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Multi-Way Relay Networks: Orthogonal Uplink,
Source-Channel Separation and Code Design

Roy Timo, Gottfried Lechner, Lawrence Ong and Sarah J. Johnson

Abstract—We consider a multi-way relay network with an
orthogonal uplink and correlated sources, and we characterise
reliable communication (in the usual Shannon sense) with a
single-letter expression. The characterisation is obtained using
a joint source-channel random-coding argument, which is based
on a combination of Wyner et al.’s Cascaded Slepian-Wolf Source
Coding and Tuncel’s Slepian-Wolf Coding over Broadcast Chan-
nels. We prove a separation theorem for the special case of two
nodes; that is, we show that a modular code architecture with
separate source and channel coding functions is (asymptotically)
optimal. Finally, we propose a practical coding scheme based on
low-density parity-check codes, and we analyse its performance
using multi-edge density evolution.

I. INTRODUCTION

CONSIDER a multi-way relay network in which a group
of physically separated nodes exchange data. Direct

communication between the nodes is not permitted, and the
exchange is only made possible with the help of a relay.
The nodes encode and transmit their data over an uplink (a
multiple-access channel) to the Relay. The Relay processes
this information and transmits over the downlink (a broadcast
channel) to every node. We assume that each node requires a
lossless reconstruction of the data of all other nodes.

The above relay network aims to model communication in
cellular and satellite networks. A large body of work has
comprehensively studied the network from the perspective
of source coding [1], channel capacity [2]–[6], and network
coding [7], [8]. However, despite this intense effort, the
information-theoretic limits of the network remain largely
unknown.

We study the relay network under two specific assumptions.
The first assumption is that the data is arbitrarily correlated
– generated by a discrete-memoryless (DM) source – and the
communications problem involves joint source-channel (JSC)
coding. Correlated data might take the form of measurements
in a sensor network [9], voice data in a cellular network, and
data files in a peer-to-peer network. We wish to determine
when a given source can be reliably communicated (in the
usual Shannon sense) over a given channel.
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The second assumption is that the downlink is an arbitrary
DM broadcast channel and the uplink is an orthogonal DM
multiple-access channel. Our motivation to study an orthog-
onal uplink stems from Shannon’s classic separation theo-
rem [10, Sec. 7.3], which states that the problem of losslessly
transmitting a DM source over a point-to-point DM channel
can be divided into two independent problems – source coding
and channel coding. Moreover, the individual optimisation
of stand-alone source and channel codes is optimal for the
overall point-to-point JSC problem. The separation theorem is
important in practice because, for example, systems are rarely
restricted to transmitting a single source over a fixed channel
with known statistics; indeed, to quote Gallager [11, Pg. 140]
(see also [12, Pg. 406]):

“In many data transmission systems the probabilities
with which the messages are to be used are either
unknown or unmeaningful.”

The modular nature of the separate source-channel coding
architecture allows the source and channel codes to be changed
as needed, without compromising overall optimality [13].
Unfortunately, separation may or may not be optimal for
networks in general; for example, separation is suboptimal for
the multiple-access channel [10, Pg. 592] and the broadcast
channel [14, Sec. 14.2], and it is optimal for the orthogonal
multiple-access channel [15]. Given this state of affairs, it is
natural to ask whether separation is optimal for the multi-way
relay network. We prove, in this paper, that separation holds
for the special case of two nodes.

Paper Outline:
• Section II: We formally define the JSC-coding multi-

way relay problem, and we characterise reliable com-
munication with matching single-letter achievability and
converse theorems. The achievability proof employs a
JSC random-coding argument, which builds on the virtual
binning idea of Tuncel [16] and the cascaded Slepian-
Wolf binning idea of Wyner et al. [1].

• Section III: We formalise a notion of source-channel sep-
aration, and we prove a separation theorem for two nodes;
that is, it is asymptotically (in blocklength) optimal to
separate the source and channel coding functions.

• Section IV: We use the two-node separation theorem
as a basis to design practical low complexity codes.
Specifically, we consider source and channel codes based
on low-density parity-check (LDPC) codes. We show
how the individual LDPC codes for source and channel
coding can be represented by a joint factor-graph [17],
and we use this graph to provide an alternative view of
the separation theorem. Finally, we present a numerical
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Fig. 1. The JSC-code architecture for the multi-way relay network with an orthogonal uplink.

example and discuss the differences between joint and
separate decoding.

Notation: Random variables and their alphabets are identi-
fied by uppercase and script letters respectively, e.g. W and
W . Random vectors defined on the cartesian product of a set
are identified by boldface font, e.g.,

W = (W1,W2, . . . ,Wn)

takes values from

W =W ×W × · · · ×W︸ ︷︷ ︸
n

.

Subsets and strict subsets of an alphabet are identified with ⊆
and ⊂ respectively. Set complement is denoted by a superscript
c; e.g., if

L ⊆ {1, 2, . . . , L},
then

Lc , {1, 2, . . . , L}\L.
If L is a singleton, say L = {l}, then we write ∼ l , {l}c.

II. JOINT SOURCE-CHANNEL CODING

A. Setup

Consider Fig. 1. Suppose that a discrete memoryless source
emits an i.i.d. string

(W (1)

1 ,W
(2)

1 , . . . ,W
(L)

1 ), (W (1)

2 ,W
(2)

2 , . . . ,W
(L)

2 ), . . .

(W (1)

n ,W
(2)

n , . . . ,W
(L)

n ), (1)

of arbitrarily distributed random variables (W (1),W (2), . . . ,
W (L)). LetW(l) denote the alphabet of the l-th random variable
W (l) for each index l in {1, 2, . . . , L}. The W (l)-component of
the sequence in (1) is given to Node l. The orthogonal uplink
channel from Node l to the Relay is discrete and memoryless
with input alphabet X (l), output alphabet Y(0,l), and transition
probabilities

q(l)(y|x) , P[Y (0,l) = y|X(l) = x].

The downlink broadcast channel is discrete and memoryless
with input alphabet X (0), output alphabet Y(l) at Node l, and
transition probabilities

q(0)(y1, y2, . . . , yL|x) , P[Y (1) = y1, Y
(2) = y2,

. . . , Y (L) = yL|X(0) = x].

A joint source-channel (JSC) code with blocklength n, see
Fig. 1, is a collection of (2L+1)-maps: the encoder at Node l,

φ(l) : W(l) −→ X (l); (2a)

the encoder at the Relay,

ψ(0) : Y(0,1) ×Y(0,2) × · · · ×Y(0,L) −→ X (0); (2b)

and the decoder at Node l,

ψ(l) : W(l) ×Y(l) −→W(1) ×W(2) × · · · ×W(L). (2c)

Node l observes

W (l) , (W (l)

1 ,W
(l)

2 , . . . ,W
(l)

n )

and transmits
X(l) , φ(l)(W (l)).

The Relay observes

Y (0,l) , (Y (0,l)

1 , Y (0,l)

2 , . . . , Y (0,l)

n ),

on the l-th uplink channel, and it transmits

X(0) , ψ(0)(Y (0,1),Y (0,2), . . . ,Y (0,L)).

Node l observes

Y (l) , (Y (l)

1 , Y
(l)

2 , . . . , Y
(l)

n )

and decodes

(Ŵ
(l,1)

, Ŵ
(l,2)

, . . . , Ŵ
(l,L)

) , ψ(l)(W (l),Y (l)).
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The average joint decoding error probability of a JSC-code
is

Pe , P
[
(Ŵ

(l,1)

, . . . , Ŵ
(l,L)

) 6= (W (1), . . . ,W (L))

for one or more l in {1, 2, . . . , L}
]
. (3)

Definition 1: We say that reliable communication is achiev-
able with JSC codes if there exists for each ε > 0 a code of
the form (2) with Pe ≤ ε for some sufficiently large integer n.

