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A Simplified Min-Sum Decoding Algorithm

for Non-Binary LDPC Codes

Chung-Li (Jason) Wang, Xiaoheng Chen, Zongwang Li, and Shaohua Yang

Abstract

Non-binary low-density parity-check codes are robust to various channel impairments. However,

based on the existing decoding algorithms, the decoder implementations are expensive because of their

excessive computational complexity and memory usage. Based on the combinatorial optimization, we

present an approximation method for the check node processing. The simulation results demonstrate that

our scheme has small performance loss over the additive white Gaussian noise channel and independent

Rayleigh fading channel. Furthermore, the proposed reduced-complexity realization provides signifi-

cant savings on hardware, so it yields a good performance-complexity tradeoff and can be efficiently

implemented.

Index Terms

Low-density parity-check (LDPC) codes, non-binary codes, iterative decoding, extended min-sum

algorithm.

I. INTRODUCTION

Binary low-density parity-check (LDPC) codes, discovered by Gallager in 1962 [1], were

rediscovered and shown to approach Shannon capacity in the late 1990s [2]. Since their redis-
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covery, a great deal of research has been conducted in the study of code construction methods,

decoding techniques, and performance analysis. With hardware-efficient decoding algorithms

such as the min-sum algorithm [3], practical decoders can be implemented for effective error-

control. Therefore, binary LDPC codes have been considered for a wide range of applications

such as satellite broadcasting, wireless communications, optical communications, and high-

density storage systems.

As the extension of the binary LDPC codes over the Galois field of order q, non-binary

LDPC (NB-LDPC) codes, also known as q-ary LDPC codes, were first investigated by Davey

and MacKay in 1998 [4]. They extended the sum-product algorithm (SPA) for binary LDPC codes

to decode q-ary LDPC codes and referred to this extension as the q-ary SPA (QSPA). Based

on the fast Fourier transform (FFT), they devised an equivalent realization called FFT-QSPA

to reduce the computational complexity of QSPA for codes with q as a power of 2 [4]. With

good construction methods [5]–[9], NB-LDPC codes decoded with the FFT-QSPA outperform

Reed-Solomon codes decoded with the algebraic soft-decision Koetter-Vardy algorithm [10].

As a class of capacity approaching codes, NB-LDPC codes are capable of correcting symbol-

wise errors and have recently been actively studied by numerous researchers. However, despite the

excellent error performance of NB-LDPC codes, very little research contribution has been made

for VLSI decoder implementations due to the lack of hardware-efficient decoding algorithms.

Even though the FFT-QSPA significantly reduces the number of computations for the QSPA,

its complexity is still too high for practical applications, since it incorporates a great number

of multiplications in probability domain for both check node (CN) and variable node (VN)

processing. Thus logarithmic domain approaches were developed to approximate the QSPA,

such as the extended min-sum algorithm (EMSA), which applies message truncation and sorting

to further reduce complexity and memory requirements [11], [12]. The second widely used

algorithm is the min-max algorithm (MMA) [13], which replaces the sum operations in the CN

processing by max operations. With an optimal scaling or offset factor, the EMSA and MMA
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can cause less than 0.2 dB performance loss in terms of signal-to-noise ratio (SNR) compared

to the QSPA. However, implementing the EMSA and MMA still requires excessive silicon area,

making the decoder considerably expensive for practical designs [14]–[17]. Besides the QSPA

and its approximations, two reliability-based algorithms were proposed towards much lower

complexity based on the concept of simple orthogonal check-sums used in the one-step majority-

logic decoding [18]. Nevertheless, both algorithms incur at least 0.8 dB of SNR loss compared

to the FFT-QSPA. Moreover, they are effective for decoding only when the parity-check matrix

has a relatively large column weight. Consequently, the existing decoding algorithms are either

too costly to implement or only applicable to limited code classes at cost of huge performance

degradation.

Therefore, we propose a reduced-complexity decoding algorithm, called the simplified min-

sum algorithm (SMSA), which is derived from our analysis of the EMSA based on the combina-

torial optimization. Compared to the QSPA, the SMSA shows small SNR loss, which is similar

to that of the EMSA and MMA. Regarding the complexity of the CN processing, the SMSA

saves around 60% to 70% of computations compared to the EMSA. Also, the SMSA provides an

exceptional saving of memory usage in the decoder design. According to our simulation results

and complexity estimation, this decoding algorithm achieves a favorable tradeoff between error

performance and implementation cost.

The rest of the paper is organized as follows. The NB-LDPC code and EMSA decoding are

reviewed in Section II. The SMSA is derived and developed in Section III. The error performance

simulation results are summarized in Section IV. In Section V, the SMSA is compared with the

EMSA in terms of complexity and memory usage. At last, Section VI concludes this paper.

II. NB-LDPC CODES AND ITERATIVE DECODING

Let GF(q) denote a finite field of q elements with addition ⊕ and multiplication ⊗. We will

focus on the field with characteristic 2, i.e., q = 2p. In such a field, each element has a binary
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representation, which is a vector of p bits and can be translated to a decimal number. Thus we

label the elements in GF(2p) as {0, 1, 2, . . . 2p − 1}. An (n, r) q-ary LDPC code C is given by

the null space of an m×n sparse parity-check matrix H = [hi,j] over GF(q), with the dimension

r.

The parity-check matrix H can be represented graphically by a Tanner graph, which is a

bipartite graph with two disjoint variable node (VN) and check node (CN) classes. The j-th VN

represents the j-th column of H, which is associated with the j-th symbol of the q-ary codeword.

