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Estimation of Sparse MIMO Channels with
Common Support.

Yann Barbotin,Student Member, IEEE,Ali Hormati, Member, IEEE,Sundeep Rangan,Member, IEEE,
and Martin Vetterli,Fellow, IEEE

Abstract—We consider the problem of estimating sparse com-
munication channels in the MIMO context. In small to medium
bandwidth communications, as in the current standards for
OFDM and CDMA communication systems (with bandwidth up
to 20 MHz), such channels are individually sparse and at the
same time share a common support set. Since the underlying
physical channels are inherently continuous-time, we propose a
parametric sparse estimation technique based on finite rateof
innovation (FRI) principles. Parametric estimation is especially
relevant to MIMO communications as it allows for a robust
estimation and concise description of the channels.

The core of the algorithm is a generalization of conven-
tional spectral estimation methods to multiple input signals with
common support. We show the application of our technique
for channel estimation in OFDM (uniformly/contiguous DFT
pilots) and CDMA downlink (Walsh-Hadamard coded schemes).
In the presence of additive white Gaussian noise, theoretical
lower bounds on the estimation of SCS channel parameters in
Rayleigh fading conditions are derived. Finally, an analytical
spatial channel model is derived, and simulations on this model in
the OFDM setting show the symbol error rate (SER) is reduced
by a factor 2 (0 dB of SNR) to 5 (high SNR) compared to standard
non-parametric methods — e.g. lowpass interpolation.

Index Terms—Channel estimation, MIMO, OFDM, CDMA,
Finite Rate of Innovation.

I. I NTRODUCTION

Multiple input multiple output (MIMO) antenna wireless
systems enable significant gains in both throughput and relia-
bility [1]–[4] and are now incorporated in several commercial
wireless standards [5], [6]. However, critical to realizing the
full potential of MIMO systems is the need for accurate
channel estimates at the receiver, and, for certain schemes,
at the transmitter as well. As the number of transmit antennas
is increased, the receiver must estimate proportionally more
channels, which in turn increases the pilot overhead and tends
to reduce the overall MIMO throughput gains [7].

To reduce this channel estimation overhead, the key in-
sight of this paper is that most MIMO channels have an
approximatelysparse common support(SCS). That is, the
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channel in each transmit-receive (TX-RX) antenna pair can
be modeled as a discrete multipath channel, with the relative
time delays being common across different TX-RX pairs. The
commonality across the different antenna pairs reduces the
overall number of degree of freedom to estimate, which can
in turn be used to reduce the pilot overhead or improve the
channel estimate. Also, in communication systems that depend
on channel state feedback from the RX to the TX, the SCS
model may enable a more compressed representation.

To exploit the SCS property of MIMO channels, we propose
a variant along [8], [9] of the finite rate of innovation (FRI)
framework, originally developed in [10]. The method, which
we call SCS-FRI, uses classical spectral estimation techniques
such as Prony’s method, ESPRIT and Cadzow denoising to
recover the delay positions in frequency domain. The method
is computationally simple, and our simulations demonstrate
excellent performance in practical scenarios. The prposed
SCS-FRI algorithm applies immediately to channel estimation
in multi-output OFDM communication with contiguous or
uniformly scattered DFT pilots. Interestingly enough it can
be used on other modulation schemes provided a suitable
pilot layout. The Walsh-Hadamard transform (WHT), used
in CDMA downlink channel among others, qualifies if one
controls the pilots layout in the WHT domain.

We also derive a simple scalar formula for the Cramér-Rao
bound on the estimation of separable ToAs, and also point to a
more general result by Yau and Bresler [11]. Both bounds are
extended to Rayleigh fading SCS channels to lower bound the
expected estimation error in fading conditions. Our simulations
indicate the proposed SCS-FRI method is close to this bound
at high SNRs.

A. SCS MIMO models

Due to the physical properties of outdoor electromagnetic
propagation, wireless channels are often modeled as havinga
channel impulse response (CIR) that is sparse in the sense
that they contain few significant paths [12]. With multiple
antennas, the CIR measured at different antennas share a
common support, i.e. the times of arrival (ToA) at different
antennas are similar while the paths amplitudes and phases
are distinct. This sparse common support (SCS) channels is
illustrate it in Figure 1. The SCS channel model is usually
assumed in the literature, though its physical motivationsare
not always put forth.

It is important to note that the sparsity and common support
assumptions only hold with respect to the channel bandwidth
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Fig. 1. (a) Transmission over a bandlimited medium with two scatterers andP receiving antennas. (b) TheP channels contain two paths arriving at the
same time up to±ε, and are thus no exact SCS channels forε > 0.

TABLE I
CHANNEL BANDWIDTH IN POPULAR WIRELESS SYSTEMS

System Code BandwidthB Resolvable
distance c/B

DVB-T [13] DFT 5–8 MHz 38–60 m

IS-95 [14] WHT 1.25 MHz 240 m

3GPP LTE [6] DFT 1.4–20 MHz 15–215 m

UWB — > 500 MHz < 60 cm

B and the SNR of the channel. Indeed, in the presence of
noise, resolution is limited by the inverse bandwidth1/B, even
if one knows exactly which parametric model the signal obeys.
In practice,1/10th of the inverse bandwidth is a reasonable
resolution to shoot for. The limited resolution has the effect
of clustering paths from a single scatterer into a single path
(promoting sparsity), and the small shift in the ToA due to
the distance between antennas becomes negligible (promoting
common support). Table I gives the channel bandwidth of
several modern standards andc/B which is the distance
travelled by an electromagnetic wave in a time lapse equal
to the inverse bandwidth.

B. Related work

In OFDM systems, the majority of commercial channel
estimators often simply perform some form of linear filtering
or interpolation of the pilot symbols [15], [16]. Such non-
parametric techniques are computationally very simple, but
fundamentally cannot exploit the common sparsity in MIMO
channel models. Since the phases and magnitudes are generally
independent on the paths on different antenna pairs, the
frequency response of sparse common support (SCS) channels
are not correlated in any simple manner that can be exploited
by basic linear interpolation of pilots.