B. Main Result

The following notation is required for the next theorem.
Denote the capacity [10, Eqn. 7.1] of the l-th orthogonal uplink
channel by

C(l)

up , max
X(l)

I(X(l);Y (0,l)),

where the maximisation is over distributions for X(l) on X (l).
If

L =
{
l1, l2, . . . , l|L|

}
is a nonempty subset of {1, 2, . . . , L}, then let

W (L) ,
(
W (l1),W (l2), . . . ,W (l|L|))

denote those random variables with indices belonging to L.
The next theorem is proved in Appendix A.

Theorem 1: Reliable communication is achievable with JSC
codes if

H
(
W (L)|W (Lc)

)
<
∑
l∈L

C(l)

up (4a)

holds for each nonempty strict subset L of {1, 2, . . . , L}, and
there exists a distribution for X(0) on X (0) such that

H
(
W (∼l)|W (l)

)
< I(X(0);Y (l)) (4b)

holds for each l in {1, 2, . . . , L}. Conversely, if reliable com-
munication is achievable then (4a) or (4b) hold as inequalities
— instead of strict inequalities — for some X(0).

C. Remarks

Non-matched symbol rates: Theorem 1 characterises reliable
communication for matched source and channel symbol rates;
i.e., n source symbols are mapped to n channel symbols. The
proof easily extends to the non-matched symbol rate setting
where n source symbols map to m channel symbols.

Networks of Channels: The uplink condition (4a) closely
resembles Han’s generalisation [15, Sec. 1] of the Slepian-
Wolf/Cover theorem [18] to networks of noisy orthogonal
channels (see also Barros and Servetto [19]). Indeed, all but
one of the inequalities appearing in [15, p. 1] also appear as
uplink constraints in (4a) — the exception being a total sum
rate constraint of the form

H(W (1),W (2), . . . ,W (L)) ≤
L∑
l=1

C(l)

up. (5)

Although our problem formulation differs from that of [15],
[19], the similarity of these results can be understood by

comparing the respective achievability proofs. Han [15] uses a
simple separate source-channel coding argument: he combines
an optimal Slepian-Wolf code with optimal channel codes for
each orthogonal uplink. In Han’s setup, reliable communica-
tion is possible if (4a) and (5) both hold. The uplink part of
our proof essentially uses the same argument, except we do
not require that (5) holds; i.e., we use fewer bins and, as a
consequence, the Relay cannot decode the sources. Indeed, in
our setup, the Relay needs only to recover the Slepian-Wolf bin
indices and not the individual source sequences. The downlink
achievability proof requires JSC coding and is discussed next.

Joint Source-Channel Coding: The (downlink) achievability
proof of Theorem 1 is based on a JSC random-coding argu-
ment that builds upon the virtual binning idea developed by
Tuncel in [16]. To illustrate why the virtual binning approach
is useful, momentarily suppose that the Relay is given the
entire source L-tuple (W (1),W (2), . . . ,W (L)) and consider the
downlink phase in isolation. With the setup of [16] in mind,
we can view (W (1),W (2), . . . ,W (L)) as a common message
that needs to be reliably decoded by every node. Applying [16,
Thm. 6] we immediately see that the common message can
be reliably decoded by every node whenever (4b) holds.

The basic idea behind the proof of [16, Thm. 6] is to
randomly generate a downlink channel codeword (n i.i.d. sym-
bols ∼ PX(0) ) for each and every jointly typical source tuple
(W (1),W (2), . . . ,W (L)). Upon observing a typical source tu-
ple1, the Relay transmits the corresponding channel codeword.
Node l, upon observing the channel output Y (l), compiles a
list of all those channel codewords that are jointly typical
with Y (l). The codeword list corresponds to list of typical
source sequences, with the same number of elements. We
may think of the source list as a (virtual) random bin in the
sense of the classic Slepian-Wolf Theorem [20]. Node l looks
within this list for a unique source tuple that is jointly typical
with its source W (l); this search will be successful with high
probability whenever (4b) holds.

The above argument assumes that the entire source tuple is
made available to the Relay, which is not the case in the multi-
way relay network. The key difficulty in proving Theorem 1 is
to overcome the fact that the Relay only has partial knowledge
of the source tuple.

Processing Broadcast Satellite: The source coding work of
Wyner et al. [1, Thm. 1] is a special case of Theorem 1.

III. SEPARATE SOURCE-CHANNEL CODING

We now compare the general JSC coding architecture of
Section II to a separate source-channel coding architecture.

A. Channel Coding

The channel-coding problem of interest is analogous to the
JSC-coding problem in Fig. 1 with one exception: the discrete
memoryless source (W (1),W (2), . . . ,W (L)) is replaced by L-
independent random variables (M(1),M(2), . . . , M(L)), where
each M(l) is uniformly distributed on M(l).

1An error is declared if the source is not jointly typical.



4

A channel code with blocklength n is a collection of maps:
the encoder at Node l,

φ(l)

c :M(l) −→ X (l); (6a)

the encoder at the Relay,

ψ(0)

c : Y(0,1) ×Y(0,2) × · · · ×Y(0,L) −→ X (0); (6b)

and the decoder at Node l,

ψ(l)

c : M(l) × Y(l) −→ M(1) × M(2) × · · · × M(L). (6c)

The channel code operates in a manner analogous to the JSC-
code: Node l sends

X(l) , φ(l)(M(l))

and decodes

(M̂(l,1), M̂(l,2), . . . , M̂(l,L)) , ψ(l)(M(l),Y (l)).

The average joint error probability of a channel code is
defined by

Pe , P
[
(M̂(l,1), M̂(l,2), . . . , M̂(l,L)) 6= (M(1),M(2), . . . ,M(L))

for one or more l in {1, 2, . . . , L}
]
.

The rate at which Node l transmits the message M(l) is defined
by

η(l) ,
1

n
log2 |M(l)|.

Definition 2: A nonnegative rate tuple (r(1), r(2), . . . , r(L)) is
said to be achievable if the following holds: for each ε > 0
there exists a channel code of the form (6) with Pe ≤ ε and
η(l) ≥ r(l) − ε for some sufficiently large integer n.

Definition 3: The capacity region C is the set of all achiev-
able rates.

We now give a single-letter expression for C. Let C∗ denote
those nonnegative rate tuples (r(1), r(2), . . . , r(L)) for which

(i) the uplink channel capacities satisfy

r(l) ≤ C(l)

up

for all l = 1, 2, . . . , L; and
(ii) there is a distribution for X(0) on X (0) such that∑

l′ 6=l
r(l
′) ≤ I(X(0);Y (l))

holds for all l = 1, 2, . . . , L.

Lemma 1: C = C∗.

Proof: The lemma can be proved in the same way
as Theorem 1 with (W (1),W (2), . . . ,W (L)) replaced by
(M(1),M(2), . . . , M(L)) and H(W (L)|W (Lc)) replaced by∑
l∈L η

(l). We omit the technical details.

M(1)

M(2)

M(L)
(Ŵ (L,1), . . . , Ŵ (L,L))

(Ŵ (2,1), . . . , Ŵ (2,L))

(Ŵ (1,1), . . . , Ŵ (1,L))
�(1)

s

�(2)

s

�(L)

s  (L)

s

 (2)

s

 (1)

s
W (1)

W (2)

W (L)

W (1)

W (2)

W (L)

Fig. 2. The multi-way relay network source coding problem. The source code
is designed on the assumption that the L-indices (M(1),M(2), . . . ,M(L)) can
be reliably transported over the network by a channel code.

