Design and Analysis of LT Codes with

Decreasing Ripple Size

Jesper H. SgrenserPetar Popovskj Jan Jstergaatd
*Aalborg University, Department of Electronic Systems, BHM{jhs, petarp,
jo}@es.aau.dk

Abstract

In this paper we propose a new design of LT codes, which deesethe amount of necessary
overhead in comparison to existing designs. The designsxwn a parameter of the LT decoding
process called the ripple size. This parameter was also elezgent in the design proposed in the
original work by Luby. Specifically, Luby argued that an LTdeoshould provide a constant ripple size
during decoding. In this work we show that the ripple sizewtialecrease during decoding, in order
to reduce the necessary overhead. Initially we motivate ¢kaim by analytical results related to the
redundancy within an LT code. We then propose a new desigredtoe, which can provide any desired
achievable decreasing ripple size. The new design proeddwvaluated and compared to the current
state of the art through simulations. This reveals a sigmifiéncrease in performance with respect to

both average overhead and error probability at any fixedhmaat.

. INTRODUCTION

arXiv:1011.2078v2 [cs.IT] 7 Jun 2012

Rateless codes are capacity approaching erasure cogexdes. Common for all rateless
codes is the ability to generate a potentially infinite antaenencoded symbols from input
symbols. Decoding is possible when @) encoded symbols have been received, whelie
close to zero. The generation of encoded symbols can be domieedly during transmission,
which means the rate of the code decreases as the trangmssiceeds, as opposed to fixed
rate codes, hence the name. Rateless codes are attractive their flexible nature. Regardless
of the channel conditions, a rateless code will approachcki@nel capacity without the need
for feedback. Moreover, practical implementations of leste codes can be made with very low

encoder and decoder complexity. The most successful eesngoe LT codes [1] and Raptor

October 23, 2018 DRAFT

http://arxiv.org/abs/1011.2078v2

codes [[2]. Originally rateless codes were intended forabddi file downloading in broadcast
channels([3]. However, lately rateless codes have drawnifignt interest in the area of mobile
multimedia broadcast [4]| [5].

LT codes were developed by Luby and were the first practiqadcity achieving rateless code.
A key part of Luby’s design was the degree distribution, wWhie essential to a well-performing
LT code. Initially Luby presented the Ideal Soliton distdion (ISD), which was shown to
be optimal in terms of overhead, assuming that random psesefllow expected behavior.
By this we mean that when modeling the encoding and decodingepses for analysis, all
random variables are assigned their expected value. Opbietavior is achieved with the ISD,
by keeping a parameter called the ripple size constanthaleguone throughout the decoding
process. This parameter is described in details in seClioh fipple size above one introduces
overhead, while decoding fails if the ripple size hits zdfor this reason the ISD is optimal in
theory, however, it lacks robustness against varianceeinipiple size, which makes it inapplicable
in practice. In order to counter this problem, Luby devetbplee Robust Soliton distribution
(RSD), which aims at ensuring a ripple size larger than oeesgtiill constant. The performance
of the RSD is significantly better than that of the ISD, andsithe de facto standard for LT
codes.

In [6] the authors address the problem of finding a degreéldision, which provides a ripple
of a given predefined constant size Initially, they show that such a degree distribution does
not exist for highk, and then describe an approximate solution[In [7] the wagaof the ripple
size is derived with the purpose of designing a robust dedistebution. The analysis is based
on an assumption, which makes it valid for only “most of theating process”. The authors
state that their next step is to work around this assumpitoorder to solve the design problem.
Design criteria based on the ripple size is also applied jraf@l [9]. In [8] the goal is to find
optimal degree distributions for recovery of only a frantio < >z < 1 of the £ input symbols,
while [9] aims at achieving unequal error protection actbest symbols. Both papers leverage
on the analytical results of [10]-[12].

In this work we analyze the trade-off between robustnessaggariance in the ripple size
and required overhead (the amount of encoded symbols, iesexafk, necessary in order to
successfully decode, i.ek). Contrary to[[8] and[[9] we focus on the traditional LT codéjere

all data have equal importance and must be decoded. We drgti¢ghe optimal robust degree

October 23, 2018 DRAFT

distribution for LT codes does not seek a constant ripple. $®ather a degree distribution should
ensure a ripple size which decreases during the decodirmgssoWe present a design procedure
of such degree distributions and show that they outperfooth the RSD and the distribution
developed in[[6].

