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Abstract

In this paper, we present an improved union bound on the Linear Programming (LP) decoding

performance of the binary linear codes transmitted over an additive white Gaussian noise channels. The

bounding technique is based on the second-order of Bonferroni-type inequality in probability theory,

and it is minimized by Prim’s minimum spanning tree algorithm. The bound calculation needs the

fundamental cone generators of a given parity-check matrixrather than only their weight spectrum, but

involves relatively low computational complexity. It is targeted to high-density parity-check codes, where

the number of their generators is extremely large and these generators are spread densely in the Euclidean

space. We explore the generator density and make a comparison between different parity-check matrix

representations. That density effects on the improvement of the proposed bound over the conventional

LP union bound. The paper also presents a complete pseudo-weight distribution of the fundamental cone

generators for the BCH[31,21,5] code.
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I. INTRODUCTION

T HE calculation of error probability for Linear Programming(LP) decoding of Binary

Phase-Shift Keying (BPSK) modulated binary codes is often acomplex task. This is

mainly due to the complexity of LP Voronoi or decision regions [1] [2]. The probability of

correct decision in an Additive White Gaussian Noise (AWGN)channel, can be obtained by

integrating a multidimensional Gaussian distribution over the decision region of the transmitted

codeword (CW).

LP decoding is a relaxed version of the Maximum-Likelihood (ML) decoding. Thecodeword

polytope [3] of ML is replaced by a relaxed polytope, called thefundamental polytope [3]. The

fundamental polytope arisen from a given parity check matrix. Its vertices are every codeword, but

it also has some non-codeword. The vertices of the codeword polytope are the all codewords, and

the vertices of the fundamental polytope are calledpseudocodewords (PCWs) [3]. The additional

non-codewords make the decision region [1] of the LP decodereven more complex than that

of the ML. Therefore, a derivation of analytical bounds has an important role in evaluating the

performance of the LP decoder.

The fundamental cone [2] is the conic hull of the fundamental polytope. The LP error proba-

bility over the fundamental polytope is equal to that over the fundamental cone [4]. Moreover, it

is sufficient to consider only the fundamental conegenerators [4] for evaluating the performance

of the LP decoder.

The well-known upper bound on the error probability of a digital communication system is

the Union Bound (UB), which is a first-orderBonferroni-type inequality [5] in the probability

theory. The UB of the LP decoder [1] [6] [7] for High-Density Parity-Check (HDPC) codes

presets inaccurate results due to the high density of fundamental cone generators. In fact, the

union bound sums all of the pairwise error events as if they were disjoint, but this scenario is

far from being the case in LP decoding of HDPC codes.

Each pseudocodeword in the LP decoder can be located in the BPSK signal space [2]. What

the LP decoder does, it chooses the nearest pseudocodeword to the received vector as the most

likely transmitted pseudocodeword. The ML soft decision decoder has such property as well, but
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unlike to the LP decoder, its signal space contains only the set of the all codewords. Thus many

of ML upper bounds can be reused [8] [9] [10] [11] in the case ofLP decoding.

For a given code, each of its parity-check matrix creates a fundamental cone with different

pseudo-weight spectrum and geometrical structure, which influences differently on the error

probability of the LP decoder. Therefore, the geometrical properties of the fundamental cone

generators are essential to evaluate with a better accuracythe LP decoding error probability.

Thus ML error probability bounds which use the weight spectrum of the code or those who

sum the error contribution of each individual codeword become less attractive. In [11] a ML

bound is presented which is based on the second-order upper bound on the probability of a finite

union of events. And indeed, it uses the geometrical properties of the codewords and considers

an intersection of pairwise error events, but involves relatively high computational complexity.

To explore the density of the fundamental cone generators, we have defined theangle graph:

each generator is considered as a node of a complete undirected graph. The cost of an edge is

the angle between the generators related to the adjacent nodes. The minimum spanning tree is

found and its cost distribution is illustrated. Different patterns for various parity-check matrices

were observed.

In this paper, we propose an upper bound based on the second-order of Bonferroni-type

inequality. The bound needs the fundamental cone generators rather than their weight spectrum.

We call it Improved Linear Programming Union Bound (ILP-UB). It consists of two parts: The

first term is the LP union bound itself, and the second term is asecond-order correction that can be

optimized by a known minimum spanning tree algorithm. It requires relatively low computational

complexity since it involves only theQ-function.

The proposed ILP-UB makes use of an upper bound of the triplet-wise error probability that

has been introduced earlier in the paper. We derive analytical expression to evaluate the triple-

wise error probability depending on the angle which they create. And for example, the triple-wise

error probability for the minimal-weight generators of theBCH[63,57,3] code is calculated. It is

compared to the triple-wise error upper bound and to the UB indifferent angles and Signal-to-

Noise Ratios (SNRs).
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The proposed ILP-UB was tested on three HDPC codes: Golay[24,12,8], BCH[31,26,3], BCH[63

,57,3], and on the Low-Density Parity-Check (LDPC) Tanner code [155,64,20] [12]. An improve-

ment of up to 0.37 dB has been demonstrated over the conventional Linear Programming Union

Bound (LP-UB).

