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Member, IEEE and Fernando Pérez-Cruz, Senior Member, IEEE

Abstract—We propose a decoding algorithm for LDPC codes
that achieves the maximum likelihood (ML) solution over the bi-
nary erasure channel (BEC). In this channel, the tree-structured
expectation propagation (TEP) decoder improves the peeling
decoder (PD) by processing check nodes of degree one and two.
However, it does not achieve the ML solution, as the tree structure
of the TEP allows only for approximate inference. In this paper,
we provide the procedure to construct the structure needed for
exact inference. This algorithm, denoted as generalized tree-
structured expectation propagation (GTEP), modifies the code
graph by recursively eliminating any check node and merging
this information in the remaining graph. The GTEP decoder
upon completion either provides the unique ML solution or a
tree graph in which the number of parent nodes indicates the
multiplicity of the ML solution. We also explain the algorithm
as a Gaussian elimination method, relating the GTEP to other
ML solutions. Compared to previous approaches, it presents an
equivalent complexity, it exhibits a simpler graphical message-
passing procedure and, most interesting, the algorithm can be
generalized to other channels.

Index Terms—ML decoding, LDPC codes, tree-structured ex-
pectation propagation, graphical models, binary erasure channel.

I. INTRODUCTION

LOW-DENSITY PARITY-CHECK (LDPC) codes were
proposed by Gallager in 1963 [2] as a remarkable near

Shannon limit coding technique [3], [4]. The decoding of
LDPC codes can be solved by message-passing algorithms
over a graphical model [5], yielding linear time practical
decoders [6]–[9]. Belief propagation (BP) is a message-passing
algorithm typically considered for decoding LDPC codes, as it
efficiently approximates posterior marginal probabilities [10].
In tree-like graphs, BP provides the maximum a posteriori
(MAP) probability for each bit [10]–[12]. However, in graphs
with cycles the BP is not able to achieve the MAP solution,
or it may not even converge at all [8], [10].

In the asymptotic case, when we consider infinitely-large
codes, density evolution (DE) [8] and extrinsic information
transfer (EXIT) charts [13], [14] are used to predict the BP
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performance over LDPC codes. This prediction is used to
optimize the LDPC degree distribution to maximize the BP
decoding threshold, i.e. to approach capacity, [7], [15]–[19].
Ensembles of codes optimized in this way present highly
irregular degree distributions, for which the convergence of
the BP decoder to the asymptotic case is slow, i.e. large
block sizes are needed [20]. Besides, they present irreducible
asymptotic error floors because of their low minimum distance
[9], [21]. Alternatively, we can overcome the error floor
problem [22] if we consider spatially-coupled LDPC codes to
approach capacity with BP [23]. However, the convergence to
the asymptotic case is even slower, requiring extremely large
code lengths (larger than 50000 bits) to perform optimally
[24].

Regular LDPC codes under MAP decoding also approach
capacity as the number of ones per column of the parity check
matrix, namely the variable degree, increases [9], [25]. Even
for fairly sparse graphs, the gap to capacity is negligible [23],
e.g. the multiplicative gap to capacity for a rate-1/2 regular
LDPC code with variable degree five is 10−3. The BP fails to
converge to this solution and, as the code density increases,
its performance degrades rapidly. The Maxwell decoder [9]
achieves the MAP solution by guessing some variables when
the BP gets stuck. Nevertheless, the selection of these guessed
variables and the order they are processed is not prespecified,
and it may significantly affect the runtime complexity. In the
context of Raptor codes, inactivation decoding [26], [27] also
provides the MAP solution with reduced complexity thanks
to the design of the codes, but it is not generalizable to other
channels.