The i-th CN represents its i-th row, i.e., the i-th q-ary parity check of H. The j-th VN and i-th

CN are connected by an edge if hi,j 6= 0. This implies that the j-th code symbol is checked by the

i-th parity check. Thus for 0 ≤ i < m and 0 ≤ j < n, we define Ni = {j : 0 ≤ j < n, hi,j 6= 0},

and Mj = {i : 0 ≤ i < n, hi,j 6= 0}. The size of Ni is referred to as the CN degree of the i-th

CN, denoted as |Ni|. The size of Mj is referred to as the VN degree of the j-th VN, denoted as

|Mj|. If both VN and CN degrees are invariable, letting dv = |Mj| and dc = |Ni|, such a code

is called a (dv, dc)-regular code. Otherwise it is an irregular code.

Similarly as binary LDPC codes, q-ary LDPC codes can be decoded iteratively by the message

passing algorithm, in which messages are passed through the edges between the CNs and VNs.

In the QSPA, EMSA, and MMA, a message is a vector composed of q sub-messages, or simply

say, entries. Let λj = [λj(0), λj(1), . . . , λj(q − 1)] be the a priori information of the j-th code

symbol from the channel. Assuming that Xj is the j-th code symbol, the d-th sub-message of λj

is a log-likelihood reliability (LLR) defined as λj(d) = log(Prob(Xj = zj)/Prob(Xj = d)). zj is

the most likely (ML) symbol for Xj , i.e., zj = arg maxd∈GF(q) Prob(Xj = d), and z = [zj]j=1...n.

The smaller λj(d) is, the more likely Xj = d is. Let αi,j and βi,j be the VN-to-CN (V2C)

and CN-to-VN (C2V) soft messages between the i-th CN and j-th VN respectively. For all

d ∈ GF(q), the d-th entry of αi,j , denoted as αi,j(d), is the logarithmic reliability of d from

the VN perspective. ai,j is the symbol with the smallest reliability, i.e., the ML symbol of the

V2C message. With xi,j = Xj ⊗ hi,j , we let αi,j(d) = log(Prob(xi,j = ai,j)/Prob(xi,j = d)) and
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αi,j(ai,j) = 0. bi,j and βi,j(d) are defined from the CN perspective similarly. The EMSA can be

summarized as follows.

Algorithm 1. The Extended Min-Sum Algorithm

Initialization: Set zj = arg mind∈GF(q) λj(d). For all i, j with hi,j 6= 0, set αi,j(hi,j ⊗ d) = λj(d).

Set κ = 0.

• Step 1) Parity check: Compute the syndrome z ⊗HT. If z ⊗HT = 0, stop decoding and

output z as the decoded codeword; otherwise go to Step 2.

• Step 2) If κ = κmax, stop decoding and declare a decoding failure; otherwise, go to Step 3.

• Step 3) CN processing: Let the configurations Li(xi,j = d) be the sequence [xi,j′ ]j′∈Ni such

that
∑⊕

j′∈Ni xi,j′ = 0 and xi,j = d. With a preset scaling factor 0 < c ≤ 1, compute the

C2V messages by

βi,j(d) = c · min
Li(xi,j=d)

∑
j′∈Ni\j

αi,j′(xi,j′). (1)

• Step 4) VN processing: κ ← κ + 1. Compute V2C messages in two steps. First compute

the primitive messages by

α̂i,j(hi,j ⊗ d) = λj(d) +
∑

i′∈Mj\i

βi′,j(hi′,j ⊗ d). (2)

• Step 5) Message normalization: Obtain V2C messages by normalizing with respect to the

ML symbol

ai,j = arg min
d∈GF(q)

α̂i,j(d). (3)

αi,j(d) = α̂i,j(d)− α̂i,j(ai,j). (4)

• Step 6) Tentative Decisions:

λ̂j(d) = λj(d) +
∑
i∈Mj

βi,j(hi,j ⊗ d). (5)
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zj = arg min
d∈GF(q)

λ̂j(d). (6)

• Go to Step 1.

III. A SIMPLIFIED MIN-SUM DECODING ALGORITHM

In this section we develop the simplified min-sum decoding algorithm. In the first part, we

analyze the configurations and propose the approximation of the CN processing. Then in the

second part, a practical scheme is presented to achieve the tradeoff between complexity and

performance.

A. Algorithm Derivation and Description

In the beginning, two differences between the SMSA and EMSA are introduced. First, the

SMSA utilizes ai,j (bi,j) as the V2C (C2V) hard message, which indicates the ML symbol given

by the V2C (C2V) message. Second, the reordering of soft message entries in the SMSA is

defined as:

α̃i,j(δ) = αi,j(δ ⊕ ai,j) (7)

β̃i,j(δ) = βi,j(δ ⊕ bi,j), (8)

for all i, j with hi,j 6= 0. While in the EMSA the arrangement of entries is made by the absolute

value, the SMSA arranges the entries by the relative value to the hard message, expressed and

denoted as the deviation δ. Thus before the CN processing of the SMSA, the messages are

required to be transformed from the absolute space to the deviation space.

Equation (1) performs the combinatorial optimization over all configurations. If we regard

the sum of reliabilities
∑

j′∈Ni\j αi,j′(xi,j′) as the reliability of the configuration [xi,j′ ]j′∈Ni , this

operation actually provides the most likely configuration and assigns its reliability to the result.

