

C. Sum power constrained precoder design

We are now ready to find the transmit precoding matrix that minimizes the WMSE under the

sum-power constraint, i.e., find{Vk} that minimizes

K
∑

k=1

E[Tr{Wk(sk − β−1ŝk)(sk − β−1ŝk)
H}] subject to

∑

k

Tr(VkV
H
k ) = PT (10)

where{Wk} is set according to (9) andβ is a scaling parameter. With matrix derivative formulas,

the WMMSE transmit filter that satisfies (10) can be shown to be

Vk = βV
′

k, (11)

whereV
′

k =
(

Ψk +
∑

i Tr(WiUiU
H
i )

PT
IM

)−1

HH
kkU

H
k Wk, Ψk =

∑K

i=1H
H
ikU

H
i WiUiHik, andβ =

√

PT
∑

k Tr(V′

k
V

′

k

H
)
.

This result is a rather straightforward generalization of the WMMSE precoder in the broadcast

channel. It can indeed be seen that settingHki = Hkk for all i, our solutions (5), (9), and (11)

reduce to the respective receive filter, MSE weight and transmit filter solutions obtained for the

multi-user MIMO broadcast channels through WMSE minimization [5].
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D. Individual power constrained transceiver design

Now let us consider the individual-power-constrained network. We proceed to find the transmit

filter that minimizes the weighted MSE:

K
∑

k=1

E[Tr{Wk(sk − ŝk)(sk − ŝk)
H}] subject to Tr(VkV

H
k ) = Pk ∀k. (12)

Again equating the gradients of the Lagrangians corresponding to the WMMSE and WSR

maximization procedures and using the matrix derivative formulas, the WMMSE transmit filter

at Sk is found as:

Vk =
(

Ψk + λkIM

)−1

HH
kkU

H
k Wk (13)

whereλk is set to satisfy the transmit power constraint atSk and again{Wk} are as given in

(9). Unlike the sum-power-constrained WMMSE precoders of (11), for which the power control

parameters are found in closed form, here we resort to a numerical method to findλk, due to

the inter-dependency betweenVk andλk in (13). Fortunately, based on the following lemma,

λk can be found with simple one-dimensional (1-D) numerical search.

Lemma 1:The per-node transmit power, Tr(Vk(λk)Vk(λk)
H), is a monotonically decreasing

function of λk.

Proof: Let SVD(Ψk) = QkΣkQ
H
k . Then, the transmit power atSk is given by

Tr{(Vk(λk)Vk(λk)
H} =Tr{(QkΣkQ

H
k + λkIM)−1HH

kkU
H
k WkUkHkk(QkΣkQ

H
k + λkIM)−1}

=Tr{(Σk + λkIM)−2QH
k H

H
kkU

H
k WkUkHkkQk}

=

K
∑

i=1

[Πk]i,i
(σk,i + λk)2

, (14)

whereΠk = QH
k H

H
kkU

H
k WkUkHkkQk , [Πk]i,i is the ii-th element ofΠk, andσk,i is the i-th

element ofΣk. Becauseλk ≥ 0, Tr{Vk(λk)Vk(λk)
H} is monotonically decreasing withλk.

Note that the proper set of MSE weights for the K-user MIMO interference channel has

already been derived in [9] in the process of establishing a connection between the WMMSE

problem and the WSR maximization problem. In [9], though, the transmitterSk is expressed as

a function of itself as well as transmitters at the other nodes, i.e.Vk = f({V1, · · · ,VK}). The

consequence of this formulation is that the transmitter solution in [9] cannot be found without

recursive calculation and additional filter-setting information exchanges among all transmit nodes.
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In contrast, our transmit filter design is based on a clear recognition of the inter-dependency

betweenλk andVk, and as a result the proposed transmit filter (13) can be foundthrough a

simple 1-D numerical search with no additional information({Vl} (l 6= k)) exchanges needed

among the transmit nodes.

