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Abstract

In this paper, new techniques are presented to either simplify or improve most existing upper

bounds on the maximum-likelihood (ML) decoding performance of the binary linear codes over additive

white Gaussian noise (AWGN) channels. Firstly, the recently proposed union bound using truncated

weight spectrum by Maet al is re-derived in a detailed way based on Gallager’s first bounding

technique (GFBT), where the “good region” is specified by a sub-optimal list decoding algorithm. The

error probability caused by the bad region can be upper-bounded by the tail-probability of a binomial

distribution, while the error probability caused by the good region can be upper-bounded by most existing

techniques. Secondly, we propose two techniques to tightenthe union bound on the error probability

caused by the good region. The first technique is based on pair-wise error probabilities. The second

technique is based on triplet-wise error probabilities, which can be upper-bounded by the fact that any

three bipolar vectors form a non-obtuse triangle. The proposed bounds improve the conventional union

bounds but have a similar complexity since they involve onlytheQ-function. The proposed bounds can

also be adapted to bit-error probabilities.
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I. INTRODUCTION

In most scenarios, there do not exist easy ways to compute theexact decoding error probabili-

ties for specific codes and ensembles. Therefore, deriving tight analytical bounds is an important

research subject in the field of coding theory and practice. Since the early 1990s, spurred by

the successes of the near-capacity-achieving codes, renewed attentions have been paid to the

performance analysis of the maximum-likelihood (ML) decoding algorithm. Though the ML

decoding algorithm is prohibitively complex for most practical codes, tight bounds can be used

to predict their performance without resorting to computersimulations. As shown in [1][2],

most bounding techniques have connections to either the 1965 Gallager bound [3–6] or the 1961

Gallager-Fano bound [7–18]. This paper is relevant to the 1961 Gallager-Fano bound, which is

also called Gallager’s first bounding technique (GFBT) in the literature. Our efforts focus on

tightening the simplest conventional union bound, which issimple but loose and even diverges

in the low-SNR region. Similar to many previously reported upper bounds surveyed in [2], our

basic approach is based on GFBT

Pr{E} = Pr{E, y ∈ R} + Pr{E, y /∈ R} (1)

≤ Pr{E, y ∈ R} + Pr{y /∈ R}, (2)

whereE denotes the error event,y denotes the received signal vector, andR denotes an arbitrary

region around the transmitted signal vector which is usually interpreted as the “good region”.

As pointed out in [2], the choice of the regionR is very significant, and different choices of this

region have resulted in various different improved upper bounds. Intuitively, the more similar

the regionR is to the Voronoi region of the transmitted codeword, the tighter the upper bound

is. However, most existing improved upper bounds have higher computational complexity than
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the conventional union bound.

Different from most of the existing works, we define the good region using a list decoding

algorithm. The basic idea is as follows. Upper bounds on the word-error probability for the list

decoding algorithm (which is suboptimal) can also be applied to an ML decoding algorithm,

while the list decoding algorithm can limit competitive candidate codewords.

Structure: The rest of this paper is organized as follows. In Sec. II, we present an upper bound

of the angle formed by any three bipolar vectors, which will be used to upper-bound the triplet-

wise error probabilities. In Sec. III, we re-derive, in a detailed way within the framework of the

GFBT, the recently proposed union bound using truncated weight spectrum by Maet al [19].

On one hand, the truncation technique is helpful when the whole weight spectrum is unknown

or not computable. On the other hand, the truncation technique can be combined with any

other upper-bounding techniques, potentially resulting in tighter upper bounds. In Sec. IV, we

propose two techniques to improve the union bound. The first technique is based on the pair-

wise error probabilities, which can be tightened by employing the independence of the error

event and certain components of the received random vectors. The second technique is based

on the triplet-wise error probabilities, which is shown to be a non-decreasing function of the

angle formed by the transmitted codeword and the other two codewords. In Sec. V, the proposed

bounds are adapted to ensembles of codes and bit-error probabilities. Numerical examples are

provided in Sec. VI and we conclude this paper in Sec. VII.

II. PRELIMINARIES

A. Geometrical Properties of Binary Codes

Let F2 = {0, 1} andA2 = {−1,+1} be the binary field and the bipolar signal set, respectively.

We useWH(v) to denote the Hamming weight of a binary vectorv
∆
= (v0, v1, · · · , vn−1) ∈ F

n
2 .

We use‖y‖ to denote the magnitude of a real vectory
∆
= (y0, y1, · · · , yn−1) ∈ R

n, that is,

‖y‖ =
√
∑

0≤t<n y
2
t . Let C[n, k] be a binary linear block code of dimensionk and lengthn with

October 25, 2018 DRAFT



4 IEEE TRANSACTIONS ON COMMUNICATIONS

1

2

Fig. 1. Geometrical representation of three bipolar vectors.

a generator matrixG of sizek × n, that is,

C ∆
=
{
c ∈ F

n
2 | c = uG, u ∈ F

k
2

}
. (3)

Let Ai,j denote the number of codewordsc = uG with WH(u) = i and WH(c) = j. Then

{Aj
∆
=
∑

i Ai,j, 0 ≤ j ≤ n} is referred to as the weight spectrum of the given codeC.

