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Abstract

In this paper, we present an improved union bound on the LiReagramming (LP) decoding
performance of the binary linear codes transmitted overdalitise white Gaussian noise channels. The
bounding technique is based on the second-order of Bomfietype inequality in probability theory,
and it is minimized by Prim’s minimum spanning tree algarithThe bound calculation needs the
fundamental cone generators of a given parity-check medthxer than only their weight spectrum, but
involves relatively low computational complexity. It isr¢geted to high-density parity-check codes, where
the number of their generators is extremely large and thesergtors are spread densely in the Euclidean
space. We explore the generator density and make a compdmteveen different parity-check matrix
representations. That density effects on the improvemetiieoproposed bound over the conventional
LP union bound. The paper also presents a complete pseudbtwstribution of the fundamental cone
generators for the BCH[31,21,5] code.
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I. INTRODUCTION

HE calculation of error probability for Linear ProgrammirfgP) decoding of Binary
T Phase-Shift Keying (BPSK) modulated binary codes is oftecomplex task. This is
mainly due to the complexity of LP Voronoi or decision rego[i] [2]. The probability of
correct decision in an Additive White Gaussian Noise (AWGHgannel, can be obtained by
integrating a multidimensional Gaussian distributionrove decision region of the transmitted
codeword (CW).

LP decoding is a relaxed version of the Maximum-LikelihoML] decoding. Thecodeword
polytope [3] of ML is replaced by a relaxed polytope, called thumdamental polytope [3]. The
fundamental polytope arisen from a given parity check malis vertices are every codeword, but
it also has some non-codeword. The vertices of the codewalydgpe are the all codewords, and
the vertices of the fundamental polytope are cafiegidocodewords (PCWSs) [3]. The additional
non-codewords make the decision region [1] of the LP decesten more complex than that
of the ML. Therefore, a derivation of analytical bounds hasraportant role in evaluating the
performance of the LP decoder.

The fundamental cone [2] is the conic hull of the fundamental polytope. The LP empooba-
bility over the fundamental polytope is equal to that over thndamental coné [4]. Moreover, it
is sufficient to consider only the fundamental ca@eeerators [4] for evaluating the performance
of the LP decoder.

The well-known upper bound on the error probability of a @igcommunication system is
the Union Bound (UB), which is a first-ordeBonferroni-type inequality [5] in the probability
theory. The UB of the LP decoder![1]/[6]][7] for High-Densityafty-Check (HDPC) codes
presets inaccurate results due to the high density of fuedéahcone generators. In fact, the
union bound sums all of the pairwise error events as if theyeveisjoint, but this scenario is
far from being the case in LP decoding of HDPC codes.

Each pseudocodeword in the LP decoder can be located in tB& BRjnal space [2]. What
the LP decoder does, it chooses the nearest pseudocodewtirel teceived vector as the most

likely transmitted pseudocodeword. The ML soft decisionatker has such property as well, but
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unlike to the LP decoder, its signal space contains only ¢tefthe all codewords. Thus many
of ML upper bounds can be reused [3] [9] [10] [11] in the casd.Bfdecoding.

For a given code, each of its parity-check matrix createsnadmental cone with different
pseudo-weight spectrum and geometrical structure, whifluences differently on the error
probability of the LP decoder. Therefore, the geometriqalpprties of the fundamental cone
generators are essential to evaluate with a better accuh@cyP decoding error probability.
Thus ML error probability bounds which use the weight speuatrof the code or those who
sum the error contribution of each individual codeword leedess attractive. In_[11] a ML
bound is presented which is based on the second-order uppadion the probability of a finite
union of events. And indeed, it uses the geometrical praggedf the codewords and considers
an intersection of pairwise error events, but involvestietty high computational complexity.

To explore the density of the fundamental cone generatashave defined thangle graph:
each generator is considered as a node of a complete urdirgcaph. The cost of an edge is
the angle between the generators related to the adjaceesndtle minimum spanning tree is
found and its cost distribution is illustrated. Differerdtferns for various parity-check matrices
were observed.

In this paper, we propose an upper bound based on the secded-@f Bonferroni-type
inequality. The bound needs the fundamental cone gensredtiter than their weight spectrum.
We call it Improved Linear Programming Union Bound (ILP-UB) consists of two parts: The
first term is the LP union bound itself, and the second termsiscand-order correction that can be
optimized by a known minimum spanning tree algorithm. Ituiegs relatively low computational
complexity since it involves only th&-function.