The remainder of this paper is organized as follows. Seéliprovides a brief overview of LT
codes, explaining the encoding and decoding processeseéémt parameters. The analytical
work of this paper is presented in sectiod Ill, while simigatresults are given in sectionllV.

Finally, conclusions are drawn in sectioh V.

[I. BACKGROUND
A. LT Codes

In this section an overview of traditional LT codes is givétssume we wish to transmit a
given amount of data, e.g. a file or segment of a video strednis. data is divided intd input
symbols. From these input symbols a potentially infinite amount afaeled symbols, also called
output symbols, are generated. Output symbols are XOR combinations oftisponbols. The
number of input symbols used in the XOR is referred to asdtdgeee of the output symbol, and
all input symbols contained in an output symbol are calieidhbors of the output symbol. The
output symbols of an encoder follow a certain degree digtion, (2(d), which is a key element
in the design of good LT codes. The encoding process of an OE can be broken down into

three steps:

[Encoder]

1) Randomly choose a degréeéby samplingQ2(d).

2) Choose uniformly at randoma of the £ input symbols.

3) Perform bitwise XOR of thel chosen input symbols. The resulting symbol is the output

symbol.

This process can be iterated as many times as needed, wkidtsra a rateless code.

Decoding of an LT code is based on performing the reverse X@&ations. Initially all
degree one output symbols are identified and their neighgariput symbols are moved to a
storage referred to as thigple. Symbols in the ripple arprocessed one by one, which means

they are removed as content from all buffered symbols tHioX@R operations. Once a symbol

October 23, 2018 DRAFT

has been processed, it is removed from the ripple and caesidikecoded. The processing of
symbols in the ripple will potentially reduce some of the fbtgéd symbols to degree one, in
which case the neighboring input symbols are moved to thglaipThis is called a symbol
release. This makes it possible for the decoder to process symbaiSBremusly in an iterative

fashion. The iterative decoding process can be explaineédansteps:

[Decoder]

1) Identify all degree-1 symbols and add the neighboringiirgymbols to the ripple.

2) Process a symbol from the ripple and remove it afterwaedsto step 1.

Decoding is successful when all input symbols have beenvesed. If at any point before
this, the ripple size equals zero, decoding has failed. Timts that a well performing LT code
should ensure a high ripple size during the decoding pro¢éssever, when an output symbol
is released, there is a risk that the neighboring input synsbalready in the ripple, in which
case the output symbol is redundant. Hence, to minimizeisteof redundancy, the ripple size
should be kept low. This trade-off was the main argument fier design goal in|1], that the

ripple size should be kept constant at a reasonable levekate.

[1l. ANALYSIS

It is clear from the description of LT codes in sectian Il,tth@e ripple size is a very important
parameter. The evolution of the ripple size is determinedhgy degree distribution. Thus, to
obtain high decoding performance, the degree distribugloould be chosen carefully, such that
a desirable ripple evolution is achieved. The relation leetwthe degree of an encoded symbol
and the point of release was derived by Luby in Propositiom 71i. By point of release,
we mean the point in the decoding process, where the symhbetlisced to degree one and the
neighboring input symbol is potentially added to the ripfiés parameterized by, the number
of remaining unprocessed symbols. The relationship isngagea probability distribution, which
expresses the release probability as a functioh ahd the original degred, Fig.[1 is a plot of
the function for a number of fixed degrees= 2,4, 6, 10,20, andk = 100. The figure clearly
shows that as the degree increases, the symbol is more tikélg released late in the decoding

process, which follows intuition and the results lof [[13].viver, it also shows that already at

October 23, 2018 DRAFT

quite low degrees, there is a significant probability thatskimbol is not released until very late
in the decoding process.

Luby’s Proposition 7 expresses the release probability anld therefore does not take into
account the probability of a redundant symbol, i.e. whenatigeved input symbol is already
in the ripple. We show in Lemmid 1, that it is possible to take thdundancy into account and

thereby express how the ripple additions are distributed.