This paper is organized as follows. Sec. II provides some background on ML and LP decoding.

The minimum spanning tree problem for undirected graph is also reviewed in Sec. II. In Sec. III

we explore the density of the fundamental cone generators and we check the effect of that density

on the union bound of the triplet-wise error probability. The problem of finding an LP dominant

error events is discussed in Sec. IV. In Sec. V we propose an improved linear programming

error union bound. Sec. VI provides numerical results and discusses some possible direction for

further research on how to improve the proposed bound. Sec. VII concludes the paper.

II. PRELIMINARIES AND DEFINITIONS

A. ML and LP Decoding

In this section we briefly review ML and LP decoding [3]. Consider a binary linear codeC of

lengthn, dimensionk and code rateR , k/n. Let F2 , {0, 1} denote the finite field with two

elements. The codeC is defined by somem×n parity-check matrixH ∈ F
mxn
2 with row vectors

h1,h2, ...,hm, i.e. C ,{x ∈ F
n
2 | xHT = 0}. The code will be called an [n,k,d] code, in whichd

is its minimumHamming distance. The code is used for data communication over a memoryless

binary-input channel with channel lawPY |X(y|x). We denote the transmitted codeword byx ,

(x1, ..., xn), the transmitted signal byx , (x1, ..., xn) and the received signal byy , (y1, ..., yn).

We assume that every codewordx ∈ C is transmitted with equal probability. Letλ denote the

Log-Likelihood Ratio (LLR) vector with the LLR componentsλi , PY |X(yi|0)/PY |X(yi|1) for

i = 1, ..., n. The block-wise Maximum Likelihood Decoding (MLD) is

x̂MLD(y) , arg min
x∈C

〈x,λ〉 . (1)

Where〈x,λ〉 ,
∑

i xiλi denote the standardinner product of two vectors of equal length. The

ML decoder error probability is independent of the transmitted CW, therefore, we assume without

loss of generality that the all-zeros codewordx0 is transmitted. Then [13]
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PMLD
r (error | x0) = Pr (x̂MLD(y) 6= x0 | x0) (2)

= Pr







⋃

x∈C\x0

||x− y||2 ≤ |||x0 − y||2 | x0






(3)

≤
∑

x∈C\x0

Pr { ||x− y||2 ≤ |||x0 − y||2 | x0 } (4)

=
∑

x∈C\x0

Q

(
d
x

2σ

)

. (5)

Where theQ-function is defined to beQ(x) , 1√
2π

´∞
x

exp
(

− t2

2

)

dt and ||x||2 ,
√∑

i x
2
i

denote theL2-norm of a vectorx. Eq. (3) also allows to make a simulation of the error probability

contributed by a subgroup of codewords. Eq. (5) is the ML union bound, whered
x
, ||x−x0||2 =

2
√

REbwH(x) is the Euclidean distance fromx to the transmitted signalx0.

The MLD (1) can be formulated [3] as the following equivalentoptimization problem:

x̂MLD(y) , arg min
x∈conv(C)

〈x,λ〉 . (6)

conv(C) is called thecodeword polytope [3], which is the convex hull of all possible codewords.

The vertices of the codeword polytope are the all codewords.The number of inequalities needed

to describe it grows exponentially in the code length. Therefore, solving this linear programming

problem is not practical for codes with reasonable block length. To make this problem more

feasible it was suggested [3] to replaceconv(C) by a relaxed polytopeP , P(H), called the

fundamental polytope.

P ,

m⋂

j=1

conv(Cj) with Cj ,
{
x ∈ F

n
2 | xhT

j = 0
}
.

Whereconv(C) ⊆ conv(Cj) for j = 1, ..., m and henceconv(C) ⊆ P(H) ⊂ [0, 1]n. The number

of inequalities that describeP(H) is typically much smaller than those ofconv(C). The Linear

Programming Decoding (LPD) is then

ω̂LPD(y) , arg min
ω∈P

〈ω,λ〉 . (7)

In the case ofconv(C) = P(H) the relaxed LP solution equals to that of ML. In the case of
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conv(C) ⊂ P(H) the relaxed LP problem represents a suboptimal decoder which has vertices

in P(H) which are not inconv(C). The vertices ofP(H), denoted byV(P(H)), are called LP

pseudocodewords.

The fundamental cone [2] K(H) , K is defined to be the conic hull of the fundamental

polytope i.e. the set that consists of all possible conic combinations of all the points inP(H)

and henceP(H) ⊂ K(H). The LP decoding error probability over the fundamental polytope is

equal to that over the fundamental cone [4]. We letR andR+ be the set of real numbers and

the set of non-negative real numbers, respectively.

Definition 1. ( [4], [14]) A set G(K) , {g1, g2, ..., gM | gi ∈ R
n
+, i = 1, ...,M} of M linearly

independent vectors whereK =

{
M∑

i=1

αigi | αi ∈ R

}

are called thegenerators of the coneK.

It follows from Def. 1 that a vectorx is in K if and only if x can be written as a nonnegative

linear combination of the generators, i.e.x =
M∑

i=1

αigi whereαi ∈ R. Note that a set of generators

is not unique, and that the all-zeros codewordx0 /∈ G(K).