Consider the binary phase shift keying (BPSK) mappingφ : Fn
2 7→ An

2 taking s = φ(v) by

st = 1 − 2vt for 0 ≤ t ≤ n − 1. The image ofC under this mapping is denoted byS ∆
= φ(C).

Hereafter, we may not distinguishc ∈ C from its images ∈ S when representing a codeword. Let

dH(v
(1), v(2))

∆
= WH(v

(1) − v(2)) be the Hamming distance between two binary vectorsv(1) and

v(2). Then their Euclidean distance‖φ(v(1))− φ(v(2))‖ is equal to2
√

dH(v(1), v(2)). Obviously,

the vectors inAn
2 (hence the bipolar codewords) are distributed on ann-dimensional sphere of

radius
√
n centered at the originO of Rn. We have the following lemma.

Lemma 1:Let u, v andw be three bipolar vectors of lengthn. Let θ be the angle formed by

the two vectors−→uv ∆
= v − u and−→uw. Then we have

θ ≤ min

{

π

2
, arccos

√

d1
n

+ arccos

√

d2
n

}

, (4)

whered1 = dH(u, v) andd2 = dH(u, w).
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Proof: To make the proof more readable, we have drawn the three bipolar vectors in a

three-dimensional space, as shown in Fig. 1 (a). In essence,with a properly chosen orthogonal

transformation, the three vectors can be viewed as three points in R
3 (a three-dimensional

subspace ofRn). It should be noted that orthogonal transformations preserve inner products

and (hence) lengths as well as angles.

It has been pointed out in [20] (without proof) that any threebipolar vectors form a non-obtuse

triangle, which meansθ ≤ π/2. For completeness, we re-derive this bound in a detailed way.

Let θ be the angle formed by−→uv and−→uw. It suffices to prove that the inner product−→uv · −→uw is

non-negative. Actually, ifvt 6= wt, (vt − ut)(wt − ut) = 0 since eithervt = ut or wt = ut must

hold; if vt = wt, (vt − ut)(wt − ut) ≥ 0. Therefore

−→uv · −→uw =
∑

t

(vt − ut)(wt − ut) ≥ 0. (5)

To complete the proof of this lemma, consider the circumscribed circle of the triangle formed

by the three pointsu, v andw (Fig. 1 (b)). Let r be its radius. The angle can be written as

θ = θ1 + θ2, wherecos θ1 = ‖−→uv‖/(2r) andcos θ2 = ‖−→uw‖/(2r). It is then not difficult to verify

that

θ = arccos

√
d1
r

+ arccos

√
d2
r

. (6)

Noticing that the right hand side (RHS) of (6) is increasing with r and thatr ≤ √
n, we have

θ ≤ arccos

√

d1
n

+ arccos

√

d2
n
. (7)

B. Union Bounds

Let c = (c0, c1, · · · , cn−1) ∈ C be a codeword. Suppose thats = φ(c) is transmitted over an

AWGN channel. Lety = s+z be the received vector, wherez is a vector of independent Gaussian

random variables with zero mean and varianceσ2. For AWGN channels, the ML decoding is
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equivalent to finding the nearest signal vectorŝ ∈ S to y. A decoding error occurs whenever

ŝ 6= s. Let E be the decoding error event (under ML decoding). Generally,it is a difficult

task to calculate the decoding error probabilityPr{E}. Hence one usually turns to bounding

techniques. Due to the symmetry of the channel and the linearity of the code, the conditional

error probability does not depend on the transmitted codeword, see, e.g., [21]. Therefore, without

loss of generality, we assume that the all-zero codewordc(0) is transmitted. The simplest upper

bound is the union bound

Pr {E} = Pr

{
⋃

d

Ed

}

≤
∑

d

Pr{Ed}

≤
∑

d

AdQ

(√
d

σ

)

, (8)

whereEd is the event that there exists at least one codeword of Hamming weightd ≥ 1 that is

nearer thanc(0) to y, andQ
(√

d
σ

)

is the pair-wise error probability with

Q(x)
∆
=

∫ +∞

x

1√
2π

e−
z2

2 dz. (9)

The question is, how many terms do we need to count for the summation in the above bound?

If too few terms are counted, we will obtain a lower bound of the upper bound, which may be

neither an upper bound nor a lower bound; if too many are counted, we need pay more efforts

to compute the distance distribution and only a loose upper bound will be obtained. To get a

tight upper bound, we may determine the terms by analyzing the facets of the Voronoi region

of the codewordc(0) [22] [20], which is a difficult task for a general code.

It is well-known that the conventional union bound is loose and even diverges (≥ 1) in the

low-SNR region. One objective of this paper is, without too much complexity increase, to reduce

the number of involved terms in the conventional union bound. The other objective of this paper

is to tighten the bound onPr{Ed}, which used to be upper-bounded by the pair-wise error
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probability, where intersections of half-spaces related to codewords other than the transmitted

one are counted more than once. For some of well-known existing improved bounds based on

GFBT, such as the sphere bound (SB), the tangential-sphere bound (TSB) and the Divsalar

bound, see the monograph [2, Ch. 3] and the references therein.