Lemma 1. (Release and Ripple Add Probability): Consider an LT code with an arbitrary degree
distribution Q(d), d = 1, ..., k. The probability, ¢(d, L, R), that a symbol of degree d is released
and added to the ripple, when L out of £ input symbols remain unprocessed, given that the
ripple sizeis R at the point of release, is

q(1,k,0) =1,
AL R) = dd—1)(L - R +d1_)1Hj;O (k —(L+1) —j)’
Hj:O (k—17)
ford=2,...,k,

R=1.,k—d+1,
L=R,.,k—d+1,
q(d,L,R) =0, for all other d, L and R.
Proof: As in the proof of Proposition 7 in_[1], this is the probabjlithat d — 2 of the
neighbors are among the firét— (L + 1) processed symbols, one neighbor is the symbol

processed at step — L, and the last neighbor is among tlhe— R + 1 unprocessed symbols,

which are not already in the ripple. This holds regardlesthefchoice of2(d). Hence,

October 23, 2018 DRAFT

o O
(3)
(L - R + 1) T ((k—(L-i-l))!

(k—(L+1)—(d—2))!
k!

d!(k—d)!
(L — R+ 1)d\(k —d)!(k— (L +1))!
(d—2)'k!(k — (L +1) — (d —2))!
d(d—1)(L—R+)T['Z0 (k— (L+1))
T195 (k — 5) '

u
Using LemmdIl we can also express the probability that a géyembol is never added to

the ripple, i.e. that it is redundant. This is done in Lenitha 2.

Lemma 2. (Redundancy Probability): Consider an LT code with an arbitrary degree distribution
Q(d), d =1,...,k. Assuming a constant ripple size R during a successful decoding, i.e. where

all input symbols are recovered, the probability of a symbol with degree d being redundant is
k—d+1

r(d,R)=1- > q(d,L,R)

L=R

for d=2,... k- R—+1,

R=1,.,k—1.

Proof: When summing;(d, L, R) for all L, we get the probability that the symbol, at some
point, will be released and its neighbor added to the ripplee remaining probability mass
accounts for the events where the symbol is released, butdeso an input symbol which is
already in the ripple. When this happens the symbol is redond [|

Lemmal2 is quite important, since it tells us much about whettundancy occurs in an LT
code. Fig[2 shows a plot ofd, R) for k£ = 100. Note thatr(d,1) = 0, V d, which was expected,
since a ripple size of one means that a released symbol haspeabability of providing an
input symbol already being in the ripple. That is why the Id8aliton distribution is optimal
for expected behavior. However, we must have a more robppterisize, and even a only

slightly larger than one, high degree symbols are very yikel be redundant. In general, ds

October 23, 2018 DRAFT

increasesy(d, R) becomes a faster increasing functionfoafThe following fact can be deduced
from Figs.[1 and12:

Fact. Early in the decoding process, when mostly low degree sysnb released, a ripple
size larger than one induces a relatively low probabilityedundancy. Conversely, late in the
decoding process, when high degree symbols are releasgmhla size larger than one induces

a relatively high probability of redundancy.

As mentioned in sectionlll, Luby sets forth a design goal ofifiga a constant ripple size at a
reasonable level above one. More specifically, he argueditbaxpected ripple should be kept at
aboutln(k/6)vk, wheres is a design parameter and reflects the maximum error pratyaihis
choice of expected ripple size evolution was motivated ey ttade-off between overhead and
robustness against variance in the ripple size. Howeverirtsight gained from Lemmas 1 and
indicate that a well balanced trade-off is achieved witlfieereasing ripple size. A decreasing
ripple size evolution is the target in the design of Raptataso[2], which is a concatenation of an
LT code and a fixed rate pre-code. The aim is to decode onlya faaction of the input symbols
by means of the LT code, and let the pre-code provide the rengasymbol values. This code
structure justifies a decreasing ripple size evolutiongesia failure near the end is accounted for
through a concatenated error-correcting code. Howeveagrgige that even without the pre-code,
i.e. for an LT code only, the ripple size should decreasendutine decoding process, since this
provides a better trade-off between overhead and robisegainst ripple variance. How the

ripple size should decrease during decoding is analyzelderfdllowing subsection.

A. Choosing a Ripple Evolution

In the design of Raptor codes, the choice of ripple size éwmiuwvas based on a random
walk model of the ripplel[2]. It was assumed that the rippleeseither increases with one or

decreases with one, with equal probabilities, in each dagostep. Thus,

R(L)+1, w. prob.1,
r-1={"" Prob- W
R(L)—1, w. prob.3,
where R(L) is the ripple size wher input symbols remain unprocessed. This model is the

simple symmetric one-dimensional random walk model, foiciithe theory is well established

October 23, 2018 DRAFT

[14]. One element is the second momeht, whereA is the position relative to the origin. The
second moment grows linearly with the number of steps in ta&w\V, such tha‘rA—%, = N (see
[14], page 6). The second moment quantifies the varianceeadrtding point of the random walk,
and is thus particularly interesting in the context of LT esdWhenL input symbols remain
unprocessed], steps remain in the random walk, and th\é = L, whereA, = R(0) — R(L).