A different line of work has proposed compressed sensing
based methods for sparse channel estimation [17]–[20]. In the
compressed sensing context, the SCS property is equivalent
to joint or group sparsityfor which there are several methods
including group LASSO [21], [22], group OMP [23] and belief
propagation [24]. Techniques for mixes of joint and individual

TABLE II
CHANNEL ESTIMATION METHODS ARE NATURALLY CLASSIFIED IN TERMS

OF THE CHANNEL PROPERTIES THEY EXPLOIT.

Algorithm Exploited channel properties

Short Common

delay-spread Sparsity support
D
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Lowpass X

FRI X

SCS-FRI X X

S
ca

tte
re

d

Lowpass X

FRI X X

SCS-FRI X X X

sparsity are considered in [25], [26]. All of these compressed
sensing methods, however, require that the delay locations
are discretized and exact sparsity is achieved only when the
true path locations fall exactly on one of the discrete points.
With continuous value path locations, each path components
will require a number of terms to approximate well, or
demand a larger number of dictionary elements to offer a finer
discretization.

Another joint estimation problem with FRI signals is studied
in [27].

C. Contributions

The contributions of this work are four-folds:
• Extension of classical FRI sampling and estimation to

multiple SCS channels (Section II)
• Derivation of simple scalar formulas for the CRB of SCS

channels (Section III)
• Application to OFDM and Walsh-Hadamard coded (e.g.

CDMA downlink) communications with contiguous or
uniformely scattered DFT pilots (Section IV)

• Characterization of a precise spatial analytical model for
SCS channels (Section V)

The proposed SCS-FRI algorithm stands out compared to
FRI or lowpass interpolation as it exploits more channel prop-
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erties, as indicated in Table II. Lowpass based techniques are
a sensible non-parametric approach as they exploit the short
delay-spread property. In general, any estimation technique
based on uniformly scattered DFT pilots uses this property,
as it is a necessary condition to the unicity of the solution.

We conclude our study with numerical simulations showing
the efficiency of the SCS-FRI algorithm in a Rayleigh fading
scenario, and compare its equalization gain to a standard non-
parametric approach, i.e. lowpass interpolation in the DFT
domain.

II. SPARSECOMMON SUPPORTFRI: THEORY AND

ALGORITHMS

A. Problem formulation

We consider the physical setup described in Figure 1.(a).
A periodic signal of limited bandwidth is transmitted over a
multipath channel and uniformly sampled by a receiver withP
antennas. This leads toP parallel multipath channels as shown
in Figure 1.(b). The channels either share a common support
exactly, in which case they are called exact SCS channels, or
approximately, in which case they are called SCS channels
(e.g. Figure 1.(b)).

ConsiderP exact SCS channels shaped by a kernelϕ, with
complex baseband equivalent model:

hp(t) =
K∑

k=1

ck,pϕ(t− tk) , ck,p ∈ C, tk ∈ [0 τ [ , (1)

whereϕ(t) is theτ -periodic sinc function or Dirichlet kernel:

ϕ(t) =
∑

k∈Z

sinc(B(t− kτ)) =
sin(πBt)

Bτ sin(πtτ )
. (2)

The kernelϕ is considered periodic as the filtering of a
periodically padded signal by a linear shift invariant filter.
Therefore, linear convolution of the CIR with the shaping
kernel becomes circular.

We assume that the bandwidth parameterB satisfiesB =
(2M + 1)/τ for M ≥ K. The paths coefficientsck,p are
treated as complex random variables.N measurementsyp[n]
are acquired at a rate1/T = N/τ (with τ the signal period
andN ≥ Bτ = 2M + 1) and corrupted by AWGN

yp[n] = hp[n] + qp[n] n ∈ {0, . . . , N − 1}, (3)

where qp ∼ NC(0, σ
2I) if the channel is complex-valued

or qp ∼ N (0, σ2I) if real-valued. In the DFT domain, the
received signal is:

ŷp[m] = ϕ̂[m] ·
K∑

k=1

ck,pW
mtk + q̂p[m]. (4)

whereW = e−2πj/τ and ϕ̂[m] = 1/(2M + 1) for |m| ≤ M
and is zero otherwise. The goal is to estimate the support
{tk}k=1...K and the paths amplitudes{ck,p}k=1...K,p=1...P

from the NP samples collected in (3). Once the support is
known, estimation of the path amplitudes is simple linear
algebra as seen in (4).

B. Support recovery from baseband DFT coefficients

We start from (4). The DFT sampleŝyp[m] in the baseband
(|m| ≤M ) are the DFT coefficients of the channel corrupted
by some Gaussian noise.

The noiseless DFT coefficients of aK-multipath channel
have the well-known and interesting property to form a linear
recurrent sequence of orderK +1, i.e., any coefficient̂hp[m]
(m ≥ −M + K) can be expressed as a unique linear
combination of theK previous DFT coefficients common to
all indicesm:

Lemma 1. Given ĥp[m] =
∑K

k=1 ck,pW
mtk for m = −M +

K, . . . ,M and ti 6= tj , ∀i 6= j, there exists a unique set of
coefficients{fk}k=1,...,K such that:

ĥp[m] = f1ĥp[m− 1] + f2ĥp[m− 2] + · · ·+ fK ĥp[m−K]

wherexK − f1x
K−1 − · · · − fK−1x − fK is the polynomial

with roots{W tk}k=1,...,K .