We assume an AWGN channel, where eachi-th transmitted bit perturbed by a white Gaussian

noisezi with a zero mean and noise powerσ2 , N0/2. The received signal isy = x+ z, where

z designates ann-dimensional Gaussian noise vector with independent componentsz1, z2, ..., zn.

We consider a BPSK modulation: the transmitted signal isx = γ (1− 2x), whereγ ,
√
REb in

whichEb is the information bit energy. The signal-to-noise ratio isdefined to beSNR , Eb/N0.

Following from the above, the LLR vector isλ = 4
√
REb

N0
y [2], and therefore, the LPD will be

considered henceforth

ω̂LPD = arg min
ω∈P

〈ω,y〉 . (8)

Definition 2. ([2], [15], [16]) Let ω ∈ R
n
+. The AWGN channel pseudo-weightwAWGNC

p (ω) of

ω is given by

wAWGNC
p (ω) ,

||ω||21
||ω||22

, (9)

where||x||1 ,
∑

i |xi| denote theL1-norm of a vector x. Ifω = 0 we definewAWGNC
p (ω) , 0,

and in the case ofω ∈ {0, 1}n we havewAWGNC
p (ω) = wH(ω).
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For an easier notation, as we discuss in this paper only AWGN channel, we will use the shorter

notationwp(ω) instead ofwAWGNC
p (ω).

Due to the symmetry property of the fundamental polytope theprobability that the LP decoder

fails is independent of the codeword that was transmitted [3]. Therefore, we henceforth assume

without loss of generality when analyzing LPD error probability, that the all-zeros codewordx0

is transmitted.

The set of optimal solutions of a closed convex LP problem always includes at least one vertex

of the polytope. Therefore, the LPD error probability is

PLPD
r (error | x0) = Pr







⋃

ω∈V(P(H))\x0

〈ω,y〉 ≤ 0 | x0






. (10)

A pseudocodewordp ∈ V(P) also belongs to the fundamental cone. Thus it can be written as

a non-negative linear combination of the generators, i.e.p =
M∑

i=1

αigi with αi ≥ 0. Therefore, if

there isp ∈ V(P) such that〈p,y〉 =
M∑

i=1

αi 〈gi,y〉 < 0, then there must be at least one generator

gi∈ G(K) such that〈gi,y〉 < 0. Therefore, the union of the pseudocodewords’ error events in

(10) can be replaced by the union of the generators’ error events.

A vectorω ∈ R
n
+ which is not codeword can be located into the signal space in the same way

as a codeword, i.eω = γ (1− 2ω). The vectorωvirt ,
||ω||1
||ω||22

ω was introduced by Vontobel and

Koetter [2]. They showed that the decision hyperplane ofω in the signal space, is at the same

Euclidean distance fromx0 and fromωvirt. Note that ifω ∈ C ⊆ {0, 1}n, thenωvirt = ω. From

the above, the LP error probability is then expressed in the signal space as follows.

PLPD
r (error | x0) = Pr







⋃

ω∈G(K(H))

||ωvirt − y||2 ≤ ||x0 − y||2 | x0






. (11)

Evaluating the LP error probability by simulating Eq. (11) is not practical, since it involves

enormous number of generators. However, it allows to make a simulation of the error probability

contributed by a subgroup of generators.

Let E
x0→ω = { ||ωvirt − y||2 ≤ ||x0 − y||2 | x0 } denote the LP pairwise error event where

the received vectory is closer toωvirt than to the transmitted signalx0. Thus the LP error
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probability (11) can be written:

PLPD
r (error | x0) = Pr







⋃

ω∈G(K(H))

E
x0→ω






, (12)

and the LP union bound is

PLPD
r (error | x0) ≤

∑

ω∈G(K(H))

Pr{Ex0→ω}. (13)

Let rω ,
||ωvirt−x0||2

2
= γ

√
wp(ω) denote the Euclidean distance fromx0 or from ωvirt to the

decision boundary line. Thus the LP pairwise error probability [2]

Pr(Ex0→ω) = Q
(rω
σ

)

, (14)

and the LP-UB in Eq. (13) can be written as follows [1] [7].

PLPD
r (error | x0) ≤

∑

ω∈G(K(H))

Q
(rω
σ

)

. (15)

B. Undirected Graphs

In this section, we give a brief overview of some terms from graph theory. By a graph we

will always mean an undirected graph without loops and multiple edges. We let|V | denote the

size of a setV .

Definition 3. ([17]) An undirected graph G(V, E) consists of a set of nodesV and a set of edges

E . An edge is an unordered pair of nodes(vi, vj). Associated with each edge(vi, vj) ∈ E is a

costc(vi, vj).

Definition 4. ([17]) A spanning tree of an undirected graphG(V, E), is a subgraphT (V, E ′) that

is a tree and connects all the nodes inV . It has |V | nodes and|E ′| = |V | − 1 edges, in which

E ′ is a subset ofE . The cost of a spanning tree T, denoted bycost(T ), is the sum of the costs

of all the edges in the tree. i.e.cost(T ) =
∑

(vi,vj)∈T
c(vi, vj).