However, the size of its search space is of O(qdc) and leads to excessive complexity. Fortunately,
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in [11] it is observed that the optimization tends to choose the configuration with more entries

equal to the V2C hard messages. Therefore, if we define the order as the number of all j′ ∈ Ni\j

such that xi,j′ 6= ai,j′ , (1) can be reduced by utilizing the order-k subset, denoted as L(k)
i (xi,j = d),

which consists of the configurations of orders not higher than k. Limiting the size of the search

space gives a reduced-search algorithm with performance loss [11], so adjusting k can be used to

give a tradeoff between performance and complexity. We denote the order-k C2V soft message

by β(k) (with the subscript i, j omitted for clearness), i.e.

βi,j(d) ≤ β(k)(d) = min
L(k)i (xi,j=d)

∑
j′∈Ni\j

αi,j′(xi,j′), (9)

since L(k)
i (xi,j = d) ⊆ Li(xi,j = d). In the following context, we will show the computations

for the hard message and order-1 soft message. Then these messages will be used to generate

high-order messages. The hard message is simply given by Theorem 1.

Theorem 1. The hard message bi,j is determined by

bi,j ≡ arg min
d∈GF(q)

βi,j(d) =
∑

j′∈Ni\j

⊕
ai,j. (10)

Besides, for any order k, βi,j(bi,j) = β̃i,j(0) = β(k)(bi,j) = 0.

PROOF From (9) the inequality is obtained as:

β(k)(d) ≥
∑

j′∈Ni\j

min
xi,j′∈GF(q)

αi,j′(xi,j′) =
∑

j′∈Ni\j

αi,j′(ai,j′). (11)

If xi,j = bi,j and xi,j′ = ai,j′ for all j′ ∈ Ni \ j, we get an order-0 configuration, included

in L(k)
i (xi,j = bi,j) for any k. Thus one can find that the equation (11) holds if d = bi,j , and
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β(k)(bi,j) has the smallest reliability. It follows that for any k

βi,j(bi,j) = β(k)(bi,j) =
∑

j′∈Ni\j

αi,j′(ai,j′) = 0. (12)

Based on Theorem 1, for any k we can define the order-k message β̃(k)(δ) = β(k)(δ⊕ bi,j) in

the deviation space. For δ 6= 0, the order-1 C2V message β̃(1)(δ) can be determined by Theorem

2, which performs a combinatorial optimization in the deviation space.

Theorem 2. With δ = bi,j ⊕ d, the order-1 soft message is determined by

β(1)(d) = β̃(1)(δ)

= min
j′′∈Ni\j

( ∑
j′∈Ni\{j,j′′}

αi,j′(ai,j′) + αi,j′′(ai,j′′ ⊕ δ)
)

= min
j′′∈Ni\j

α̃i,j′′(δ).

(13)

PROOF According to the definition of the order, each configuration in L(1)
i (xi,j = d) has

xi,j′′ = ai,j′′ ⊕ δ for some j′′ ∈ Ni \ j and xi,j′ = ai,j′ for all j′ ∈ Ni \ {j, j′′}, since d⊕ (ai,j′′ ⊕

δ)⊕
∑⊕

j′ 6={j,j′′} ai,j′ = 0. It follows that selecting j′′ ∈ Ni \ j is equivalent to selecting an order-1

configuration in L(1)
i (xi,j = d). Correspondingly, minimizing α̃i,j′′(δ) over j′′ in the deviation

space is equivalent to minimizing αi,j′′(ai,j′′ ⊕ δ) over the configurations in the absolute space.

Hence searching for j′′ to minimize the sum in the bracket of (13) yields β(1)(d).

Similarly to Theorem 2, in the absolute space an order-k configuration can be determined by

assigning a deviation to each of k VNs selected from Ni \ j, i.e., xi,j′ = δj′ ⊕ ai,j′ with δj′ 6= 0

for selected VNs and δj′ = 0 for all other VNs. Thus in the deviation space, the order-k message

can be computed as follows:

Theorem 3. With δ = bi,j ⊕ d, choosing a combination of k symbols from GF(q) (denoted

DRAFT July 25, 2012



SUBMITTED PAPER 9

as δ1 . . . δk) and picking a permutation of k different VNs from the set Ni \ j (denoted as

j1, j2, . . . , jk), the order-k soft message is given by

β(k)(d) = β̃(k)(δ) = min∑⊕k
`=1δ`=δ

min
j1,...,jk∈Ni\j
j1 6=... 6=jk

k∑
`=1

α̃i,j`(δ`). (14)

Theorem 3 shows that the configuration set can be analyzed as the Cartesian product of the

set of symbol combinations and that of VN permutations. For Equation (14) the required set of

combinations can be generated according to Theorem 4.

Theorem 4. The set of k-symbol combinations δ1 . . . δk for (14) can be obtained by choosing k

symbols from GF(q) of which there exists no subset with the sum equal to 0.

PROOF Suppose that there exists a subset R in {1, . . . k} such that
∑⊕

`∈R δ` = 0. With a

modified k-symbol combination that δ̄` = 0 for all ` ∈ R and δ̄` = δ` for all ` ∈ {1, . . . k} \ R,

we have
k∑
`=1

α̃i,j`(δ̄`) =
∑

`∈{1,...k}\R

α̃i,j`(δ`) ≤
k∑
`=1

α̃i,j`(δ`), (15)

where
∑⊕k

`=1δ` =
∑⊕k

`=1δ̄` = δ. Thus the original combination can be ignored.