Proof: A linear recursion of degreeK can be written as:

xn = f1xn−1 + · · ·+ fKxn−K , fK 6= 0. (5)

Its characteristic equation is:

xK − f1x
K−1 − · · · − fK−1x− fK = 0. (6)

If λx is a solution of (6) then multiplying both sides of the
equation byλn−K

x ( 6= 0 sincefK 6= 0) shows thatλn
x is a

solution of (5). Moreover by linearity, any linear combination
of solutions of (5) is still a solution, and if (6) hasK
distinct solutions,{fk}k=1,...,K is uniquely defined by a set of
K independent linear equations. Hence, for

∑K
k=1 ck,pW

mtk

“solution” of (5), tk 6≡ tl mod τ for all k 6= l, there exists a
unique set{fk}k=1,...,K such that{W tk}k=1,...,K are theK
distinct roots of

xK − f1x
K−1 − · · · − fK−1x− fK .

The coefficientsŷp[m] maybe arranged in a tall block-
Toeplitz matrix

H(L) =




H
(L)
1

H
(L)
2

...

H
(L)
P




such that

H(L)
p =




ŷp,L−M−1 ŷp,L−M−2 · · · ŷp,−M

ŷp,L−M ŷp,L−M−1 · · · ŷp,1−M

...
...

. . .
...

ŷp,M ŷp,M−1 · · · ŷp,M−L+1



, (7)

where ŷi,j = ŷi[j]. The data matrix H(L) is made ofP
Toeplitz blocks of size(2M + 2 − L) × L, and we assume
that both block dimensions are larger or equal toK. It
possess interesting algebraic properties which form the core
of line spectra estimation techniques. We will use Lemma 1 to
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show three well-known spectral estimation tools which extend
straightforwardly from Topelitz data matrices to block-Toeplitz
ones, i.e. extend from single output to multiple outputs with
SCS. We do so, with two propositions:

Proposition 1. [Annihilating filter property]
In the absence of noise (ŷp[m] = ĥp[m]), a set of exact SCS
channels withK distinct paths verifies

H(K+1)f = 0, (8)

wheref = [1 − f1 · · · − fK ]T are the annihilating filter
coefficients such that the polynomialpf (z) = 1−∑K

k=1 fkz
k

hasK roots {e−2πjtk/τ}k=1...K . The matrixH(K+1) is built
with blocks as in (7) (withL = K + 1).

Proof: This is a direct consequence of Lemma 1.

Proposition 2. For a set of exact SCS channels withK distinct
paths and in the absence of noise,H(L) satisfies

rank H(L) = K,

for K ≤ L ≤ 2M + 2−K.

Proof: Let H̃ be the top-leftK ×K minor of H(L). It
can be written as the sum ofK rank-1 matrices:

H̃ =
K∑

k=1

ck,·W
(M+1−L)tkξ∗kξk,

such thatξk = [1 W tk W 2tk · · · W (K−1)tk ]. If tk 6≡
tl mod τ for all k 6= l, then{ξ1, . . . , ξK} form a set of non
colinear vectors. Therefore rankH(L) ≥ K.

ChooseK mutually independent rows ofH(L). From
Lemma 1, truncating these row vectors to lengthK pre-
serves the linear independence. Therefore, given a rowh =
[h[0], . . . , h[L−1]] of H(L), there exists a linear combination
of theseK rowsh′ such that

h[k] = h′[k] , k = 0, . . . ,K − 1.

By construction, since all rows ofH(L) verify the the same
linear recursion of degreeK, h andh′ verifies this recursion.
Henceh = h′, implying rankH(L) is at mostK.

a) Block-Prony algorithm: Proposition 1 is Prony’s
method [28], [29] for block-Toeplitz matrices. We call the
corresponding algorithm “Block-Prony TLS”, listed under
Algorithm 1. It solves the annihilating filter equation (8)
in the total least-square (TLS) sense. The crucial step is
the identification of what shall be the unidimensional null
space ofH(K+1) in a noiseless case. Solving this problem
in the TLS sense yields the least right singular vector of
H(K+1). Prony’s method is notoriously sensitive to noise,
which is to be expected as the result relies on identificationof
the unidimensional complement of theK-dimensional signal
space. This sensitivity can be mitigated with prior denoising
of the measurements.

b) Block-ESPRIT algorithm:Proposition 2 implies each
block in the data matrix shares the same signal subspace.
Hence the ESPRIT TLS algorithm outlined in [30] applies
as-is to the block-Toeplitz data matrixH(L). The Block-
ESPRIT TLS algorithm is outlined in Algorithm 2. The Block-

Algorithm 1 Block-Prony TLS

Require: An estimate on the number of effective pathsKest,
2M + 1 (M ≥ K) channel DFT coefficientŝyp[m] =∑K

k=1 ck,pW
mtk
N + q̂p[m] for |m| ≤M , p = 1 . . . P .

1: Build H(Kest+1) according to (7).
2: Compute the SVD decomposition of the data matrix:

H(Kest+1) = USV ∗.
3: φ ← roots(v), such thatv is the right singular vector

associated to the least singular value.
4: return {test

k }k=1...Kest← − τ
2πargφ.

Algorithm 2 Block-ESPRIT TLS

Require: An estimate on the number of effective pathsKest,
2M + 1 (M ≥ K) channel DFT coefficientŝyp[m] =∑K

k=1 ck,pW
mtk
N + q̂p[m] for |m| ≤M , p = 1 . . . P .

1: Build H(M) according to (7).
2: Compute the SVD decomposition of the data matrix:

H(M) = USV .
3: Extract the signal subspace basisΞ0 = V 1:(M−1),1:Kest.
4: Extract the rotated signal space basisΞ1 = V 2:M,1:Kest.
5: SolveΞ1 = Ξ0Ψ in the TLS sense.
6: return {test

k }k=1...Kest← {− τ
2πargλk (Ψ)}k=1...Kest.

Algorithm 3 Block-Cadzow denoising

Require: A block-Toeplitz matrixH(L) and a target rankK.
Ensure: A block-Toeplitz matrixH(L) with rank≤ K.

1: repeat
2: ReduceH(L) to rankK by a truncated SVD.
3: Make H(L)

p p = 1 . . . P , Toeplitz by averaging diago-
nals.