The expectation propagation (EP) [28] algorithm is a gene-
ralization of the BP, which uses a tractable approximation to
perform inference in an intractable graphical model. The EP
algorithm is equivalent to the BP when it uses a product of
independent marginals as approximation. A natural extension
of EP to improve the BP is to impose a tree structure over the
given graph [29], [30] and apply EP to get a more accurate
approximation for each marginal. This algorithm, hereafter
referred to as tree-structured EP or TEP, allows capturing some
of the information provided by the interactions between the
variables in the graph. In a novel work, we have put forward
the TEP decoder for LDPC codes over the BEC [31], [32],
borrowing from the tree-structured EP algorithm. The TEP
decoder is able to continue decoding when the BP gets stuck,
since it solves relations between two variables. It is proven in
[31], [32] that the TEP exhibits an improvement with respect
to the performance of the BP, but not fully achieving the
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MAP solution. The TEP only considers relations between two
variables to ensure that the degree of the check nodes does
not increase. Hence the complexity of the algorithm is not
compromised.

In this paper, we extend the TEP by exploiting relations
between any set of variables. The resulting approach, the so
called generalized TEP (GTEP), is a graph-based decoder that
provides the maximum likelihood (ML) solution for LDPC
codes over the BEC. If a unique solution is found, the ML and
MAP solutions coincide, because we have absolute certainty
about the probability of each bit. When the ML solution
is not unique, the ML decoder should provide the set of
equally likely sequences, while the MAP provides the posterior
probabilities for the unknown bits. The ML solution provides
more valuable information, because in the MAP solution we
might have a significant chunk of erased bits with 50/50-
chance, while the ML solution provides the exact number of
possible chains and the exact bit values for them.

Over the erasure channel, the GTEP decoder removes a
variable per iteration either revealing it or relating it to the
remaining unknown variables in the graph. As a consequence,
the GTEP algorithm either provides the unique ML solution or
a directed acyclical graph (DAG), referred to as tree graph of
relations, which contains the remaining unknown variables.
The set of parent nodes indicates the multiplicity of the
ML solution. The GTEP can be reinterpreted as a Gaussian
elimination procedure, resulting in a complexity equivalent to
that of the best strategy of the ML decoder in [33]. The GTEP
algorithm for the BEC naturally provides a decoding with
reduced complexity. Furthermore, it allows for an extension
to other discrete channels, by exploiting the properties of the
EP as inference method. For the TEP, we have presented some
preliminary results in this line [34].

The rest of the paper is organized as follows. We present
the general expectation propagation algorithm in Section II.
We show in Section III that the EP for the BEC with standard
approximations yields the peeling and TEP decoders. The
GTEP decoder is developed in Section IV. We prove that
the GTEP decoder achieves the ML solution in Section V,
and we include in Section VI an analysis of its computational
complexity. In Section VII, we study the performance of the
GTEP for a regular ensemble. We end with some conclusions,
in Section VIII.

II. EXPECTATION PROPAGATION

EP is an approximate algorithm to efficiently estimate
marginal distributions in a factorized density function. EP
imposes a tractable structure that it is optimized iteratively
until it resembles the original density function, from which
the marginal distributions are easily derived [28]. The original
EP procedure only considers a product of single factors, which
is similar to BP. In [29] the authors proposed a tree structure
approximation, which provides more accurate solutions. We
present this latter formulation in a different fashion from [29],
to make it more amenable for LDPC channel decoding.

Let C be an LDPC code defined by its parity-check matrix
H. Given the received vector Y, the aim of the bitwise-MAP

decoder1 is to choose each bit Vi to maximize:

p(Vi|Y) =
∑
V∼Vi

p(V|Y), i = 1, . . . , n, (1)

where
∑

V∼Vi
denotes the sum over all variables in V except

Vi. The density function p(V|Y) is obtained by Bayes’ rule
as:

p(V|Y) =
p(Y|V)p(V)

p(Y)
∝

n∏
i=1

p(Yi|Vi)
m∏
j=1

Cj(V), (2)

where Cj(V), for j = 1, ...,m, are the parity check constraints:
Cj(V) is 1 if the parity check Pj is satisfied for V, and 0
otherwise.