Directly following from Theorem 4, Lemma 5 shows that β̃(k)(δ) of order k > p is equal to

β̃(p)(δ), since the combinations with more than p nonzero symbols can be ignored.

Lemma 5. With q = 2p, for all δ ∈ GF(q), we have

β̃(p)(δ) = β̃(p+1)(δ) = . . . = β̃(δ) (16)

PROOF β̃(k)(δ) is determined in (14) by searching for the optimal k-symbol combination∑⊕k
`=1δ` = δ. Assuming that some δ` is 0, this combination is equivalent to the (k− 1)-symbol

combination and has been considered for β̃(k−1)(δ). Otherwise if all symbols are nonzero, with

k ≥ p + 1, we can consider the p × k binary matrix B of which the `-th column is the binary
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vector of δ`. Since the rank is at most p, it can be proved that there must exist a subset R in

{1, . . . k} such that
∑⊕

`∈R δ` = 0. Following from Theorem 4, the k-symbol combination can be

ignored, but the equivalent (k − |R|)-symbol combination has been considered for β̃(k−|R|)(δ).

Consequently, after ignoring every combination of more than p nonzero symbols, the search

space for β̃(k)(δ) becomes equivalent to that for β̃(p)(δ). It implies that β̃(k)(δ) must be equal to

β̃(p)(δ).

By the derivations given above, we have proposed to reduce the search space significantly

in the deviation space, especially for the larger check node degree and smaller field. Lemma 5

also yields the maximal configuration order required by (1), i.e., min(dc − 1, p). Moreover, in

(14), the k VNs are chosen from Ni \ j without repetition. However, if k VNs are allowed to

be chosen with repetition, the search space will expand such that (14) can be approximated by

the lower bound:

β̃(k)(δ) ≥ min∑⊕k
`=1δ`=δ

min
j1∈Ni\j

· · · min
jk∈Ni\j

k∑
`=1

α̃i,j`(δ`)

= min∑⊕k
`=1δ`=δ

k∑
`=1

min
j`∈Ni\j

α̃i,j`(δ`)

= min∑⊕k
`=1δ`=δ

k∑
`=1

β̃(1)(δ`), (17)

where the last equation follows from (13). Therefore, the SMSA can be carried out as follows:

Algorithm 2. The Simplified Min-Sum Algorithm

Initialization: Set zj = arg mind∈GF(q) λj(d). For all i, j with hi,j 6= 0, set ai,j = hi,j ⊗ zj and

α̃i,j(hi,j ⊗ δ) = λj(δ ⊕ zj). Set κ = 0.

• Step 1) and 2) (The same as Step 1 and 2 in the EMSA)

CN processing: Step 3.1-4
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• Step 3.1) Compute the C2V hard messages:

bi,j =
∑

j′∈Ni\j

⊕
ai,j′ . (18)

• Step 3.2) Compute the step-1 soft messages:

β̃
(1)
i,j (δ) = min

j′∈Ni\j
α̃i,j′(δ). (19)

• Step 3.3) Compute the step-2 soft messages by selecting the combination of k symbols

according to Theorem 4:

β̃′′i,j(δ) = min∑⊕k
`=1δ`=δ

k∑
`=1

β̃
(1)
i,j (δ`). (20)

• Step 3.4) Scaling and reordering: With 0 < c ≤ 1, β̃i,j(δ) ≈ c · β̃′′i,j(δ).

For d 6= bi,j , βi,j(d) = β̃i,j(bi,j ⊕ d); otherwise βi,j(bi,j) = 0.

• Step 4) (The same as Step 4 in the EMSA)

• Step 5) Message normalization and reordering:

ai,j = arg min
d∈GF(q)

α̂i,j(d). (21)

αi,j(d) = α̂i,j(d)− α̂i,j(ai,j). (22)

α̃i,j(δ) = αi,j(δ ⊕ ai,j). (23)

• Step 6) (The same as the Step 6 in the EMSA)

• Go to Step 1.

As a result, the soft message generation is conducted in two steps (Step 3.2 and 3.3). To

compute C2V messages β̃i,j , first in Step 3.2 we compute the minimal entry values minj′ α̃i,j′(δ)

over all j′ ∈ Ni \ j for each δ ∈ GF(q) \ 0. Then in Step 3.3, the minimal values are used to
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generate the approximation of β̃i,j(δ). Instead of the configurations of all dc VNs in Ni, (20)

optimizes over the combinations of k symbols chosen from the field. Comparing Theorem 3 to

(19) and (20), we can find that by our approximation method, in the SMSA, the optimization is

performed over the VN set and symbol combination set separately and thus has the advantage

of a much smaller search space.