4: until convergence

Algorithm 4 SCS-FRI channel estimation

Require: An estimate on the number of effective pathsKest,
2M + 1 (M ≥ K) noisy channel DFT coefficients
ŷp[m] =

∑K
k=1 ck,pW

mtk
N + q̂p[m] for |m| ≤ M , p =

1 . . . P .
Ensure: Support estimate{test

k }k=1...Kest

1: Build H(M) according to (7).
2: H(M) ← Block-Cadzow(H(M),Kest) [optional].
3: Update ŷp[m] with the first row and column of the

denoised blockH(M)
p .

4: Estimate the common support with Block-PronyTLS or
Block-ESPRIT TLS.

5: Estimate{ck,p} solving P linear Vandermonde systems
(4).

ESPRIT algorithm fulfils the same goal as the Block-Prony
algorithm, but its essence is entirely different. Where Prony’s
method identifies a line with least energy in aK dimensional
space, ESPRIT finds the rotation between twoK-dimensional
subspaces in anM -dimensional space. What makes ESPRIT
much more resilient to noise is that the two subspaces are
computed from the most energetic part of the signal.
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c) Block-Cadzow denoising:Proposition 2 used together
with the block-Toeplitz structure property yields the “lift-and-
project” denoising Algorithm 3, which we callBlock-Cadzow
denoising [31]. Using the same argument as in [32], the block-
Cadzow algorithm provably converges.

d) SCS-FRI:We have all the elements to describe the
SCS-FRI algorithm. The Block-Cadzow algorithm may be
used to denoise the measurements and is followed by either
Block-Prony or Block-ESPRIT estimation of the common
ToAs (solved in the TLS sense).

For Cadzow denoising and ESPRIT, it is empirically found
that a data matrix with square blocks works well. The last
step is to estimate the path amplitudes independently for each
channel. This is done by solving a linear Vandermonde system
(4) [33]. The processing chain at the receiver is listed in
Algorithm 4 and shown in Figure 2. Combination of Cadzow
and ESPRIT for estimation of a single OFDM channel is
considered in [34]. We assumed the number of paths to be
known. For estimation techniques of the number of paths, we
refer to [30].

III. E STIMATION THEORETIC BOUNDS ONSCS-FRI
RECOVERY

A. Deterministic multipath channels

In [10], the authors derive the Cramér-Rao lower
bound [35], [36] for estimating the positions and weights
of the Diracs in FRI signals. Considering a single Dirac
with deterministic amplitude in a single-channel real-valued
scenario, the minimal relative uncertainties on the location of
the Dirac,t1, and on its amplitude,c1, are given by

E

[(
△t1
τ

)2
]
≥ 3(2M + 1)

4π2NM(M + 1)
PSNR

−1

E

[(
△c1
c1

)2
]
≥ 2M + 1

N
PSNR

−1

wherePSNR = c21/σ
2 is the input peak signal to noise ratio.

When there are more than two Diracs, the Cramér-Rao formula
for one Dirac still holds approximately when the locations are
sufficiently far apart1.

B. Jointly Gaussian multipath channels

We derive bounds on the support estimation accuracy with
measurements taken according to (3). The paths coefficients
ck,p are assumed to be jointly Gaussian, and modeled as the
product of ak,p = E [|ck,p|] by a standard normal random
variableZk,p having the following properties, consistent with
the well-known Rayleigh-fading model:

• Zk,p ∼ NC(0,
√
1/2I).

• Similar expected path amplitude between antennas:

ak
def
= ak,1 = ak,2 = · · · = ak,P .

• Independence between paths:E

[
Zk,pZ

∗
k′,p′

]
= 0, k 6=

k′.

1Empirically, the distance should be larger than2/B.

• The random vectorZk = [Zk,1 · · ·Zk,P ]
T is defined as

Zk = Lkr, where Lk is the Cholesky factor of the
covariance matrixRk = E [ZkZ

∗
k] and r is a vector

of iid standard complex Gaussian random variables.

The Rayleigh-fading case can be seen as deterministic if
conditioned on the path amplitudes. Thus, the Cramér-Rao
bounds for random paths coefficients are random variables for
which we can compute statistics. Expectation and standard
deviation will respectively give the expected accuracy of the
estimator and its volatility. For a single path, and a symmetric
or antisymmetricϕ (not necessarily a sinc kernel), the Crámer-
Rao bound has a concise closed form formula:

Proposition 3. With complex-valued measurements according
to (3), K = 1, andZ1 be a random Gaussian vector , then

E

[
(
△t1
τ

)2
]
≥

E

[
(Z∗

1Z1)
−1
]

2N · dSNR
, (9)

wheredSNR = |a1|2‖ϕ′(nT−t1)‖2/(Nσ2) is the differential
SNR andλ1, · · · , λP are the eigenvalues of the covariance
matrix R1 andP > 1:

• Uncorrelated paths coefficients,λ1 = · · · = λP = 1:

E

[
(Z∗

1Z1)
−1
]
= (P − 1)−1 , P > 1.

• Correlated path coefficients, such thatλ1 6= · · · 6= λP :

E

[
(Z∗

1Z1)
−1
]
=

P∑

p=1

(−λp)
P−1 lnλp

λp

∏

p′ 6=p

(λp′ − λp)
−1

Proof: See [37]. The uncorrelated case is found in various
statistical handbooks as the first moment of an inverse-χ2

distributed random variable. For the correlated case, see [38].
This expression is a suitable approximation for multipaths

scenario with distant paths (separated by more than twice
the inverse bandwidth. It gives an important insight on the
evolution of the estimation performance when uncorrelated
antennas are added to the system. Namely, the RMSE decays
as1/

√
P − 1.