The proposed ILP-UB makes use of an upper bound of the thyplket error probability that
has been introduced earlier in the paper. We derive analyixpression to evaluate the triple-
wise error probability depending on the angle which theyatseAnd for example, the triple-wise
error probability for the minimal-weight generators of tREH[63,57,3] code is calculated. It is
compared to the triple-wise error upper bound and to the UBiffierent angles and Signal-to-

Noise Ratios (SNRs).
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The proposed ILP-UB was tested on three HDPC codes: GoldyZ2], BCH[31,26,3], BCH[63
,57,3], and on the Low-Density Parity-Check (LDPC) Tanrmatec[155,64,20][12]. An improve-
ment of up to 0.37 dB has been demonstrated over the conmahtilmear Programming Union
Bound (LP-UB).

This paper is organized as follows. Se¢. 1l provides somé&dracnd on ML and LP decoding.
The minimum spanning tree problem for undirected graphge atviewed in Sec.]ll. In Sec. I
we explore the density of the fundamental cone generatatrsvarcheck the effect of that density
on the union bound of the triplet-wise error probability.eTproblem of finding an LP dominant
error events is discussed in Sécl IV. In Se¢. V we propose gmowed linear programming
error union bound. SeC. VI provides numerical results asdudises some possible direction for

further research on how to improve the proposed bound.[SEicovicludes the paper.

Il. PRELIMINARIES AND DEFINITIONS
A. ML and LP Decoding

In this section we briefly review ML and LP decoding [3]. Cadesi a binary linear codé of
lengthn, dimensionk and code rate? = k/n. Let F, = {0,1} denote the finite field with two
elements. The codeé is defined by some: x n parity-check matrixd € F7*" with row vectors
h;,hy, ... h,, ieC2{xcFy|xH" =0}. The code will be called am[k,d] code, in whichd
is its minimumHamming distance. The code is used for data communication over a memoryless
binary-input channel with channel la|x (y|z). We denote the transmitted codeword by=
(z1,...,z,), the transmitted signal by = (74, ..., Z,) and the received signal by = (v, ..., yn).

We assume that every codewaxde C is transmitted with equal probability. Let denote the
Log-Likelihood Ratio (LLR) vector with the LLR components = Py x(v;]0)/ Py x(yi|1) for
i =1,...,n. The block-wise Maximum Likelihood Decoding (MLD) is

Xnp(y) £ arg r?in (x, ). (1)
xXE

Where (x, A) £ 3", z;\; denote the standaiidiner product of two vectors of equal length. The
ML decoder error probability is independent of the transeaditCW, therefore, we assume without

loss of generality that the all-zeros codeworglis transmitted. Then [13]
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PyLD(error | x0) = P (Xmrp(y) # %o | Xo) @

= Pr{ U XY2<X0Y2X0} 3)

x€C\xo
< > PAIR=vl <Ko —ylla[ %0} (4)
x€C\xo
dx
~ Yo (2_) | (5)
g
x€C\xo

Where the@-function is defined to b&)(z) £ —= [ exp(—%)dt and ||x|[; £ />, 22
denote theC,-norm of a vectox. Eq. [3) also allows to make a simulation of the error prolitgbi
contributed by a subgroup of codewords. Eg. (5) is the ML mfiound, wherel, £ ||X—Xo||; =
2/ REywy(x) is the Euclidean distance frog to the transmitted signat,.

The MLD () can be formulated [3] as the following equivaleptimization problem:

ﬁMLD(Y) = arg min <X7 >\> . (6)

x€conv(C)

conv(C) is called thecodeword polytope [3], which is the convex hull of all possible codewords.
The vertices of the codeword polytope are the all codewadrtds.number of inequalities needed
to describe it grows exponentially in the code length. Tfeees solving this linear programming

problem is not practical for codes with reasonable bloclglenTo make this problem more

feasible it was suggested [3] to replaa@v(C) by a relaxed polytopg® = P(H), called the

fundamental polytope.