B. Source Coding

The source-coding problem of interest is the multi-source
multicast problem shown in Fig. 2. The problem is the
source coding counterpart of the channel coding problem of
Section III-A in the following sense: a source code from this
section combined with a channel code from the Section III-A
produces a (separate source-channel) code for the overall JSC
problem.

A source code of length n is a collection of 2L-maps: the
compressor at Node l,

φs : W(l) −→M(l); (7a)

and the decompressor at Node l,

ψs : W(l) ×M(1) ×M(2) × · · · ×M(L)

−→W(1) ×W(2) × · · · ×W(L). (7b)

Node l sends
M(l) , φ(l)

s (W
(l))

and decompresses

(Ŵ
(l,1)

, Ŵ
(l,2)

, . . . , Ŵ
(l,L)

) , ψ(l)

s (M(1),M(2), . . . ,M(L)).

The joint decoding error probability is defined in the same
way as (3), and the compression rate of Node l is defined by

η(l)

s ,
1

n
log2 |M(l)|.

Definition 4: A nonnegative rate tuple (r(1), r(2), . . . , r(L)) is
said to be achievable if the following holds: for each ε > 0
there exists a source code of the form (7) with n sufficiently
large, Pe ≤ ε and η(l)

s ≤ r(l) + ε for all l = 1, 2, . . . , L.

Definition 5: The source-coding rate region R is defined
as the set of all achievable rate tuples.



5

Lemma 2: R is equal to the set of all nonnegative rate
tuples (r(1), r(2), . . . , r(L)) for which∑

l∈L
r(l) ≥ H(W (L)|W (Lc))

holds for each nonempty and strict subset L of {1, 2, . . . , L}.
Proof: The lemma is a simple consequence of the Slepian-

Wolf/Cover theorem [18], [21]. The details are omitted.

C. Separate Source and Channel Coding
Reliable communication with separate source and channel

codes is possible if the intersection of the interior of R and
the interior of C is nonempty.

Theorem 2: Reliable communication with separate source
and channel codes is possible if there exists nonnegative rates
(r(1), r(2), . . . , r(L)) such that

H(W (L)|W (Lc)) <
∑
k∈L

r(k) <
∑
l∈L

C(k)

up (8a)

holds for each nonempty and strict subset L of {1, 2, . . . , L}
and ∑

k 6=l
r(k) < I(X(0);Y (l)) (8b)

holds for all l in {1, 2, . . . , L}.
Proof: The theorem is an immediate consequence of

Lemmas 1 and 2.

Separate source and channel coding is optimal for two
nodes. Specifically, the achievability assertion of Theorem 2
is equivalent to that of Theorem 1: if (4) holds, then we can
find (r(1), r(2)) simultaneously satisfying

H(W (1)|W (2)) < r(1) < C(1)

up

H(W (2)|W (1)) < r(2) < C(2)

up

and

r(1) < I(X(0);Y (2))

r(2) < I(X(0);Y (1)).

The situation is more complicated for three or more nodes.
Indeed, the achievability assertion of Theorem 2 is more
restrictive than that of Theorem 1 in general; in particular,
it is not possible to simultaneously remove all redundancies
in the sources for every node, and such redundancies can be
exploited by the channel code. We describe such a situation
in Appendix B.

It should be noted that the capacity region C is formulated
with the requirement that each node reliably communicates
a single message to every other node. A more general setup
would permit the use of a private message from each node to
each subset of nodes. Characterising the resultant L(2L−1−1)-
dimensional capacity region appears to be a formidable task;
in particular, the problem includes the setup of [22] as a
special case. Theorem 2 should therefore be understood as
a sufficient condition for separate source and channel coding
to be optimal. Finally, it is interesting to juxtapose such
difficulties to the relatively simple JSC coding scheme used
to prove Theorem 1.

IV. PRACTICAL CODES

We now consider the problem of designing practical, low
complexity, codes that can approach those theoretical limits
established for JSC coding in Sections II and III. Iterative
error correction codes have been extensively investigated for
JSC coding; for example, see [23] on joint turbo decoding and
estimation of hidden Markov sources, or [24] on distributed
JSC coding of video. In this section, we present a JSC coding
scheme for the two-way relay network that is based on low-
density parity-check (LDPC) codes [25]–[28]. In particular, we
consider multi-edge LDPC codes [28] that are widely used in
applications such as wiretap and multi-relay channels [29],
[30]. Our aim is to show how the individual codes for source
and channel coding can be represented by a joint factor-graph
[17], and we use this graph to provide an alternative view of
the separation principle using multi-edge density evolution.

In the following, we represent the channel coding message
of Node l (denoted by M(l) in Section III-A) using the binary
notation B(l). As there are only two nodes, we will denote the
node that is not Node l as Node ∼ l.

The encoder at Node l uses a linear source code to compress
its source vector W(l) as

B(l) = W(l)H(l)

s
T
.

Here W(l) and B(l) are binary vectors of length n and r(l)n
respectively, and H(l)

s is the parity-check matrix defining the
source code of Node l.

The compressed vector B(l) is mapped to a channel code-
word X(l), which is transmitted over the uplink channel. The
uplink channel code is defined by a parity-check matrix H(l)

c
2.

The relay decodes B(l) from the noisy outputs Y(0,l) of the l-th
uplink channel. It then maps the concatenation of B(1) and B(2)

to X(0) using a channel encoder defined by the parity-check
matrix H(0)

c . Each node uses a channel decoder to recover the
other user’s index B(∼l) using their own index B(l) and the
noisy observation Y(l) from the broadcast channel. Finally,
the source code is decoded separately resulting in an estimate
of W(∼l). This system is represented by the factor-graph in
Fig. 3.

A. Source-Channel Separation from a Factor-Graph View-
point

In Section III-C, we showed that separate source-channel
coding is asymptotically (in blocklength) optimal in the two-
way relay network. We now provide an alternative view of
this result using the factor-graph representation in Fig. 3. Let
us first assume that the relay successfully decodes each bin
index – the uplink code does not add to the discussion on
separate versus joint decoding of the source and downlink
codes. Consider the graph shown in Fig. 3 depicting the source
codes and downlink channel code; these codes are connected
via the bin indices.

A separate source-channel decoder will apply the channel
decoder to determine the other user’s index B(∼l) from Y(l)

2For more information on how to encode a message B(l) into a codeword
X(l) for a particular code H

(l)
c see [28, App. A].
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Fig. 3. Factor-graph of the overall system. Circles represent (binary) symbols; parity-check equations are represented by solid black squares. The correlation
between the symbols and the channel transition probability for the downlink are represented by empty squares.

and then separately apply the source decoder to estimate
W(∼l) from B(∼l). A joint source-channel decoder will decode
W(∼l) directly from Y(l) by decoding the source and channel
codes on the joint factor graph, and exchanging soft (extrinsic)
information between the two parts of the factor graph.

Consider now the case when the source is compressed with
a rate that equals the conditional entropy. In the channel coding
setting this corresponds to a capacity achieving code. It has
been shown in [31] that the extrinsic information about the
coded bits of any good (capacity achieving) code is zero above
capacity. This implies that a joint decoder cannot outperform
a separate decoding scheme in such a setting since there is no
extrinsic information available to the joint decoder. Therefore,
source-channel separation with separate decoding can be seen
to be optimal from a factor graph perspective if capacity
achieving source codes are applied.

In the following we will investigate source-channel separa-
tion in a practical setting by designing source and channel
codes for the two-way relay channel and considering their
performance using both density evolution and finite length
simulations.