Definition 5. ([17]) A spanning tree of a graphG(V, E) is called aMinimum Spanning Tree

(MST), if its cost is less than or equal to the cost of every other spanning treeT (V, E ′) of

G(V, E).
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Two popular algorithms for finding an MST in undirected graphare Prim’s [18] and Kruskal’s

[19]. A simple implementation of Prim’s algorithm can showsO(|V |2) running time, and both

can be implemented with complexity ofO(|E| log|V |).

III. GENERATOR DENSITY CHARACTERIZATION

In this section, we explore the density of the fundamental cone generators and we compare it

to that of ML codewords. As a result, we will later examine howthe union bound is affected by

that density. Let0 ≤ θij ≤ π denote the positive angle formed by the vectorsωi andωj , which

is equal to the angle formed by the vectors
−−−→
x0ωi,virt and

−−−→
x0ωj,virt in a BPSK signal space.

Definition 6. Let ω1,ω2, ...,ωM ∈ R
n
+ be a set of vectors. Consider each vector as a node of an

undirected graphG(V, E), with an undirected edge joining each pair of nodesωi andωj , denoted

by (ωi,ωj). An edge(ωi,ωj) ∈ E has a cost that equal to the angle between the vectors related

to the adjacent nodes, i.e,c(ωi,ωj) = θij . The graphG(V, E) will be called theangle graph.

Note that the angle graph is acomplete graph; it has|V | nodes and|V |(|V | − 1)/2 edges.

Definition 7. Let T (V, E ′) be an MST of the angle graphG(V, E) in Def. 6. TheMST angle

distribution is defined to be the cost distribution of the all edges(ωi,ωj) in the graphT (V, E ′).

For easier notation, we will use the shorter termangle distribution instead.

Example 8. Let HG′ [1] andHG′′ (16) be parity-check matrices for the extended Golay[24,12,8]

code. The former matrix was introduced by Halford and Chugg [20], the latter is a systematic

parity-check matrix. Fig. 1 presents the angle distributions of the first 759 minimal-weight

generators ofHG′ andHG′′ (generators with equal pseudo-weight were ordered randomly.). For

a comparison, the angle distribution of the 759 minimal-weigh ML codewords is presented as

well. The average angle ofHG′ , HG′′ generators and of ML codewords are :1.43◦, 10.69◦ and

60◦, respectively; and their Standard Deviations (STDs) are:3.38◦, 8.72◦ and 0◦, respectively.

Note thatHG′ and HG′′ have two differentgenerator matrices, however, both have the same

angle distribution for their759 minimal-weight CWs. It is clear from Fig. 1, thatHG′ generators

are much crowded than those ofHG′′, and between these three distributions the ML codewords

are spread most widely and evenly in the Euclidean space.
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Fig. 1. Angle distributions for the extended Golay[24, 12, 8] code of the first 759 minimal-weight generators of the parity-check
matricesHG′ andHG′′ , compared to the angle distribution of the 759 minimal-weight ML codewords.

Example 9. The error probability contributed by two vectors depends onthe angle between them.

Letωi,ωj ∈ R
n
+ be vectors with an equal pseudo-weight, and letξ1 andξ2 be the two independent

Gaussian random variables obtained by projecting the noisevector z onto the plan determined

by the vectors
−−−→
x0ωi,virt and

−−−→
x0ωj,virt. We refer to the probabilityPr

{
E

x0→ωi

⋃
E

x0→ωj

}
as the

triplet-wise error probability, that isωi or ωj was decoded when the all-zeros codeword was

transmitted. The triplet-wise error probability depends on the angleθij and it can be obtained

by integrating a two dimensional Gaussian distribution over the darkened regionsR1 and R2

in Fig. 2 [21]. Without loss of generality, we assume thatωj is placed onξ1 axis. rωi
and rωj

denote the Euclidean distances from the decision boundaries lines ofωi andωj, respectively, to
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the all-zeros codeword. In the case of vectors of equal pseudo-weight,rωi
= rωj

. The decision

region boundary lines ofωi and ωj are ξ2 = −aξ1 + b and ξ1 = rωj
, respectively. Theωi

boundary line crossesξ2 axis at pointb = rωi
/sinθij and its slope isa = tan(90 − θij). The

intersection between the two boundary lines occurs at point(ξ′1, ξ
′
2) = (rωj

, −arωj
+ b).

There are various numerical integration ways [22] to evaluate the triplet-wise error probability.

Another possibility, is to approximate it by sum ofQ-functions as follows.

Pr

{
E

x0→ωi

⋃
E

x0→ωj

}
= Pr{R1}+ Pr{R2} ≈ Q

(rωi

σ

)

+

⌊

ξ1,max

△ξ1

⌋

∑

k=0

[

1−Q

(−a(ξ′1 + k △ ξ1) + b

σ

)] [

Q

(
ξ′1 + k △ ξ1

σ

)

−Q

(
ξ′1 + (k + 1)△ ξ1

σ

)]

.