P L ﬂ conv(C;) with  C; £ {x e Fy | xh;‘-F = O} )
j=1

Whereconv(C) C conv(C;) for j =1,...,m and henceonv(C) C P(H) C [0, 1]". The number
of inequalities that describ(H) is typically much smaller than those eénv(C). The Linear

Programming Decoding (LPD) is then

GJLPD(Y) = arg 17131111 <‘-Ua >\> . (7)
we

In the case ofonv(C) = P(H) the relaxed LP solution equals to that of ML. In the case of
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conv(C) C P(H) the relaxed LP problem represents a suboptimal decoderhwias vertices
in P(H) which are not inconv(C). The vertices ofP(H), denoted by (P(H)), are called LP
pseudocodewords.

The fundamental cone [2] K(H) = K is defined to be the conic hull of the fundamental
polytope i.e. the set that consists of all possible conic lwoations of all the points irP(H)
and henceP(H) C K(H). The LP decoding error probability over the fundamentalaoge is
equal to that over the fundamental coné [4]. Welketind R, be the set of real numbers and

the set of non-negative real numbers, respectively.

Definition 1. ( [4], [14]) A setG(K) £ {g1,82,....gm | & € R?, i = 1,..., M} of M linearly
M

independent vectors wheke = {Zaigi | a; € R} are called thegjenerators of the conelC. [
=1

It follows from Def.[1 that a vectoxk is in K if and only if x can be written as a nonnegative
M
linear combination of the generators, xe= > «a;g; whereq; € R. Note that a set of generators

is not unique, and that the all-zeros COdG\Z\?éﬁd% G(K).
We assume an AWGN channel, where eath transmitted bit perturbed by a white Gaussian
noisez; with a zero mean and noise powet = N, /2. The received signal ig = X+ z, where
z designates an-dimensional Gaussian noise vector with independent coenisz,, z», ..., z,.
We consider a BPSK modulation: the transmitted signal4sy (1 — 2x), wherey 2 /RE} in
which E}, is the information bit energy. The signal-to-noise ratiaéfined to beSNR = E,/Nj.
Following from the above, the LLR vector 5 = 4%y [2], and therefore, the LPD will be

considered henceforth

wrpp = arg min (w,y) . (8)
weP

Definition 2. ([2], [15], [16]) Let w € R’;. The AWGN channel pseudo-weight'"" ¢ (w) of

w IS given by

w;XWGNC<w> A [lw|

3 (9)

where||x|[; £}, |z;| denote thel,-norm of a vector x. lfw = 0 we definew"N(w) £ 0,

and in the case ob € {0,1}" we havew"V“"(w) = wy(w). O
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For an easier notation, as we discuss in this paper only AWGahmel, we will use the shorter

notationw,(w) instead ofw!" V¢ (w).

Due to the symmetry property of the fundamental polytopeptimdability that the LP decoder
fails is independent of the codeword that was transmift¢dTBerefore, we henceforth assume
without loss of generality when analyzing LPD error prolihithat the all-zeros codeworsl,

IS transmitted.

The set of optimal solutions of a closed convex LP problenagiincludes at least one vertex

of the polytope. Therefore, the LPD error probability is

PP (error | xo) = P, U (w,y) <0|xgp- (10)
weV(P(H))\xo0

A pseudocodeworg € V(P) also belongs to the fundamental cone. Thus it can be written a
M
a non-negative linear combination of the generators,p.e. > «;g; with «; > 0. Therefore, if
i=1
M
there isp € V(P) such that(p,y) = > «; (g, y) < 0, then there must be at least one generator
1=1
g.€ G(K) such that(g;,y) < 0. Therefore, the union of the pseudocodewords’ error events i
(10) can be replaced by the union of the generators’ erronteve

A vectorw € R, which is not codeword can be located into the signal spackdrsame way

as a codeword, i.&6 = v (1 — 2w). The vectorw,;; £ H:H%‘*’ was introduced by Vontobel and
2

Koetter [2]. They showed that the decision hyperplanesah the signal space, is at the same

Euclidean distance from, and fromd,;,,. Note that ifw € C C {0, 1}", thenw,;» = w. From

the above, the LP error probability is then expressed in iipeas space as follows.

PP (error | x0) = P, U @i =yl < 1Ko = yll2 [ %0 - (11)
weG(K(H))

Evaluating the LP error probability by simulating E@.(1%) not practical, since it involves
enormous number of generators. However, it allows to makealation of the error probability
contributed by a subgroup of generators.