B. Design of the Source and Channel Codes

The task of the source code is to map the message W(l) of
length n bits to a message B(l) of length r(l)n bits such that the
other node can reconstruct the message using its own message
as side information. This is a Slepian-Wolf coding problem

[18] with bin index B(l). An optimal Slepian-Wolf code can
be realised by using the syndrome of a linear code, which
is optimised for a particular symmetric dual channel [32],
[33]. The optimisation of the degree distribution of an LDPC
code for a symmetric channel with uniform input is well
studied [28], [34] and we will design our source codes in
this way.

For the downlink the relay has to communicate the messages
B(1) and B(2) to both nodes simultaneously by broadcasting a
codeword X(0). Our proposed coding scheme is as follows.
First, the relay treats the concatenation of B(1) and B(2) as
the systematic part of an LDPC code. It then uses an LDPC
encoder to determine the message X(0) (the “parity” bits),
which it transmits over the broadcast channel. At each node,
the channel decoder knows its own message B(l) and treats the
message of the other node as being erased.

The overall structure of the parity-check matrix H(0)
c of

our scheme is shown in Fig. 4. This matrix consists of
a concatenation of the matrices H(1), H(2) (corresponding to
B(1), B(2)), and the matrix H(0) (corresponding to X(0)). The
codebook used by the relay is therefore defined as

C(0) =
{
[b(1)b(2)x(0)] ∈ {0, 1}(r(1)n+r(2)n+n)

: [b(1)b(2)x(0)]H(0)

c
T
= 0

}
.
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B(1) B(2) X(0)

r(1)n r(2)n n

nH(1) H(2) H(0)H(0)
c =

Fig. 4. Structure of the parity-check matrix for the downlink channel code.

The relay can determine its broadcast message X(0) by solving

B(1)H(1)T ⊕B(2)H(2)T ⊕X(0)H(0)T = 0,

where ⊕ denotes the element-wise addition over GF(2). An
efficient algorithm to determine X(0) is described in [28, App.
A].

To allow successful encoding at the relay and decoding at
the nodes:
• the square matrix H(0) has to be of full rank (over GF(2))

(this enables the relay to determine the vector X(0) given
the messages B(1) and B(2)),

• the matrices H(1) and H(2) have to be free of stopping sets
(a set of variable nodes that, if erased, cannot be resolved
by a message-passing decoder [28, Sec. 3.22]).

The first condition is obvious since the relay cannot determine
its broadcast message if the square matrix H(0) is rank deficient.
To show the necessity of the second condition, assume that
the broadcast channel is noiseless, i.e., the nodes know X(0)

without errors. The nodes now consider their own message
B(l) as being known and solve for the other message B(∼l)

that is treated as being erased. If this set of erased variables
contains a stopping set, then the iterative decoder is unable
to solve for all erasures and gets stuck in the largest stopping
set.3

The absence of stopping sets can also be expressed by
requiring that the sub-matrices H(1) and H(2) can be converted
to triangular form using only row and column swaps. This
corresponds to the encoding problem of LDPC codes as
described in detail in [28, App. A] which allows us to apply
their results. In particular, we use [28, Thm. A.16] to design
LDPC codes which can be converted to triangular form.

An optimised code for the downlink phase has to be
designed for both nodes simultaneously, i.e., it has to perform
close to the respective theoretical limit for both downlink
channels. Such a code can be analysed and optimised using
multi-edge type density evolution [28, Sec. 7].

3We note that this constraint only applies to the (sub-optimal) message
passing decoder which we consider in this paper. For a maximum likelihood
decoder we would have to require that the erased variable nodes do not contain
the support of a codeword. The support of any codeword is a stopping set but
not all stopping sets correspond to codewords. Therefore, the constraint for
the message passing decoder is more restrictive than that for the maximum
likelihood decoder.

C. Density Evolution and Numerical Examples

We apply multi-edge type density evolution to analyse the
performance of the coding structure introduced in the previous
section. We make the following assumptions for our numerical
examples:
• (W (1),W (2)) is a doubly symmetric binary source with

cross-over probability 0 < ρ < 1/2, i.e.,

qs(w
(1), w(2)) =

{
(1/2) · (1− ρ) if w(1) = w(2)

(1/2) · ρ otherwise.

The conditional entropy is therefore

H(W (1)|W (2)) = H(W (2)|W (1)) = h(ρ),

where h(·) denotes the binary entropy function.
• The (orthogonal) uplink channels are binary input addi-

tive white Gaussian noise (BIAWGN) channels with noise
variance σ2

u each.
• The downlink channels are modelled as BIAWGN chan-

nels with noise variance σ2
d each.

Furthermore assume that the noise variance σ2
u of the uplink

channel is fixed and the nodes can communicate their mes-
sages reliably to the relay. For the downlink we are interested
in the pairs (ρ, σ2

d ) which define the achievable region

D ,
{
(ρ, σ2

d ) ∈ (0, 1/2)× R+ : lim
`→∞

PDE(`) < ε

}
, (9)

where ε > 0 is an arbitrarily small constant and PDE(`)
denotes the bit error probability of the estimate Ŵ(∼l) after
` iterations of message passing decoding, i.e., D consists of
all pairs of source correlation ρ and noise variance σ2

d on the
downlink channel where the iterative decoder converges to an
arbitrarily small error probability for sufficiently large block
length.

Since we assume that the uplink channels can be decoded
by the relay, we focus on the decoding problem at the nodes
where we have the constraint:

h(ρ) ≤ r(l) ≤ CBIAWGN(σ
2
d ) (10)

where CBIAWGN(σ
2) denotes the capacity of a BIAWGN

channel with noise variance σ2.

1) Example 1 (Separate Decoding): The decoder at Node l
first decodes the other node’s bin index B(∼l). After performing
a hard decision on the bin index, the node decodes the Slepian-
Wolf code H(∼l)

s using the other node’s bin index B(∼l) and its
own message W(l) as side information.

In this example we optimised source and channel codes for
two cases

r(1) = r(2) = 1/2 and r(1) = r(2) = 1/4.

The resulting source and channel codes are given in Table I. In
Fig. 5 we have marked the optimised points for both rates (by
a cross and a square respectively). We can see that the (density
evolution) performance of these optimised codes is close to the
theoretical limits. Note that due to practical constraints, for
example we considered only LDPC codes with a maximum
node degree of 50, these codes are capacity approaching
rather than capacity achieving and so their performance is still
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TABLE I
DEGREES AND DEGREE DISTRIBUTIONS OF ALL CODES USED FOR THE NUMERICAL EXAMPLES. SEE FIG. 3 FOR THE DEFINITION OF THE DEGREES.

Source codes Channel codes downlink
separate separate joint

rate 1/2 rate 1/4 rate 1/2 rate 1/4 rate 1/2
degree i λw,i degree i λw,i degree i λx,i degree i λx,i degree i λx,i

2 0.1710 2 0.1046 2 0.3657 2 0.3503 2 0.5254
3 0.2075 3 0.1984 3 0.1203 3 0.0731 3 0.1612
8 0.0800 5 0.1189 12 0.0963 5 0.0161 18 0.1349
9 0.2657 6 0.0006 13 0.1797 6 0.2043 19 0.1785
47 0.1864 9 0.1597 45 0.0162 19 0.0761
48 0.0894 10 0.0616 46 0.2218 20 0.0370

19 0.0458 33 0.1991
20 0.0453 34 0.0440
24 0.1881
25 0.0770

dw 10 dw 22 db 3 db 3 db 3
dx 4 dx 4 dx 3

bounded away from capacity, as shown by the small gap to
the (1/2,1/2) and (1/4,1/4) points respectively.

2) Example 2 (Decoding when the Source and Channel
Vary): In this example we consider the codes from Example
1 when the capacity of the downlink channel is higher and/or
when the conditional entropy of the source is lower than the
optimised values. In the case of separate source and channel
coding this gives the rectangular regions shown in Fig. 5.

