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Abstract—We consider the problem of estimating sparse com- channel in each transmit-receive (TX-RX) antenna pair can
Lnunécagohn channels in the MIMO CO?ItEXt In small tOdmzdlufm be modeled as a discrete multipath channel, with the relativ

andwidth communications, as in the current standards for ; ; ) ;
OFDM and CDMA communication systems (with bandwidth up time delayrSt being Cormnog;crosi dlfierent TX.RX p:’j;urs. TTE
to 20 MHz), such channels are individually sparse and at the commonality across the dirierent antenna Pa'rs re Lj_ces e
same time share a common support set. Since the underlying overall number of degree of freedom to estimate, which can
physical channels are inherently continuous-time, we propse a in turn be used to reduce the pilot overhead or improve the
parametric sparse estimation technique based on finite rat®f channel estimate. Also, in communication systems thatrtepe
innovation (FRI) principles. Parametric estimation is esgcially on channel state feedback from the RX to the TX. the SCS

relevant to MIMO communications as it allows for a robust del bl d tati
estimation and concise description of the channels. model may enable a more compressed representation.

The core of the algorithm is a generalization of conven-  To exploit the SCS property of MIMO channels, we propose
tional spectral estimation methods to multiple input signds with ~ a variant along([8],[[9] of the finite rate of innovation (FRI)
common support. We show the application of our technique framework, originally developed in [10]. The method, which
for channel estimation in OFDM (uniformly/contiguous DFT we call SCS-FRI, uses classical spectral estimation tecisi

pilots) and CDMA downlink (Walsh-Hadamard coded schemes). , L
In the presence of additive white Gaussian noise, theoret SUCh @s Prony’s method, ESPRIT and Cadzow denoising to

lower bounds on the estimation of SCS channel parameters in recover the delay positions in frequency domain. The method
Rayleigh fading conditions are derived. Finally, an analyical is computationally simple, and our simulations demonstrat
spatial channel model is derived, and simulations on this nitel in  excellent performance in practical scenarios. The prposed
the OFDM setting show the symbol error rate (SER) is reduced _ : PR ; : ;
by a factor 2 (0 dB of SNR) to 5 (high SNR) compared to standard .SCS FIRI algomg}lg&p“es Imme.dlat.e'y to.%hanne.l estiarall
non-parametric methods — e.g. lowpass interpolation. In- multi-output communication with contiguous or
o uniformly scattered DFT pilots. Interestingly enough itnca
Fir::?[geéa;—eer(;?sln_r%‘/gggﬁl estimation, MIMO, OFDM, CDMA, ", ;sed on other modulation schemes provided a suitable
' pilot layout. The Walsh-Hadamard transform (WHT), used
in CDMA downlink channel among others, qualifies if one
|. INTRODUCTION controls the pilots layout in the WHT domain.

Multiple input multiple output (MIMO) antenna wireless We also derive a simple scalar formula for the Cramér-Rao
systems enable significant gains in both throughput and-relbound on the estimation of separable ToAs, and also pointto a
bility [L]-[4] and are now incorporated in several commatci more general result by Yau and Bresler|[11]. Both bounds are
wireless standards$][5].][6]. However, critical to realgithe extended to Rayleigh fading SCS channels to lower bound the
full potential of MIMO systems is the need for accuratexpected estimation error in fading conditions. Our sirtiotes
channel estimates at the receiver, and, for certain scheniadicate the proposed SCS-FRI method is close to this bound
at the transmitter as well. As the number of transmit antennat high SNRs.
is increased, the receiver must estimate proportionallyemo
channels, which in turn increases the pilot overhead amﬂster)_\

' . . SCS MIMO models
to reduce the overall MIMO throughput gains [7]. . _ _

To reduce this channel estimation overhead, the key in-Due to the physical properties of outdoor electromagnetic
sight of this paper is that most MIMO channels have apfopagation, wireless channels are often modeled as having
approximatelysparse common suppotSCS). That is, the channel impulse response (CIR) that is sparse in the sense

that they contain few significant paths [12]. With multiple
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Fig. 1. (a) Transmission over a bandlimited medium with twatterers and? receiving antennas. (b) The channels contain two paths arriving at the
same time up tate, and are thus no exact SCS channelsefos 0.

TABLE | TABLE I
CHANNEL BANDWIDTH IN POPULAR WIRELESS SYSTEMS CHANNEL ESTIMATION METHODS ARE NATURALLY CLASSIFIED IN TERMS
OF THE CHANNEL PROPERTIES THEY EXPLOIT

; Resolvable

System Code BandwidthB distance c/B Algorithm Exploited channel properties
DVB-T [13]  DFT 5-8 MHz 3860 m Short Common
1S-95 [124] WHT 1.25 MHz 240 m delay-spread  Sparsity ~ support
3GPP LTE[6] DFT  1.4-20 MHz 15-215 m 2 Lowpass v
UWB — > 500 MHz <60em 53 FRI v

> C

<8 SCS-FRI v v
B and the SNR of the channel. Indeed, in the presence dg
noise, resolution is limited by the inverse bandwidfiB, even Z
if one knows exactly which parametric model the signal obeys— g Lowpass v
In practice,1/10™ of the inverse bandwidth is a reasonable"DL E FRI v v
resolution to shoot for. The limited resolution has the @ffe A SCS-FRI v v v

of clustering paths from a single scatterer into a singléd pat
(promoting sparsity), and the small shift in the ToA due tg

the distance between antennas becomes negligible (pnuxynoﬁparsny are considered in [25]. [26]. Al of these compeess

common support). TablB | gives the channel bandwidth spnsing methods, however, require that the delay locations

several modern standards amdB which is the distance are discretized and exact sparsity is achieved only when the