Let Fx,w = {||@wirt = ¥ll2 < ||X0 — ¥l]2 | X0 } denote the LP pairwise error event where

the received vectoy is closer tow,;; than to the transmitted sign&l,. Thus the LP error
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probability (11) can be written:

PTLPD(error | xg) = P, U Evysw ¢ s (12)
WwEG(K(H))
and the LP union bound is
PP (error | xo) < Z PAFEx,—w}- (13)
weG(K(H))

Let r, £ w = vy/w,(w) denote the Euclidean distance fratg or from @,;,; to the

decision boundary line. Thus the LP pairwise error proligji2]

T
Pr(Baow) = Q (22)) (14)
and the LP-UB in Eq.L(13) can be written as follows [1] [7].
LPD Tw
P (error | x9) < Z Q (;) . (15)
wEG(K(H))

B. Undirected Graphs

In this section, we give a brief overview of some terms frorapdr theory. By a graph we
will always mean an undirected graph without loops and rpldtedges. We lefl/| denote the

size of a sef/.

Definition 3. ([17]) An undirected graph G(V, £) consists of a set of nodés and a set of edges
£. An edge is an unordered pair of nodes, v;). Associated with each edde;,v;) € £ is a

coste(v;, vj). ]

Definition 4. ([17]) A spanning tree of an undirected grapt¥(V, £), is a subgrapt’’(V, £’) that
is a tree and connects all the nodeslinlt has|V'| nodes and&’| = |V| — 1 edges, in which
&' is a subset of. The cost of a spanning tree T, denoteddoayt(7'), is the sum of the costs

of all the edges in the tree. i.eost(T) = > c(v;,v;). O
(vi,vj)€T

Definition 5. ([17]) A spanning tree of a grapty(V,€) is called aMinimum Spanning Tree
(MST), if its cost is less than or equal to the cost of everyeotipanning tred’(V,&’) of

G(V, ). 0
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Two popular algorithms for finding an MST in undirected gragh Prim’s [18] and Kruskal's
[19]. A simple implementation of Prim’s algorithm can sho@$|V/|?) running time, and both

can be implemented with complexity 6f(|E|log|V]).

[1l. GENERATOR DENSITY CHARACTERIZATION

In this section, we explore the density of the fundamentakcgenerators and we compare it
to that of ML codewords. As a result, we will later examine hihve union bound is affected by
that density. LeO < 0,; < 7w denote the positive angle formed by the vectorsandw,, which

is equal to the angle formed by the vectotsw; ..,; andxyw; .;+ i @ BPSK signal space.

Definition 6. Let w;,w»,...,wy € R’ be a set of vectors. Consider each vector as a node of an
undirected grapld-(V, £), with an undirected edge joining each pair of nodesindw;, denoted

by (w;,w;). An edge(w;,w;) € £ has a cost that equal to the angle between the vectors related
to the adjacent nodes, i.e(w;,w;) = 6;;. The graphG(V, ) will be called theangle graph.

Note that the angle graph iscamplete graph; it hasV'| nodes andV'|(|V| — 1)/2 edges. O

Definition 7. Let T'(V,£’) be an MST of the angle grap&(V, ) in Def.[@. TheMST angle
distribution is defined to be the cost distribution of the all edges, w;) in the graphl’(V,&’).

For easier notation, we will use the shorter tegingle distribution instead. 0

Example 8. Let H [1] and Hg» (16) be parity-check matrices for the extended Golay[28]12
code. The former matrix was introduced by Halford and Chi&f,[the latter is a systematic
parity-check matrix. Fig[]l presents the angle distrimgiof the first 759 minimal-weight
generators of{ and Hq» (generators with equal pseudo-weight were ordered randprivor

a comparison, the angle distribution of the 759 minimalghkeML codewords is presented as
well. The average angle dfi;:, Hs» generators and of ML codewords aré.43°, 10.69° and

60°, respectively; and their Standard Deviations (STDs) ar&g°, 8.72° and 0°, respectively.
Note that H, and Hg» have two differentgenerator matrices, however, both have the same
angle distribution for their59 minimal-weight CWs. It is clear from Fidl 1, thdf, generators
are much crowded than those Af,;», and between these three distributions the ML codewords

are spread most widely and evenly in the Euclidean space.
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01111111111110000000000°0
111011100010010000000000
110111000101001000000000
101110001011000100000000
111100010110000010000000
How — 111000101101000001000000 (16)
=1110001011011000000100000
100010110111000000010000
100101101110000000001000
101011011100000000000100
110110111000000000000010
101101110001000000000001
8007 M Generators - Hg:
700 1 Generators - Hg"
2 6004 B ML - CWs
gsoof
§4oof
Esoof
é)200—
100 |
ol

YOO D PR DD N PR PGSR A PP

Degree

Fig. 1. Angle distributions for the extended Golay[24, 1P¢c@&de of the first 759 minimal-weight generators of the gaciieck
matricesHg and Hg, compared to the angle distribution of the 759 minimal-weilylL codewords.