E. Iterative algorithm to maximize the weighted sum rate

In the previous sections, we found the MSE weights and then subsequently WMMSE receive

and transmit filters with both the sum-power constraint and the individual-power constraint. Each

of three sets of parameters - MSE weights, transmit filters and receive filters - is derived assuming

the other sets are given. In practice, to find optimum WSR solutions, the inter-dependencies

between the parameters are handled with the following iterative or alternating optimization

algorithm.

Algorithm 1 Obtaining the optimal WSR transceivers via the WMMSE criterion

Initialize l = 0 and{V(0)
k }, calculateR(0)

sum.

repeat

l := l + 1

Step 1: CalculateU(l)
k |{V(l−1)

i } for all k using (5).

Step 2: CalculateW(l)
k |{V(l−1)

i } for all k using (9).

Step 3: CalculateV(l)
k |{U(l)

i }, {W(l)
i } for all k using (11) for the sum power constrained

case or (13) for the individual power constrained case.

until |R(l)
sum − R

(l−1)
sum | < ǫ, whereǫ is some arbitrarily small value andRsum =

∑

k µkRk.

The algorithm is common to both the sum-power-constrained design and the individual-power-

constrained design. This algorithm is provably convergentto a local optimum; this can be shown

by proving monotonic convergence of an equivalent optimization problem based on expanding the

WSR maximization problem of (3) to add the MMSE weights and receive filters as optimization

variables, as has been done for the MIMO broadcast channel in[5]. We note, however, that this

algorithm does not guarantee the global optimal solution, since the WMMSE minimization (8) is

not jointly convex over all input variables. To reasonably approach theoptimal solution one must

resort to repeated runs of the algorithm using different initial settings, or, for computationally
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efficient initialization, choose{V(0)
k } in Step 1 from the right singular matrices of{Hkk} or

from random matrices generated according to the normal distribution with zero mean and unit

variance [8].

IV. ROBUST TRANSCEIVER DESIGN FOR IMPERFECT CHANNEL INFORMATION

In practical scenarios, mismatch between the true channel{Hij} and the estimated channel

(denoted by{H̃ij}) is inevitable because of the channel estimation errors [12]. In this section,

we design robust transceivers for mitigating the performance degradation caused by channel

mismatch. We assume that{H̃ij} is related to{Hij} by H̃ij = Hij +∆ij where the elements

of ∆ij are independent and identically distributed (i.i.d.) complex Gaussian random variables

with varianceσ2
∆ [12]. Then, the received signal can be rewritten as

s̃k = Ũk(H̃kk −∆kk)Ṽksk + Ũk

K
∑

i 6=k

(H̃ki −∆ki)Ṽisi + Ũknk (15)

where{Ṽk} and{Ũk} are computed from{H̃ij} with no knowledge of the presence of{∆ij}.

We try to mitigate the effect of channel mismatch by minimizing the appropriate metrics averaged

over∆ij ’s.

1) Modified MSE weight:Following the design procedure in previous sections, a modi-

fied version of the MMSE receiver filter is found as̃Uk = ṼH
k H̃

H
kk(

∑K

i=1 H̃kiṼiṼ
H
i H̃

H
ki +

∑K

i=1 σ
2
∆Tr(Λ

Ṽi
)IN + IN)

−1, where SVD(ṼiṼ
H
i ) = QiΛṼi

QH
i . The modified MSE weights

that force the optimum solutions of the WSR maximization andWMMSE problems to be

identical are derived as̃Wk = µk

ln(2)Ẽ
−1
k , whereẼk = (IN + Φ̃−1

k H̃kkṼkṼ
H
k H̃

H
kk)

−1 and Φ̃k =

IN +
∑K

i 6=k H̃kiṼiṼ
H
i H̃

H
ki +

∑K

i=1 σ
2
∆Tr(Λ

Ṽi
)IN .