B. Practical Realization

Because of the complexity issue, the authors of [11] suggested to use k = 4 for (1), as using

k > 4 is reported to give unnoticeable performance improvement. Correspondingly, we only

consider a small k for (20). But it is still costly to generate all combinations with the large finite

field. For example, with a 64-ary code there are totally
(
q

2

)
= 2016 combinations for k = 2 and(

q

4

)
= 635376 for k = 4. Even with Theorem 4 applied, the number of required combinations

can be proved to be of O(qk). For this reason, we consider a reduced-complexity realization

other than directly transforming the algorithm into the implementation. It can be shown that for

δ′1 ⊕ δ′2 = δ with δ′1 =
∑⊕h

`=1δ` and δ′2 =
∑⊕k

`=h+1δ` and 1 < h < k, in SMSA β̃′′(δ) can also

be approximated by

β̃′′(δ) ≥ min∑⊕k
`=1δ`=δ

 min
j1,...,jh∈Ni\j
j1 6=... 6=jh

h∑
`=1

α̃i,j`(δ`) + min
jh+1,...,jk∈Ni\j
jh+1 6=... 6=jk

k∑
`=h+1

α̃i,j`(δ`)


= min

δ′1⊕δ′2=δ

 min∑⊕h
`=1δ`=δ

′
1

min
j1,...,jh∈Ni\j
j1 6=... 6=jh

h∑
`=1

α̃i,j`(δ`) + min∑⊕k
`=h+1δ`=δ

′
2

min
jh+1,...,jk∈Ni\j
jh+1 6=... 6=jk

k∑
`=h+1

α̃i,j`(δ`)


≥ min

δ′1⊕δ′2=δ

(
β̃′(δ′1) + β̃′(δ′2)

)
,

(24)

where β̃′(δ) denotes the primitive message, that is the soft message of any order lower than the

required order k. Hence we can successively combine two 2-symbol combinations to make a

4-symbol one by two sub-steps with a look-up table (LUT), in which all 2-symbol combinations
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TABLE I
THE LOOK-UP TABLE D FOR GF(23).

δ\f 0 1 2 3
1 (0,1) (2,3) (4,5) (6,7)
2 (0,2) (1,3) (4,6) (5,7)
3 (0,3) (1,2) (4,7) (5,6)
4 (0,4) (1,5) (2,6) (3,7)
5 (0,5) (1,4) (2,7) (3,6)
6 (0,6) (1,7) (2,4) (3,5)
7 (0,7) (1,6) (2,5) (3,4)

Algorithm 3 Generate the look-up table for GF(q).
1: for δ′ = 1 . . . q − 1 do
2: for δ′′ = (δ′ ⊕ 1) . . . q − 1 do
3: δ = δ′ ⊕ δ′′;
4: D(δ).Add(δ′, δ′′);
5: end
6: end

are listed. This method allows us to obtain k-symbol combinations using log2 k sub-steps, with

k equal to a power of 2. Based on this general technique, in the following we will select k to

meet requirements for complexity and performance, and then practical realizations are provided

specifically for different k.

The approximation loss with a small k results from the reduced search, with the search space

size of O(qk). According to Theorem 5, the full-size search space is of p-symbol combinations,

with the size of O(qp). As the size ratio between two spaces is of O(qp−k), the performance

degradation is supposed to be smaller for smaller fields. k = 1 was shown to have huge

performance loss for NB-LDPC codes [11]. By the simulation results in Section IV, setting

k = 2 will be shown to have smaller loss with smaller fields when compared to the EMSA. And

having k = 4 will be shown to provide negligible loss, with field size q up to 256. Since we

observed that using k > 4 gives little advantage, two settings k = 2 and k = 4 will be further

investigated in the following as two tradeoffs between complexity and performance.
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Let us first look at the required LUT. Shown in Algorithm 3, the pseudo code generates the

list of combinations (δ1, δ2) without repetition for each target δ with δ1⊕ δ2 = δ. Since we have

q/2 combinations for each of q − 1 target, D can be depicted as a two-dimensional table with

q − 1 rows and q/2 columns. For 1 ≤ d ≤ (q − 1) and 0 ≤ f ≤ q/2 − 1, each cell Dδ,f in

the table is a two-tuple containing two elements Dδ,f (0) and Dδ,f (1), which satisfy the addition

rule Dδ,f (0)⊕Dδ,f (1) = δ. For example, when q = 8, the LUT is provided in Table I.

Step 3.3 and (20) can be realized by Step 3.3.1 and 3.3.2 given below.

• Step 3.3.1) With the LUT D, compute the step-1 messages by

β̃′i,j(δ) = min
f=0...q/2−1

(
β̃
(1)
i,j (Dδ,f (0)) + β̃

(1)
i,j (Dδ,f (1))

)
. (25)

• Step 3.3.2) Compute the step-2 messages by

β̃′′i,j(δ) = min
f=0...q/4−1

(
β̃′i,j(Dδ,f (0)) + β̃′i,j(Dδ,f (1))

)
. (26)

By the definition, we let β̃(1)
i,j (0) = β̃′i,j(0) = 0, so β̃(1)

i,j (Dδ,0(0)) + β̃
(1)
i,j (Dδ,0(1)) = β̃

(1)
i,j (δ).

The first sub-step combines two symbols Dδ,f (0) and Dδ,f (1) for each δ and f , making a 2-

symbol combination. The comparison will be conducted over f = 0 . . . q/2−1 for each δ. Assume

that the index of the minimal value is f ∗(δ). Then the second sub-step essentially combines

two two-tuples DDδ,f (0),f∗(Dδ,f (0)) and DDδ,f (1),f∗(Dδ,f (1)), making a 4-symbol combination. It can

be proved that all 4-symbol combinations can be considered by combining two-tuples Dδ,f of

f = 0, 1, . . . q/4 − 1. So the second sub-step only performs the left half of the Table D. For

instance, over GF(23) the left half of D is formed by f = 0, 1 in Table I.