III. U PPERBOUNDS USING TRUNCATED WEIGHT SPECTRUM

Recently, Maet al [19] proposed a union bound which involves only truncated weight spec-

trum. In this section, we re-derive this “truncated” union bound within the framework of GFBT,

where the regionR is defined in an unusual way based on the following conceptualsuboptimal

list decoding algorithm.

Algorithm 1: (A list decoding algorithm for the purpose of performance analysis)

S1. Make hard decisions, i.e., for0 ≤ t ≤ n− 1,

ŷt =







0, yt > 0

1, yt ≤ 0

. (10)

Then the channelct → ŷt becomes a memoryless binary symmetric channel (BSC) with

cross probabilitypb
∆
= Q

(
1
σ

)
.

S2. List all codewords within the Hamming sphere with centerat ŷ of radius d∗ ≥ 0. The

resulting list is denoted asLy.

S3. If Ly is empty, declare a decoding error; otherwise, find the codeword c∗ ∈ Ly such that

φ(c∗) ∈ S is closest toy.

❑

Now we define

R ∆
=
{

y|c(0) ∈ Ly

}

. (11)

In words, the regionR consists of all thosey having at mostd∗ non-positive components.

The decoding error occurs in two cases under the assumption that the all-zero codewordc(0) is

transmitted.

October 25, 2018 DRAFT
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Fig. 2. Graphical illustrations of the decoding error events.

Case 1. The all-zero codeword is not in the listLy (see Fig. 2 (a)), that is,y /∈ R, which

means that at leastd∗ + 1 errors occur over the BSC. This probability is

Pr{y /∈ R} =
n∑

m=d∗+1

(
n

m

)

pmb (1− pb)
n−m. (12)

Case 2. The all-zero codeword is in the listLy, but is not the closest one toy (see Fig. 2 (b)),

which is equivalent to the event
{
E, y ∈ R

}
. This probability is upper-bounded by

Pr
{
E, y ∈ R

}
≤ Pr

{
⋃

d≤2d∗

Ed, y ∈ R
}

(13)

since all codewords in the listLy are at most2d∗ away from the all-zero codeword and not all

codewords of a specific weight are in the list. The above upperbound involves only truncated

weight spectrum. However, the regionR is in unknown shape and may not be symmetric,

which causes difficulties when computing the upper bound. Tocircumvent this difficulty, we
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may enlargeR to R
n and get

Pr
{
E, y ∈ R

}
≤ Pr

{
⋃

d≤2d∗

Ed, y ∈ R
}

(14)

≤ Pr

{
⋃

d≤2d∗

Ed, y ∈ R
n

}

(15)

= Pr

{
⋃

d≤2d∗

Ed

}

≤ Tu(C2d∗), (16)

whereTu(C2d∗) is a computable upper bound onPr
{⋃

d≤2d∗ Ed

}
, which depends only on the

sub-codeC2d∗ consisting of all codewords with Hamming weight no greater than2d∗. It is worth

pointing out that, although the sub-codeC2d∗ may not be linear, most bounding techniques in [2]

can be applied toC2d∗ to get such an upper bound under the assumption that the all-zero codeword

is transmitted. Hereafter, we use the notationCt ∆
= {c ∈ C | WH(c) ≤ t}.

For convenience, we define

B(p,Nt, Nℓ, Nu)
∆
=

Nu∑

m=Nℓ

(
Nt

m

)

pm(1− p)Nt−m. (17)

The functionB(p,Nt, Nℓ, Nu), which will be used over and over again in this paper, is just

the probability that the number of bit-errors occurring in abinary vector of total lengthNt,

when passing through a BSC with cross error probabilityp, ranges fromNℓ to Nu. Note that

B(p,Nt, Nℓ, Nu) can be calculated recursively independently of codes.

Combining (12), (16) and (17) with (2), we get an upper bound

Pr {E} ≤ Tu(C2d∗) +B(pb, n, d
∗ + 1, n), (18)

where the second term in the RHS is computable without requiring the code structure and the

first term depends only on the sub-codeC2d∗ .

On one hand, similar to the SB [10] and the TSB [11], the proposed upper bound (18) involves

only truncated weight spectrum, which is hence helpful whenthe whole weight spectrum is not

computable. On the other hand, if the complete weight spectrum is available, the proposed

bounding technique can potentially improve any existing upper bounds.

October 25, 2018 DRAFT



10 IEEE TRANSACTIONS ON COMMUNICATIONS

Proposition 1: Let Tu be an upper-bounding technique. We have

Pr {E} ≤ min
0≤d∗≤n

{Tu(C2d∗) +B(pb, n, d
∗ + 1, n)} , (19)

which delivers an upper bound strictly less than 1 and not looser than any existing upper bounds

Tu(C).

Proof: Noting thatTu(C0) = 0 and B(pb, n, 1, n) = 1 − (1 − pb)
n, we have, by setting

d∗ = 0,

Pr {E} < 1. (20)

Similarly, noting thatTu(C2n) = Tu(C) andB(pb, n, n+1, n) = 0, we have, by settingd∗ = n,

Pr {E} ≤ Tu(C). (21)

Taking the conventional union bound asTu, we have

Theorem 1:Let dmin be the minimum Hamming weight of the codeC. We have

Pr {E} ≤ min
0≤d∗≤n

{
∑

dmin≤d≤2d∗

AdQ

(√
d

σ

)

+B(pb, n, d
∗ + 1, n)

}

. (22)

Proof: It can be proved by substituting the conventional union bound for Tu(C2d∗) (in the

same form as shown in (8)) into (19).