We next consider the same source and channel codes we
used in the rate-1/2 case in Example 1, but now apply a
joint decoder. This is achieved by applying the sum-product
algorithm [17] to the joint factor graph consisting of the
downlink code and the Slepian-Wolf source code, i.e., the
graph shown in Fig. 3 assuming error-free uplink channels.
The achievable regions for this joint decoder are shown in
Fig. 6 and compared to the separate decoder (solid and dashed
lines, respectively).

When the conditional entropy of the source is less than the
value for which the system was designed, the source code
is of course no longer optimal. A separate decoder ignores
the source when decoding the downlink channel code and
therefore it cannot exploit any remaining redundancy after
decoding the source. However, a decoder that jointly decodes
the downlink channel code and the source code can exploit
this remaining redundancy. The achievable region of the joint
decoder is thus larger than that of the separate decoder due to
its improved performance when the conditional entropy of the
source is less than 1/2 at the same time that the capacity of
the downlink channel is less than 1/2.

The joint source-channel decoder can therefore be seen
to be more robust to variations of the source and channel
away from the design entropy and rate. So while separate
decoding is optimal for the particular design rate/entropy (here
1/2,1/2), joint decoding is more robust when the source and
channel vary. Indeed, a close observation of Fig. 6 reveals
that in this particular example the joint decoding scheme
can decode successfully at lower downlink capacities than
the separate scheme even for the (1/2,1/2) point where the
separate scheme is optimised. This is because the designed
source code is not capacity achieving (see the comment in

Example 1) so it is not compressing at the theoretical limit
and there is still some remaining redundancy to be exploited
by the joint decoder.

3) Example 3 (Code Optimisation for Joint Decoding): In
the previous example we presented the achievable region of
a joint decoder but we used the same codes as in Example
1, i.e., codes that have been optimised for separate decoding
of a specific source. Now we use the same source code as
above but instead of optimising the channel code for the
downlink for one particular source we optimise it for a range of
sources. In particular, we chose to minimise the area between
the achievable region and the theoretical limit over the entire
range of source entropies. The results of such an optimisation
process are shown in Fig. 6 (dash-dotted line). We observe that
such an optimised scheme performs close to the limit over a
wide range. However, this comes with a loss (at the rate 1/2
point) compared to a coding scheme which is optimised for
that particular setting.

4) Example 4 (Finite Length Results): In addition to the
asymptotic results of the previous examples we present finite
length results. For this purpose we consider the codes of
Examples 1 and 2, i.e., codes of rate 1/2 which have been
optimised for a separate decoder. Finite length codes have
been constructed for source blocks of length n = 104 using
the progressive edge growth (PEG) algorithm [35]. For the
simulations shown in Fig. 7 we fixed the cross-over probability
ρ of the source and varied the signal-to-noise ratio (Es/N0) of
the downlink channel (on the horizontal axis). We repeat this
process for three separate sources (ρ = 0.09, 0.07 and 0.05).
Results are shown for a separate and joint decoder (solid and
dashed lines, respectively).

First, consider the case where ρ = 0.09. This cross-over
probability is close to the threshold of the source code (ρth =
0.1064) which leads to a high probability of error of the finite
length source code (at approximately 10−2). These errors are
independent of whether a separate or joint decoder is used and
are because the finite length source code is far from capacity
achieving. However, since the source cross-over probability is
still slightly below the threshold, a joint decoder can exploit
the remaining redundancy and can decode at a slightly lower
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d) for

rates 1/2 (dashed line) and rates 1/4 (solid line). The dotted line represents
the theoretical limit (10). The uplink from the nodes to the relay is assumed
to be error-free.

Es/N0 for the downlink channel at bit error rates above this
error floor.

The error floor caused by the source code is decreased
when the sources have a smaller cross-over probability (i.e.
the sources have a greater correlation). For example, lowering
the cross-over probability to ρ = 0.07 or ρ = 0.05 shown in
Fig. 7 leads to an error probability of the source code which
is below our simulation range. In these cases a joint decoder
will exploit the remaining redundancy and is able to decode
at a significantly lower Es/N0 for the downlink channel than
the separate decoder. The channel coding part of the separate
decoder cannot benefit from a lower ρ and so has the same
downlink channel performance in all three cases.

This leads to the conclusion that, while source/channel
separation is optimal in an asymptotic setting of infinite block
length, any practical finite length system will benefit from a
joint decoder.

APPENDIX A
PROOF OF THEOREM 1

In the usual way, we split the proof of Theorem 1 into two
parts: the achievability assertion and the converse assertion.

A. Proof of Theorem 1 (Achievability)

1) Proof Outline: The main elements of the proof are best
understood for the special case where the uplink channels
are noiseless. Extending the proof to the more general case
claimed in Theorem 1 is straightforward.
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Fig. 6. Achievable pairs of ρ and σ2
d in terms of h(ρ) and CBIAWGN(σ

2
d)

for rates 1/2. The dashed line corresponds to a separate decoder (Example
1) and the solid line corresponds to a joint decoder operating on the code
designed for a separate scheme (Example 2). The dash-dotted line represents
a joint decoder where the channel code is optimised to perform well over a
wide range of sources (Example 3).

The (noiseless) uplink random-coding argument uses a
Slepian-Wolf/Cover distributed source code, e.g. [14, Sec. 10].
The source sequence at each node is compressed to a bin index
that is sent to the Relay over the noiseless uplink channel.
The L compression rates of the source codes are selected to
satisfy all but one inequality in the Slepian-Wolf Theorem [14,
Thm. 10.3] – the exception being the total sum rate inequality,
e.g. (5) is omitted. The Relay has direct access to the L bin
indices; it does not attempt to decode the individual source
sequences. The (noisy) downlink random coding argument
combines the virtual binning idea of Tuncel [16] with the
cascaded Slepian-Wolf binning idea of Wyner et al. [1]. Each
node will use a JSC-decoder to recover the source sequences.

2) Preliminaries: We use typical sequences as, for example,
defined in [20, Sec. 1] and [14, Chap. 2]. Suppose that (A,B)
are random variables on a discrete product space A × B
with joint distribution pAB . Let A and B denote the n-fold
Cartesian products of A and B respectively. The type of a in
A and the joint type of (a, b) in A × B are the empirical
distributions respectively defined by

π(a′|a) ,
∣∣{i : ai = a′}

∣∣
n

, a′ ∈ A,

and

π(a′, b′
∣∣a, b) , ∣∣{i : (ai, bi) = (a′, b′)

}∣∣
n

, (a′, b′) ∈ A× B.

Fix δ > 0. The δ-typical, δ-jointly-typical and δ-conditionally-
typical sets are respectively defined by

Tδ(A) ,
{
a ∈ A :

∣∣∣π(a′|a)−pA(a′)∣∣∣ ≤ δpA(a′), ∀a′ ∈ A},
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Fig. 7. Word error rates of separate (solid lines) and joint decoding (dashed lines) as a function of the signal-to-noise ratio of the downlink channel. On the
horizontal axis we also show the capacity of the downlink channel for easier comparison with the achievable regions.

Tδ(A,B) ,
{
(a, b) ∈ A×B :∣∣∣π(a′, b′|a, b)− pAB(a′, b′)∣∣∣ ≤ δpAB(a′, b′),

∀(a′, b′) ∈ A× B
}
,

and

Tδ(A,B|a) ,
{
b ∈ B : (a, b) ∈ Tδ(A,B)

}
,

where pA denotes the A-marginal of pAB . We note that if
(a, b) is in Tδ(A,B), then a is in Tδ(A) and b is in Tδ(B).
The next lemma will be used throughout the proof.