The marginalization in (1) has an exponential complexity
with the code length n. Since the set of parity-check con-
straints is the intractable part of the factorized density function
in (2), EP approximates these terms as multi-variable tree-like
factor graphs [35]:

Cj(V) ≈Wj(V) ,
n∏
i=1

wi,j(Vi,Vpi) j = 1, . . . ,m, (3)

where wi,j is a non-negative function and Vi and Vpi are
chosen such that (3) is tree-like. The full posterior probability
in (2) is approximated by

q(V) =

n∏
i=1

qi(Vi|Vpi) =
1

Z

n∏
i=1

p(Yi|Vi)
m∏
j=1

Wj(V), (4)

where Z is a normalization constant and qi(Vi|Vpi) represents
the approximate conditional probability, i.e. qi(Vi|Vpi) ≈
p(Vi|Vpi ,Y). By using (3) in (4), this conditional probability
yields:

qi(Vi|Vpi) ∝ p(Yi|Vi)
m∏
j=1

wi,j(Vi,Vpi). (5)

For some variable nodes Vpi might be missing, if only a
single-variable factor qi(Vi) is needed to approximate them.
EP computes q(V) iteratively by minimizing the Kullback-
Leibler divergence:

q(V) = arg min
q(V)

DKL (p(V|Y)||q(V))

= arg min
q(V)

∑
V

p(V|Y) log
p(V|Y)

q(V)
. (6)

The minimization in (6) can be efficiently faced if both
q(V) and p(V|Y) belong to some exponential family [35].
In our scenario, we focus on discrete distributions and the
optimization in (6) is accomplished by matching the moments
between q(V) and p(V|Y), iterating along the check node
factors until convergence. In the `-th iteration, EP performs
the following two steps:

Step 1: It replaces one factor Wt(V) in (4) by the
associated true term Ct(V),

p̂(V) = Ct(V)q`/t(V) (7)

1For the sake of simplicity, hereafter we denote the bitwise-MAP decoder
by just MAP decoder.
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where

q`/t(V) =
q`(V)

Wt(V)
=

n∏
i=1

p(Yi|Vi)
m∏
j=1
j 6=t

Wj(V). (8)

Step 2: It computes a new approximation q`+1(V) by
matching the moments between with respect to p̂(V),
which minimizes the KL divergence. Since they are
discrete random variables, it reduces to the computation
of the marginals,

q`+1
i (Vi,Vpi) =

∑
V∼Vi,Vpi

p̂(V) i = 1, . . . , n. (9)

The term Wt(V) is updated as q`+1(V)/q`/t(V). This
information is used in following iterations [32]. For the
BEC, Wt(V) simply yields the parity restriction between
variables (Vi,Vpi ), restraining the set of values that the
involved variables can take.

Once term Wt(V) has been approximated, we return to Step
1 and perform the optimization for another check node. When
we introduce term Ct(V) in (8), the graph for p̂(V) might
have loops. The marginalization in (9) can be readily computed
using Pearl’s cutset conditioning algorithm as proposed in [29],
[36]. For the BEC this step is straightforward [32], as we later
describe in Section III.

The tree-structured EP algorithm in [29] demands a par-
ticular factorization for the terms in (3) to be specified
in advance. This factorization, or tree structure, might be
amenable for some error patterns but useless for others. The
GTEP algorithm, presented in Section IV, builds the tree on
the fly for decoding LDPC codes over BEC, so it adapts to
each error pattern to provide the ML solution with the least
computational complexity. By iterating along the check nodes,
the GTEP decoder for BEC defines a tractable factorization
for the density function q(V) in (4) in a simple and natural
way. Unfortunately, for other channels, e.g. the binary-input
memoryless symmetric (BMS) channel, the design of the
factorization is not straight-forward [34].

III. PEELING AND TEP DECODER FOR DECODING LDPC
CODES OVER THE BEC

As discussed above, each particular factorizacion in (3)
leads to different LDPC decoders. For example, if we use
products of single factors, i.e. wi,j(Vi,Vpi) = wi,j(Vi),
the algorithm has the same solution as that of the standard
BP procedure used for LDPC decoding. By including also
pairwise factors, i.e. wi,j(Vi,Vpi) = wi,j(Vi, Vpi), we have
the TEP decoder in [31], [32]. In this section, we briefly review
these two algorithms for BEC as a starting point for our GTEP
decoder.