In [2] it was heuristically argued that the expected rippishould be kept in the order of the
root mean square (RMS) distance from the origin, defineq/a?% = +/L. Hence, the target
ripple size evolution for Raptor codes i%(L) = c¢v/L for k > L > 0, wherec is a suitably
chosen constant. This is an example of a decreasing ripplésghus a candidate for our design
of an LT code. However, we will now show that ripple size ewmlns with exponents of.
lower than3 should be considered.

The random walk model applied in the design of Raptor codsirplified and heuristic, which
the author itself is the first to mention. There are severahpmena in the LT decoder, which are
not accounted for, such as additions of multiple symbols single step and absorbing barriers
at R(L) = L and R(L) = 0. It is outside the scope of this paper to create an accurationa
walk model of the ripple. However, there is one particulaemdmena which greatly influences
how the ripple size evolves, and that is the bias towards Z&@ecoding progresses, the ripple
size will inevitably end up equal to zero, it is just a mattémdnen. The bias is explained by
the increasing probability that a new recovered symbolrisaaly in the ripplep, = %,
whereR(L + 1) is the ripple size after the previous decoding step. We rgdti# random walk
model in order to take this into account.

Consider the event tree in Figuré 3. It illustrates possiblmbers of released symbols and
corresponding possible numbers of symbols added to théerippa decoding step. These are
indicated by the values breaking the line of the arrows. Assample, an arrow broken by
a zero in the column named "Releases”, refers to the evententhe processing of a symbol
results in no new symbols being released. Similarly, thevafsroken by a zero under "Ripple
additions”, refers to the event where none of the releasadbels provide an input symbol
which is added to the ripple. The value next to an arrow is ttwbability of the event. The
event tree is constructed based on the simplifying assemptiehind[{1), with the modification
that redundancy is taken into account. This limits the gmesiumbers of released symbols to

0 or 2 and possible numbers of symbols added to the ripple, tb or 2. If we disregard the

October 23, 2018 DRAFT

probability of redundancy, i.es, = 0, the event tree reduces to the simple random walklin (1).
However, if we take a non-zerg. into account, then probability mass is moved from outcome
+1 to outcomes+0 and —1, which provides the bias towards a ripple size of zero. Ireotd
ensure an initial bias of zero, we only take the increase dumdancy probability into account,
i.e. pl. = p, — po, Wherep,, is the probability of redundancy & — L = 0. We now arrive at

the following random walk model:

R(L)+1, w.prob.i(1—p.)?
R(L—1)= < R(L), w. prob.p.(1 — pl), (2)
R(L) =1, w. prob.1+ 1p2.

The random walk in(2) has a variable bias. Such a random walkrplicated to analyze, thus
to find the RMS distance from the origin as a function/gfwe use a Monte Carlo simulation.
The result is shown in Figufé 4. It is evident that the squact relationship withl is no longer
accurate. The figure suggests thai\2 = ¢, L(1/<2), wherec; > 0 and¢, > 2, is better able to
capture the dynamics of the RMS distance. Hence, in thisrpapewill investigate ripple size

evolutions of the following form:

R(L) = ¢ L1/e2) if c;L(/2) <[,
R(L)=1L if ;L2 > [,
for suitably choserr; > 0 andcy, > 2. 3)

B. Achieving the Desired Ripple

Now that we have chosen a target expected ripple size ewolutiremains to be shown how
to achieve this target. IR(L) is the desired ripple size wheh symbols remain unprocessed,
then the expected amount of symbols that must be added tipthle m the (k£ — L)'th decoding

step is

Q(L) = R(L), for L = k,

Q(L) = R(L) — R(L+1) + 1, for k> L > 0. @)

October 23, 2018 DRAFT

10

The achieved)(L) depends on the degree distribution and is expresséd in {3y uemma
.