(17)

Pr{R1} is equal to an LP pairwise error probability (14).Pr{R2} is calculated as follows. The

regionR2 is divided into rectangles of a width△ξ1 which are parallel to theξ2 axis, as shown

in Fig. 2. Each rectangle starts from a point on the decision boundary line ofωi and goes to

infinity in the opposite direction ofξ2 axis. The multiplication inside the sum of Eq. (17) is

the probability that the noise componentsξ1 and ξ2 are within thek-th rectangle. Since a two

dimensional Gaussian distribution converges to zero asξ1 goes to infinity, it will be sufficient to

sum fromk = 0 to a largek such as
⌊
ξ1,max

△ξ1

⌋

, where all the rectangles are located on the left

side of the lineξ2 = ξ1,max.
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ξ1 
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θij 
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 –  
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 –  
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rωi 

Fig. 2. The LP triplet-wise error region in the signal space.

Example 10. Consider the BCH[63,57,3] code. The fundamental cone of thesystematic parity-

check matrix created by thegenerator polynomial x6+x+1 has11, 551 minimal-weight generators

of pseudo-weight three. The angles between them varied from5.85◦ to 90◦. The triplet-wise error

probability of its two minimal-weight generators depends on θij is presented in Fig. 3. It was

calculated by Eq. (17) for0 and 8 dB SNR in different angles. The triplet-wise union bound

which is 2Q
(
rω
σ

)
is presented as well.ξ1,max and △ξ1 was chosen to be 2000 and 1/2000,

respectively. From Fig. 3 one can observe that the lower the SNR and the smaller the angle are,

the worse is the UB. The figure also presents a triplet-wise error probability upper bound which

is tighter than the UB and it will be introduced in Sec. V
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Fig. 3. Comparison between the triplet-wise error probability, its union bound and the upper bound in different angles of two
minimal-weight generators of BCH[63,57,3], when the all-zeros word was transmitted.

IV. THE PROBLEM OF LOCATING DOMINANT ERROR EVENTS OFLPD

Consider a ML decoding of a binary-linear code BPSK-modulated over an AWGN channel.

The decoder performance can be evaluated by considering thecontributions of the most dominant

error events to the probability of error. That dominant error events, especially in the higher SNR

region, are the minimal weight codewords.

In this section, we will examine whether the minimal-weightgenerators of LP decoding have

such a property as well. We letwH(x) denote theHamming weight of x, which is the number of

non-zero positions ofx. Let wmin
H (C) denote the minimum Hamming weight of a linear codeC,

and letwmin
p (H) denote the minimum AWGN channel pseudo-weight of a linear code defined

by the parity-check matrixH. We will use the shorter notationswmin
H andwmin

p in case where

the discussed code and matrix are mentioned explicitly. We let Ksub⊂ K denote a sub-cone of

the fundamental cone which created by a chosen subgroup of generators. The LPD(Ksub) Frame

Error Rate (FER) can be obtained by simulating Eq. (11). In the next example, we will study

the error probability contributed by a subgroup of codewords and generators for the extended

Golay[24,12,8] code.

Example 11.The extended Golay[24,12,8] code has a total4,096 codewords of which 759 have

minimal Hamming weight ofwmin
H = 8. The fundamental cone of the parity check-matrixHG′
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has a total of231, 146, 333 generators of which two have minimal-weight ofwmin
p = 3.6 [1].

Simulating the error probability by Eq. (3) shows that the minimal-weight CWs describe well the

MLD performance at the whole range of SNR, which is not the case for the first 759 minimal-

weight generators for LPD. For instance, consider the errorrate of 10−2, it was found that the

difference between LPD(Ksub) and LPD(K) is about 2.5 dB. The angle distributions which were

presented in Fig. 1 support this result: the average angle ofthat group of generators is as small

as1.43◦, and the average angle of the ML minimal-weight CWs is60◦.

There are number of reasons why the minimal-weight generators are often not a dominant

subgroup of LPD: (a) There is no guarantee for significant number of generators with minimal

pseudo-weight. The fundamental cone ofHG′ for example, has only two. (b) A subgroup of

generators can be very crowded, which significantly reducestheir contribution to the error

probability. (c) Unlike MLD which has distinct subgroup of minimal-weight codewords, LPD

often has a continuous-like weight distribution. For example, the BCH[31,21,5] code of parity-

check matrixHBCH[31,21]
(18) has 627,052,479 generators. The pseudo-weight distribution of

these generators is presented in Fig. 4. Its smooth distribution makes it difficult to locate a

minimal-weight dominant subgroup.

In LPD, a potential subgroup to be a dominant is taking all generators of weightwp ≤ wmin
H .

This group is not empty sincewmin
p ≤ wmin

H [23], however, it may contains enormous number

of generators. For example, Golay[24,12,8] has only759 minimal-weight CWs ofwmin
H = 8,

but the fundamental cone of parity-check matrixHG′′ has 143, 757, 418 generators of weight

wp ≤ wmin
H = 8.

HBCH[31,21]
=


















1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 1


















(18)
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Fig. 4. A complete generators’ pseudo-weight distributionfor the BCH[31,21,5] code ofHBCH[31,21]
with 627,052,479

generators.