The PD [8], [20] is a graphical interpretation of the BP
algorithm for decoding LDPC codes over the BEC [20]. This
is usually described over the Tanner graph [37], [38] of the
LDPC code. For an r-rate code, we have n variables nodes,
V1, . . . , Vn, and m = n · (1 − r) parity checks, P1, . . . , Pm.
The PD is initialized by removing all non-erased bits and
complementing the parity of the check nodes connected to the

removed variable nodes of value one. Then, at each iteration
of the PD, we remove a check and decode a variable node by
looking for a degree-one check node and copying its parity
onto the variable it is connected to. This revealed variable
can be removed from the graph, reversing the parity of the
check node(s) it is connected to if its value is one. The PD
finalizes whenever the transmitted codeword has been decoded
(i.e. success), or there is no degree-one check node to process
(i.e. failure). This interpretation is plausible, because the BP
messages and values of variables in the graph move from
complete uncertainty to perfect knowledge.

The TEP decoder [31], [32] can be understood as an
extension of the PD that processes, each iteration, either a
degree-one or a degree-two check node. A degree-two check
node tells us that the variables connected to it are either equal,
if the parity check is zero, or opposite, if the parity check is
one. Therefore, we can remove a degree-two check node and
one of the variables connected to it, and reconnect the edges of
the deleted variable to the remaining one. The analysis of the
TEP decoder is carried out in [31], [32], where the decoding
threshold is shown to be equal to that of the BP. However,
for finite length codes the TEP decoder is superior to the BP
[39] with similar decoding complexity, i.e. linear in the code
length O(n).

Processing a degree-two check node does not reveal a
variable, it only relates two unknown variables. However,
in some cases, after processing a degree-two check node, a
degree-one check node is created. In Figure 1, we illustrate
this scenario. The TEP decoder processes P3 and removes V2
from the Tanner graph, which is revealed once we decode V1.
V1 inherits the connections of V2, i.e. P1, P2 and P4. Note
that a double connection between a variable and a check node
can be removed. Therefore, the TEP decoder creates a degree-
one check node whenever the two variables connected to a
degree-two check node also share a degree-three check node.
In [31], [32], we show that the probability of this happening is
negligible when we start decoding, but it grows as we process
degree-one and degree-two check nodes, improving the BP
performance for finite codes. Every time we process a degree-
two check node, the remaining variable node either keeps or
increases the number of connections, and the remaining check
nodes either keep or decrease the numbers of connections.
This is a desirable property, as it can be understood from
the DE analysis [8], in which we prefer variables with more
connections and factors with fewer connections to improve
decoding.

IV. GENERALIZED TEP DECODER FOR THE BEC
The GTEP decoder, as the PD and TEP decoders do, first

removes all non-erased variables, flipping the parity of the
check node(s) that were connected to the removed variable
nodes of value one. Then, at each iteration, it removes a check
and a variable node as follows:

Step 1: it selects a check node, Pq . Let l be its degree.
Step 2: it processes check node Pq:

1) if l = 1 it runs the PD.
2) if l ≥ 2 it chooses one variable, Vi, out of the

ones connected to Pq . It removes it along with Pq .
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Fig. 1: In (a), we partly show the residual graph considered
in an iteration of the TEP decoder. In (b), we illustrate the
result when the parity-check node P3 and the variable V2 are
processed by the TEP decoder, which creates a degree-one
check that would not have been created by the BP decoder.

The other parity-check node(s) connected to Vi are
reconnected to all the variable(s) that were linked
to Pq , denoted as Vpi , which become “reference”
variable(s) of Vi. These parity-check node(s) are
flipped if Pq is parity one.

Step 3: it goes to Step 1 if there is any other check node
to process, otherwise stop.

Choosing Pq to be processed is equivalent in the EP
framework to recompute q(V) by including Cq(V) in (7).
Note that, with respect to the EP formulation in Section II, the
GTEP does not fix a priori the set Vpi . It defines it on the fly
as the others variables connected to Pq . Therefore, the parity
restriction that we compute in (9) is unique, meaning that we
always infer whether (Vi,Vpi) sum 0 or 1. After processing
Pq , Vi is well defined as a function of Vpi . As a consequence,
for each processed parity-check node of degree l > 1, we
progressively construct a tree graph of relations. The parents
of the removed variable Vi are the variables in the set Vpi .