2) Robust transceiver design with the sum power constraint:The modified transmit filters are

derived based on the following optimization problem:

min

K
∑

k=1

E[Tr{W̃k(sk − β̃−1s̃k)(sk − β̃−1s̃k)
H}] subject to

∑

k

Tr(ṼkṼ
H
k ) = PT . (16)

Utilizing matrix derivative formulas, the resultant modified-WMMSE transmit filters are obtained

as

Ṽk = β̃Ṽ
′

k, (17)

whereṼ
′

k =
(

Ψ̃k+
∑K

i=1
Tr(W̃iŨiŨ

H
i )

PT
IM+

∑K

i=1 σ
2
∆Tr(Λ

Ũi
)IM

)−1

H̃H
kkŨ

H
k W̃k, β̃ =

√

PT∑
k Tr(Ṽ′

k
Ṽ

′H
k

)
,

Ψ̃k =
∑K

i=1 H̃
H
ikŨ

H
i W̃iŨiH̃ik, and SVD(ŨH

i W̃iŨi) = Q
′

iΛŨi
Q

′H
i .
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3) Robust transceiver design with the individual power constraint: The optimization problem

to derive the modified precoder is

min

K
∑

k=1

E[Tr{W̃k(sk − s̃k)(sk − s̃k)
H}] subject to Tr(ṼkṼ

H
k ) = Pk ∀k. (18)

With the matrix derivative formulas, the modified-WMMSE transmit precoder atSk with the

individual power constraint is written as

Ṽk =
(

Ψ̃k + λ̃kIM +

K
∑

i=1

σ2
∆Tr(Λ

Ũi
)IM

)−1

H̃H
kkŨ

H
k W̃k (19)

where the power control parameterλ̃k is also found by numerical 1-D search.

Note that, for the above derivations, we have assumed that the value of the channel error

varianceσ2
∆ is perfectly known. In the practical systems, the channel error variance can be

estimated through an appropriate statistical approach [13]. Below, we also present numerical

performance results corresponding to the cases where the error variance is not perfectly known.

V. D ISCUSSION: COMPUTATIONAL COMPLEXITY, CHANNEL STATE INFORMATION

In this section, we analyze computational complexity and required feedback resources. For

comparison, we also analyze those of the gradient descent method of [2].

A. Computational complexity

We consider the number of complex multiplications as a complexity measure. As summarized

in the Table I, the number of complex multiplications is proportional to the number of itera-

tions. The proposed method with the sum-power constraint which has a single iteration loop

is computationally the most efficient. Whereas both the proposed method with the individual-

power constraint and the gradient descent method require double iteration loops, i.e., the outer

loop for updating the sum rate and the inner loop for adjusting the Lagrange multiplier (in

the case of the proposed method) or for updating the step size(in the case of the gradient-

based method). Calculating the gradient and adjusting the step size require more computational

resources. According to simulation, when SNR =10 dB which is in the mid SNR regime,K = 4,

M = N = 5, andd = 2, the minimum average numbers of iteration for the convergence of sum

rate, updating the step size of gradient method and 1-D search with bisection method are10, 10

and 10, respectively. In accordance with these,I1 = 10, I2 = 10 and I3 = 10 are chosen. The

June 18, 2018 DRAFT



10

symbolsc1N , c2NM andc3N denote the computational complexity of a matrix inversion of N ×N

matrix, a singular value decomposition ofN×M matrix, and a Cholesky factorization ofN×N

matrix, respectively. The corresponding values for those variables are2
3
N3, 7NM2 + 4M3, and

1
3
N3, respectively [14]. Fig. 2 shows comparison whenM = N = 5 andd = 2 2. As expected,

for the same WSR values the proposed method with the sum-power constraint has the least

complexity while the gradient descent algorithm is the mostcomputationally complex.

B. The amount of required feedback information

To find the optimized transmit precoders, each transmit noderequires feedback information.