Remark. The bound (22), which is slightly different from that proposed in [19], requires higher

computational loads than the conventional union bound. Theoverhead is caused by recursively

computingB(pb, n, d
∗ + 1, n) and minimizing overd∗. If we do not perform the optimization

and simply setd∗ = n, we get the conventional union bound, implying that the technique can

potentially improve the conventional union bound, as stated in Proposition 1.

IV. I MPROVED UNION BOUNDS

We have interpreted the “truncated” union bound as an upper-bounding technique based on

the GFBT, where the regionR is defined by a sub-optimal decoding algorithm. To bound
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Pr{E, y ∈ R}, we have enlargedR to R
n, as shown in the derivation from (14) to (15). The

objective of this section is to reduce the effect of such an enlargement.

Noticing that the eventy ∈ R is equivalent to the eventWH(ŷ) ≤ d∗, we have

Proposition 2:

Pr{E} ≤ min
0≤d∗≤n

{
∑

d≤2d∗

Pr
{
Ed,WH(ŷ) ≤ d∗

}
+B(pb, n, d

∗ + 1, n)

}

. (23)

Proof: For anyd∗ (0 ≤ d∗ ≤ n),

Pr{E} ≤ Pr{E, y ∈ R}+ Pr{y /∈ R}

≤ Pr

{
⋃

d≤2d∗

Ed,WH(ŷ) ≤ d∗

}

+B(pb, n, d
∗ + 1, n)

≤
∑

d≤2d∗

Pr
{
Ed,WH(ŷ) ≤ d∗

}
+B(pb, n, d

∗ + 1, n). (24)

In this section, we focus on how to upper-boundPr
{
Ed,WH(ŷ) ≤ d∗

}
for any givend and

d∗. Without loss of generality, we assume thatAd ≥ 1 and denote all the codewords with weight

d by c(ℓ), 1 ≤ ℓ ≤ Ad. Let E0→ℓ be the event thatc(ℓ) is nearer thanc(0) to y.

A. Union Bounds Using Pair-Wise Error Probability

Lemma 2:

Pr
{
E0→1,WH(ŷ) ≤ d∗

}
≤ Q(

√
d/σ)B (pb, n− d, 0, d∗ − 1) . (25)

Proof: Without loss of generality, letc(1)
∆
= (1 · · ·1
︸ ︷︷ ︸

d

0 · · ·0
︸ ︷︷ ︸

n−d

). Denoteyd−1
0

∆
= (y0, · · · , yd−1)

andyn−1
d

∆
= (yd, · · · , yn−1). Evidently, onlyyd−1

0
can cause the decoding error event thatc(1) is

nearer thanc(0) to y. In other words, the eventE0→1 is independent ofyn−1
d

andPr{E0→1} =

Q
(√

d/σ
)

. Also notice that the received signal vectory which can cause the eventE0→1 must

satisfyWH(ŷ
d−1

0
) ≥ 1. Hence

{
y|E0→1,WH(ŷ) ≤ d∗

}
⊆
{

y|E0→1,WH(ŷ
n−1

d
) ≤ d∗ − 1

}

. Then

October 25, 2018 DRAFT
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we have

Pr
{
E0→1,WH(ŷ) ≤ d∗

}
≤ Pr

{

E0→1,WH(ŷ
n−1

d
) ≤ d∗ − 1

}

(26)

= Pr {E0→1}Pr
{

WH(ŷ
n−1

d
) ≤ d∗ − 1

}

(27)

= Q(
√
d/σ)B (pb, n− d, 0, d∗ − 1) . (28)

Theorem 2:

Pr
{
Ed,WH(ŷ) ≤ d∗

}
≤ AdQ(

√
d/σ)B (pb, n− d, 0, d∗ − 1) . (29)

Proof: By union bounds and the symmetries of the error events,

Pr
{
Ed,WH(ŷ) ≤ d∗

}
= Pr

{
⋃

1≤ℓ≤Ad

E0→ℓ,WH(ŷ) ≤ d∗

}

(30)

≤
∑

1≤ℓ≤Ad

Pr
{
E0→ℓ,WH(ŷ) ≤ d∗

}
(31)

= AdPr
{
E0→1,WH(ŷ) ≤ d∗

}
(32)

≤ AdQ(
√
d/σ)B (pb, n− d, 0, d∗ − 1) . (33)

B. Union Bounds Using Triplet-Wise Error Probability

Temporarily, we assume thatAd ≥ 2 is even. Then we have

Pr{Ed,WH(ŷ) ≤ d∗} ≤
∑

1≤ℓ≤Ad/2

Pr
{

E0→(2ℓ−1)

⋃

E0→2ℓ,WH(ŷ) ≤ d∗
}

. (34)

If we can find ways to calculate or upper-boundPr
{
E0→(2ℓ−1)

⋃
E0→2ℓ,WH(ŷ) ≤ d∗

}
, we may

improve the conventional union bound.