Lemma 3 (Thms. 1.2 & 1.3, [20]): Fix

0 ≤ δ1 < δ2 ≤ min
pAB(a,b)∈ support(pAB)

pAB(a, b).

If a belongs to Tδ1(A), then the cardinality of the conditionally
typical set Tδ2(A,B|a) satisfies∣∣Tδ2(A,B|a)∣∣ ≤ 2nH(B|A)(1+δ2).

Moreover, the probability that

B , B1, B2, . . . , Bn

(drawn i.i.d. with the B-marginal of pAB) belongs to the
conditionally-typical set satisfies

P
[
B ∈ Tδ2(A,B|a)

]
≤ 2−n(I(A;B)−2δ2H(B)).

3) Uplink Code Construction: Consider Node l. Randomly
partition the source space W(l) into 2nr

(l)

bins, labelled as
{B(l)

1 ,B(l)

2 , . . . ,B(l)

2nr
(l) }, using an i.i.d. uniform law; i.e.,

P
[
w(l) ∈ B(l)

b(l)

]
=

1

2nr(l)
, b(l) ∈

{
1, 2, . . . , 2nr

(l)}
.

The allowable values of r(l) will be specified later. With a
slight abuse of notation, let

φ(l) : w(l) 7→ b(l)

denote the map from source sequences to bin indices. Node l
observes a sequence w(l) from W(l), and it sends the corre-
sponding bin index b(l) , φ(l)(w(l)) to the Relay.

4) Downlink Code: Consider the Cartesian product set of
bin indices,

B ,
L⊗
l=1

{
1, 2, . . . , 2nr

(l)}
.

For each bin tuple b = (b(1), b(2), . . . , b(L)) in B, generate a
downlink codeword

x(0)(b) =
(
x(0)

1 (b), x(0)

2 (b), . . . , x(0)

n (b)
)

by randomly drawing n-symbols from X (0) using the marginal
distribution of X(0). The Relay observes a bin tuple b ,(
b(1), b(2), . . . , b(L)

)
from B on the uplink, and it sends x(0)(b)

over the downlink broadcast channel.

5) Decoding: Let qs denote the joint distribution of the
source (W (1),W (2), . . . ,W (L)), and let

qs(w
(1),w(2), . . . ,w(L)) ,

n∏
i=1

qs(w
(1)

i , w
(2)

i , . . . , w
(L)

i ).
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Q(1)(w(1)) ,
{
(b(2), b(3), . . . , b(L)) for which there exists a unique tuple (w̃(2), w̃(3), . . . , w̃(L))

such that w̃(l) belongs to B(l)

b(l)
, ∀l = 2, 3, . . . , L, and

(w̃(2), w̃(3), . . . , w̃(L)) ∈ Tδ(W (1), . . . ,W (L)|w(1))
}
. (11)

Fix 0 < δ ≤ µ, where µ is the smallest value in the support
sets of qs and the joint distribution (X(0), Y (1)).

The decoding procedure used at each node is identical; we
describe the procedure for Node 1. The node observes a source
sequence w(1) from W(1), it computes the corresponding bin
index b(1) ≡ φ(1)(w(1)), and it observes a channel output y(1)

from Y(1). The node compiles a list of bin tuples that contain
unique source sequences δ-jointly typical with w(1); to this
end, for each w(1) in W(1) let Q(1)(w(1)) be defined as in (11).

In addition, the node looks for a unique tuple (b̃(2), b̃(3),
. . . , b̃(L)) in Q(1)(w(1)) such that the corresponding broadcast
channel codeword is δ-jointly typical with the observed chan-
nel output, i.e.,

x(0)(b(1), b̃(2), b̃(3), . . . , b̃(L)) ∈ Tδ(X(0), Y (1)|y(1)). (12)

If successful, Node 1 sets (ŵ(1,1), ŵ(1,2), ŵ(1,3), . . . , ŵ(1,L))
equal to (w(1), w̃(2), w̃(3), . . . , w̃(L)), where (w̃(2), w̃(3), . . . ,
w̃(L)) is the unique vector identified by Q(1)(w(1)). If unsuc-
cessful, the node declares an error.

Remarks:
• Noisy uplink: At the end of the proof, we will adapt

the uplink code for noiseless channels to include noisy
channels by simply adding a good point-to-point channel
code for each orthogonal uplink.

• Separation: Each node uses standalone source (and, later,
channel) encoders on the uplink. Similarly, the Relay
uses standalone channel decoders on the uplink and a
standalone channel encoder on the downlink. However,
the decoder at each node is a true JSC-decoder; for
example, Node 1 first exploits its source side informa-
tion w(1) to compile the list Q(1)(w(1)), before decoding
the transmitted codeword from Q(1)(w(1)) using y(1). It
can be suboptimal to decode the transmitted codeword
x(0)(b(1), b(2), . . . , b(L)) using only the channel output y(1),
which, for example, is the case in separate source-channel
coding.

6) Error Analysis: We wish to upper bound the average
joint error probability Pe, as defined in (3), for the described
ensemble of codes. By the union bound for probability, we
have

Pe ≤
L∑
l=1

P
[(
Ŵ

(l,1)

, Ŵ
(l,2)

, . . . , Ŵ
(l,L))

6= (W (1),W (2), . . . ,W (L)
)]
. (13)

Consider the first error event of the sum (13):

E , {(Ŵ (1,1)

, Ŵ
(1,2)

, . . . , Ŵ
(1,L)

)

6= (W (1),W (2), . . . ,W (L))};
i.e., the event that Node 1 decodes one or more source
sequences in error. We now given an upper bound for P[E ].
Fix

0 ≤ δ′ < δ

arbitrarily. Consider the following events.
(i) The event that the source sequences are not δ′-jointly

typical:

E1 ,
{(

W (1),W (2), . . . ,W (L)
)

/∈ Tδ′(W (1),W (2), . . . ,W (L))
}
.

(ii) For each nonempty subset

L = {l1, l2, . . . , l|L|}
of {2, 3, . . . , L}, define the following event: the source
sequences are δ′-jointly typical and there exists an |L|-
tuple of δ-conditionally typical sequences, say

w̃(L) = (w(l1),w(l2), . . . ,w(l|L|)),

in the same bins as the source:

E2,L , Ec1∩
{
∃w̃(L) ∈ Tδ(W (2), . . . ,W (L)|W (1),W (Lc))

such that w̃(l) 6= W (l), φ(l)(w̃(l)) = φ(l)(W (l)), ∀l ∈ L
}
.

(iii) The event that the broadcast channel input and output at
Node 1 are not δ′-jointly typical:

E3 ,
{(

X(0)(B(1), B(2), . . . , B(L)),Y (1)
)

/∈ Tδ′(X(0), Y (1))
}
.

(iv) The source sequences are δ′-jointly typical, the channel
input and output are δ′-jointly typical, and there exists
another δ-conditionally typical codeword with bin in-
dices in Q(1)(W ):

E4 , Ec1 ∩ Ec3 ∩
{
∃(b̃(2), b̃(3), . . . , b̃(L)) ∈ Q(1)(W (1))

such that (b̃(2), b̃(3), . . . , b̃(L)) 6= (B(2), B(3), . . . , B(L))

and x(0)(B(1), b̃(2), b̃(3), . . . , b̃(L)) ∈ Tδ(X(0), Y (1)|Y (1))
}
.