As illustrated in Table II, feedback information is composed of CSI and coefficients for filter

updating. For a given transmission slot, CSI feedback is required once, but the filter coefficients

are updated several times due to the iterative optimizationalgorithm. Although the proposed

method requires a larger amount of feedback information forthe iteratively updated coefficients

such as MSE weights{Wk} and receive filter coefficients{Uk} than the gradient descent method

does, the amount of CSI feedback for the proposed method is smaller than for the gradient descent

method. This is because, unlike the global CSI requirement of the gradient-based method, the

proposed methods need only local CSI. From Table II, we observe that as the network size

grows (i.e.,K increases) the required feedback resources for local CSI and coefficient updating

increase linearly, but those for global CSI increases quadratically. Fig. 3 clearly shows that

with I1 = 10 the proposed methods are advantageous in terms of required feedback resources,

especially for largerK. Note that, for the transmit power adjustment, the sum-power-constrained

method additionally requires iterative update of the scalar parameter Tr{
∑

i 6=k V
′

iV
′H
i }, but the

size of this parameter is negligible compared to other matrix parameters.

VI. NUMERICAL RESULTS

In this section, we provide the numerical results related tothe WSR performances. The SNR for

the sum-power-constrained network, SNR= PTσ2

h

Kσ2
n

, and that for the individual power constrained

network, SNRk =
Pkσ

2

h

σ2
n
, ∀k, are derived assumingPT = K, Pk = 1∀k and σ2

n = 1, i.e.,

2To see the effect of the number ofK, we fixedM = N = 5, even though the degree of freedom (DoF) is not achievable

whenK ≥ 5
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SNR = SNRk = σ2
h. The results are averaged over 1000 independent trials. Fig. 4 shows

the average WSR performance of the proposed methods forM = N = 5 (when K = 4),

M = N = 6 (whenK = 5), andd = 2. For fairness, all schemes are initialized with the right

singular matrices of the intended channels. For the sum-power constraint, we set the weights

to be µ1 = 2 and µk = 0.25 (k 6= 1), which were chosen rather arbitrarily except thatµ1 is

made considerably larger thanµk to bring out the performance advantage of the sum-power

constraint. The performance of the sum power constraint method should be better than that of

the individual power constraint method because the former,which is less stringent, is able to

allocate more power to the higher weighted transmitter to maximize the WSR. When the weights

are equal,µk = 1 ∀k, the performance of both proposed schemes and that of the conventional

gradient descent method are nearly identical. Note that, asexplained in section IV, the proposed

methods achieve these performances with less computational complexity and a smaller amount

of feedback resources than the gradient descent method. Compared to the performance of the

MMSE transceiver without the MSE weights [3], [8] (curves labelled ”Simple MMSE”), the

advantage of designed MSE weights is clearly shown as SNR grows. Fig. 5 demonstrates the

effectiveness of the robust design with either transmit power constraint in presence of channel

uncertainty whenK = 4 andσ2
∆ = 0.1σ2

h. As SNR grows, the amount of leakage interference

due to CSI imperfection also increases. This is why the performance is saturated in the high

SNR regime in Fig. 5. To reflect a potential error in estimating σ2
∆, we model the channel

error variance asσ2
∆ + σ2

ǫ , whereσ2
∆ is the actual channel error variance andσ2

ǫ indicates over-

estimation. As shown in Fig. 5, at SNR= 15 dB at most 3 % sum rate losses are shown when

σ2
ǫ = 0.1σ2

∆. Although not shown, same results were observed for under-estimating the channel

estimation error variance.