: . . true path locations fall exactly on one of the discrete moint
travelled by an electromagnetic wave in a time lapse eq . .
: . ith continuous value path locations, each path components
to the inverse bandwidth. : . :
will require a number of terms to approximate well, or

demand a larger number of dictionary elements to offer a finer

B. Related work discretization.
In OFDM systems, the majority of commercial channelh ?Zn?c;therjomt estimation problem with FRI signals is stutlie

estimators often simply perform some form of linear filtgrin

or interpolation of the pilot symbols [15][ [16]. Such non-

parametric techniques are computationally very simpld, bg'

fundamentally cannot exploit the common sparsity in MIMO The contributions of this work are four-folds:

channel models. Since the phases and magnitudes are ggnerab Extension of classical FRI sampling and estimation to

independent on the paths on different antenna pairs, the multiple SCS channels (Sectibn II)

frequency response of sparse common support (SCS) channets Derivation of simple scalar formulas for the CRB of SCS

are not correlated in any simple manner that can be exploited channels (SectiolIl)

by basic linear interpolation of pilots. « Application to OFDM and Walsh-Hadamard coded (e.qg.
A different line of work has proposed compressed sensing CDMA downlink) communications with contiguous or

based methods for sparse channel estimalion [17]-[20hdnt  uniformely scattered DFT pilots (SectibnlIV)

compressed sensing context, the SCS property is equivalent Characterization of a precise spatial analytical model for

to joint or group sparsityfor which there are several methods ~ SCS channels (Secti¢a V)

including group LASSOL[21]/]22], group OMP [23] and belief The proposed SCS-FRI algorithm stands out compared to

propagation[24]. Techniques for mixes of joint and indivadl FRI or lowpass interpolation as it exploits more channeppro

Contributions
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erties, as indicated in Tablg Il. Lowpass based techniques B. Support recovery from baseband DFT coefficients

a sensible non-parametric approach as the_y ex_ploit the s_horWe start from[(%). The DFT samplgs[m] in the baseband
delay-spread property. In general, any estimation teckeniq|,,| < A7) are the DFT coefficients of the channel corrupted
based on uniformly scattered DFT pilots uses this propery some Gaussian noise.
as it is a necessary condition to the unicity of the solution. The noiseless DFT coefficients of &-multipath channel
We conclude our study with numerical simulations showingave the well-known and interesting property to form a linea
the efficiency of the SCS-FRI algorithm in a Rayleigh fadingecurrent sequence of ordéf + 1, i.e., any coefficient,,[m]
scenario, and compare its equalization gain to a standard ngn > —M + K) can be expressed as a unique linear
parametric approach, i.e. lowpass interpolation in the DFdombination of theK previous DFT coefficients common to

domain. all indicesm:
Lemma 1. Givenh,[m] = S5 ¢, , W™ for m = —M +
Il. SPARSECOMMON SUPPORTFRI: THEORY AND K,....,M andt; # t;, Vi # j, there exists a unique set of

A. Problem formulation hplm] = fihp[m — 1] + fohy[m — 2] + -+ + fxhy[m — K]

K K-1 i H
We consider the physical setup described in Figdre 1.(4yerez" — fltf — - — fxk17 — fi is the polynomial
A periodic signal of limited bandwidth is transmitted over &/1th TOOtS {W*™ bii k.

multipath channel and uniformly sampled by a receiver viith Proof: A linear recursion of degref’ can be written as:
antennas. This leads @ parallel multipath channels as shown
in Figure[1.(b). The channels either share a common support T = frtn—1 + -+ fx@n-k, fic #0. ®)

exactly, in which case they are called exact SCS channels, @ characteristic equation is:
approximately, in which case they are called SCS channels

(e.g. FigurddL.(b)). o — fraf — o~ fx r— fx =0, (6)
ConsiderP exact SCS channels shaped by a kemmebith |t ) is a solution of [B) then multiplying both sides of the

complex baseband equivalent model: equation by\” % (£ 0 since fx # 0) shows that\” is a

K solution of [$). Moreover by linearity, any linear combiizat

hy(t) = Zc,w,gp(t —ty), apeC, tye07], (1) of solutions of [[b) is still a solution, and if(6) ha&
k=1 distinct solutions{ fi }x=1,....x is uniquely defined by a set of

where(t) is ther-periodic sinc function or Dirichlet kernel: & independent linear equations. Hence, Yf_, ., /W™
“solution” of (8), ¢, # t; mod T for all k # [, there exists a

o(t) = Zsino(B(t — k7)) = w ) (2) unique set{fi}r=1,. rx such that{iW'},_, _r are thekK
ke Brsin(T) distinct roots of
The kernely is considered periodic as the filtering of a o — a2 — fk.

periodically padded signal by a linear shift invariant filte
Therefore, linear convolution of the CIR with the shaping
kernel becomes circular.