In general, multiple paths are interacting with each other and
the information matrix cannot be considered diagonal. I n this
case Yau and Bresler [11] derived the following expression:

Proposition 4. [11] Let Φ andΦ
′ beN ×K matrices such

that

Φn,k = ϕ((n− 1)T − tk) , Φ′
n,k = ϕ′((n− 1)T − tk),

n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}. Given the stochastic matrix

C = diag(a1, . . . , aK)

(
P∑

p=1

Z ′
pZ

′∗
p

)
diag(a∗1, . . . , a

∗
K),

with Z ′
p = [Z1,p · · ·ZK,p]

T , the Fisher information matrixJ
conditionned on the path amplitudes is given by

J = 2σ−2
Φ

′∗PkerΦΦ
′ ⊙C. (10)

such thatPkerΦ = I−ΦΦ
† is the projection into the nullspace

of Φ and “⊙” denotes the entrywise matrix product.
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Fig. 2. The SCS-FRI sampling and reconstruction scheme in a multi-antenna channel estimation setting withP receiving antennas.

See [11] for the proof. The Cramér-Rao bounds for the
estimation of the normalized times of arrival are on the
diagonal of the expectation ofJ−1. The matrixJ is a complex
Wishart matrix. Computing its inverse moments analytically is
not an easy task, nevertheless it can be numerically computed
via Monte-Carlo simulations.

IV. A PPLICATION TO OFDM AND CDMA DOWNLINK

1) SCS-FRI with uniformly scattered DFT pilots (OFDM):
The theory in Section II is developed for contiguous DFT coef-
ficients. In OFDM communications, pilots are often uniformly
laid out in frequency (ETSI DVB-T [13], 3GPP LTE [6],. . . ).
The period of pilot insertionD is upper-bounded by∆−1, the
inverse of the delay-spread of the CIR :D < τ/∆. If not,
the CIR cannot be unambiguously recovered from the pilots
because of aliasing. For a fixed number of pilots,D is chosen
as large as possible (D = ⌊τ/∆⌋), as interpolation of the CIR
spectrum is more robust than extrapolation.

SCS-FRI can take advantage of uniformly scattered pilot
layouts [37], [39]. Forϕ̂ flat in {−MD, . . . ,MD}, equation
(4) becomes:

ŷp[mD] =

K∑

k=1

ck,pW
mDtk
N + q̂p[mD], (11)

which corresponds to a dilation byD of the support parameters
{tk}. By definition 0 ≤ tk < ∆, and so the bound onD
prohibits aliasing ofDtk. Therefore, SCS-FRI is applicable
without other modification than division of the recovered
support parameters byD. The results of Proposition 3 can
be extended to scattered pilot with minimal effort.

Corollary 1. The minimal uncertainties on the estimation of
the parameters in the SCS-FRI scenario (11) withP signals

are given by

E

[(
△t1
τ

)2
]
≥ 3BT

4D2π2M(M + 1)
E
[
ESNR

−1
]

E

[(
△cℓ
cℓ

)2
]
≥ BT E

[
PSNR

−1
ℓ

]
ℓ = 1, . . . , P.

For real-valued signal and noiseESNR = 1
σ2

∑P
ℓ=1 c

2
ℓ denotes

the effective signal to noise ratio andPSNRℓ = c2ℓ/σ
2 .. For

complex-valued signal and noiseESNR = 1
2σ2

∑P
ℓ=1 c

∗
ℓcℓ and

PSNRℓ = c∗ℓcℓ/(2σ
2) ..

Proof:

E

[(
△t1
τ

)2
]
= E

[(
△(Dt1)

τ

)2
]
·D−2.

Evaluation ofE

[(
△(Dt1)

τ

)2]
based on measurements from

(11) is answered by Proposition 3. ThedSNR is explicitly
computed for (11) takingϕ = sincB.

2) Extension to Walsh-Hadamard coded schemes (CDMA):
Numerous applications use the2n-WHT to code the channel
into 2n subchannels (N = 2n). Among others, IS-95 uses a
64-WHT to code the downlink channel. The straightforward
way to insert pilots is to use one of these subchannels as a pilot
itself and use correlation based channel estimation methods as
the Rake-receiver for example [40]. The SCS-FRI algorithm
works in the DFT domain but can nevertheless be applied in
the WHT domain with pilots uniformly scattered byD a power
of 2.

Proposition 5. Let W n andSn be respectively the2n-points
DFT and WHT matrices obtained by Sylvester’s construction:

S1 =
1√
2

[
1 1

1 −1

]
, Si+1 = S1 ⊗ Si.
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Then, for anyℓ ∈ {1, . . . , n − 1} the set ofSn’s columns
with indices in

{
2ℓ + i

}
1...2ℓ

and the set ofW n’s columns
with indices in

{
(i− 1/2) · 2n−ℓ + 1

}
1...2ℓ

span the same
subspace.

Proof: We partition the Walsh-Hadamard transform ma-
trix in two “left” and “right” blocks:

Sn =
[
S(l)

n S(r)
n

]
, S(l)

n =

[
Sn−1

Sn−1

]
, S(r)

n =

[
Sn−1

−Sn−1

]
.

Givenwk
2n = [W 0k

2n · · ·W (2n−1)k
2n ] the kth vector of the DFT

basis ands(r) ∈ spanS(r)
n :

〈
wk

2n , s
(r)
n

〉
=

N−1∑

l=0

W kl
2ns

(r)
n [l]

=

2n−1−1∑

l=0

W kl
2ns

(r)
n [l] +W

k(l+2n−1)
2n s(r)n [l + 2n−1]

=

2n−1−1∑

l=0

W kl
2ns

(r)
n [l]

(
1−W k2n−1

2n

)

Hence 〈
wk

2n , s(r)n

〉
= 0 , for k even.

The spans ofS(r)
n and S(r)

n partition the original 2n-
dimensional space in two subspaces of dimension2n−1. Let
W (o)

n = {wk
2n}0≤2k+1<N,k∈N be the DFT basis vectors with

odd indices andW (e)
n = {wk

2n}0≤2k<N,k∈N the ones with
even indices. The spans ofW (o)

n and W (e)
n partition the

original space into two subspaces of dimension2n−1. Since
spanS(r)

n ⊥ spanW (e)
n :

spanW (o)
n = spanS(r)

n ,

spanW (e)
n = spanS(l)

n .