VII. CONCLUSION

In this letter, we have studied a linear transceiver design method for the K-user MIMO

interference channel. To maximize the weighted sum rate with less computational complexity

and a smaller amount of feedback resources, the proposed transceivers are designed in the

weighted MMSE sense with suitably chosen MSE weights. Also,the proposed transceiver design

considers both the sum-power-usage constraint and the individual-power constraint. Through

numerical simulation, we have demonstrated that the weighed-sum-rate performances of the
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proposed schemes approach that of the existing gradient descent method. The proposed methods

have clear advantage in terms of processing requirements aswell as feedback resources over the

gradient-based technique. Also, modified versions of proposed schemes have been provided for

compensating channel mismatch.
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(a) Description of each stage for gradient descent method

STAGE Index

Initialization a.1

Calculating gradient a.2

Outer loop Inner loop: calculating step size a.3

Calculating sum rate a.4

Calculating optimal precoders and decoders a.5

(b) Description of each stage for proposed methods

STAGE Index

Initialization b.1

Calculating the variance of noise and interference b.2

Calculating the receive filter b.3

Loop Calculating the error covariance matrix b.4

Calculating the MSE weights b.5

Calculating the transmit filter b.6-1 (for sum power constraint)

(1-D search is needed for individual power constraint)b.6-2 (for individual power constraint)

Calculating sum rate b.7

(c) Number of complex multiplication at each stage

Index Number of complex multiplication

a.1 K(M2d+ 1) +K(K − 1)(1 + 2MNd +N2d) +K(2 + 2MNd +N2d+N3 + c1N )

a.2 I1
{

K(2K − 1)(1 + 2MNd +N2d)

+K(2K − 1)(9 + 2c1N + 2MN2 + 2M2N + 2M2d+Md2)
}

a.3 I1
{

KI2(I2 + 1)/2 +KI2{2K(K − 1)(1 + 2MNd +N2d)

+2K(2 + 2MNd +N2d+N3 + c1N ) +K(M2d+ 1) + 2 +Md2}
}

a.4 I1{K(M2d+ 1) +K(K − 1)(1 + 2MNd +N2d) +K(2 + 2MNd +N2d+N3 + c1N )}

a.5 K(1 + 2Md+ 2M2d+ c2Md) +K(K − 1)(2MNd +N2d)

+K(2MNd + 2N2d+ 4Nd2 +Md2 + d3 + c1N + c3d + c2d + c2dd)

b.1 K(M2d+ 1) +K(K − 1)(1 + 2MNd +N2d) +K(2 + 2MNd +N2d+N3 + c1N )

b.2 I1K(K − 1)(1 + 2MNd +N2d)

b.3 I1K(3MNd + 2N2d+ c1N )

b.4 I1K(2MNd +N2d+Nd2 + c1N + c1d)

b.5 I1Kc1d

b.6-1 I1
{

K(K − 1)(2NMd +Md2 +M2d) +K(Nd2 + d3)

+K(3MNd + 2Md2 +M2d+ 1 + c1M ) +K(M2d+Md)
}

b.6-2 I1
{

K(K − 1)(2NMd +Md2 +M2d) + I3KM2d

+(I3 + 1)K(3MNd + 2Md2 +M2d+ 1 + c1M )
}

b.7 I1{K(M2d+ 1) +K(K − 1)(1 + 2MNd +N2d) +K(2 + 2MNd +N2d+N3 + c1N )}

TABLE I

COMPUTATIONAL COMPLEXITY COMPARISON
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Grad. descent method Prop. method

Global CSI Updating coefficients Local CSI Updating coefficients

Feedback information
{Hij} {Vi}, (i 6= k) {Hik} {Ui}, {Wi} (Ind. pwr.)

{Ui}, , {Wi},
∑

i6=k
Tr{ViV

′H
i } (Sum pwr.)

Matrix size
MNK2 Md(K − 1) MNK (Md+ d2)K (Ind. pwr.)

(Md+ d2)K + 1 (Sum. pwr.)

Feedback resource amount
MNK2 + Md(K − 1)I1 MNK + (Md+ d2)KI1 (Ind. pwr.)

MNK + ((Md+ d2)K + 1)I1 (Sum. pwr.)

TABLE II

SUMMARY OF REQUIRED FEEDBACK INFORMATION AT THEk-TH TRANSMIT NODE, Sk , i, j = 1 ∼ K
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