Q(L) = nd)q(d, L, R(L + 1)), (5)

where n is the number of received symbols included in the decodiby.i§ based on the
assumption that all releases in a single step are uniquegheesame input symbol will not be
recovered twice within a single step. This is a valid assuwnptsince the expected number of
releases in a single step is small compared. to

If R(k+1) is defined as zero (ripple size before decoding starts) alf@fing matrix equation
can be constructed:

q(1,k,R(E+1)) 0 0 n§(1) Q(k)
: ' 0 o= (6)
q(1,1L,R(2)) - q(k1,R(2)| [nQ(k) Q(1)

where the LHS is based ohl (5) and the RHS is the targéf in (4e that this equation provides
a solution to how then received symbols should be distributed across the posdideees.
Hence, sincen is free, it acts as the normalization factor, in order tovarrat a valid degree
distribution, as well as a measure of how many symbols musioliected in order to achieve
the targetR(L). This matrix equation is singular for high However, finding a least squares
nonnegative solution provides a ripple evolution very elés the target. Tablg | and Takle Il
show solutions foR(L) = 1.7LY/%® atk = 256 and R(L) = 1.9LY/%*6 atk = 1024, respectively.
These solutions have error vectors with squared nornsiol 1 and0.0048, respectively, which
are negligible. The procedure explained in this subsediansimple approach to the design of

a degree distribution having any achievable expectede&ipjde evolution.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed degreehiitbn, 2(d), is simulated and
compared to the RSD and the distribution proposed_ in [6]pteh3(d). We will compare the
average overhead required for successful decoding, i.enveli &£ input symbols have been

recovered. Moreover, we evaluate the block error rate asatiin of the overhead in order

October 23, 2018 DRAFT

11

to show a more complete picture of the performance of theilligions. The distributions are
simulated atk = {256, 512, 1024, 2048}.

Initially, we present a numerical optimization of the desjgarameters fof)(d), ¢; and c,,
and the RSD¢ and é. The optimization is performed with respect to the averagerteead
through 5000 iterations. Tablé Tll and Table IV show the results for= 1024 and a selected
set of combinations of the design parameters. Similarlyhaee optimized the parameters for
k = 256,512 and 2048. Optimized2(d) for k£ = 256 and &k = 1024 are shown in Tablél |
and Table]I, respectively. It should be noted, that a desigthe RSD withé > 1 seems not
very reasonable, given the interpretation of that parametethe maximum error probability.
However, the analysis for finding the bound of the error pbaiig in [L] is very conservative
and therefore the interpretation is not entirely accuratais,§ > 1 should still be considered,
and as the results show, it provides the better performancaverage.

Fig. (B shows a comparison of the optimized degree distobstiwith respect to average
overhead for different values @f. It clearly shows that the proposed design with a decreasing
ripple size outperforms the other designs on average.[fFghdsvs how the different designs
perform at fixed overheads with respect to block error rate-at1024 for 100000 iterations. This
figure shows that the gain on average is not achieved throagipomising the performance
at high overheads. At any overhead, the proposed desigrmdesoa clear improvement. Finally,
Fig.[4 shows a plot of the performance of all parameter paifable 1V for the RSD, compared
to the single optimized version 6f(d). This shows that the optimized(d) outperforms all the
simulated RSDs at any fixed overhead. Relative results airtol what is shown in figurég 6 and
[7] are observed dt equal t0256, 512 and 2048.

V. CONCLUSIONS

In this paper we have analyzed the sources of redundancy inodEs. We arrived at the
conclusion, that the probability of a symbol being reduntdsua much faster increasing function
of the ripple size when the symbol degree is high comparechnit is low. This means that the
price of maintaining a high ripple size increases duringdbeoding process, since high degree
symbols are utilized late in the decoding process. Moto/éte this result, we proposed a design
with a decreasing ripple size, as opposed to the originalesly of keeping it constant. A simple

design procedure, which can provide any achievable taigplersize evolution was presented

October 23, 2018 DRAFT

12

and the resulting degree distributions evaluated. Thelteeshow a significant performance
increase compared to state of the art degree distributimil, with respect to average overhead

and block error rate at any fixed overhead.