This property applies recursively, since fork ∈ {0, . . . , 2n−1−
1}:

〈
w2k

2n , s(l)n

〉
=

〈
1√
2

[
wk

2n−1

wk
2n−1

]
,

1√
2

[
sn−1

sn−1

]〉
,

=
〈
wk

2n−1 , sn−1

〉
,

wheresn−1 ∈ spanSn−1.

Proposition 5 states that one can choose2ℓ contiguous
Walsh-Hadamard codewords for pilots and get2ℓ uniformly
spread DFT pilots with layout gapD = 2n−ℓ. The channel
coding is akin CDMA, but the pilot layout matches the
one used in OFDM communication. The lesson, is that the
Walsh-Hadamard transform alone achieves “scrambling” of
data followed by carrier mapping in the DFT domain in a
fashion similar to SC-FDMA [41]. In SC-FDMA, the data are
first “scrambled” by application of a shorter length DFT.

This result has a nice interpretation in the context of
generalized Fourier transforms, the2n-WHT being itself the
Fourier transform on the finite group(Z/2Z)n instead of
Z/2nZ for the classical2n-points DFT [37], [42]. A similar
result holds for DFT on any toric finite group [37].

V. A PPLICATION: FADING CHANNEL ESTIMATION IN

MULTI -OUTPUT SYSTEMS

A. Channel model

1) Physical assumptions:A linear time-invariant channel
is characterized by its impulse responseh. In mobile com-
munications, channels are transient, but we may assume the
channel to be locally invariant around a timeτ . This leads to
the definition of a time-dependent channel impulse response
hτ . Consider a channel impulse response made of a large
numberL of echoes:

hτ (t) =

L∑

l=1

αl(τ)δ(t − tl(τ)). (12)

The number of echoesL, is usually far too large to warrant a
finite rate of innovation approach. However individual echoes
aggregate in a smaller and manageable number of clusters
K [43]. The rationales behind clustering are the same as for
the common support assumption: a finite bandwidth combined
with background noise allow only for a limited resolution.
Table I lists a few examples for which clustering applies in
typical operating conditions.

This simplification is at the heart of medium and narrow-
band wireless communications [44]. We want to estimatehτ

by sending probes at the input and collecting samples at the
output.

Correlation of the channel with respect to time is an
important feature to exploit, however we will not consider
it, as scheduling in modern communication systems makes its
usage uncertain. Hence we settle on a timeτ and drop it from
the notation.

Communication is carried over a restricted frequency band,
which is achieved by pulse-shaping with a template function
ϕ(t) and modulation byejωct. Applying clustering to (12) the
channel impulse response becomes:

h(t) =

K∑

k=1

ckϕ(t− tk) (13)

s.t. ck = akZk = ejωctk
∑

(αl,tl)∈Ck

αle
jωc(tl−tk), (14)

where Zk has unit-variance,ak is the appropriate scal-
ing parameter andCk is the kth cluster. Assuming
{αle

jωc(tl−tk)}(αl,tl)∈Ck
contains i.i.d. elements with finite

first two moments (echoes of finite energy)

lim
#Ck→∞

Zk ∼ NC(0, 1).

This is the classical non line of sight fading scenario
where the paths amplitudes|Zk| are independently Rayleigh
distributed.

2) Multipoint communications, one to many:Communica-
tion through fading channels rely on spatial diversity to gain
robustness. Spatial diversity is achieved with the deployment
of several antennas at the receiver and/or transmitter. We
describe a spatial channel model between one transmitter and
several receivers, which generalizes to MIMO communications
in a straightforward manner. The physical properties of the
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channel are the following as shown in Figure 3:
• The distance in between antennasm andn is dm,n.
• Each path is characterized by an angle of arrival (AoA)

θk. To simplify computations it is assumed that the AoA
is the same for all antennas (far field assumption). In
the near field, a scatterer surrounds the receiver and
the distribution becomes almost isotropic. Hence this
assumption can be made for both regimes with limited
error.

• The direction normal to the segment between antennasm
andn points toward azimuthθm,n.

σ
2

k

∆k

Fig. 3. Channel model with a single scatterer. Each scatterer is characterized
by its apparent width (width/distance)σk/∆k and its azimuthθk. This model
is considered valid in the near field as well, as the scatterersurrounds the
receiver, thus having no intrinsic azimuth.

The channel model in (13) applies to theP subchannels

hm(t) =
K∑

k=1

am,kZm,kϕ(t− tm,k) , m = 1, . . . , P. (15)

We assume the distance in between antennas is smaller than
the achievable spatial resolution, hence

t1,k = t2,k = · · · = tP,k.

To fully characterize the channel, the path correlation across
antennas must be known — by assumptionZm,k andZm′,k′

are independent fork 6= k′. Following Salz and Winters [45]
we derive a formula for the autocorrelation matrix ofZk =
[Z1,k · · ·ZP,k]. However we put a Gaussian prior on the cluster
shape rather than a uniform one with discontinuities at the
boundaries.

3) Spatial correlation of paths:As in [45], a large number
of reflections are assumed to be drawn from a continuous
probability distribution for each scatterer.

Proposition 6. Under the spatial channel model described in
Section V-A2, the antenna crosscorrelation is closely approx-
imated by:

E
[
Zk,mZ∗

k,n

]
= J0

(ωc

c
dm,n

)

+ 2

∞∑

l=1

jl
Il(κk)

I0(κk)
Jl

(ωc

c
dm,n

)
(16)

· cos
[
l
(
−θm,n + θk −

π

2

)]
,

TABLE III
SIMULATION PARAMETERS

Parameter Symbol Value

Sampling step T 50ns

Bandwidth B 20MHz

Center frequency fc 2.6GHz

Frame duration (without padding) τ 25.55µs

Samples per frame Nframe 511

Pilots per frame N 63

Pilot gap D 8

Delay spread ∆ 1.6µs

where∆2
k/σ

2
k ≈ (1 − e−3κk/4)κk, J(·) is the Bessel function

of the first kind andI(·) is the modified Bessel function of the
first kind.