For k = 2 and k = 4 respectively, we define two versions of SMSA, i.e., the one-step SMSA

(denoted as SMSA-1) and the two-step SMSA (denoted as SMSA-2). The SMSA-1 is the same

as the SMSA-2 except for the implementation of Step 3.3. The SMSA-1 only requires Step 3.3.1

and skips Step 3.3.2, while the SMSA-2 implements both steps. We will present the performance

and complexity results of the SMSA-1 and SMSA-2 in the following sections.
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IV. SIMULATION RESULTS

In this section, we use five examples to demonstrate the performance of the above proposed

SMSA for decoding NB-LDPC codes. The existing algorithms including the QSPA, EMSA, and

MMA are used for performance comparison. The SMSA includes the one-step (SMSA-1) and

two-step (SMSA-2) versions. In the first two examples, three codes over GF(24), GF(26), and

GF(28) are considered. We show that the SMSA-2 has very good performance for different finite

fields and modulations. And the SMSA-1 has small performance loss compared to the SMSA-

2 over GF(24) and GF(25). The binary phase-shift keying (BPSK) and quadrature amplitude

modulation (QAM) are applied over the additive white Gaussian noise (AWGN) channel. In the

third example, we study the fixed-point realizations of SMSA and find that it is exceptionally

suitable for hardware implementation. The fourth example compares the performance of the

SMSA, QSPA, EMSA, and MMA over the uncorrelated Rayleigh-fading channel. The SMSA-2

shows its reliability with higher channel randomness. In the last example, we research on the

convergence speed of SMSA and show that it converges almost as fast as EMSA.

Example 1. (BPSK-AWGN) Three codes constructed by computer search over different finite

fields are used in this example. Four iterative decoding algorithms (SMSA, QSPA, EMSA, and

MMA) are simulated with the BPSK modulation over the binary-input AWGN channel for every

code. The maximal iteration number κmax is set to 50 for all algorithms. The bit error rate (BER)

and block error rate (BLER) are obtained to characterize the error performance. The first code is

a rate-0.769 (3,13)-regular (1057,813) code over GF(24), and its error performance is shown in

Fig. 1. We use optimal scaling factors c = 0.60, 0.75, and 0.73 for the SMSA-1, SMSA-2, and

EMSA respectively. The second code is a rate-0.875 (3,24)-regular (495,433) code over GF(26),

and its error performance is shown in Fig. 2. We use optimal scaling factors c = 0.50, 0.70, and

0.65 for the SMSA-1, SMSA-2, and EMSA respectively. The third code is a rate-0.70 (3,10)-

regular (273,191) code over GF(28), and its error performance is shown in Fig. 3. We use optimal
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scaling factors c = 0.35, 0.575, and 0.60 for the SMSA-1, SMSA-2, and EMSA respectively.

Taking the EMSA as a benchmark at BLER of 10−5, we observe that the SMSA-2 has SNR loss

of less than 0.05 dB, while the MMA suffers from about 0.1 dB loss. The SMSA-1 has 0.06

dB loss with GF(24) and almost 0.15 dB loss with GF(26) and GF(28) against the EMSA. As

discussed in Section III-B, the SMSA-1 performs better with smaller fields. At last, the QSPA

has SNR gain of less than 0.05 dB and yet is viewed as undesirable for implementation.

Example 2. (QAM-AWGN) Fig. 4 shows the performance of the 64-ary (495,433) code, the

second code in Example 1, with the rectangular 64-QAM. Four decoding algorithms (SMSA,

QSPA, EMSA, and MMA) are simulated with finite field symbols directly mapped to the grey-

coded constellation symbols over the AWGN channel. The maximal iteration number κmax is set

to 50 for all algorithms. The SMSA-1, SMSA-2, and EMSA have the optimal scaling factors

c = 0.37, 0.60, and 0.50 respectively.We note that the SMSA-2 and EMSA achieve nearly the

same BER and BLER, while the MMA and SMSA-1 have 0.11 and 0.14 dB of performance

loss.

Example 3. (Fixed-Point Analysis) To investigate the effectiveness of the SMSA, we evaluate

the block error performance of the (620,310) code over GF(25) taken from [9]. The parity-check

matrix of the code is a 10×20 array of 31×31 circulant permutation matrices and zero matrices.

The floating-point QSPA, EMSA, MMA, SMSA-1, and SMSA-2 and the fixed-point SMSA-1

and SMSA-2 are simulated using the BPSK modulation over the AWGN channel. The BLER

results are shown in Fig. 5. The optimal scaling factors for the SMSA-1, SMSA-2, and EMSA

are c = 0.6875, 0.6875, and 0.65 respectively. The maximal iteration number κmax is set to 50

for all algorithms. Let I and F denote the number of bits for the integer part and fraction part

of the quantization scheme. We observe that for SMSA-1 and SMSA-2 five bits (I = 3, F = 2)

are sufficient. For approximating the QSPA and EMSA, the SMSA-2 has SNR loss of only 0.1

dB and 0.04 dB at BLER of 10−4, respectively. And the SMSA-1 has SNR loss of 0.14 dB and
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0.08 dB respectively.

Example 4. (Fading Channel) To test the reliability of the SMSA, we examine the error

performance of the 32-ary (620,310) code given in Example 3 over the uncorrelated Rayleigh-

fading channel with additive Gaussian noise. The channel information is assumed to be known

to the receiver. The floating-point QSPA, EMSA, MMA, SMSA-1, and SMSA-2 are simulated

using the BPSK modulation, as the BLER results are shown in Fig. 6. Compared to the EMSA,

the SNR loss of SMSA-2 is within 0.1 dB, while the SMSA-1 and MMA have around 0.2 dB

loss. The QSPA has performance gain in low and medium SNR regions and no gain at high

SNR.