V. IMPROVED LP UNION BOUND

In this section, we propose an improved union bound for LP decoding of a binary linear code

transmitted over a binary-input AWGN channel. This bound isbased on the second-order of

Bonferroni-type inequality in probability theory [5], also referred to as Hunter bound [24]. For

any set of eventsE1, E2, ..., EM and theircomplementary events, denoted byEc
1, E

c
2, ..., E

c
M ,

Pr

(
M⋃

i=1

Ei

)

=
M∑

i=1

Pr

(

Ei

⋂
[

i−1⋃

j=1

Ec
j

])

. (19)

Let denote theM ! possible permutations of the indices of the error eventsE1, E2, ..., EM by

Π(1,2,...,M) = {π1, π2,...,πM}. For a givenΠ, let Λ = {π̂2, π̂3, ..., π̂M} denote the(M2 −M)/2

possible sets of indices in whicĥπi ∈ {π1, π2, ..., πi−1} for i = 2, 3, ...,M . Hunter [24] presented

the second-order bound of Eq. (19) as follows.

Pr

(
M⋃

i=1

Ei

)

≤
M∑

i=1

Pr(Eπi
)−

M∑

i=2

Pr(Eπi
∩ Eπ̂i

). (20)

Minimization of the Right-Hand Side (RHS) of Eq. (20) is required to achieve the tightest

second-order bound. Using the sets of the indicesΛ andΠ, the minimization problem can be
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written as follows [10] [24].

Pr

(
M⋃

i=1

Ei

)

≤
M∑

i=1

Pr(Ei) +min
Π,Λ

{

−
M∑

i=2

Pr(Eπi
∩ Eπ̂i

)

}

. (21)

The first sum goes through over all the indices 1 toM of the error events, thusEπi
could be

changed toEi.

Consider each of the random eventsEi as a node of an undirected graphG and the intersection

(Ei ∩ Ej) as an undirected edge joining the nodesEi and Ej , denoted by(i, j), with a cost

c(i, j) = Pr(Ei ∩ Ej). Hunter [24] showed that a set of(M − 1) intersections may be used in

the second term of Eq. (21) if and only if it forms a spanning tree of the nodes{Ei}Mi=1. Thus

the minimization problem of Eq. (21) can be written equivalently [24], [10],

Pr

(
M⋃

i=1

Ei

)

≤
M∑

i=1

Pr(Ei) +min
τ






−
∑

(i,j)∈τ
Pr(Ei ∩ Ej)






. (22)

Whereτ is a spanning tree of the graphG. The problem is to find a graphτ which minimizes

Eq. (22) over all possible spanning trees. The solution for that is known as the solution of the

minimum spanning tree problem and has been proposed by Prim [18] and Kruskal [19].

Consider the eventEi as the pairwise error eventE
x0→ωi

. In order to upper bound the LP

decoding error probability in Eq. (12) by the second-order upper bound (22), the probability

Pr

{
E

x0→ωi

⋂
E

x0→ωj

}
is required, or instead, its lower bound. The probability ofintersection

of two events can be expressed using theinclusion-exclusion principle in probability theory,

Pr

{

E
x0→ωi

⋂

E
x0→ωj

}

= Pr {Ex0→ωi
}+ Pr

{
E

x0→ωj

}
− Pr

{

E
x0→ωi

⋃

E
x0→ωj

}

. (23)

The first and the second terms in the RHS of Eq. (23) are the LP pairwise error probability (14),

the third term can be upper bounded by the following theorem.

Theorem 12. Let ωi,ωj ∈ R
n
+ be vectors of a pseudo-weight wp(ωi) 6= wp(ωj). The LP triplet-

wise error probability
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Pr

{

E
x0→ωi

⋃

E
x0→ωj

}

≤ min







Q

(
min(rωi

, rωj
)

σ

)

+
θij
2π

e−
max(r2

ωi
,r2
ωj

)

2σ2 ,

Q
(rωi

σ

)

+Q
(rωj

σ

)

−Q
(rωi

σ

)

Q
(rωj

σ

)







. (24)

Proof: Let ξ̃ , ξ21 + ξ22 be a random variable with Chi-square distribution [25] withtwo

degrees of freedom, i.e.

f(ξ̃) =
1

2σ2
e−

ξ̃

2σ2U(ξ̃), (25)

in which U(·) is the unit step function. Without loss of generality we assume thatwp(ωi) <

wp(ωj). With the help of Fig. 5 the triplet-wise error probability,

Pr

{

E
x0→ωi

⋃

E
x0→ωj

}

≤ Pr

(
4⋃

i=1

Ri

)

≤
4∑

i=1

Pr{Ri} (26)

= Q
(rωj

σ

)

︸ ︷︷ ︸

Pr(R1)+Pr(R2)

+
θij
2π

Pr

(

ξ̃ > r2
ωj

)

︸ ︷︷ ︸

Pr(R3)

+Q
(rωi

σ

)

−Q
(rωj

σ

)

︸ ︷︷ ︸

Pr(R4)

(27)

= Q
(rωi

σ

)

+
θij
2π

e−
r2
ωj

2σ2 . (28)

From the noise symmetry, each of the probabilitiesPr(R1) or Pr(R2) equal to 1
2
Q
(

rωj

σ

)

.