Proof: See appendix A. It is only a close approximation
since the azimuthal distribution at the receiver is approximated
by a Von-Mises distribution.

Corollary 2. For a path widthκk large enough:

E
[
Zk,mZ∗

k,n

]
≈ J0

(ωc

c
dm,n

)

+ 2
√
2πκk

∞∑

l=1

jlfκk
(l)Jl

(ωc

c
dm,n

)
(17)

· cos
[
l
(
−θm,n + θk −

π

2

)]
,

such thatfκk
is the centered Gaussian pdf of varianceκk.

The result is in its form similar to [45], however the
derivation stays closer to the original physical model.

VI. N UMERICAL RESULTS

For simulations we use the channel model developed in
Section V, and choose its parameters toloosely follow the
3GPP-LTE standard. Its characteristics are listed in TableIII.
We assume 63 pilots which are uniformly spaced in frequency,
one every 8. The transmitted frame is circularly padded suchas
to guarantee circular convolution of the transmitted signal with
the CIR. Results are derived from three different experiments:

A The medium has two paths separated by2T . The second
path’s expected amplitude is1/10th of the expected
amplitude of the first path. The receiver possesses 1, 2, 4
or 8 uncorrelated antennas. The channels have exact SCS
(ε = 0).

B The medium has two paths separated byT or 2T . Both
paths have the same expected amplitude. The receiver has
4 uncorrelated antennas. The channels have either exact
SCS (ε = 0) or non-exact SCS (ε = T/50 = 1ns). The
discrepancy in the ToA between antennas is uniformly
distributed in[−ε ε]. A time lapse of2T/50 corresponds
to a path length difference of60 cm.

C This experiment is more realistic from a physical stand-
point. The receiver has 5 antennas equispaced on a circle
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Fig. 4. (Exp. A ) For the same global input SNR, a system with more antennas estimates the ToAs more accurately and is more resilient to noise. This is
a consequence of the increased receiver diversity. The second path has1/10th the amplitude of the first path and is thus quickly buried intonoise as SNR
decreases. The estimation reaches the Cramér-Rao bound aslong as it correctly identifies the path.

-5 0 5 10 15
10

-2

10
-1

10
0

-5 0 5 10 15

Fig. 5. (Exp. A ) Part (a) shows the performances of Block ESPRIT-TLS with orwithout Block Cadzow denoising. In this setup, the gain obtained with
the denoising is relatively small and is achieved after one iteration. Part (b) shows the performances of Block Prony-TLS with or without Block Cadzow
denoising. As expected, the performance of Prony’s algorithm without denoising is very poor. After 3 denoising iterations, performances of Block Prony-TLS
and Block ESPRIT-TLS are indistinguishable.

of radius 10 cm. The propagation medium contains 4
scatterers (Figure??.(a)). The expected CIR modulus
is represented in Figure??.(b). We use the spatial cor-
relation model derived in Proposition 6, and provide
the antennas cross-correlation in Figure??.(c). Also the
channel is not exactly SCS, with a maximum delay
ε = T/50 = 1ns.

Results were obtained on 400 independent noise and fading
realisations.

4) Results onExp. A : Figure 4 shows that the SCS-
FRI algorithm efficiently estimates the ToA down to a certain
SNR where the recovery breaks down. This breaking point
is pushed lower as spatial diversity increases, which is to be
expected. Figure 5 compares the use and combination of the
various subspace identification techniques discussed earlier.
The conclusion is that the performances of Block-ESPRIT
TLS or Block-Prony TLS are exactly the same on a signal
denoised with the Block-Cadzow algorithm. However Block-
ESPRIT TLS requires fewer to none Block-Cadzow iterations

than Block-Prony TLS to reach the optimum. It is well-known
that Prony TLS is not robust to noise [10], [29].

5) Results onExp. B : Figure 6 shows that the single path
CRB given in Proposition 3 is a good approximation of the true
bound computed via Proposition 4 for multiple paths separated
by more than twice the inverse bandwidth of the channel. This
experiment also verifies the usefulness of the SCS assumption
when ToAs are slightly perturbed from one antenna to another:

tk,p = tk + Ek,p , Ek,p ∼ U([−ε ε]), i.i.d.

The error caused by the random perturbationEk,p is of the
order of the perturbation itself, and thus we may say SCS-FRI
is robust on non exact SCS channels.

6) Results onExp. C : All estimation algorithms use the
fact that the delay spread is much shorter than the frame
length. The difference between lowpass interpolation and other
techniques is the use of the sparsity property. Using this
property alone, the SER is halved at a SNR of5dB as shown
in Figure 7. The addition of the SCS property proves to be
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Fig. 6. (Exp. B ) This figure shows that the proposed algorithms behave as expected in the presence of ToA mismatches between antennas. Part (b) motivates
the separability assumption to compute the CRB of paths located more than2T apart, while Part (a) shows its inadequacy for a smaller delay T . The “true”
estimate is obtained via Monte-Carlo simulations.
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Fig. 7. (Exp. C ) Using the SCS property, the SER is decreased by a factor5 above10dB of SNR compared to the conventional non-parametric approach.
Sparsity alone provides a significant SER improvement, which shall be combined with the common support property below30dB of SNR. At very high SNR,
independent channel estimation across antennas become preferable as the channels only approximately have the common support property. However, below
15dB of SNR the effect of this approximation are undetectable.Another advantage of SCS-FRI is the reduction of pilots, it allows to halve their number
while retaining performances superior to lowpass interpolation.

valuable, at5dB of SNR the SER is decreased by a factor
3. At high SNR, the SCS property provides a factor5 of
improvement over lowpass interpolation. At very high SNR
the error due to the approximate SCS nature of the channels
diminishes this gain, and eventually the SCS assumption
becomes detrimental.