In this paper, we refer to the probabilityPr {E0→1

⋃
E0→2} as triplet-wise error probability.

We have the following lemma.
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Fig. 3. Geometrical interpretation of the triplet-wise error probability.

Lemma 3:Let c(0) be the all-zero codeword with bipolar images(0). Let c(1) and c(2) be the

codewords of Hamming weightd with bipolar imagess(1) ands(2), respectively. The triplet-wise

error probability

Pr
{

E0→1

⋃

E0→2

}

= Q(
√
d/σ) +

∫ +∞

√
d

f(ξ1)

∫
√

d−ξ1 cos θ
sin θ

−∞
f(ξ2) dξ2 dξ1, (35)

wheref(x) = 1√
2πσ

e−x2/(2σ2) is the probability density function ofN (0, σ2) and θ is the angle

formed by the two vectors
−−−−→
s(0)s(1) and

−−−−→
s(0)s(2). Furthermore, the triplet-wise error probability is

a non-decreasing function ofθ.

Proof: Similar to the proof of Lemma 1, we have sketched the two vectors
−−−−→
s(0)s(1) and

−−−−→
s(0)s(2) in a two-dimensional space, as shown in Fig. 3, where we have chosens(0) as the origin

O and arranged
−−−−→
s(0)s(1) on the abscissa axis

−−→
Oξ1.

Assume thats(0) is transmitted andy = s(0)+z is received, wherez is a sample from a random

vector Z whose components are independent and identically distributed asN (0, σ2). Let Zξ1

andZξ2 be the two independent Gaussian random variables by projecting Z onto the abscissa

axis and ordinate axis, respectively. Specifically, say,Zξ1 is the inner product〈Z, s(1)−s(0)

‖s(1)−s(0)‖〉. It

is well-known that only(Zξ1 , Zξ2) can cause the error event{E0→1

⋃
E0→2}. Actually, as shown

October 25, 2018 DRAFT
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in Fig. 3, the error event{E0→1

⋃
E0→2} occurs if and only if the vector(Zξ1 , Zξ2) falls into

the shaded region, which can be partitioned into

R1
∆
=

{

(ξ1, ξ2)|ξ1 ≥
√
d, ξ1 cos θ + ξ2 sin θ <

√
d
}

, (36)

R2
∆
=

{

(ξ1, ξ2)|ξ1 cos θ + ξ2 sin θ ≥
√
d
}

. (37)

SincePr{R1} =
∫ +∞√

d
f(ξ1)

∫
√
d−ξ1 cos θ

sin θ

−∞ f(ξ2) dξ2 dξ1 andPr{R2} = Q(
√
d/σ), we have

Pr
{

E0→1

⋃

E0→2

}

= Pr{R1}+ Pr{R2}

=

∫ +∞

√
d

f(ξ1)

∫
√

d−ξ1 cos θ
sin θ

−∞
f(ξ2) dξ2 dξ1 +Q(

√
d/σ). (38)

To prove the monotonicity, it suffices to prove that
√
d−ξ1 cos θ
sin θ

increases withθ for ξ1 ≥
√
d.

This can be verified by noting that its derivativeξ1−
√
d cos θ

sin2 θ
≥ 0 for ξ1 ≥

√
d.

Lemma 4:For any two codewordsc(1) and c(2) of Hamming weightd, the triplet-wise error

probability1

Pr
{

E0→1

⋃

E0→2

}

≤ 2Q(
√
d/σ)−Q2(

√
d/σ). (39)

Proof: From Lemmas 1 and 3, we can substituteθ = π/2 into (35) to complete the proof.

Remark. From Lemmas 1 and 3, in the case ofarccos
√

d
n
< π/4, we may substituteθ =

2 arccos
√

d
n

into (35) to get a tighter bound, however, which needs highercomputational loads.

Lemma 5:For any two codewordsc(1) and c(2) of Hamming weightd,

Pr
{

E0→1

⋃

E0→2,WH(ŷ) ≤ d∗
}

≤
(

2Q(
√
d/σ)−Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1). (40)

Proof: Without loss of generality, assume that

c(1)
∆
= (c

(1)
0 · · · c(1)2d−1 0 · · · 0︸ ︷︷ ︸

n−2d

) (41)

1As pointed out by an anonymous reviewer that the RHS of (39) isthe same as the symbol error probability of quadrature

phase shift keying (QPSK) over AWGN channels [23].
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and

c(2)
∆
= (c

(2)
0 · · · c(2)2d−1 0 · · ·0︸ ︷︷ ︸

n−2d

). (42)

Then onlyy2d−1
0

can cause the event thatc(1) or c(2) are nearer thanc(0) to y. Also notice that

the received signal vectory which can cause the eventE0→1

⋃
E0→2 must satisfyWH(ŷ

2d−1

0
) ≥

1. Hence
{
y|E0→1

⋃
E0→2,WH(ŷ) ≤ d∗

}
⊆
{

y|E0→1

⋃
E0→2,WH(ŷ

n−1

2d
) ≤ d∗ − 1

}

. Then we

have

Pr
{

E0→1

⋃

E0→2,WH(ŷ) ≤ d∗
}

≤Pr
{

E0→1

⋃

E0→2,WH(ŷ
n−1

2d
) ≤ d∗ − 1

}

(43)

=Pr
{

E0→1

⋃

E0→2

}

Pr
{

WH(ŷ
n−1

2d
) ≤ d∗ − 1

}

(44)

≤
(

2Q(
√
d/σ)−Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1)(45)

from Lemma 4.