O

Example 9. The error probability contributed by two vectors dependshenangle between them.
Letw;,w; € R" be vectors with an equal pseudo-weight, and{etnd¢, be the two independent
Gaussian random variables obtained by projecting the n@storz onto the plan determined
by the vectorsﬁ virt andﬁvirt. We refer to the probability®, { Ex,—w, U Ex,—w, } as the
triplet-wise error probability, that iss; or w; was decoded when the all-zeros codeword was
transmitted. The triplet-wise error probability dependstbe angled;; and it can be obtained
by integrating a two dimensional Gaussian distributionrabe darkened region®; and R,

in Fig.[2 [21]. Without loss of generality, we assume thgtis placed or¢; axis.r,, andr,,,

denote the Euclidean distances from the decision boursdbmies ofw, andw;, respectively, to
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the all-zeros codeword. In the case of vectors of equal msewght,r.,, = r,,;. The decision
region boundary lines ofv; andw; are §; = —a&; +b and§; = r,, respectively. Thev;
boundary line crosse§ axis at pointb = r,, /sind;; and its slope ist = tan(90 — 6,;). The
intersection between the two boundary lines occurs at ggint;) = (r.,;, —arw, +b).

There are various numerical integration ways [22] to evaltiae triplet-wise error probability.

Another possibility, is to approximate it by sum @functions as follows.

b {EXO_WZ' U Exo—wj} =P{Ri} + P{R2} = Q <T“i> +

o

3 {1 0 (—a(éi +/ZA£1> +b)} [Q (51 +l;A£1) 0 (ﬂﬂkil) A&)Lﬂ)

P.{R.} is equal to an LP pairwise error probabilify (14}.{R.} is calculated as follows. The
region R, is divided into rectangles of a width&; which are parallel to thé, axis, as shown
in Fig.[2. Each rectangle starts from a point on the decisionnbary line ofw; and goes to
infinity in the opposite direction of, axis. The multiplication inside the sum of EQ.[17) is
the probability that the noise componeugisand &; are within thek-th rectangle. Since a two
dimensional Gaussian distribution converges to zerg, agoes to infinity, it will be sufficient to
sum fromk = 0 to a largek such asLMJ, where all the rectangles are located on the left

A&
side of the linefy = & maa-
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C2

lNo

Xo | ¢ > E,al

decision boundary

Fig. 2. The LP triplet-wise error region in the signal space.

Example 10.Consider the BCH[63,57,3] code. The fundamental cone ofjtstematic parity-
check matrix created by thgenerator polynomial 2%+x+1 hasl1, 551 minimal-weight generators
of pseudo-weight three. The angles between them varied 5t85i to 90°. The triplet-wise error
probability of its two minimal-weight generators dependséy; is presented in Fid.]3. It was
calculated by Eq.[{17) fof and8 dB SNR in different angles. The triplet-wise union bound
which is 2Q) (%‘”) is presented as welk; ,,,., and A& was chosen to be 2000 and 1/2000,
respectively. From Fid.]3 one can observe that the lower i@ 8nd the smaller the angle are,
the worse is the UB. The figure also presents a triplet-wisar grobability upper bound which

is tighter than the UB and it will be introduced in S&d. V
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Fig. 3. Comparison between the triplet-wise error proligbiits union bound and the upper bound in different anglesyo
minimal-weight generators of BCH[63,57,3], when the @tas word was transmitted.

IV. THE PROBLEM OF LOCATING DOMINANT ERROR EVENTS OFLPD

Consider a ML decoding of a binary-linear code BPSK-moduabtver an AWGN channel.
The decoder performance can be evaluated by considerirgpttigbutions of the most dominant
error events to the probability of error. That dominant eeeents, especially in the higher SNR
region, are the minimal weight codewords.