Example 5. (Convergence Speed) Consider again the 32-ary (620,310) code given in Example

3. The block error performances for this code using the SMSA-2 and EMSA with 4, 5, 7,

and 10 maximal iterations are shown in Fig. 7. At BLER of 10−3, the SNR gap between the

SMSA-2 and EMSA is 0.04 dB for various κmax. To further investigate the convergence speed,

we summarize the average number of iterations for the EMSA and SMSA-2 with 20, 50, and

100 maximal iterations and show the results in Fig. 8. It should be noted that shown in Fig. 5,

the SNR gap of BLER between EMSA and SMSA-2 is about 0.04 dB, at BLER of 10−3 and

SNR of about 2.2 dB . By examining the curves of Fig. 8 at SNR of about 2.2 dB (in the partial

enlargement), we observe that for the same average iteration number the difference of required

SNR is also around 0.04 dB between the two algorithms. Since a decoding failure increases the

average iteration number, the SNR gap of error performance can be seen as the main reason for

the SNR gap of average iteration numbers. Therefore, as the failure occurs often at low SNR

and rarely at high SNR, in Fig. 8 the iteration increase for SMSA-2 at high SNR is negligible

(< 5% at 2.2 dB), and at low and medium SNR the gap is larger (≈ 11% at 1.8 dB). Although

the result is not shown, we observe that the SMSA-1 also has similar convergence properties,

and the iteration increase compared with the EMSA at high SNR is around 6%.
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V. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of the SMSA and compare it with

the EMSA. The comparison of average required iterations is provided in Example 5 of Section

IV. With a fixed SNR, the SMSA requires slightly more (5 ∼ 6%) number of average iterations

than the EMSA at medium and high SNR region. As the two algorithms have small (within

0.2 dB) performance difference, especially between the EMSA and SMSA-2, we think that it

is fair to simply compare the complexity of the SMSA and EMSA by the computations per

iteration. Moreover, since the VN processing is similar for both algorithms, we only analyze the

CN processing. The required operation counts per iteration for a CN with degree dc are adopted

as the metric.

To further reduce the duplication of computations in CN processing, we propose to transform

the Step 3.1 and 3.2 of SMSA as follows. Step 3.1 can be transformed into two sub-steps. We

define

Ai =
∑
j′∈Ni

⊕
ai,j′ .

Then each bi,j can be computed by

bi,j = ai,j⊕Ai.

Thus totally it takes 2dc − 1 finite field additions to compute this step for a CN.

Similarly, the computation of Step 3.2 can be transformed into two sub-steps. For the i-th row

of the parity-check matrix, we define a three-tuple {min1i(δ),min2i(δ), idxi(δ)}, in which

min1i(δ) ≡ min
j′∈Ni

α̃i,j′(δ),

α̃i,idxi(δ)(δ) ≡ min1i(δ),

min2i(δ) ≡ min
j′∈Ni\idxi(δ)

α̃i,j′(δ).
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TABLE II
THE REQUIRED OPERATIONS PER ITERATION AND MEMORY USAGE TO PERFORM THE CN PROCESSING OF A CN WITH

DEGREE dc FOR A q-ARY CODE. THE BIT WIDTH PER SUB-MESSAGE IS w.

Type SMSA-1 SMSA-2 EMSA
Finite Field Additions 2dc − 1 2dc − 1 0

Summations (q/2− 1)(q − 1)dc (3q/4− 2)(q − 1)dc 3(dc − 2)q2

Comparisons and Selections ((q/2 + 2)dc − 3)(q − 1) ((3q/4 + 1)dc − 3)(q − 1) 3(dc − 2)q(q − 1)
Memory Usage (Bits) (2w + dlog2 dce)(q − 1) (2w + dlog2 dce)(q − 1) wdcq

+pdc +pdc

For each nonzero symbol δ in GF(q), it takes at most 1 + 2(dc − 2) = 2dc − 3 min operations,

and each operation can be realized by a comparator and multiplexor to compute the 3-tuple

{min1i(δ),min2i(δ), idxi(δ)}.

The remaining computations of Step 3.2 can be computed equivalently by

β̃
(1)
i,j (δ) = min1i(δ) if j 6= idxi(δ);

β̃
(1)
i,j (δ) = min2i(δ) if j = idxi.

It takes dc comparisons and dc two-to-one selections to perform the required operations. As there

are q − 1 entries of β̃(1)
i,j , the overall computations of Step 3.2 per CN requires (3dc − 3)(q − 1)

comparators and (3dc − 3)(q − 1) multiplexors.

For the SMSA-2, Step 3.3 is realized by Step 3.3.1 and 3.3.2. To compute Step 3.3.1 for each

symbol δ, it takes (q− 2)/2 summations and (q− 2)/2 comparisons. To compute Step 3.3.2 for

each δ, it takes (q − 4)/4 summations and (q − 4)/4 comparisons. Therefore, totally it takes

3q/4−2 summations and min operations for each δ. As we have q−1 nonzero symbols in GF(q),

overall it requires (3q/4− 2)(q− 1)dc summations, comparisons, and two-to-one selections. For

the SMSA-1, it requires (q/2−1)(q−1)dc summations, comparisons, and two-to-one selections.