The main result of this subsection is the following theorem,which shows that the union bound

based on triplet-wise error probabilities can be tighter than the conventional union bound based

on pair-wise error probabilities.

Theorem 3:If Ad is even,

Pr{Ed,WH(ŷ) ≤ d∗} ≤ Ad

(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1); (46)

if Ad is odd,

Pr{Ed,WH(ŷ) ≤ d∗} ≤ (Ad − 1)

(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1)

+Q(
√
d/σ)B(pb, n− d, 0, d∗ − 1). (47)

Proof: If Ad is even, we have

Pr{Ed,WH(ŷ) ≤ d∗} ≤
∑

1≤ℓ≤Ad/2

Pr
{

E0→(2ℓ−1)

⋃

E0→2ℓ,WH(ŷ) ≤ d∗
}

≤ Ad

2

(

2Q(
√
d/σ)−Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1)

= Ad

(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1), (48)
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which follows from the symmetries of the error events and Lemma 5.

If Ad is odd, we have

Pr{Ed,WH(ŷ) ≤ d∗}

≤
∑

1≤ℓ≤(Ad−1)/2

Pr
{

E0→(2ℓ−1)

⋃

E0→2ℓ,WH(ŷ) ≤ d∗
}

+ Pr
{
E0→Ad

,WH(ŷ) ≤ d∗
}

(49)

≤ (Ad − 1)

(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1)

+Q(
√
d/σ)B(pb, n− d, 0, d∗ − 1), (50)

which follows from the symmetries of the error events and Lemmas 2 and 5.

Note that the bounds in Theorem 3 will not always improve the bounds in Theorem 2, since

it may happen thatB(pb, n− 2d, 0, d∗ − 1) > B(pb, n− d, 0, d∗ − 1).

V. ADAPTATIONS OF THE IMPROVED UNION BOUNDS

A. Bounds for An Ensemble of Codes

As we know, most existing bounds are applied to ensembles of codes as well as specific

codes. However, the bounds given in Theorem 3 can not be applied directly to ensembles of

codes because the average weight spectra of a code ensemble are usually not be integer-valued.

Theorem 4:Consider a code ensembleC with probability distributionPr{C}, C ∈ C . Let

{AC
d} be the weight spectrum of a specific codeC. ThenAd =

∑

C Pr{C}AC
d is referred to as

the average weight spectra. Define

h(Ad)
∆
= min







AdQ(
√
d/σ)B(pb, n− d, 0, d∗ − 1),

(Ad − 1)
(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1) +Q(
√
d/σ)







.(51)

ThenPr{Ed,WH(ŷ) ≤ d∗} ≤ h(Ad).
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Proof: From Theorem 2, we have

Pr{Ed,WH(ŷ) ≤ d∗} =
∑

C
Pr{C}Pr{Ed,WH(ŷ) ≤ d∗|C}

≤
∑

C
Pr{C}AC

dQ(
√
d/σ)B(pb, n− d, 0, d∗ − 1)

= AdQ(
√
d/σ)B(pb, n− d, 0, d∗ − 1). (52)

It can be verified from Theorem 3 that, for anyAC
d ≥ 0,

Pr{Ed,WH(ŷ) ≤ d∗|C} ≤ (AC
d − 1)

(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1)

+Q(
√
d/σ). (53)

Then, we have

Pr{Ed,WH(ŷ) ≤ d∗}

=
∑

C
Pr{C}Pr{Ed,WH(ŷ) ≤ d∗|C}

≤
∑

C
Pr{C}

{

(AC
d − 1)

(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1) +Q(
√
d/σ)

}

= (Ad − 1)

(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1) +Q(
√
d/σ). (54)

Combining (52) and (54), and taking into account the definition of h(Ad), we have

Pr{Ed,WH(ŷ) ≤ d∗} ≤ h(Ad). (55)

We now summarize the main result in the following theorem, which can be applied to both

specific codes and ensembles of codes.

Theorem 5:Let {Ad} be the (average) weight spectrum of a specific code or a code ensemble.

The word-error probability can be upper-bounded by

Pr{E} ≤ min
0≤d∗≤n

{
∑

d≤2d∗

h(Ad) +B(pb, n, d
∗ + 1, n)

}

. (56)
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Proof: Since a specific code is a special case of a code ensemble with adegraded probability

distribution, we consider only a code ensemble.

Combining Theorem 4 with Proposition 2, or equivalently, substituting (55) into (23), we then

have (56), completing the proof.

B. Bounds for Bit-Error Probabilities

In order to adapt the upper bound (56) to the bit-error probability, we define

îd
∆
= max {i | Ai,d > 0} , (57)

A′
d

∆
=

∑

i

i

k
Ai,d (58)

and

h′(Ad)
∆
= min







A′
dQ(

√
d/σ)B(pb, n− d, 0, d∗ − 1),

îd
k

(

(Ad−1)
(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n−2d, 0, d∗−1)+Q(
√
d/σ)

)







.(59)

We have the following theorem.