[ |
The coefficientsy,[m] maybe arranged in a tall block-
Toeplitz matrix

We assume that the bandwidth parameBesatisfiesB = [T
(2M + 1)/7 for M > K. The paths coefficients;, , are 1
treated as complex random variabl@s.measurementg, [n] H éL)
are acquired at a rate/T = N/7 (with 7 the signal period H® =
and N > Br = 2M + 1) and corrupted by AWGN :

L
yp[n] = hp[n] +¢p[n] ne{0,...,N -1}, ?3) HgD)

where g, ~ Nc(0,070) if the channel is complex-valuedSuch that

or g, ~ N(0,0%0) if real-valued. In the DFT domain, the UpL-M-1 UpL—M-—2 Up— M
received signal is: R N N
K O _ Yp,L—M Yp,L—M—-1 " Yp,1—M @
~ o~ ~ p ’
Tolm] = @lm] - > cr W™ + Gy [m]. 4
k=1 N N R
Yp, M Yp,M—1 o Yp,M—L+1

whereW = e=2™/7 and@[m] = 1/(2M + 1) for |m| < M
and is zero otherwise. The goal is to estimate the suppeterey; ; = ¥;[j]. The data matrix H™ is made of P
{te}r=1..x and the paths amplitudefcy ,}r=1.. Kk p=1..p Toeplitz blocks of sizeg2M + 2 — L) x L, and we assume
from the NP samples collected ifJ(3). Once the support ithat both block dimensions are larger or equal Ao It
known, estimation of the path amplitudes is simple lineguossess interesting algebraic properties which form thie co
algebra as seen inl(4). of line spectra estimation techniques. We will use Leriina 1 to
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show three well-known spectral estimation tools which eete Algorithm 1 Block-Prony TLS

straightforwardly from Topelitz data matrices to blockeplitz Require: An estimate on the number of effective pathi§s,
ones, i.e. extend from single output to multiple outputshwit  2M + 1 (M > K) channel DFT coefficientg,[m] =
SCS. We do so, with two propositions: Zszl Ck,th]’(,”’“ +gy[m] for jm| < M,p=1...P.

1: Build HE“+Y according to[{l7).

Compute the SVD decomposition of the data matrix:

Proposition 1. [Annihilating filter property]
In the absence of noisg(m] = h,[m]), a set of exact SCS Z

Kesl+1 - *
channels withK distinct paths verifies H! '=Usv™. ) ) ]
it 3: ¢ «+ rootqv), such thatv is the right singular vector
HE =0, (8) associated to the least singular value.

. es T
wheref = [1 — f1 --- — fx|* are the annihilating filter 4: return {155} p—1. ket = —g=arge.

coefficients such that the polynomjgl(z) =1 — Zszl fr2k
has K roots {e~2™ts/7},_ . The matrixH 1 is built Algorithm 2 Block-ESPRITTLS

with blocks as in[{l7) (withl = K +1). Require: An estimate on the number of effective pathi&s!
Proof: This is a direct consequence of Lemfja 1. m 2M +1 (M 2 K) channel DFT coefficientg;, [m] =
" o Y opet Chp W' 4+ @plm] for jm| < M, p=1...P.
Proposition 2. For a set of exact SCS channels withdistinct 1- Build Hﬁ"{) according to[{7)
: g D) satisfi : o .
paths and in the absence of noidd, "’ satisfies 2: Compute the SVD decomposition of the data matrix:

rank H) = K, HM —yUsv.

3: Extract the signal subspace baSis = V 1.(p/—1),1: et
for K<L<2M+2-K. 4: Extract the rotated signal space baSis= Va.ps 1. iest.
Proof: Let H be the top-leftik x K minor of (%), |t 5 SOIVeE; fSEO‘I' in the TLSTsense.

can be written as the sum @& rank-1 matrices: 6: return  {#5hi—1 ces = {—gmarg A (W) o1, e

K

H=> c, WMH-Dtgre, Algorithm 3 Block-Cadzow denoising

=t Require: A block-Toeplitz matrixH“) and a target rank.
such that¢, = [1 Wt W2k ... WE-D&] |f ¢, % Ensure: A block-Toeplitz matrix H“) with rank < K.
t; mod 7 forall k#1,then{§,, ..., {x} formasetofnon 1. repeat
colinear vectors. Therefore rar{ (") > K. 2. ReduceH'™ to rank K by a truncated SVD.

Choose K mutually independent rows off™). From 3 Make H(") p = 1... P, Toeplitz by averaging diago-

Lemmal[l, truncating these row vectors to length pre- nals.
serves the linear independence. Therefore, given akow 4 until convergence
[h[0], ..., h[L—1]] of H'™), there exists a linear combination

of theseK rows k' such that

Algorithm 4 SCS-FRI channel estimation

hk] =n'[k], k=0,...,K -1 Require: An estimate on the number of effective pathi§s!
2M + 1 (M > K) noisy channel DFT coefficients
Yp[m] = Zszl rpWR'™ + @p[m] for [m| < M, p =
1...P.

Ensure: Support estimate{tzﬂ}k:l__Keg

Build H™) according to[{l).

H™)  Block-CadzowH )| K [optional].

By construction, since all rows off (V) verify the the same
linear recursion of degre®&, h andh’ verifies this recursion.
Henceh = R/, implying rank H'") is at mostK.