Step 3.4 performs scaling and shifting and thus is ignored here, since the workload is negligible

compared to LLR calculations.
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Then let us analyze the CN processing in EMSA for comparison. As in [14], [15], [17], usually

the forward-backward scheme is used to reduce the implementation complexity. For a CN with

degree dc, 3(dc − 2) stages are required, and each stage needs q2 summations and (q − 1)q

min operations. Overall, in the EMSA, each CN has q2dc summations, (q− 1)qdc comparisons,

and (q − 1)qdc two-to-one selections. The results for the SMSA and EMSA are summarized in

Table II. As in implementation the required finite field additions of SMSA take only marginal

area, we see that the SMSA requires much less computations compared to the EMSA.

Since the computational complexity for decoding NB-LDPC codes is very large, the decoder

implementations usually adopt partially-parallel architectures. Therefore, the CN-to-VN messages

are usually stored in the decoder memory for future VN processing. As memory occupies

significant amount of silicon area in hardware implementation, optimizing the memory usage

becomes an important research problem [14], [15], [17]. For Step 3.2 of SMSA, the 3-tuple

{min1i(δ),min2i(δ), idxi(δ)} can be used to recover the messages β̃(1)
i,j (δ) for all j ∈ Ni. Assume

that the bit width for each entry of the soft message is w in the CN processing. Then for each

δ in GF(q), the SMSA needs to store 2w + dlog2 dce bits for the 3-tuple. Also, it needs to

store the hard messages ai,j in Step 3.1, which translate to p × dc bits of storage. To store the

intermediate messages for the CN processing of each row, totally the SMSA requires to store

(2w+dlog2 dce)(q−1)+pdc bits. In comparison, for the EMSA, there is no correlation between

βi,j(d) of each j ∈ Ni in the i-th CN. Therefore, the EMSA requires to store the soft messages

αi,j(d) of all j ∈ Ni, which translate to w × dc × q bits. We see that the SMSA requires much

less memory storage compared to the EMSA.

We take as an example the (620,310) code over GF(25) used in Section IV. With w = 5 and

dc = 6, the SMSA-1 requires 2790 summations, 3255 comparisons, and 433 memory bits for

each CN per iteration, and the SMSA-2 requires 4092 summations, 4557 comparisons, and 433

memory bits. The EMSA requires 12288 summations, 11904 comparisons, and 960 memory

bits. As a result, compared to the EMSA, the SMSA-1 saves 77% on summations and 73% on
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comparisons, and the SMSA-2 saves 67% and 62% respectively. Both of the two SMSA versions

save 55% on memory bits. More hardware implementation results are presented for SMSA-2 in

[19], which shows exceptional saving in silicon area when compared with existing NB-LDPC

decoders.

VI. CONCLUSIONS

In this paper, we have presented a hardware-efficient decoding algorithm, called the SMSA,

to decode NB-LDPC codes. This algorithm is devised based on significantly reducing the search

space of combinatorial optimization in the CN processing. Two practical realizations, the one-step

and two-step SMSAs, are proposed for effective complexity-performance tradeoffs. Simulation

results show that with field size up to 256, the two-step SMSA has negligible error performance

loss compared to the EMSA over the AWGN and Rayleigh-fading channels. The one-step SMSA

has 0.1 to 0.2 dB loss depending on the field size. Also, the fixed-point study and convergence

speed research show that it is suitable for hardware implementation. Another important feature of

SMSA is simplicity. Based on our analysis, the SMSA has much lower computational complexity

and memory usage compared to other decoding algorithms for NB-LDPC codes. We believe that

our work for the hardware-efficient algorithm will encourage researchers to explore the use of

NB-LDPC codes in emerging applications.
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Fig. 1. BLER and BER comparison of the SMSA-1, SMSA-2, EMSA, MMA, and QSPA with the (1057,813) code over
GF(24). The BPSK is used over the AWGN channel. The maximal iteration number κmax is set to 50.
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Fig. 2. BLER and BER comparison of the SMSA-1, SMSA-2, EMSA, MMA, and QSPA with the (495,433) code over GF(26).
The BPSK is used over the AWGN channel. The maximal iteration number κmax is set to 50.
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Fig. 3. BLER and BER comparison of the SMSA-1, SMSA-2, EMSA, MMA, and QSPA with the (273,191) code over GF(28).
The BPSK is used over the AWGN channel. The maximal iteration number κmax is set to 50.
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Fig. 4. BLER and BER comparison of the SMSA-1, SMSA-2, EMSA, MMA, and QSPA with the (495,433) code over GF(26).
The 64-QAM is used over the AWGN channel. The maximal iteration number κmax is set to 50.
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Fig. 5. BLER comparison of the SMSA-1, SMSA-2 (fixed-point and floating-point), QSPA, EMSA, and MMA (floating-point
only) with the (620,310) code over GF(25). The BPSK is used over the AWGN channel. The maximal iteration number κmax is
set to 50.
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Fig. 6. BLER comparison of the SMSA-1, SMSA-2, QSPA, EMSA, and MMA with the (620,310) code over GF(25). The
BPSK is used over the uncorrelated Rayleigh-fading channel. The maximal iteration number κmax is set to 50.
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Fig. 8. The average number of iterations for the SMSA-2 and EMSA with the (620,310) code over GF(25). The BPSK is used
over the AWGN channel. The maximal iteration number κmax is set to 20, 50, and 100.
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