Theorem 6:The bit-error probability can be upper-bounded by

Pb ≤ min
0≤d∗≤n

{
∑

d≤2d∗

h′(Ad) +B(pb, n, d
∗ + 1, n)

}

. (60)

Proof: Let Û ∈ F
k
2 be the binary output vector from a decoder when the input to the encoder

is U . The bit-error probability associated with the decoder is defined as [24, p. 9]

Pb
∆
=

1

k

∑

0≤i≤k−1

Pr{ûi 6= ui}. (61)

Given that the all-zero codeword is transmitted, the bit-error probability can be rewritten as

Pb = E

{

WH(Û)

k

}

, (62)

whereE is the mathematical expectation.
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Now we assume that Algorithm 1 is implemented as the decoder.Without loss of generality,

we make an assumption thatÛ is uniformly at random chosen fromFk
2 whenever Algorithm 1

reports a decoding error. Recall thatR =
{

y|c(0) ∈ Ly

}

as defined in (11). We assume the

following partitionR =
⋃

dRd, wherey ∈ Rd if and only if Algorithm 1 outputs one codeword

with Hamming weightd. We have

kPb = Pr{y ∈ R}E{WH(Û)|y ∈ R}+ Pr{y /∈ R}E{WH(Û)|y /∈ R}

≤ Pr{y ∈ R}E{WH(Û)|y ∈ R}+ kPr{y /∈ R}

≤
∑

d≤2d∗

Pr{y ∈ Rd}E{WH(Û)|y ∈ Rd}+ kB(pb, n, d
∗ + 1, n), (63)

where we have used the fact thatE{WH(Û)|y /∈ R} ≤ k.

Now we focus on how to upper-boundPr{y ∈ Rd}E{WH(Û)|y ∈ Rd} for any givend ≤ 2d∗.

On one hand,

E{WH(Û)|y ∈ Rd} ≤ îd (64)

by the definition of̂id and

Pr{y ∈ Rd} ≤ (Ad − 1)

(

Q(
√
d/σ)− 1

2
Q2(

√
d/σ)

)

B(pb, n− 2d, 0, d∗ − 1) +Q(
√
d/σ) (65)

from the unified upper bound (53) based on triplet-wise errorprobabilities.

On the other hand, we assume the following partitionRd =
⋃

ℓR
(ℓ)
d , wherey ∈ R(ℓ)

d whenever

Algorithm 1 outputsc(ℓ), 1 ≤ ℓ ≤ Ad. Denote byu(ℓ) the input binary vector to the encoder

corresponding to the codewordc(ℓ). SincePr{y ∈ R(ℓ)
d } ≤ Pr{E0→ℓ, y ∈ R}, we have

Pr{y ∈ Rd}E{WH(Û)|y ∈ Rd} =
∑

1≤ℓ≤Ad

Pr{y ∈ R(ℓ)
d }WH(u

(ℓ)) (66)

≤
∑

1≤ℓ≤Ad

Pr{E0→ℓ, y ∈ R}WH(u
(ℓ)) (67)

≤ kA′
dQ

(√
d

σ

)

B(pb, n− d, 0, d∗ − 1) (68)

from the definition ofA′
d and Lemma 2.
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Now we have two upper bounds onPr{y ∈ Rd}E{WH(Û)|y ∈ Rd}. One is (68), and the

other can be obtained by combining (64) and (65). Taking intoaccount the definition ofh′(Ad),

we have

Pr{y ∈ Rd}E{WH(Û)|y ∈ Rd} ≤ kh′(Ad). (69)

Substituting (69) into (63) and minimizing overd∗, we have

kPb ≤ min
0≤d∗≤n

{
∑

d≤2d∗

kh′(Ad) + kB(pb, n, d
∗ + 1, n)

}

. (70)

Dividing by k on the both sides of (70), we complete the proof.

Remark. The bound on the bit-error probability given above is applicable to the optimal

decoding algorithm that minimizes the bit-error probability, but will not always be applied to

the ML decoding algorithm. In other words, the ML decoding algorithm, which is not optimal

for minimizing the bit-error probability, may have a higherbit-error probability.

VI. NUMERICAL RESULTS

In this section, by an[n, k] random linear code, we mean a code ensemble in which each code

is defined by a uniformly at random selected full-rank parity-check matrix of size(n− k)× n.

As shown in [25, Appendix D], the average weight spectra of a random linear code[n, k] can

be found as

Ad =







(
n
d

)
2k−1
2n−1

, 0 < d ≤ n

1, d = 0

. (71)

We also need to point out that the weight spectra of the compared BCH codes can be found

in [26].

A. Comparisons Between the Proposed Bounds and the ExistingBounds

In this subsection, we present four examples to compare the proposed bounds (56) with the

existing bounds on word-error probability.
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Fig. 4. Comparison between the upper bounds on the word-error probability under ML decoding of random binary linear block

codes[100, 95]. The compared bounds are the original union bound, the TSB and the proposed bound.
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Fig. 5. Comparison between the upper bounds on the word-error probability under ML decoding of random binary linear block

codes[100, 50]. The compared bounds are the original union bound, the TSB and the proposed bound.