In this section, we will examine whether the minimal-weiglkenerators of LP decoding have
such a property as well. We let; (x) denote theHamming weight of x, which is the number of
non-zero positions ok. Let w}}*(C) denote the minimum Hamming weight of a linear catle
and Ietw;m'"(H) denote the minimum AWGN channel pseudo-weight of a linealecdefined
by the parity-check matrixd. We will use the shorter notations7; andw]"" in case where
the discussed code and matrix are mentioned explicitly. 8/C],,C K denote a sub-cone of
the fundamental cone which created by a chosen subgroumefaers. The LPDC,,;,) Frame
Error Rate (FER) can be obtained by simulating Eq] (11). b rkext example, we will study
the error probability contributed by a subgroup of codewoatid generators for the extended

Golay[24,12,8] code.

Example 11.The extended Golay[24,12,8] code has a td{ed6 codewords of which 759 have

minimal Hamming weight ofw?* = 8. The fundamental cone of the parity check-matkix.
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has a total of231, 146, 333 generators of which two have minimal-weight mﬁi” = 3.6 [1].
Simulating the error probability by Ed.](3) shows that theaimial-weight CWs describe well the
MLD performance at the whole range of SNR, which is not theedas the first 759 minimal-
weight generators for LPD. For instance, consider the eat# of 1072, it was found that the
difference between LP{,,) and LPOX) is about 2.5 dB. The angle distributions which were
presented in Fid.l11 support this result: the average angthabdfgroup of generators is as small

as 1.43°, and the average angle of the ML minimal-weight CW$0s. 0

There are number of reasons why the minimal-weight generate often not a dominant
subgroup of LPD: (a) There is no guarantee for significant lmemof generators with minimal
pseudo-weight. The fundamental cone 6§, for example, has only two. (b) A subgroup of
generators can be very crowded, which significantly redubes contribution to the error
probability. (c) Unlike MLD which has distinct subgroup ofimmal-weight codewords, LPD
often has a continuous-like weight distribution. For exéangthe BCH[31,21,5] code of parity-

check matrix Hpcp, (18) has 627,052,479 generators. The pseudo-weight distn of

31,21]

these generators is presented in Fig. 4. Its smooth distiibunakes it difficult to locate a
minimal-weight dominant subgroup.

In LPD, a potential subgroup to be a dominant is taking allegators of weightv, < wi™.
This group is not empty since]”" < wy™ [23], however, it may contains enormous number
of generators. For example, Golay[24,12,8] has drfily minimal-weight CWs ofw" = 8,
but the fundamental cone of parity-check matfif¢,» has 143,757,418 generators of weight

min __
w, < wi™" = 8.

1000000000110101011110010010100
0100000000011010101111001001010
0010000000001101010111100100101
0001000000110011110101100000110
o 1 0000100000011001111010110000011

BCH@10 — [ 0000010000111001100011001010101
0000001000101001101111110111110
0000000100010100110111111011111
0000000010111111000101101111011
0000000001101010111100100101001

(18)
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0.0 - s
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Pseudo-weight

Fig. 4. A complete generators’ pseudo-weight distributfon the BCH[31,21,5] code otHBCH[ with 627,052,479

31,21]
generators.

V. IMPROVED LP UNION BOUND

In this section, we propose an improved union bound for LRodieg of a binary linear code
transmitted over a binary-input AWGN channel. This boundased on the second-order of
Bonferroni-type inequality in probability theory![5], algeferred to as Hunter bound [24]. For

any set of eventds,, F, ..., £, and theircomplementary events, denoted by, ES, ..., EY,,

M M i—1
P, (UE) => P, (Eﬂ JE; ) (19)

Let denote theV/! possible permutations of the indices of the error evéntsky, ..., £y, by

11(1,2,...M) = {m, m2,...;ar }. FoOr a givenll, let A = {7y, 73, ..., 72} denote the(M? — M) /2
possible sets of indices in which € {m, 7o, ..., m_1} for i = 2,3, ..., M. Hunter [24] presented

the second-order bound of E@. [19) as follows.
M M M
P, (UE) < Pu(Er) =Y PuEr, NEy,). (20)

Minimization of the Right-Hand Side (RHS) of Ed. (20) is régd to achieve the tightest

second-order bound. Using the sets of the inditeand I1, the minimization problem can be

14th July 2018 DRAFT



16

written as follows [[10] [[24].
M M
P, (UE) < ZP +mm{ > P(E, ﬂE,TZ)}. (21)
=1 =2
The first sum goes through over all the indices 1IMoof the error events, thug,. could be
changed toF;.