a) Block-Prony algorithm: Proposition[Jl is Prony’s
method [28], [29] for block-Toeplitz matrices. We call the L
corresponding algorithm “Block-Prony TLS”, listed under 2 R - X
Algorithm [1. It solves the annihilating filter equatiof] (8) 3 UPdate y,[im] W'tr]‘M the first row and column of the
in the total least-square (TLS) sense. The crucial step is denoised blockH ') .
the identification of what shall be the unidimensional null4: EStimate the common support with Block-Profy.S or
space of HET in a noiseless case. Solving this problem BIOCK-ESPRITTLS.. _
in the TLS sense vields the least right singular vector of: EStimate{c;,} solving P linear Vandermonde systems
HEFD, Prony’s method is notoriously sensitive to noise,
which is to be expected as the result relies on identification
the unidimensional complement of thé-dimensional signal
space. This sensitivity can be mitigated with prior demgjsi ESPRIT algorithm fulfils the same goal as the Block-Prony
of the measurements. algorithm, but its essence is entirely different. Wherengi®

b) Block-ESPRIT algorithmPropositior 2 implies each method identifies a line with least energy inkadimensional
block in the data matrix shares the same signal subspasgace, ESPRIT finds the rotation between tialimensional
Hence the ESPRIT TLS algorithm outlined in_[30] appliesubspaces in an/-dimensional space. What makes ESPRIT
as-is to the block-Toeplitz data matri#l (“). The Block- much more resilient to noise is that the two subspaces are
ESPRIT TLS algorithm is outlined in Algorithid 2. The Block-computed from the most energetic part of the signal.
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c) Block-Cadzow denoising?ropositiori 2 used together « The random vectoZ;, = [Zj ; - -~Zk7p]T is defined as
with the block-Toeplitz structure property yields tHdtand- Zy = Lpr, where Ly is the Cholesky factor of the
project’ denoising Algorithn8, which we caBlock-Cadzow covariance matrixR, = E[Z,Z;] and r is a vector
denoisingl[31]. Using the same argument as in [32], the block  of iid standard complex Gaussian random variables.
Cadzow algorithm provably converges.

d) SCS-FRI:We have all the elements to describe th
SCS-FRI algorithm. The Block-Cadzow algorithm may b
used to denoise the measurements and is followed by eit
Block-Prony or Block-ESPRIT estimation of the commorny,
ToAs (solved in the TLS sense).

For Cadzow denoising and ESPRIT, it is empirically foun
that a data matrix with square blocks works well. The la
step is to estimate the path amplitudes independently fcir ea
channel. This is done by solving a linear Vandermonde systdhoposition 3. With complex-valued measurements according
(4) [33]. The processing chain at the receiver is listed i (3), K = 1, and Z; be a random Gaussian vector , then
Algorithm[4 and shown in Figure 2. Combination of Cadzow . 1
and ESPRIT for estimation of a single OFDM channel is & |:(A_t1 2} - E {(2121) }

The Rayleigh-fading case can be seen as deterministic if

Eonditioned on the path amplitudes. Thus, the Cramér-Rao
ounds for random paths coefficients are random variabtes fo
ich we can compute statistics. Expectation and standard

viation will respectively give the expected accuracyhaf t
stimator and its volatility. For a single path, and a synmimet

Er antisymmetrico (not necessarily a sinc kernel), the Cramer-
ao bound has a concise closed form formula:

considered in[[34]. We assumed the number of paths to be T N -dSNR '’ ©)
known. For estimation techniques of the number of paths, wi . . .
refer to [30]. a P WheredSNR — la1|?||¢’ (nT—11)||?/(No?) is the differential

) SNR and)\y,--- ,Ap are the eigenvalues of the covariance

matrix R; and P > 1:
IIl. ESTIMATION THEORETIC BOUNDS ONSCS-FRI

RECOVERY
A. Deterministic multipath channels E {(ZIZ1)_1} =Pr-1)""', P>1

In [10], the authors derive the Cramér-Rao lower , Correlated path coefficients, such that # - - - # Ap:
bound [35], [36] for estimating the positions and weights

P
of the Diracs in FRI signals. Considering a single Dirac [ * 71} p_11nAp -1
. T X . : E|((Z1Z = - —£ Ay — A
with deterministic amplitude in a single-channel realueal (Z121) Z( ») Ap (A »)

. .. . .. . p=1 p'#p
scenario, the minimal relative uncertainties on the lacatf

« Uncorrelated paths coefficienty; = --- = Ap = 1:

the Dirac,#;, and on its amplitude;;, are given by Proof: See[[37]. The uncorrelated case is found in various
) statistical handbooks as the first moment of an invarse-
E (A_751> o 3@eM+ 1) PSNR-! distributed random variable. For the correlated case 38jesl
T T AmNM(M +1) This expression is a suitable approximation for multipaths

At \ 2 oM + 1 scenario with distant paths (separated by more than twice
(—1> ] > PSNR™* the inverse bandwidth. It gives an important insight on the
‘ N evolution of the estimation performance when uncorrelated

E

wherePSNR = ¢2 /02 is the input peak signal to noise ratio 2NtenNas are added to the system. Namely, the RMSE decays

When there are more than two Diracs, the Cramér-Rao form@a 1/vP

for one Dirac still holds approximately when the locations a  In general, multiple paths are interacting with each other a
sufficiently far apaﬂ. the information matrix cannot be considered diagonal. lis th

case Yau and Bresler [11] derived the following expression:

B. Jointly Gaussian multipath channels Proposition 4. [11] Let ® and ®' be N x K matrices such

We derive bounds on the support estimation accuracy wi rﬁat
measurements taken according [td (3). The paths coefficientd,, , = p((n — 1)T —t) , @), = !((n — )T —ty),
ck,p are assumed to be jointly Gaussian, and modeled as the - . .
product ofa,, = E|[|cx,|] by a standard normal random’ €{1,...,N}, ke {l,...,K}. Given the stochastic matrix
variable Z, , having the following properties, consistent with
the well-known Rayleigh-fading model: C =diag(ai,...,a <Z VAl Z’*) diag(ay,...,a%),

] kaNN(CO\/ I[

o Similar expected path amplitude between antennagith Z!, = (7, - - Zx,]", the Fisher information matrix/

ak def g1 = aga =+ = ay p. cond|t|onned on the path amplitudes is given by
« Independence between patlE[Zk_,pZ,’g,,p,} =0, k # J = 202" Perp®' & C. (10)
K.

such thatPers = 1— ®®! is the projection into the nullspace
LEmpirically, the distance should be larger thzhB. of ® and “®" denotes the entrywise matrix product.
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Fig. 2. The SCS-FRI sampling and reconstruction scheme inlé-emtenna channel estimation setting withreceiving antennas.