When we process a check node with degree larger than
two, the remaining check nodes might increase their degree.
This is an undesirable consequence, because to decode erased
variable nodes we need degree-one check nodes. Later, the
matrix becomes denser and remaining variables share a large
number of edges. Then, in the final steps of the decoder, after
processing any check node, a lot of edges vanish. The GTEP
finishes when all the parity-check nodes are processed. If the

GTEP decodes all the parent nodes in the tree of relations, it
successfully provides the transmitted codeword. If a set of d
parent nodes are not decoded the tree provides the multiple
ML solution, of cardinality 2d.

We now illustrate through an example the different steps
of the GTEP decoder, considering it selects a check node of
lowest degree at each iteration. This assumption minimizes
the algorithm complexity as we justify in Section VI. For
simplicity, and without loss of generality, we assume the all-
zero codeword has been transmitted. We start in Fig. 2a,
where we have already processed all degree-one and degree-
two check nodes and the PD and TEP decoders have failed to
decode the correct word. The GTEP proceeds as follows:

1) It processes P8 and removes V8 along with it. The
other check nodes connected to V8, i.e. P3 and P7, are
now connected to V4 and disconnected from V6, due to
their double connection. V4 and V6 become “reference”
variables of V8. The remaining graph after we have
processed this node is shown in Fig. 2b, where we also
show the relation between V4, V6 and V8.

2) It processes P3, a degree-two check node created after
processing P8. Check P3, along with V2, are removed
from the graph. The resulting graph is shown in Fig. 2c.

3) It continues with P7 (another check node of degree 2),
and deletes it from the graph with V5, leading to Fig.
2d.

4) In Fig. 2d we have a degree-one check node, P6, and
when we run the PD decoder, we can decode V7, V1, V3,
V4 and V6, in this order. Once V4 is decoded, we reveal
V5 and V2, and once V6 is decoded, we also reveal V8.

In Fig. 3 we depict the tree graph of relations created after
three iterations of the GTEP decoder for a different example.
We have a received word with three check nodes to decode six
variables and the decoder fails. The tree graph of relations has
3 parent variables. All the ML combinations can be obtained
by setting the parent nodes independently to either 1 or 0.
Hence, the multiplicity of the solution is 8.

V. ML DECODING FOR LDPC CODES OVER BEC

The BP, TEP and GTEP decoders for BEC can be rein-
terpreted as a Gaussian elimination procedure in which, in
each iteration, a column of the parity check matrix is left with
single nonzero entry. By extension of graph definitions, we
say that a row is connected to a column if it has a one entry
at the corresponding column. BP can be seen as a Gaussian
elimination in which we only process columns that have at
least one connected row of degree one, i.e., a row with a single
nonzero entry. The TEP accounts also for rows of degree two
and the GTEP is able to process any column, no matter the
degree of the connected rows.

Theorem 1 (ML decoder): The GTEP algorithm for the
BEC achieves the ML solution for LDPC decoding.

Proof: Let us denote by H0
ε the residual parity-check

matrix once the non-erased bits (columns of the matrix) have
been removed. The GTEP decoder performs linear transfor-
mations over matrix H0

ε . By extension, H`
ε is the matrix after

` iterations.
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Fig. 2: We show the different iterations of the GTEP decoder
for an illustrative example. On the righthand side of each
subfigure we show the remaining graph and on the lefthand
side we show the relations of the removed variables with the
remaining variables in the graph. The dashed lines denote
“reference” variables and the added edges in each iteration.