The error event E — the event that Node 1 decodes a source
sequence in error — is a subset of the union of E1, ∪E2,L, E3
and E4; hence,

P
[
E
]
≤ P

[
E1
]
+

∑
L⊆{2,3,...,L}

P
[
E2,L

]
+ P
[
E3
]
+ P
[
E4
]
. (14)

It follows from the law of large numbers that

lim
n→∞

P
[
E1
]
= 0 and lim

n→∞
P
[
E3
]
= 0
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P
[
E2,L

]
=
∑
(α)

qs(w
(1),w(2), . . . ,w(L))1{(w(1),w(2), . . . ,w(L)) ∈ Tδ′(W (1),W (2), . . . ,W (L))}

·
∑
(β)

P
[
φ(l)(w̃(l)) = φ(l)(w(l)) ∀l ∈ L

]
=
∑
(γ)

qs(w
(1),w(2), . . . ,w(L))

∑
(β)

P
[
φ(l)(w̃(l)) = φ(l)(w(l)) ∀l ∈ L

]
(a)
=
∑
(γ)

qs(w
(1),w(2), . . . ,w(L))

∑
(β)

2−n
∑
l∈L r

(l)

(b)
≤
∑
(γ)

qs(w
(1),w(2), . . . ,w(L)) 2nH(W(L)|W(1),W(Lc))(1+δ) 2−n

∑
l∈L r

(l)

≤ 2nH(W(L)|W(1),W(Lc))(1+δ) 2−n
∑
l∈L r

(l)

, (15)

e.g., see [14, Sec. 2] or [20, Thm. 1.1].
The probability of each E2,L can be upper bound as shown

in (15), where
• 1{·} denotes the indicator function.
• The sum marked with (α) is taken over all

(w(1),w(2), . . . ,w(L)) ∈W(1) ×W(2) × · · · ×W(L).

• The sums marked with (β) are taken over all

w̃(L) ∈ Tδ(W (1),W (2), . . . ,W (L)|w(1),w(Lc))

with φ(w̃(l)) 6= φ(w(l)) for all l ∈ L.
• the sums marked with (γ) are take over all

(w(1),w(2), . . . ,w(L)) ∈ Tδ′(W (1),W (2), . . . ,W (L));

• Equality (a) follows because the probability that each
sequence w̃(l) in W(l) is randomly assigned to the same
bin as w(l) is independent of all other bin assignments
and equal to 2−nr

(l)

.
• Inequality (b) bounds the cardinality of of the condition-

ally typical set Tδ(W (1),W (2), . . . ,W (L)|w(1),w(Lc)) using
Lemma 3.

Finally, we notice that if

H(W (L)|W (1),W (Lc))(1 + δ) <
∑
l∈L

r(l) (16)

then
lim
n→∞

P[E2,L] = 0.

The probability of E4 can be upper bound as shown in (17).
• The sum marked with (α) is taken over all

(w(1),w(2), . . . ,w(L)) ∈W(1) ×W(2) × · · · ×W(L).

• The sums marked with (β) are taken over all

(b̃(2), b̃(3), . . . , b̃(L)) ∈ Q(1)(w(1)).

• The sums marked with (γ) are taken over all

(w(1),w(2), . . . ,w(L)) ∈ Tδ(W (1),W (2), . . . ,W (L)).

The reasoning behind (in)equalities (a) through (d) is as
follows.

(a) We let
b(l) = φ(l)(w(l)),

for l = 1, 2, . . . , L, denote the bin index of the l-th source
sequence.

(b) We have that(
X(0)(b(1), . . . , b(L)),y(1)

)
∈ Tδ′(X(0), Y (1))

implies
y(1) ∈ Tδ′(Y (1)).

(c) We bound the probability that an alternate codeword,
X(0)(b(1), b̃(2), b̃(2), . . . , b̃(L)), is δ-jointly typical with y(1),
using Lemma 3 and the fact that the n-symbols of the
codeword are drawn i.i.d. with the marginal of X(0).

(d) The cardinality of Q(1)(w(1)) must be smaller than the
cardinality of the conditionally typical set Tδ(W (1),W (2),
. . . ,W (L)|w(1)), which in turn is smaller than the bound
of Lemma 3.

Finally, it follows that

lim
n→∞

P[E4] = 0

whenever

H(W (2),W (3), . . . ,W (L)|W (1)) < I(X(0);Y (1))

− δ
(
H(W (2),W (3), . . . ,W (L)|W (1)) + 2H(X(0))

)
. (18)

The above analysis can be repeated for each of the L nodes
to obtain constraints analogous to (16) and (18). We are free
to choose δ′ and δ arbitrarily small, so Pe (averaged over the
ensemble of codes) can be made arbitrarily small by increasing
n if

H(W (L)|W (Lc)) <
∑
l∈L

r(l), (19)

holds for each nonempty and strict subset L of {1, 2, . . . , L}
and

H(W (2),W (3), . . . ,W (L)|W (l)) < I(X(0);Y (l)), (20)

holds for each l = 1, 2, . . . , L. The random coding argument
implies that there must exist at least one code from the
ensemble with an error probability at least as small as Pe.



13

P[E4]
(a)
=
∑
(α)

qs(w
(1),w(2), . . . ,w(L))1{(w(1),w(2), . . . ,w(L)) ∈ Tδ′(W (1),W (2), . . . ,W (L))}

·
∑

y(1)∈Y(1)

P
[
Y (1) = y(1)

∣∣(W (1),W (2), . . . ,W (L)) = (w(1),w(2), . . . ,w(L))
]

· 1
{(

X(0)(b(1), . . . , b(L)),y(1)
)
∈ Tδ′(X(0), Y (1))

}
·
∑
(β)

P
[
X(0)(b(1), b̃(2), . . . , b̃(L)) ∈ Tδ(X(0), Y (1)|y(1))

]
(b)
≤
∑
(γ)

qs(w
(1),w(2), . . . ,w(L))

·
∑

y(1)∈Tδ′ (Y (1))

P
[
Y (1) = y(1)

∣∣(W (1),W (2), . . . ,W (L)) = (w(1),w(2), . . . ,w(L))
]

·
∑
(β)

P
[
X(0)(b(1), b̃(2), . . . , b̃(L)) ∈ Tδ(X(0), Y (1)|y(1))

]
(c)
≤
∑
(γ)

qs(w
(1),w(2), . . . ,w(L))

∑
y(1)∈Tδ′ (Y (1))

P
[
Y (1) = y(1)

∣∣(W (1),W (2), . . . ,W (L)) = (w(1),w(2), . . . ,w(L))
]

· |Q(1)(w(1))| 2−n(I(X(0);Y (1))−2δH(X(0)))

(d)
≤
∑
(γ)

qs(w
(1),w(2), . . . ,w(L))

∑
y(1)∈Tδ′ (Y (1))

P
[
Y (1) = y(1)

∣∣(W (1),W (2), . . . ,W (L)) = (w(1),w(2), . . . ,w(L))
]

· 2nH(W(2),W(3),...,W(L)|W(1))(1+δ) 2−n(I(X
(0);Y (1))−2δH(X(0)))

≤ 2nH(W(2),W(3),...,W(L)|W(1))(1+δ) 2−n(I(X
(0);Y (1))−2δH(X(0))), (17)

7) Extension to Noisy Uplink Channels: Consider the setup
of Theorem 1 with noisy (orthogonal) uplink channels. The
random-coding argument of Sections A-A3 to A-A5 can be
extended to this setting by the use of a separate source
and channel code architecture on the uplink. That is, use a
(point-to-point) capacity-approaching code for each orthogonal
uplink channel, choose the source-code compression rates to
match the channel coding rates (r(l) = C(l)

up − ζ, where ζ is
sufficiently small), and communicate the L bin indices to the
relay using the point-to-point channel codes. �

B. Proof of Theorem 1 (Converse)

Suppose that we have a JSC-code with Pe ≤ ε. The next
two lemmas will be useful.