See [11] for the proof. The Cramér-Rao bounds for thare given by
estimation of the normalized times of arrival are on the A\ 2 SBT
<_1) 1 > E [ESNR™']

diagonal of the expectation df '. The matrixJ is a complex E >

Wishart matrix. Computing its inverse moments analyticisl T AD*m> M (M + 1)

not an easy task, nevertheless it can be numerically comipute [ Ace\ 2
=|(%)

via Monte-Carlo simulations. >BTE[PSNR,'] (=1,...,P.

Cy

For real-valued signal and noiseSNR = 2 S21, ¢2 denotes
the effective signal to noise ratio arlRENR, = ¢7 /o2 .. For

complex-valued signal and noi&SNR = -1, S c¢heo and

PSNR@ = CEC@/(QUQ) .

IV. APPLICATION TOOFDM AND CDMA DOWNLINK

1) SCS-FRI with uniformly scattered DFT pilots (OFDM):
The theory in Sectionlll is developed for contiguous DFT eoef
ficients. In OFDM communications, pilots are often unifoyml Kml)z

E

Proof:

laid out in frequency (ETSI DVB-T[13], 3GPP LTE][6]....). =E
The period of pilot insertiorD is upper-bounded bA—!, the
inverse of the delay-spread of the CIRD: < 7/A. If not,
the CIR cannot be unambiguously recovered from the pil
because of aliasing. For a fixed number of pildisis chosen (@1) is answered by Propositidn 3. TIKSNR is explicitly

as large as possiblé = |7/A|), as interpolation of the CIR computed for[(Il1) taking = sincg. ]

spectrum is more robust than extrapolgtmn. _ 2) Extension to Walsh-Hadamard coded schemes (CDMA):
SCS-FRI can take advantage of uniformly scattered pilRfymerous applications use tR&-WHT to code the channel
layouts [37], [39]. Forp flat in {—MD,..., M D}, equation jnio 9» subchannels¥ = 2"). Among others, 1S-95 uses a

(@ﬂ D,

2
Ol.fg/aluation of E (@) based on measurements from

@) becomes: 64-WHT to code the downlink channel. The straightforward
K way to insert pilots is to use one of these subchannels asta pil

Up[mD] = Z kWP G, ImD], (11) itself and use correlation based channel estimation msthsd
k=1 the Rake-receiver for example_[40]. The SCS-FRI algorithm

which corresponds to a dilation Hy of the support parametersworks in the DFT domain but can nevertheless be applied in
{tx}. By definiton0 < t, < A, and so the bound ol the WHT domain with pilots uniformly scattered Bya power
prohibits aliasing ofD¢;. Therefore, SCS-FRI is applicableof 2.

without other modification than division of the recovered

support parameters bf. The results of Propositio] 3 canPTOPOSition 5. Let W, and S, be respectively the"-points
be extended to scattered pilot with minimal effort. DFT and WHT matrices obtained by Sylvester's construction:

, Sip1=81®8;.

Corollary 1. The minimal uncertainties on the estimation of S, = 1 b1
the parameters in the SCS-FRI scenafiol (11) witrsignals V21 -1
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Then, for any? € {1,...,n — 1} the set ofS,’s columns V. APPLICATION: FADING CHANNEL ESTIMATION IN
with indices in {2 +z‘}1 ,. and the set ofW,’s columns MULTI-OUTPUT SYSTEMS
I e el
with indices in {(i —1/2)-2" +1}1m2,_7 span the same o channel model
subspace.

1) Physical assumptionsA linear time-invariant channel
Proof: We partition the Walsh-Hadamard transform mais characterized by its impulse resporiseln mobile com-
trix in two “left” and “right” blocks: munications, channels are transient, but we may assume the
channel to be locally invariant around a timeThis leads to
Snfl Snfl it : _ H
the definition of a time-dependent channel impulse response
Sn_1 —Sn_1 h.. Consider a channel impulse response made of a large
numberL of echoes:

S —

Y n

Sn=[s0 8], s =

Givenwk, = Wk ... WiZ" ~Y*) the k" vector of the DFT

L
basis ands(") ¢ spans;: he(t) =Y a(r)d(t — (7). (12)
N-1 =1
<w§"a SSZ‘)> = Z Wi sz) (] The number of echoes, is usually far too large to warrant a
1=0 finite rate of innovation approach. However individual eefo
2n -1 aggregate in a smaller and manageable number of clusters

r E(+2""1) (r n— . . .
> walsip + w2 s+ 2771 K [43]. The rationales behind clustering are the same as for
=0 the common support assumption: a finite bandwidth combined

2" -1 - with background noise allow only for a limited resolution.
= Z Wi S%T) (1] (1 — Wy ) Table[] lists a few examples for which clustering applies in
=0 typical operating conditions.
Hence This simplification is at the heart of medium and narrow-
<w§n7 55[)> =0, fork even. band wireless communicatiors [44]. We want to estiniate

by sending probes at the input and collecting samples at the
The spans of S and S’ partition the original 2"~ output.