Pr(R3) is the probability that ofξ21 + ξ22 lies in the region outside a circle of a radiosrωj
created

by the central angleθij . Pr

(

ξ̃ > r2
ωj

)

was calculated in Eq. (27) by integrating the Chi-square

distribution (25) fromr2
ωj

to ∞. Thus for two vectors of pseudo-weightwp(ωi) 6= wp(ωj)

Pr

{

E
x0→ωi

⋃

E
x0→ωj

}

≤ Q

(
min(rωi

, rωj
)

σ

)

+
θij
2π

e−
max(r2

ωi
,r2
ωj

)

2σ2 . (29)

The triplet-wise error probability can also be bounded using the inclusion–exclusion principle

as follows.

Pr

{

E
x0→ωi

⋃

E
x0→ωj

}

= Pr {Ex0→ωi
}+ Pr

{
E

x0→ωj

}
− Pr

{

E
x0→ωi

⋂

E
x0→ωj

}

(30)

≤ Q
(rωi

σ

)

+Q
(rωj

σ

)

−Q
(rωi

σ

)

Q
(rωj

σ

)

. (31)

The transition from Eq. (30) to Eq. (31) was done by lower boundingPr

{
E

x0→ωi

⋂
E

x0→ωj

}
at
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its lowest valueQ
(

rωi

σ

)

Q
(

rωj

σ

)

accepted inθij = 900. Finally, selecting the minimum between

Eq. (29) and Eq. (31) completes the proof.

 

θij 
 

ξ2 

ξ1 

rωj 

rωi 

 
ωj,virt 

 

ωi,virt 

 

 –  

–  

 x0 

 

   –  

Fig. 5. The region in the signal space used to bound the LP triplet-wise error probability (wp(ωi) 6= wp(ωj)).

Example 13.We continue Ex. 10. The triplet-wise error probability upper bound of Theorem 12

was calculated for two minimal-weight generators of the BCH[63,57,3] code. It is presented in

Fig. 3 together with the previous results of Ex. 10. We can seethat the smaller the angle and lower

the SNR, the more improvement the triplet-wise error upper bound has over the union bound.

Note that becauserω
σ

∝
√

SNR·wp(ω), changing the pseudo-weight of the generators will have

the same effect as changing the SNR. Thus this bound is expected to have more improvement

on low pseudo-weight generators.

In the next theorem, we propose an improved UB for the LP decoding.

Theorem 14. Let G(K(H)) be a set of cone generators of a parity-check matrix H. For each

ωi ∈ G the pairwise error event E
x0→ωi

is considered as a node of a complete graph G(V, E). Let

(ωi,ωj) denote an undirected edge joining the nodes related to the events E
x0→ωi

and E
x0→ωj

.

τ(V, E ′) is denoted for a spanning tree of G(V, E). The LP decoding error probability can be

upper-bounded by
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PLPD
r (error | x0)≤

∑

ω∈G(K(H))

Q
(rω
σ

)

+min
τ







∑

(ωi,ωj)∈τ
min







−Q

(
max(rωi

, rωj
)

σ

)

+
θij
2π

e−
max(r2

ωi
,r2
ωj

)

2σ2 ,

−Q
(rωi

σ

)

Q
(rωj

σ

)













(32)

We call this bound theImproved LP Union Bound (ILP-UB). The first term is the LP union

bound itself (15), the second term is a second-order correction.

Proof: To prove this, we will apply Hunter bound for the LP error probability. First, we find a

lower bound forPr

{
E

x0→ωi

⋂
E

x0→ωj

}
: by substituting the upper bound ofPr

{
E

x0→ωi

⋃
E

x0→ωj

}

(24) into the inclusion–exclusion principal (23), we will have

Pr

{
E

x0→ωi

⋂
E

x0→ωj

}
≥

≥Q
(rωi

σ

)

+Q
(rωj

σ

)

−min







Q

(
min(rωi

, rωj
)

σ

)

+
θij
2π

e−
max(r2

ωi
,r2
ωj

)

2σ2 ,

Q
(rωi

σ

)

+Q
(rωj

σ

)

−Q
(rωi

σ

)

Q
(rωj

σ

)







(33)

=max







Q

(
max(rωi

, rωj
)

σ

)

− θij
2π

e−
max(r2

ωi
,r2
ωj

)

2σ2 ,

Q
(rωi

σ

)

Q
(rωj

σ

)







. (34)

Applying Hunter bound (22) for LP decoding error probability (12) and substituting into it the

expression in (34) together with the LP pairwise error probability (14), will give the desired

result.

Given a set of generatorsG, the running time of ILP-UB is equal to that of finding an MST on

a complete graphG(V, E). It can be obtained by Prim’s algorithm with a complexity ofO(|G|2).

The LP-UB for a comparison, for a given set of generators has running time ofO(|G|).
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VI. RESULTS AND DISCUSSION

In this section, we provide results to show the improvement of ILP-UB over LP-UB. For this

purpose, we examine four codes, three HDPC codes: extended Golay[24,12,8], BCH[31,26,3],

BCH[63,57,3]; and one LDPC Tanner code [155,64,20] [12]. The parity-check matrices we use

for Golay[24,12,8] and BCH[31,26,3] areH ′′
G (16) andHBCH[31,26]

(35), respectively; and for

the BCH[63,57,3] we use a systematic parity-check matrix created by the generator polyno-

mial x6 + x + 1. The minimal pseudo-weight of the extended Golay[24,12,8]is wmin
p = 3.2.