REFERENCES

[1] M. Luby, “LT Codes,” in Proceedings. The 43rd Annual |EEE Symposium on Foundations of Computer Science., pp. 271—
280, November 2002.
[2] A. Shokrollahi, “Raptor codes,JEEE Transactions on Information Theory., pp. 2551-2567, 2006.
[3] J. W. Byers, M. Luby, and M. Mitzenmacher, “A Digital Fo@in Approach to Asynchronous Reliable MulticadEEE
Journal on Selected Areas in Communications., pp. 1528-1540, 2002.
[4] D. Sejdinovie, D. Vukobratovi¢, A. Doufexi, \6enk, and R. J. Piechocki, “Expanding Window Fountain Cédiesinequal
Error Protection,” [EEE Transactions on Communications., pp. 2510-2516, 2009.
[5] J. Wagner, J. Chakareski and P. Frossard, “StreamingcafaBle Video from Multiple Servers using Rateless Codies,”
IEEE International Conference on Multimedia and Expo., pp. 1501-1504, 2006.
[6] H. Zhu, G. Zhang and G. Li, “A Novel Degree Distributiongdrithm of LT Codes,” inl1th |EEE International Conference
on Communication Technology., pp. 221-224, 2008.
[7] G. Maatouk and A. Shokrollahi, “Analysis of the Second flent of the LT Decoder,” inEEE International Symposium
on Information Theory., pp. 2326—2330, 2009.
[8] S. Sanghavi, “Intermediate Performance of Ratelesse€ddin |IEEE Information Theory Workshop., pp. 478-482, 2007.
[9] S. Karande, K. Misra, S. Soltani, and H. Radha, “Desigd analysis of generalized lt-codes using colored ripplas,”
Information Theory, 2008. IS T 2008. |EEE International Symposium on, pp. 2071-2075, July 2008.
[10] R. Darling and J. Norris, “Structure of large random &ggraphs,’Annals of Applied Probability, vol 15, no. 1A, pp. 125—
152, 2005.
[11] E. Maneva and A. Shokrollahi, “New model for rigorousafysis of LT code,” inlEEE International Symposium on
Information Theory., pp. 2677-2679, 2006.
[12] B. Hajek, “Connections between network coding and Isastic network theory,” irocastic Networks Conference., 2006.
[13] A. Kamra, J. Feldman, V. Misra and D. Rubenstein, “Gilovetodes: Maximizing sensor network data persistence,”
S GCOMM, 2006.

[14] J. Rudnick and G. Gaspari, “Elements of the random waitkintroduction for advanced students and researcher84.20

October 23, 2018 DRAFT

FIGURES

0.09

0.08

0.07

0.06

0.05

0.04

0.03

Release probability

0.02

0.01

13
T T T T T T T T T
- d=20 .
d=10
d=6
d=2 d=4
| | 1 | I
0 10 20 30 40 50 60 70 80 90 100
Decoding step (k-L)
Fig. 1. The release probability as a function of the decodirep for fixed degrees.
DRAFT

October 23, 2018

FIGURES 14

100 1
90 10.9
80 10.8
70 10.7
)
N 60 10.6
n
)
— 0.5
% 50
E 40 0.4
30 0.3
20 0.2
10 0.1
0
10 20 30 40 50 60 70 80 90 100
Degree

Fig. 2. The probability of an encoded symbol being redundent function of its degree and the ripple size at the point of
release.

October 23, 2018 DRAFT

FIGURES

Releases Ripple additions
+1
(1 ‘pr)2
0.5 1 Z
2p(1-py)
R(L) , @ +0
Pr

0.5 \
| 1
0 -1

Fig. 3. An event tree illustrating the possible numbers téases and additions to the ripple in a single decoding step.

October 23, 2018

DRAFT

FIGURES 16

35 T T T T T T T T T T
A
i Iy \
30_ W would r‘] T
e AT
25 f il —
o} T
(]
20t i .
iz _ l?
e} -
N 15+ - o -
= 7
s ’
10 7 i
/
c a —— Var. Bias Random Walk]|
/ - = -2.6L1/27
12 AP L(1/2)
0 | | | | | I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Decoding step (k-L)

Fig. 4. Simulation of the proposed random walk model congbaoeselected relationships with.

October 23, 2018 DRAFT

FIGURES 17

1.22

=
N

a)

-
=
H
(o]

1.16

1.14

1.12

Average overhead (1
N

1.08

1.06

400 600 800 1000 1200 1400 1600 1800 2000
k

Fig. 5. Comparison of optimized degree distributions wigbpect to average overhead.

October 23, 2018 DRAFT

FIGURES 18
10° F ~ T T T T T T T T
F A\ - - - - Q (d)
Y —RSD
N e B(d)
107 \ g
q) \
4;% \
b \
;5 \
5 10” 3 N 3
F \
3 N
Q N\
\
M . .
10 " \ E
AN
N
N
AN
\
10‘4 I I I b I I I I I
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Overhead (1 + «)
Fig. 6. Comparison of optimized degree distributions wigspect to block error rate.
DRAFT

October 23, 2018

19

FIGURES

10° ¢

93el 10110 O[]

Overhead (

)

+ «

1

Fig. 7. Comparison of optimizef2(d) with all RSDs in Tabldé V.