dimensional space in two subspaces of dimensgion'. Let Correlation of the channel with respect to time is an
W) = {wh, }o<orr1<n ke be the DFT basis vectors withimportant feature to exploit, however we will not consider
odd indices andW?) = {wh. }o<or<n,ren the ones with it, as scheduling in modern communication systems makes its
even indices. The spans a%(” and W'® partition the usage uncertain. Hence we settle on a tirrend drop it from
original space into two subspaces of dimens¥!. Since the notation.

spanS” 1 spanw(®: Communication is carried over a restricted frequency band,
which is achieved by pulse-shaping with a template function

(o) — (r) .
spanW.,” = spans§;,”, ©(t) and modulation by/“<t. Applying clustering to[(IR) the

spanW ! = spanS'). channel impulse response becomes:

This property applies recursively, since foe {0,...,2" 1 — K

1}: h(t) = Z crp(t — tr) (13)
k=1

k . .
<'wg§, sﬁf)> _ i wZ“l ’ i Sn-1 ’ st = apZ = eI@etr Z ozlej‘”“(tl*t’“), (14)
\/§ an—l \/5 Sp—1 (m,tz)eck
= <w§n,1, sn,1>, where Z;, has unit-variancea; is the appropriate scal-

wheres c spanS ing parameter andC, is the k** cluster. Assuming

n—1 € SPANSn-1- _ {agedoelti=t)} | e, contains iid. elements with finite
Proposition[5 states that one can cho@Secontiguous first two moments (echoes of finite energy)

Walsh-Hadamard codewords for pilots and gétuniformly

spread DFT pilots with layout gap = 2"~*. The channel lim  Zy ~ Ne(0,1).

coding is akin CDMA, but the pilot layout matches the #Cp—00

one used in OFDM communication. The lesson, is that theThis is the classical non line of sight fading scenario

Walsh-Hadamard transform alone achieves “scrambling” @here the paths amplitudeg;| are independently Rayleigh

data followed by carrier mapping in the DFT domain in gjstributed.

fashion similar to SC-FDMA[]41]. In SC-FDMA, the data are 2) Multipoint communications, one to mangommunica-

first “scrambled” by application of a shorter length DFT.  tjon through fading channels rely on spatial diversity tinga
This result has a nice interpretation in the context abbustness. Spatial diversity is achieved with the depkym
generalized Fourier transforms, tB&-WHT being itself the of several antennas at the receiver and/or transmitter. We
Fourier transform on the finite groufZ/2Z)" instead of describe a spatial channel model between one transmitter an
Z/2™Z for the classicaR™-points DFT [37], [42]. A similar several receivers, which generalizes to MIMO communicegtio
result holds for DFT on any toric finite group [37]. in a straightforward manner. The physical properties of the
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channel are the following as shown in Figlie 3:

The distance in between antennasandn is dy, .

Each path is characterized by an angle of arrival (AoA)
0x. To simplify computations it is assumed that the AcA
is the same for all antennas (far field assumption). In

the near field, a scatterer surrounds the receiver andBandwidth

the distribution becomes almost isotropic. Hence this
assumption can be made for both regimes with limited
error.

The direction normal to the segment between antennas
andn points toward azimutif,,, .

kR scatterer

w

Far field
assumption .-

Si

C

Fig. 3. Channel model with a single scatterer. Each scatieharacterized
by its apparent width (width/distance), /A and its azimutté,,. This model
is considered valid in the near field as well, as the scattenerounds the
receiver, thus having no intrinsic azimuth.

The channel model if{13) applies to tiesubchannels
K

by a Von-Mises distribution.

PPORT.

TABLE Il
SIMULATION PARAMETERS

Parameter Symbol Value
Sampling step T 50ns

B 20MHz
Center frequency fe 2.6GHz
Frame duration (without padding) 7 25.55u8
Samples per frame Niame 511
Pilots per frame N 63
Pilot gap D 8
Delay spread A 1.6us

~
~

hereA? /o7 ~ (1 — e 3%+/*)ky, J(y is the Bessel function

of the first kind andl(.) is the modified Bessel function of the
first kind.

Proof: See appendikJA. It is only a close approximation
nce the azimuthal distribution at the receiver is apprated
[ |

orollary 2. For a path widthx;, large enough:

E [kaz;ckn] ~ JO (%dm,n)
+2V3n 3 3 e D1 (SEdinn) (A7)
=1

- cos {l (—Hm,n + 0, — g)] )

B () = Z i Zm it —tmy), m=1,...,P. (15) such thatfy, is the centered Gaussian pdf of variance.

k=1

The result is in its form similar to[[45], however the

We assume the distance in between antennas is smaller tharivation stays closer to the original physical model.

the achievable spatial resolution, hence

tigk =top = - =tpg.

VI. NUMERICAL RESULTS
For simulations we use the channel model developed in

To fully characterize the channel, the path correlatioros&r Section[\, and choose its parametersldgosely follow the

antennas must be known — by assumption , and Z,,, i/

3GPP-LTE standard. Its characteristics are listed in TéRle

are independent fok # £’. Following Salz and Winters [45] We assume 63 pilots which are uniformly spaced in frequency,

we derive a formula for the autocorrelation matrix Bf, =

one every 8. The transmitted frame is circularly padded sisch

[Z1,k - - - Zp,]. However we put a Gaussian prior on the clustao guarantee circular convolution of the transmitted sigvith
shape rather than a uniform one with discontinuities at thiee CIR. Results are derived from three different experisien

boundaries.
3) Spatial correlation of pathsAs in [45], a large number

of reflections are assumed to be drawn from a continuous

probability distribution for each scatterer.