Consider each of the random eventsas a node of an undirected grafghand the intersection
(E; N E;) as an undirected edge joining the nodésand E;, denoted by(, j), with a cost
c(i,j) = P.(E; N E;). Hunter [24] showed that a set ¢f/ — 1) intersections may be used in
the second term of Eq._(R1) if and only if it forms a spanniregtof the node:{Ei}jVil. Thus
the minimization problem of EqL(21) can be written equindle [24], [10],

(UE><ZP +mm{ Yor EmE} (22)

(3,9)€T
Wherer is a spanning tree of the gragh The problem is to find a graph which minimizes
Eq. (22) over all possible spanning trees. The solution iat ts known as the solution of the

minimum spanning tree problem and has been proposed by B8iahd Kruskal[[19].

Consider the event; as the pairwise error ever,, ... In order to upper bound the LP
decoding error probability in Eq[(12) by the second-ordpper bound[(22), the probability
P, {Exo_wi ﬂEXO_w].} is required, or instead, its lower bound. The probabilityirdérsection

of two events can be expressed using itheusion-exclusion principle in probability theory,

P Bgss () sy | = PrABarsan} + P { Bramsi } = P { oo [ B, |- (29)

The first and the second terms in the RHS of Eq] (23) are the ir¥ipa error probability[(14),

the third term can be upper bounded by the following theorem.

Theorem 12.Let w;,w; € R" be vectors of a pseudo-weight w,(w;) # w,(w,). The LP triplet-

wise error probability
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. 2
(mln('f’wi’ ij) 8 . maz(rwi,rwj)
_— e

¢ 2m b (24)

o)+ 0() -0 (=) (%)

Proof: Let £ £ &2 + £2 be a random variable with Chi-square distribution! [25] witho

PT {Exo—ﬂui U Exo—>wj} S m’ln

degrees of freedom, i.e.

) = e 2 U(d), (25)

202

in which U(-) is the unit step function. Without loss of generality we assuthatw,(w;) <

wy,(w;). With the help of Fig[b the triplet-wise error probability,

P Broin U B} < P2 ( 4 m) <> AR (26)
i=1 1=1
Ca(z) nn)ea(z)e(2) e
PROTPR)  BtRe Pr(R4) ’
7‘2 .
= Q <%) + %6_ 2:% . (28)

From the noise symmetry, each of the probabilitiR§R,) or P.(R,) equal tolQ (%)

P,(R3) is the probability that o} + &3 lies in the region outside a circle of a radiog created
by the central anglé,;. P, <§ > rij) was calculated in Eq[L(27) by integrating the Chi-square
distribution [25) fromrf,j to co. Thus for two vectors of pseudo-weight,(w;) # w,(w;)

0 maz(rly i)

Man(re,, Tw; i merlepre ;)
Pr {EXO—>LU7; U Ex0—>wj} S Q (%) + ﬁe 202 . (29)

The triplet-wise error probability can also be bounded gighre inclusion—exclusion principle

as follows.

PA B U B | = PrABromin} + P { By} = P { By [ B, } (30)

< o) ro(™) o (=) e() @

g g g

The transition from Eq[(30) to Ed. (81) was done by lower wbhag P, {Exo_wi N Exo_w,} at
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T,

its lowest value?) ( ) Q (%) accepted irf;; = 90°. Finally, selecting the minimum between

o

Eq. (29) and Eq.(31) completes the proof. [ |

Fig. 5. The region in the signal space used to bound the LRetrigise error probability @, (w;) # wp(w;)).