It also shows that the number of pilots can be halved
while having SER performances superior to the non-parametric
approach (we retained half of the original pilots closest tothe
carrier frequency). For lowpass interpolation, this cannot be
done without introducing aliasing. Reducing the number of
pilots below “Nyquist” is relevant at high SNR where little
redundency is required for denoising, leaving some additional
spectrum for data transmission. In favorable transmission
conditions, it would be possible to reduce the number of pilots
down to the rate of innovation of the channel to maximize the
data throughput.

VII. C ONCLUSION

We outlined the SCS-FRI algorithm, studied its perfor-
mances on SCS channels estimation and computed theoretical
lower-bounds for comparison. A spatial channel model was
proposed for simulation purposes. The algorithm takes full
advantage of the main properties of outdoor multipath channels
and is directly applicable to most OFDM based communica-
tion standards. Simulations indicate that SCS-FRI based on
the Block-ESPRIT TLS routine seems to be the most suitable
since it requires only two partial SVD with size of the model
order and provides optimal accuracy.

Future work is needed for estimation of the model order,
incorporation of temporal correlation in the model and the
algorithm (tracking of the model parameters). Computational
complexity is also a crucial point for mobile applications,
and improvements could be made with Krylov subspaces
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techniques as in [46].

APPENDIX A
SPATIAL CORRELATION FORMULA FOR FADING CHANNELS

A. Azimuthal scatterers density distribution

The reflection density of each scatterer is normally dis-
tributed with meanµk (its position) and covariance matrix
σ2
kI (its “girth”). The number of reflections within a scatterer

is assumed to be large enough to warrant their approximation
by their continuous probability density function. The azimuthal
density is the integral of the scatterer’s pdf overΓϑ the straight
path from the receiving antenna at an angle2 ϑ:

p(ϑ;µk, σ
2
k) =

∫

R2

f
(2D)

σ2
k

(x− µk)Ix∈Γϑ
dx. (18)

Reparametrization in polar coordinates yield:

p(ϑ;µk, σ
2
k) = fσ2

k
(‖µk‖ sin(ϑ))

·
∫

R+

fσ2
k
(r − ‖µk‖ cos(ϑ))Jx(r, ϑ)dr,

= σ−1
k f

(√
κ′
k sin(ϑ)

)

·
∫ +∞

√
κ′

k
cos(ϑ)

σ−1
k f(r − ‖µk‖ cos(ϑ))

· (s+
√
κ′
k cos(ϑ))σ

2
kds

such thatκ′
k = ‖µk‖2/σ2

k andJx(r, ϑ) = r is the Jacobian of
the cartesian to polar transformation. We performed the change
of variables = r −

√
κ′
k cos(ϑ). Hence, the distribution has

only one degree of freedom, and after some calculus:

pκ′

k
(ϑ) = f(

√
κ′
k sinϑ) (19)

·
[√

κ′
k cosϑ · F (

√
κ′
k cosϑ)f(

√
κ′
k cosϑ)

]
.

The circular distribution (19) is well approximated by a Von-
Mises distribution of scaleκk:

qκk
(ϑ) =

eκk cosϑ

2πI0(κk)
. (20)

whereI0 is the0th order modified Bessel function of the first

kind. Asymptotically,κ′
k

κ′

k→∞
= κk, and the approximation

κ′
k ≈ (1 − e−3κk/4)κk was found to be empirically accurate

for all κk (K-L divergence betweenpκ′

k
and qκk

is less than
0.02 bits).

B. Derivation of the correlation matrix formula

Considering the setup of Figure 3, and from [45]:

R
(k)
Z [m,n] =

∫ π

−π

qκk
(ϑ+ θm,n − θk)e

j ωc
c
dm,n sinϑdϑ.

2Without loss of generality the scatterer origin is at azimuth 0, and the
antenna is located at position0

Then,qκk
is expanded in terms of spherical harmonics via the

Jacobi-Anger expansion [47](9.1):

qκk
(ϑ+ θm,n − θk)

=
1

2πI0(κk)

{
J0(−jκk)

+

∞∑

l=1

jlJl(−jκk) cos [l(ϑ+ θm,n − θk)]

}
,

=
1

2π
+

1

πI0(κk)

∞∑

l=1

Il(κk) cos [l(ϑ+ θm,n − θk)] ,

where the second equality is obtained withIl(jx) = jlJl(x)
[47](9.6.3, 9.1.35).

We now have a series forR(k)
Z [m,n] with lth term:

Il(κk)

πI0(κk)

∫ π

−π

cos [l(ϑ+ θm,n − θk)] e
j ωc

c
dm,n sinϑdϑ

(a)
=

Il(κk)

πI0(κk)

{
cos
[
l
(
θk − θm,n −

π

2

)]

·
∫ π

−π

cos lϑ ej
ωc
c
dm,n cosϑdϑ

+ sin
[
l
(
θk − θm,n −

π

2

)]

·
∫ π

−π

sin lϑ ej
ωc
c
dm,n cosϑdϑ

}

(b)
=

2Il(κk)

I0(κk)
Il

(
j
ωc

c
dm,n

)
cos
[
l
(
θk − θm,n −

π

2

)]

(c)
=

2jlIl(κk)

I0(κk)
Jl

(ωc

c
dm,n

)
cos
[
l
(
θk − θm,n −

π

2

)]

Equality (a) is obtained with some standard trigonometric
identities and a shift by−π

2 of the variable of integration.
Equality (b) follows from the standard integral representation
of Il ( [47] 9.6.19). The second integrand is antisymmetric
which leads the integral over the unit-circle to vanish. Finally
(c) is a consequence ofIl(jx) = jlJl(x) again. Hence:

R
(k)
Z [m,n] =J0

(ωc

c
dm,n

)

+
2

I0(κk)

∞∑

l=1

jlIl(κk)Jl

(ωc

c
dm,n

)

· cos
[
l
(
θk − θm,n −

π

2

)]
.
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