BCH[31,26,3] and BCH[63,57,3] have the same minimal pseudo-weight: wmin
p = 3; and the

Tanner code [155,64,20] haswmin
p ≈ 16.403 [1].

Because of the enormous number of cone generators, we chose representative subgroups:

for the BCH[31,26,3], BCH[63,57,3] and Tanner code [155,64,20] we chose all the minimal-

weight generators that are 1,185 , 11,551 and 465 generators, respectively. Because the extended

Golay[24,12,8] code has only 165 minimal-weight generators we chose for it the first 231

generators of a weight equal or less thanwp = 3.25.

HBCH[31,26]
=








1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0
0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1
0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0
0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0
0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1








(35)

Fig. 6 presents the angle distributions according to Def. 7 for the aforementioned codes:

extended Golay[24,12,8], BCH[31,26,3] and BCH[63,57,3].Their average angles are19.85◦,

29.58◦, 21.87◦, respectively; and their STDs are13.44◦, 13.94◦, 13.84◦, respectively.
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(a) Golay[24,12,8] code: angle distribution for all the231
generators withwp ≤ 3.25.
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(b) BCH[31,26,3] code: angle distribution of all the 1,185
minimal-weight generators.
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(c) BCH[63,57,3] code: angle distribution of all the 11,551
minimal-weight generators.

Fig. 6. Angle distributions.

Fig. 7 presents results of the: ILP-UB(Ksub), LP-UB(Ksub) and LPD(Ksub) for the chosen

subgroups of generators. It presents the LPD FER as well. TheILP-UB optimized by Prim’s

algorithm. The ILP-UB presents an improvement over the LP-UB. For instance, we consider

the error rate of10−2. For the extended Golay[24,12,8], the difference between LP-UB(Ksub)

and LPD(Ksub) is about 0.9 dB while ILP-UB(Ksub) shows an improvement of 0.37 dB over

LP-UB(Ksub). For BCH[31,26,3], the difference between LP-UB(Ksub) and LPD(Ksub) is about

0.47 dB while ILP-UB(Ksub) shows an improvement of 0.13 dB. And for BCH[63,57,3], the

difference between LP-UB(Ksub) and LPD(Ksub) is about 0.62 dB while ILP-UB(Ksub) shows

an improvement of 0.16 dB.

The results of the LDPC Tanner code were omitted, since the improvement of the ILP-

UB(Ksub) over the LP-UB(Ksub) at error rate of10−3 is dropped to about 0.05 dB. The reason for
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that is twofold. First, the Tanner code has a large average angle: 35.16◦. Second, the generators

have an high pseudo-weight:wmin
p ≈ 16.403. These two values are high as compared to the other

tested codes.
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(a) Golay[24,12,8] code: results for231 generators withwp ≤
3.25 (wmin

p = 3.2).
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(b) BCH[31,26,3] code: results of all the1, 185 minimal-
weight generators (wmin

p = wmin
H = 3).
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(c) BCH[63,57,3] code: results of all the11, 551 minimal-
weight generators (wmin

p = wmin
H = 3).

Fig. 7. A comparison between ILP-UB, LP-UB, LPD and LPD FER for HDPC codes.

Fig . 7 together with Fig. 6 show that the lower the average angle is, the more improvement the

ILP-UB has. A small average angle is typical for HDPC codes, therefore, the advantage of ILP-

UB over the LP-UB will be reflected better on such type of codes. But on the other hand, as the

larger the average angle is, the better the LP-UB will be. Fig. 7a presents the highest improvement

of the ILP-UB(Ksub) among the other codes. This result correlates to Golay’s smallest average
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angle:19.85◦. However, it presents the largest gap to itsLPD(Ksub). This apparently happens

because there are a significant probabilities of intersections between three error events or more.

Bukszár and Prékopa have suggested [26] a third order upper bound on the probability of a

finite union of events. Their bound considers intersectionsof two and three events. They proved

that this third order bound, which is obtained by the use of a type of graph called cherry tree, is

at least as strong as the second-order bound. Therefore, implementing such a bound will improve

(or at least will be equal to) the proposed ILP-UB.

VII. CONCLUSIONS

In this paper, we have presented an improved union bound on the error probability of LP

decoding of binary linear HDPC codes transmitted over a binary-input AWGN channel. It is

based on the second-order upper bound on the probability of afinite union of events. It has

low computational complexity since it only involves the Q-function. It can be implemented

with running time ofO(|G|2), whereG is a set of generators of the fundamental cone arisen

from a given parity check matrix. We examined the proposed bound for several HDPC codes:

Golay[24,12,8], BCH[31,26,3], BCH[63,57,3], and for the LDPC Tanner [155,64,20] code. The

improvement of the proposed bound over the union bound presents dependency on the pseudo-

weight of the generators and their density. We studied and compared the generator density through

the angle distribution of various codes and parity-check matrices. Finally, a third order upper

bound was proposed, it is based on a type of graph called cherry tree, and is left open for further

research.
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