In each step, a row of the matrix is selected (i.e. a parity
check) and one of its columns is processed as described in
Step 2 of the algorithm. Assume we have chosen the q-th row
and the i-th column. Step 2 is equivalent to add the q-th row
to all the rows connected to the ith column. Note that this
column ends with a single nonzero entry at its q-th position
and thus we can conclude that the GTEP decoder performs
Gaussian elimination. If the process successfully decodes, the
residual matrix is of the form (after properly rearranging its
columns and rows):

H∞ε =

[
I
0

]
, (10)

then the solution is unique and each remaining variable
(columns of the matrix) takes the values of the parity check
it is connected to. This unique solution is the ML solution,
because in the BEC we never commit an error [9]. If the
GTEP does not decode, the residual matrix can be arranged
to be of the form:

H∞ε =

[
I hε
0 0

]
. (11)

V1

V2

V3

V4

V5

V6

P1

P2

P3

Fig. 3: Tree graph of relations

In (11) the ML solution has a multiplicity given by the number
d of columns of hε, as any setting of the variables indicated
by those columns fulfills the parity-checks.

VI. GTEP COMPLEXITY

The BP decoder exhibits a good performance with a com-
putational cost linear with the number of variables. The BP
diagonalizes the matrix by using just degree-one rows, taking
the non-zero entry as pivot to perform Gaussian elimination.
Hence, if the matrix H0

ε can be triangulated by rearranging its
columns and rows, the BP successfully decodes.

As detailed in Section IV, every iteration the GTEP removes
one variable, Vi, and a check node, Pq . Variable Vi is described
as a function of the other variables connected to the parity
check node, namely Vpi . As discussed in the former section,
this step is done as an addition of rows, which causes matrix
H`
ε to become dense. The complexity of adding a dense

column to the others is of order quadratic with n, and the
whole complexity becomes cubic.

To avoid unnecessary densification, we could process the
matrix imposing that just a subset of the columns becomes
dense, to easily diagonalize the remaining ones. The natural
way for the GTEP to follow this strategy is to combine two
simple ideas:

1) Find and process the row of H`
ε with the lowest non-zero

degree and select the variable connected to it that present
the highest degree. The other variables are labeled as
reference variables.

2) Variables that are already reference should not be taken
into account in the evaluation of the degree of the rows
in H`

ε, nor processed. These variables are already in the
“dense” part of H`

ε.
Therefore, once the row is selected according to these

rules, we process one non-reference variable connected to the
corresponding check node. The rest of connected variables are
labeled as reference variables, if they were not. For instance,
in Fig. 2.b V4 and V6 belong to the reference set and the
dashed lines should not be counted to evaluate the degree of
the check nodes. This figure has been rearranged in Fig. 4, in
which we have placed the reference variables (dashed lines)
to the right of the factors, and the non-reference variables to
the left. The GTEP continues processing the check node with
the lowest number of edges to the left. In the example, we
could process either P3 and P7. Since their degree is one, no
new reference variables are created, see Fig. 2.c. Note that if
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the BP can successfully decode, the GTEP always chooses a
degree-one check node and no reference variable is created.

When only reference variables are left, the GTEP continues
applying Gaussian elimination to them, but now the columns
are dense. Let us define αGTEP such that αGTEPn is the
final number of reference variables. The complexity of the
GTEP can be roughly approximated by O((αGTEPn)3), i.e.
the computational complexity of the Gaussian elimination of
these variables.

P8

V1

V2

V3 V4

V5 V6

V7

V8

P1

P2

P3

P4

P5

P6

P7

Fig. 4: Fig. 2.(b) rearranged, with the reference variables to
the right and the other ones to the left. The GTEP processes
the check node with the lowest number of edges to the left.

A. Complexity comparison

There have been several proposals in the literature to obtain
efficient ML decoders for LDPC decoding over BEC [9], [27],
[33], [40]. In this section we describe and compare them to
the GTEP. After detailing the three algorithms A, B and C
in [33], the other proposals are related to them. The GTEP
decoder works similarly to procedure C in [33], with the great
advantage of having a generalizable description for discrete
channel based on the EP framework [34], as described in
Section II. Besides, our method also recovers the multiplicity
of the solution and provides a linear procedure to find all
possible solutions through the tree graph of relations.