DRAFT

October 23, 2018

TABLES

DEGREE DISTRIBUTION FORR(L) = 1.7L'/%5 AT

October 23, 2018

TABLE |
k = 256.
| d | 2@
1 | 0.0534
2 | 0.4530
3 | 0.1538
4 | 00784
5 | 0.0542
7 [0.0750
12 | 0.0392
13 | 0.0200
25 | 0.0266
26 | 0.0090
57 | 0.0152
58 | 0.0057
138 | 0.0067
139 | 0.0098

20

TABLE 1l
DEGREE DISTRIBUTION FORR(L) = 1.9L'/%6 AT
k = 1024.

L d [2
1 0.0250
2 0.4750
3 0.1600
4 0.0784
5 0.0605
7 0.0633
8 0.0109
12 | 0.0516
13 | 0.0003
22 | 0.0229
23 | 0.0097
45 | 0.0163
46 | 0.0024
98 | 0.0001
99 | 0.0104
236 | 0.0021
237 | 0.0043
601 | 0.0012
602 | 0.0057

DRAFT

TABLES 21

TABLE Il
AVG. OVERHEAD (1 +) OF Q FORE = 1024 AND VARYING c1 AND c3.

[ai\e2 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
10 [1131 1129] 1.129] 1.132 1.130] 1.133] 1.133
11 | 1126 1.123] 1.122 | 1.124| 1.126] 1.127 | 1.125
12 | 1117 1118 1.117| 1118 1.119] 1.120 | 1.120
13 [1109 1111 1.109 | 1.110 | 1.115] 1.114| 1.114
14 | 1,099 1.100| 1.102 | 1.102 | 1.105] 1.105| 1.105
15 | 1.093| 1.092 | 1.094 | 1.093 | 1.094 | 1.097 | 1.099
1.6 | 1.092| 1.092 | 1.091 | 1.091 | 1.092 | 1.092 | 1.093
1.7 | 1,090 1.089 | 1.090 | 1.091 | 1.090 | 1.090 | 1.092
1.8 | 1.093| 1.089 | 1.087 | 1.088 | 1.087 | 1.089 | 1.090
1.9 | 1.092| 1.094 | 1.126 | 1.088 | 1.087 | 1.088 | 1.089
2.0 | 1.093| 1.090 | 1.090 | 1.091 | 1.095| 1.127 | 1.091
2.1 | 1.105| 1.094 | 1.090 | 1,090 | 1.090 | 1.090 | 1.091
2.2 | 1.109| 1.284 | 1.101 | 1,093 | 1.090 | 1.089 | 1.089

October 23, 2018 DRAFT

TABLES 22

TABLE IV
AVG. OVERHEAD (1 + a) OF RSDFORE = 1024 AND VARYING ¢ AND 4.

[\] 05] 1.0 [15 [20 | 30 | 40 | 50 |
0.01 | 1.197| 1.207| 1.213| 1.224 | 1.236 | 1.251 | 1.259
0.02 | 1.139| 1.143| 1.146| 1.152 | 1.158 | 1.168 | 1.172
0.03| 1.126| 1.126 | 1.126 | 1.127 | 1.128 | 1.136 | 1.140
0.04| 1.126| 1.121| 1.118| 1.118 | 1.117 | 1.120 | 1.125
0.05| 1.132| 1.121| 1.118| 1.117| 1.115| 1.114| 1.116
0.06 | 1.139| 1.126| 1.119| 1.116| 1.112| 1.111 | 1.112
0.07 | 1.145| 1.130| 1.123| 1.118 | 1.114 | 1.111 | 1.111
0.08 | 1.155| 1.138 | 1.129| 1.121 | 1.115| 1.113| 1.112
0.09 | 1.165| 1.145| 1.133| 1.127| 1.119| 1.115| 1.113
0.10 | 1.174| 1.151| 1.139| 1.132 | 1.122 | 1.118| 1.114

October 23, 2018 DRAFT

	I Introduction
	II Background
	II-A LT Codes

	III Analysis
	III-A Choosing a Ripple Evolution
	III-B Achieving the Desired Ripple

	IV Numerical Results
	V Conclusions
	References