Proposition 6. Under the spatial channel model described in
Sectior V-AR, the antenna crosscorrelation is closely appr
imated by:

E [ZimZi.,] = Jo(%dm,n)
> . Il(lik) We
+ Zgjllo(m)Jl (?dm"n)

- COS {l (—Gm,n + 0, — g)] ,

(16)

A The medium has two paths separatec®ldy The second
path’s expected amplitude i$/10*" of the expected
amplitude of the first path. The receiver possesses 1, 2, 4
or 8 uncorrelated antennas. The channels have exact SCS
(e =0).

B The medium has two paths separatedibyr 27. Both
paths have the same expected amplitude. The receiver has
4 uncorrelated antennas. The channels have either exact
SCS € = 0) or non-exact SCSs(= 7'/50 = 1ns). The
discrepancy in the ToA between antennas is uniformly
distributed in[—¢ ¢]. A time lapse of27'/50 corresponds

to a path length difference @0 cm.

This experiment is more realistic from a physical stand-
point. The receiver has 5 antennas equispaced on a circle

C
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(a) first path (b) second path

1 antenna

N S~ 2 antennas

-
8 antennas

dashed: ESPRIT-TLS + Cadzow

plain: CRB
10° X p ; . p ’
-10 0 10 20 -10 0 10 20
Global input SNR [dB] Global input SNR [dB]

Fig. 4. (Exp. A) For the same global input SNR, a system with more antenrtanatss the ToAs more accurately and is more resilient tsedrhis is
a consequence of the increased receiver diversity. Thendegath hasl /10" the amplitude of the first path and is thus quickly buried intise as SNR
decreases. The estimation reaches the Cramér-Rao boudadgaas it correctly identifies the path.

(a) Block ESPRIT-TLS + Cadzow (b) Block Prony-TLS + Cadzow

# iterations sveeeee 0 - # iterations rvesvee 0 === 2
...... > 1 (Cadzow) 1mimis] ——> 3

&
.
Q
.
.
”
3
&
q

0 5 1 0 1 5 -5. 0 5 1 O 15
Global input SNR [dB] Global input SNR [dB]

Fig. 5. Exp. A) Part (a) shows the performances of Block ESPRIT-TLS witlwihout Block Cadzow denoising. In this setup, the gain wietd with
the denoising is relatively small and is achieved after degiion. Part (b) shows the performances of Block Prong With or without Block Cadzow
denoising. As expected, the performance of Prony’s algoritvithout denoising is very poor. After 3 denoising itevas, performances of Block Prony-TLS
and Block ESPRIT-TLS are indistinguishable.

of radius 10 cm. The propagation medium contains 4han Block-Prony TLS to reach the optimum. It is well-known
scatterers (Figure??.(a)). The expected CIR modulusthat Prony TLS is not robust to noise [10], [29].

is represented in Figur@?.(b). We use the spatial cor- 5) Results orExp. B : Figure[® shows that the single path
relation model derived in Propositidd 6, and provideRB given in PropositioRl3 is a good approximation of the true
the antennas cross-correlation in Fig®2(c). Also the pound computed via Propositibh 4 for multiple paths separat
channel is not exactly SCS, with a maximum delagy more than twice the inverse bandwidth of the channel. This

e =T/50 = 1ns. experiment also verifies the usefulness of the SCS assumptio
Results were obtained on 400 independent noise and fadigen ToAs are slightly perturbed from one antenna to another
realisations. tep =th+ Brp s By~ U([—c €)), Pid.

4) Results onExp. A : Figure[4 shows that the SCS-
FRI algorithm efficiently estimates the ToA down to a certaifhe error caused by the random perturbation, is of the
SNR where the recovery breaks down. This breaking poiftder of the perturbation itself, and thus we may say SCS-FRI
is pushed lower as spatial diversity increases, which iseto I$ robust on non exact SCS channels.
expected. Figurel5 compares the use and combination of thé) Results orExp. C : All estimation algorithms use the
various subspace identification techniques discussedeearfact that the delay spread is much shorter than the frame
The conclusion is that the performances of Block-ESPRI€ngth. The difference between lowpass interpolation ahdro
TLS or Block-Prony TLS are exactly the same on a sign&chniques is the use of the sparsity property. Using this
denoised with the Block-Cadzow algorithm. However Blockproperty alone, the SER is halved at a SNRsdB as shown
ESPRIT TLS requires fewer to none Block-Cadzow iterationis Figure[T. The addition of the SCS property proves to be
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(a) [to—t1] =T (b) |to —t1] = 2T
\ CRB

— true
----- separable approx.

ESPRIT-TLS + Cadzow
—=c =0 (exact SCS)

——e=T/50 (SCS)

-10 0 10 20 30 | -10 0 10 20 30
Global input SNR [dB] Global input SNR [dB]

Fig. 6. (Exp. B) This figure shows that the proposed algorithms behave ax@wgin the presence of TOA mismatches between antenmagbPaotivates
the separability assumption to compute the CRB of pathgddcmore thar2T" apart, while Part (a) shows its inadequacy for a smallerydélaThe “true”
estimate is obtained via Monte-Carlo simulations.