In [33] the authors include a classification of the procedures
to perform ML decoding and a description of their complex-
ities. In their work, the reference variables are a fraction
α of columns declared as revealed in order to triangulate
the remaining parity-check matrix, denoted as H̃, to later
solve the reference variables by Gaussian elimination. The
computational cost of the triangularization of H̃ is negligi-
ble compared to the O((αn)3) complexity of the Gaussian
elimination of the reference variables, as these form a set of
dense columns. Three procedures are described to choose the
reference variables:

1) Procedure A: the most naive approach, where we ran-
domly pick enough number of reference variables such

that we save the gap between the erasure probability and
the BP threshold for the given code, i.e. αA > ε− εBP .

2) Procedure B: we start the diagonalization process with
H̃ = H0

ε , and when it gets stuck, we declare each vari-
able in H̃ as reference variable with uniform probability
δ. The authors investigate the limit n→∞ with δ → 0+

to show that this procedure leads to αB 6 αA.
3) Procedure C: when the diagonalization gets stuck, we

randomly select a row with degree l ≥ 2 with probability
δωl, where δ is a constant. For each selected check node,
l−1 of its neighbors are declared as reference variables
and extracted from matrix H̃. Through ωl we can ensure
that the lowest-degree rows are picked first, which leads
to αC 6 αB .

In [33] expressions for αA, αB are αC are only given in
the limit n → ∞. In this regime, Procedure C with some
parameter setting is more efficient than A and B.

The Maxwell decoder, proposed in [9], proceeds as follows.
When the BP gets stuck, it randomly selects one unknown
variable and declares it as known, running again the BP
algorithm. Hence, it can be equated to Procedure B.

Inactivation decoding (ID) was proposed in [26], [27] to per-
form ML decoding of Fountain and Raptor codes, extensively
used in erasure data packet networks. Unlike standard LDPC
codes, the rate in fountain codes is not fixed in advance. This
flexibilility in the code rate can be exploited to attain excellent
decoding properties. For instance, Raptors codes are designed
to be decoded with up to one reference variable per check
node, that is denoted as inactivated variable. The authors also
state in [27] that, if more reference variables would be needed,
the ID inactivates all except one of the variables connected to
the check node of minimum degree. Thus, ID can be cast as
Procedure C.

In [40] the authors present an ML algorithm where they
proceed as Procedure B in [33] except for two main differ-
ences. First, they select as reference variables the ones with
largest degrees. In the case of regular codes this poses no im-
provement, as the remaining variables out of the reference set
has the same number of edges. For irregular codes, however, it
should be taken into account, as the GTEP does. Second, they
analyze the neighborhoods of the possible reference variables,
to choose the best one. However, this search is focused on
scenarios with a few number of reference variables, because
they focus on improving the BP solution in the error floor
region. No computational cost to find the optimal set is
evaluated for the general case. Besides, given the best set of
reference variables, the computational complexity is described
in [40] as O(g2maxn), where gmax is related to the number of
reference variables. They show that gmax is linear with the
number of reference variables, and the complexity is of cubic
order, as that of the procedures in [33].

From the discussion above, we can conclude that the GTEP
algorithm shares the philosophy of Procedure C in [33].
However, while in Procedure C the row to process is randomly
chosen through the sequence of probabilities δωl for l ≥ 2, in
GTEP we just process the one with lowest degree, resulting in
a better suited implementation in the finite-length scenario. It
is worthy to remark that, in the experimental section in [33],



7

512 1024 2048 4096 8192
0.015

0.02

0.025

0.03

0.035

0.04

0.045

n

α

 

 

ε = 0.49

ε = 0.48

ε = 0.47

ε = 0.46
αGT EP

α∞
C

Fig. 5: Fraction of variables in the GTEP decoding that are
reference ones, αGTEP , for different values of ε. The limiting
values for Procedure C in [33], α∞C , are also depicted.

the authors set ω2 = 1 and negligible values to ωl for l ≥ 3,
emulating the GTEP algorithm.

In Fig. 5 we have plotted the empirical mean value of
αGTEP for different code lengths of a (3,6)-regular LDPC
ensemble and different erasure values. The horizontal lines
indicate the αC values provided in [33] for n → ∞. We
denote them by α∞C . In Fig. 5, we can observe that the
value of αGTEP decreases to α∞C with the code size. Besides,
for short code sizes αGTEPn is fairly low, which results in
a complexity of the Gaussian elimination of the reference
variables lower or similar to the other (quadratic) operations
of the decoding process. Finally, compared to the algorithm
in [40], the two-steps search of the best reference variables
could be addressed, however we believe its complexity would
be its major drawback. We conclude that the GTEP naturally
yields a ML decoder with equal or better complexity than the
methods previously described.