Fig. 4 and Fig. 5 show the comparisons between the original union bound (8), the TSB [11,

(22)] and the proposed bound (56) on word-error probabilityof [100, 95] and [100, 50] random

linear codes, respectively, where the former has been used as an example in [2]. The proposed

bounds are obtained by optimizing the parameterd∗, which may be varied with SNRs. We can
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Fig. 6. Comparison between the upper bounds on the word-error probability under ML decoding of BCH code[31, 26].

The compared bounds are the original union bound, the TSB andthe proposed bound, which are also compared with the ML

simulation results.
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Fig. 7. Comparison between the upper bounds on the word-error probability under ML decoding of BCH code[31, 21].

The compared bounds are the original union bound, the TSB andthe proposed bound, which are also compared with the ML

simulation results.
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Fig. 8. Comparison between the upper bounds on the word-error probability under ML decoding of BCH code[63, 39]. The

compared bounds are the original Divsalar bound, the refinedDivsalar bound and the proposed bound.
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Fig. 9. Comparison between the upper bounds on the word-error probability under ML decoding of BCH code[63, 39]. The

compared bounds are the truncated TSB, the truncated proposed bound and the TSB. These truncated bounds depend only on

the sub-codeC20 consisting of all codewords with Hamming weight no greater than20.
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see that the proposed bound improves the original union bound. We can also see that, for the

random code[100, 95], the proposed bound is tighter than the TSB in the low-SNR region; while

for the random code[100, 50], the proposed bound is looser than the TSB. This coincides with

the computational results in [27, Fig. 3], which tells us that the TSB becomes looser in terms

of the error exponent with increasing code rates. Note that the solid curve in Fig. 4 is better

than that in [28, Fig. 3], since Theorem 4 here improves [28, Theorem 2] by employing the

independence between the error events and certain components of the received random vectors.

Fig. 6 and Fig. 7 show the comparisons between the original union bound (8), the TSB [11,

(22)] and the proposed bound (56) on word-error probabilityof [31, 26] and[31, 21] BCH codes,

respectively. Also shown are the simulation results. We cansee that the proposed bound improves

the original union bound especially in the low-SNR region. We can also see that the proposed

bound is almost as tight as the TSB for the[31, 26] BCH code but looser than the TSB for the

[31, 21] BCH code, which again coincides with the conclusions in [27].

B. Combination of the Proposed Technique with the Existing Bounds

By Proposition 1, we know that the proposed bounding technique can potentially improve

any existing upper bounds. To illustrate this, we give an example. Fig. 8 shows the comparisons

between the original Divsalar bound [12, (55)], therefinedDivsalar bound (19) by taking Divsalar

bound asTu and the proposed bound (56) on word-error probability of[63, 39] BCH code, which

has been used as an example in [11]. We can see that the refined Divsalar bound improves the

original Divsalar bound especially in the low-SNR region. We can also see that the proposed

bound (56) is slightly tighter than the refined Divsalar bound. For this[63, 39] BCH code, we

have also combined the proposed bounding technique with theSB and the TSB. However, we

found that the optimal parameterd∗ is n and hence no improvement is achieved for the SB and

the TSB.
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C. Comparisons Between the Truncated Proposed Bound and theTruncated Existing Bounds

As we have mentioned above Proposition 1, the proposed bounding technique is helpful when

the whole weight spectrum is unknown or not computable, as issimilar to the SB and the TSB.

Hence, it makes sense to compare these truncated bounds. To illustrate this, we take the[63, 39]

BCH code as an example. To get the weight spectra, one may needto perform the algorithms

in [29]. Given d, the upper bounds of the computational complexity for computing Ad can be

found in [29, Lemmas 5 & 7]. For example, one needs about105 and108 attempts of Algorithm 1

in [29] for d = 9 and d = 13, respectively, as given in [29, Section VI]. Evidently, thefewer

Ad (0 < d ≤ n) we use, the lower computational complexity the algorithm has. Assume that

we know only the truncated weight spectrum{Ad, d ≤ 20}. Then we can obtain the truncated

proposed bound based on (56) and the truncated TSB based on [11, (22)], as shown in Fig. 9.

Also shown in Fig. 9 is the TSB [11, (22)] with the whole weightspectrum. We can see that the

truncated proposed bound is looser than the TSB, but tighterthan the truncated TSB especially in

the high-SNR region. Note that both two truncated bounds areoptimized based on the truncated

spectrum. For example, the truncated proposed bound is obtained by optimizing the parameter

d∗ (0 ≤ d∗ ≤ 10) in (56).

VII. CONCLUSIONS

In this paper, we have presented new techniques to improve the conventional union bounds

within the framework of GFBT. Compared with the conventional union bound, the proposed

bounds are tighter but have a similar complexity because they involve only the weight spectra

and the Q-function. The proposed bounds are also helpful when the whole weight spectrum is

unknown or not computable. Numerical results show that the proposed bounds can even improve

the TSB in the high-rate region.
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