0
10 g ] ] I
w No equalization
-
%
-~
~ \\
N S

é
/ ’
/i
1/
Il
i

=

m

«Q

)

= IS

= 10 R S

= = ~N o~

= \ ~ \

= Framework Algorithm Pilot/Data N N

—_ N ~N \\

é 3| —— “Shannon” Lowpass interp. 12.13% LN \‘\“\

=3 10 F  — FRI ESPRIT-TLS 12.13% ~
—— SCS-FRI Block ESPRIT-TLS  12.13% s
==== SCS-FRI Block ESPRIT-TLS 6.65%

1 0'4 I I I I I
-10 -5 0 5 10 15 20 25

expected SNR [dB|

Fig. 7. Exp. C ) Using the SCS property, the SER is decreased by a facairove10dB of SNR compared to the conventional non-parametric auro
Sparsity alone provides a significant SER improvement, lwvbltall be combined with the common support property bedoaB of SNR. At very high SNR,
independent channel estimation across antennas becormeeapie as the channels only approximately have the commppost property. However, below
15dB of SNR the effect of this approximation are undetectaBleother advantage of SCS-FRI is the reduction of pilots,lldves to halve their number

while retaining performances superior to lowpass intexanh.

valuable, atsdB of SNR the SER is decreased by a factor VII. CONCLUSION

3. At high SNR, the SCS property provides a factorof

improvement over lowpass interpolation. At very high SNR We outlined the SCS-FRI algorithm, studied its perfor-

the error due to the approximate SCS nature of the channelances on SCS channels estimation and computed theoretical

diminishes this gain, and eventually the SCS assumptitwwer-bounds for comparison. A spatial channel model was

becomes detrimental. proposed for simulation purposes. The algorithm takes full
It also shows that the number of pilots can be halvetflvantage of the main properties of outdoor multipath chnn

while having SER performances superior to the non-paraenetnd is directly applicable to most OFDM based communica-
approach (we retained half of the original pilots closeshi tion standards. Simulations indicate that SCS-FRI based on

carrier frequency). For lowpass interpolation, this canie the Block-ESPRIT TLS routine seems to be the most suitable
done without introducing aliasing. Reducing the number @ince it requires only two partial SVD with size of the model
pilots below “Nyquist” is relevant at high SNR where littleorder and provides optimal accuracy.

redundency is required for denoising, leaving some aduitio Future work is needed for estimation of the model order,
spectrum for data transmission. In favorable transmissiarcorporation of temporal correlation in the model and the
conditions, it would be possible to reduce the number oftpiloalgorithm (tracking of the model parameters). Computation
down to the rate of innovation of the channel to maximize thmomplexity is also a crucial point for mobile applications,
data throughput. and improvements could be made with Krylov subspaces
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techniques as i _[46]. Then,q,, is expanded in terms of spherical harmonics via the
Jacobi-Anger expansion [47](9.1):

APPENDIX A Qo (0 + O — Ok)

SPATIAL CORRELATION FORMULA FOR FADING CHANNELS 1 _
~ ol |
A. Azimuthal scatterers density distribution 0Lk
The reflection density of each scatterer is normally dis- +Zjljl(_j,{k)cos [0+ Omm —O1)] p

tributed with meany, (its position) and covariance matrix =1 ’
o?1 (its “girth”). The number of reflections within a scatterer 1 1

is assumed to be large enough to warrant their approximation = Zfz k) €os [[(0 + Oy — Ok)]

by their continuous probability density function. The aantiml
density is the integral of the scatterer’s pdf ol/grthe straight \yhere the second equality is obtained wiijz) = j'.J;(z)

%_FFIO

path from the receiving antenna at an afgle [47](9.6.3, 9.1.35).
We now have a series fdﬁ m,n] with I* term:
pisneod) = [ 87— p)Tacr,do. (19 ' .
o . . fi(rik) co8 [1(0 + Oy 5 — Oy;)] €7 < Tmn S0V g
Reparametrization in polar coordinates yield: wlo(kk) J_r e
D(0; e 02) = Lz (2] 5in()) @ L) { (1 (0~ 0= 7))
Wlo(lik) ) 2
. 2 (r — cos())J (r, F)dr ’T we
[ o= Il s satr ) e
_ 1 [ 7 -
=0, f ( K, 51n(19)> 1 sin [l (9k G — g)]
+oo T
-1 . jLed cos ¥
- o 7 — ] cos(9)) [ sintg erinnetay |
/mcos(ﬂ) ™
21 (ki) We v
. " cos(9))o2d (:b) l e _ _ =z
(s + 4/ K} cos())ojds To(rr) I (] - dm_’n) cos [l (Gk O 2)}
such thats), = ||p,.[|? /o andJ,(r,9) = r is the Jacobian of (o) 2j'L(ky) |, [we 9. _ ¢ T
the cartesian to polar transformation. We performed thagha  ~ "7 (x,) Ji (?d ) cos [ ( k n 5)}

of variables = r — /k} cos(). Hence, the distribution has

only one degree of freedom, and after some calculus: Equality (a) is obtained with some standard trigonometric

identities and a shift by-7 of the variable of integration.
P () = f( \/’?2 sin ) (19) Equality (b) follows from the standard integral representation
¥ of I; ( [47] 9.6.19). The second integrand is antisymmetric
. |:\/>COS§ F(\/>cos Qg)f(\/:;ccos 19)} ) which leads the integral over the unit-circle to vanish.afin
(c) is a consequence df(jz) = j'J;(z) again. Hence:
The circular distribution[(719) is well approximated by a Von (k)
Mises distribution of scale,: Ry’ m,n] =Jo ( “dpm n)

ek cos ¥
) = ——. 20 fﬁle( d,)
qlik( ) 27TIO(I€]C) ( ) — c m,n
wherel, is the0** order modified Bessel function of the first . COS [1 (gk — Oy — f)} )
. . , Kp—00 . . ’ 2
kind. Asymptotically,s; "= ki, and the approximation
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