VII. ANALYSIS OF THE GTEP DECODER FOR
FINTE-LENGTH CODES

In this section we focus on the (5,10)-regular LDPC en-
semble, as it is a good example of LDPC code whose ML
threshold is close to capacity, εML = 0.499486 [23], and far
from the BP threshold (εBP ≈ 0.34).

A. Multiplicity of the ML solution
As stated in the previous sections, the codeword is decoded

if all the parent variables of the tree graph of relations
are revealed. On the contrary, the GTEP decoder provides
a multiple ML solution whose multiplicity depends on the
number of non-revealed parent nodes.

For the (5,10)-regular LDPC ensemble, we depict in Fig.
6 the curves for the normalized number of non-revealed
parent variables, d/n, as a function of the erasure value of
the channel. As the length of the codeword increases, the
number of non-revealed parent variables for ε values below
ε = 0.499486 tends to 0, as the performance gets close to the
asymptotic behavior.

0.49 0.492 0.494 0.496 0.498 0.499486
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2 x 10−3
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d
/
n

 

 

log2(n) = 9
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log2(n) = 11

log2(n) = 12

log2(n) = 13

Fig. 6: We plot the average number of remaining parent
variables, normalized by the number of variables, n, as a
function of the erasure value of the channel, for the (5,10)-
regular LDPC ensemble and different lengths of the codeword.

B. Error rates

Finally, in Fig. 7, we depict the word error rate (WER)
curves for the BP, TEP and GTEP decoders and different
lengths of the (5,10)-regular LDPC code averaged over dif-
ferent realizations of the ensemble. These curves graphically
illustrate how the proposed GTEP decoder achieves the ML
solution. As n increases, the results tend to the asymptotic
performance of the decoder. Thus, the waterfall of the WER
curves takes place around a value of ε = 0.499486, the ML
threshold. For this ensemble, it has been shown that the TEP

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
10−3

10−2

10−1

100

ε

W
E

R

 

 

log2(n) = 9

log2(n) = 10

log2(n) = 11

log2(n) = 12

log2(n) = 13

BP

TEP

GTEP

Fig. 7: WER performance for the BP (dash-dotted lines), the
TEP (solid lines) and the GTEP (dashed lines) algorithms for
the (5,10)-regular LDPC ensemble, and different lengths of
the codeword.

threshold hardly improves the BP threshold, as it can be seen
in the figure. Besides, we can observe the remarkable gain of
the GTEP compared to the BP and the TEP decoders, where
the performance of both algorithms significantly diminishes
due to the low-girth cycles in these LDPC codes.
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VIII. CONCLUSIONS

The linear complexity of the BP algorithm has made it
the standard approach for LDPC decoding. However, the
BP solution for regular LDPC ensembles does not achieve
the channel capacity. Hence, in order to reach the capacity
under BP decoding we are restricted to families of irregular
sequences. However, these codes present more complex degree
distributions and require much longer codewords than regular
ensembles to perform optimally.

The TEP was presented as a tool to improve the BP decod-
ing. The TEP is based on the tree-structured EP algorithm and
it just focuses on relations between two variables. The TEP
exhibits a better performance than the BP for finite length
codes over the BEC, with no increase of the complexity. In
this paper, we explore the application of tree-structured EP
to the decoding of LDPC codes with no limit in the number
of processed variables. For the BEC, we have shown that the
resulting decoder, the GTEP, accomplishes the ML solution by
fully processing the Tanner graph. Even if the GTEP decoder
does not yield a unique codeword, it provides the set of
possible ML solutions, and its multiplicity. Besides, the GTEP
algorithm has a better or similar computational complexity
compared to that of the ML decoders in the literature, such
as the Maxwell decoder [9], the inactivation decoding [27] or
the procedures by Burshtein et al. [33].
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