Lemma 4: For each nonempty and strict subset L of
{1, 2, . . . , L}, we have

1

n
H(W (L)|W (Lc),Y (Lc)) ≤ ε(n, ε),

where ε(n, ε)→ 0 as ε→ 0

Proof: Choose l from Lc arbitrarily. We have

1

n
H(W (L)|W (Lc),Y (Lc)) ≤ 1

n

∑
l∈L

H(W (l)|W (j),Y (j))

(a)
≤ 1

n

∑
l∈L

[
h(ε) + εn log |W(l)|

]
≤ L h(ε)

n
+ εL max

l′∈{1,...,L}
|W(l′)|,

where h(ε) is the binary entropy function and (a) follows from
Fano’s inequality.

Lemma 5: For each nonempty and strict subset L of {1, 2,
. . . , L}, we have∑

l∈L
I(X(l);Y (0,l)) ≥ I(X(L);Y (0,L)).

Proof: We have∑
l∈L

I(X(l);Y (0,l)) =
∑
l∈L

[
H(Y (0,l))−H(Y (0,l)|X(l))

]
≥ H(Y (0,L))−

∑
l∈L

H(Y (0,l)|X(l))
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(a)
≥ H(Y (0,L))−H(Y (0,L)|X(L))

= I(X(L);Y (0,L)),

where (a) is a consequence of the Markov chain

Y (0,l)(−− X(l)(−− Y (L\l).

Proof of Theorem 1 (Converse): For each nonempty and
strict subset L of {1, 2, . . . , L}, we can lower bound the right
hand side of (4a) by∑
l∈L

C(l)

up

(a)

≥
∑
l∈L

1

n
I(X(l);Y (0,l))

(b)

≥ 1

n
I(X(L);Y (0,L))

(c)

≥ 1

n
I(W (L),W (Lc);Y (0,L))

≥ 1

n
I(W (L);Y (0,L)|W (Lc))

(d)

≥ 1

n
I(W (L);Y (Lc)|W (Lc))

≥ 1

n

[
H(W (L)|W (Lc))−H(W (L)|Y (Lc),W (Lc))

]
(e)

≥ H(W (L)|W (Lc))− ε(n, ε), (21)

where (a) follows from the definition of channel capacity;
(b) follows from Lemma 5; (c) follows from the Markov
chain (W (L),W (Lc))(−−X(L)(−−Y (0,L); (d) follows from the
Markov chain W (L)(−−(W (Lc),Y (0,L))(−−Y (Lc); and (e) fol-
lows from Lemma 4 and that the source is i.i.d.

Consider (4b). Let p
X

(0)
i

denote the pmf of the i-th symbol,
X(0)

i , of X(0). Define a new time-averaged random variable
X̃(0) on X (0) via the pmf

pX̃(0)(x) ,
1

n

n∑
i=1

p
X

(0)
i
(x), x ∈ X (0).

For each l in {1, 2, . . . , L}, we have

I(X̃(0);Y (l))
(a)

≥ 1

n

n∑
i=1

I(X(0)

i ;Y (l)

i )

(b)

≥ 1

n
I(X(0);Y (l))

(c)

≥ 1

n
I(W (l),W ({l}c);Y (l))

≥ 1

n
I(W ({l}c);Y (l)|W (l))

(d)

≥ H(W ({l}c)|W (l))− ε(n, ε), (22)

where (a) follows from Jensen’s inequality and the fact that
I(X̃(0);Y (l)) is concave in pX̃(0) ; (b) follows because the
broadcast channel is stationary and memoryless; (c) follows
from the Markov chain (W (l),W ({l}c))(−−X(0)(−−Y (l); and
(d) follows from Lemma 4.

Consider a sequence {ε} → 0. For each ε in this sequence,
we have by definition at JSC-code for which (21) and (22)
hold for some X(0) on X (0). The proof is completed by noting

that the sequence of pmfs p
X̃

(0)
i

will converge to some pmf on
X (0).

APPENDIX B
COUNTEREXAMPLE

We now describe a situation where the achievability as-
sertion of Theorem 1 holds, but that of Theorem 2 fails;
equivalently, reliable communication is achievable with JSC-
codes of the form (2), and it is not achievable with separate
source and channel codes of the form (6) and (7).

Example 1: Suppose we have 3-nodes with the following
sources:

W (1) = U1 ⊕ U12 ⊕ U13 (23)
W (2) = U2 ⊕ U12 ⊕ U23 (24)
W (3) = U3 ⊕ U13 ⊕ U23, (25)

where each Ui ∈ {0, 1} is an independent random variable, for
all i ∈ {1, 2, 3, 12, 13, 23}, and ⊕ denotes the XOR function.
We choose Pr{U1 = 1} = 0.0085, Pr{U2 = 1} = Pr{U3 =
1} = 0.0052, Pr{U12 = 1} = Pr{U13 = 1} = 0.0128, and
Pr{U23 = 1} = 0.138. For these choices of probability mass
functions, we have

H(W (1)|W (2),W (3)) = H(W (2)|W (1),W (3))

= H(W (3)|W (1),W (2))

= 0.10 (26a)
H(W (1),W (2)|W (3)) = H(W (1),W (3)|W (2))

= 0.30 (26b)
H(W (2),W (3)|W (1)) = 0.70 (26c)

H(W (1)) = 0.21. (26d)

The information diagram [13, Sec. 3.5] of such a source is
depicted in Fig. 8.

Suppose the uplink channels are point-to-point channels
with capacities C(1)

up = C(2)
up = C(3)

up = 2, and the downlink
channels are Y (i) = X(0) ⊕ N(i), for each i ∈ {1, 2, 3},
where each X(i) ∈ {0, 1}, and each N(i) is an indepen-
dent random variable. We choose Pr{N(1) = 1} = 0.0508
and Pr{N(2) = 1} = Pr{N(3) = 1} = 0.184. Note
that the uniform input distribution simultaneously maximises
I(X(0);Y (i)) for all i ∈ {1, 2, 3}, giving I(X(0);Y (1)) = 0.71
and I(X(0);Y (2)) = I(X(0);Y (3)) = 0.31. These assumptions
satisfy the achievability requirements of Theorem 1.

We now show, via a contradiction, that there does not exists
a rate tuple (r(1), r(2), r(3)) satisfying (8). Suppose there exists
(r(1), r(2), r(3)) such that

0.10 = H(W (1)|W (2),W (3)) < r(1) < C(1)

up = 2 (27a)

0.10 = H(W (2)|W (1),W (3)) < r(2) < C(2)

up = 2 (27b)

0.10 = H(W (3)|W (1),W (2)) < r(3) < C(3)

up = 2 (27c)

0.30 = H(W (1),W (2)|W (3)) < r(1) + r(2) < C(1)

up + C(2)

up = 4
(27d)

0.70 = H(W (2),W (3)|W (1)) < r(2) + r(3) < C(2)

up + C(3)

up = 4
(27e)
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W (1)

W (2) W (3)

0.1 0.1
0.5

0.1 0.1

0.1

−0.09

Fig. 8. The information diagram of (W(1),W(2),W(3)) defined in (26).
Each of the three circles represents a source message, and the intersection
between two circles represent the mutual information between the sources.
The numbers are the values of the corresponding conditional entropies and
mutual informations.

0.30 = H(W (1),W (3)|W (2)) < r(1) + r(3) < C(1)

up + C(3)

up = 4
(27f)

and

r(1) + r(2) < I(X(0);Y (3)) = 0.31 (27g)
r(2) + r(3) < I(X(0);Y (1)) = 0.71 (27h)
r(1) + r(3) < I(X(0);Y (2)) = 0.31. (27i)

The left inequalities in (27a) and (27e) imply that

max{r(1) + r(2), r(1) + r(3)} > 0.45.

However, (27g) and (27i) together imply

max{r(1) + r(2), r(1) + r(3)} < 0.31,

which gives the desired contradiction.
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