Example 13.We continue EX_10. The triplet-wise error probability uppeund of Theorerh 12
was calculated for two minimal-weight generators of the B&3;67,3] code. It is presented in
Fig.[3 together with the previous results of 10. We cartisaethe smaller the angle and lower
the SNR, the more improvement the triplet-wise error uppmriol has over the union bound.
Note that becausé&: o« /SNR-w,(w), changing the pseudo-weight of the generators will have
the same effect as changing the SNR. Thus this bound is egéathave more improvement

on low pseudo-weight generators. O
In the next theorem, we propose an improved UB for the LP degod

Theorem 14.Let G(K(H)) be a set of cone generators of a parity-check matrix H. For each
w; € G the pairwise error event Ey, ., isconsidered as a node of a complete graph G(V, £). Let
(w;, w;) denote an undirected edge joining the nodes related to the events Ey, ., and Ey .,
7(V, &) is denoted for a spanning tree of G(V, ). The LP decoding error probability can be
upper-bounded by
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PEP (error | xo) Z Q <Tw>
wEg(lC
0 (max(rwi,rwj)) N %e_maw(;; 2)
+min Z min o
BT )
o o

We call this bound thdmproved LP Union Bound (ILP-UB). The first term is the LP union
bound itself [15), the second term is a second-order caorect

Proof: To prove this, we will apply Hunter bound for the LP error pabbity. First, we find a
lower bound forP, { Ex,—w, () Fx,—w, }: by substituting the upper bound 8f { Ex,w, U Ex,—w, }
(24) into the inclusion—exclusion principal (23), we wike

Pr {Exo—nui m Exo—nuj} 2

m’in(rwﬂ ,rwj)) + %Q_M

>Q (r:i) +Q <Tﬂ> — min “ ( o 2m T (33)

’ o) re(T)-e(7)e ()

2 2
max(rwi,rwj)) eij €_M

Q < 20 )
=max g 2m . (34)

o()e(2)

Applying Hunter bound[(22) for LP decoding error probakilfiZ) and substituting into it the
expression in[(34) together with the LP pairwise error phbilitst (I4), will give the desired

result. [ |

Given a set of generatofs the running time of ILP-UB is equal to that of finding an MST on
a complete grapld:(V, £). It can be obtained by Prim’s algorithm with a complexity®@f|G|?).

The LP-UB for a comparison, for a given set of generators basing time ofO(|G|).
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VI. RESULTS AND DISCUSSION

In this section, we provide results to show the improveménLB-UB over LP-UB. For this
purpose, we examine four codes, three HDPC codes: extend&y[&4,12,8], BCH[31,26,3],
BCH[63,57,3]; and one LDPC Tanner code [155,64,20] [12]e Plarity-check matrices we use
for Golay[24,12,8] and BCH[31,26,3] arf; (16) and Hpcmy, ., (35), respectively; and for
the BCH[63,57,3] we use a systematic parity-check matreated by the generator polyno-
mial 2% 4+ x 4+ 1. The minimal pseudo-weight of the extended Golay[24,158p;"" = 3.2.
BCH[31,26,3] and BCH[63,57,3] have the same minimal psendmht: wg”” = 3; and the
Tanner code [155,64,20] has" ~ 16.403 [d].

Because of the enormous number of cone generators, we chpsesentative subgroups:
for the BCH[31,26,3], BCH[63,57,3] and Tanner code [15564 we chose all the minimal-
weight generators that are 1,185, 11,551 and 465 generatspectively. Because the extended
Golay[24,12,8] code has only 165 minimal-weight genesatae chose for it the first 231

generators of a weight equal or less than= 3.25.

1000010010110011111000110111010
0100001001011001111100011011101

Hpeny, g = | 0010010110011111000110111010100 (35)
0001001011001111100011011101010
0000100101100111110001101110101

Fig. [@8 presents the angle distributions according to Defor7 the aforementioned codes:
extended Golay[24,12,8], BCH[31,26,3] and BCH[63,57 Bheir average angles arg.85°,
29.58°, 21.87°, respectively; and their STDs ai@.44°, 13.94°, 13.84°, respectively.
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(c) BCH[63,57,3] code: angle distribution of all the 11,551
minimal-weight generators.

Fig. 6. Angle distributions.

Fig. [@ presents results of the: ILP-UB,,,), LP-UB(Ky,,) and LPOK,,,) for the chosen
subgroups of generators. It presents the LPD FER as well.ITR&JB optimized by Prim’s
algorithm. The ILP-UB presents an improvement over the LEBR-Bor instance, we consider
the error rate ofl0~2. For the extended Golay[24,12,8], the difference betweBAUB(K.y,)
and LPOK,;,) is about 0.9 dB while ILP-UBC,,,) shows an improvement of 0.37 dB over
LP-UB(Ku). For BCH[31,26,3], the difference between LP-UB,;,) and LPO ;) is about
0.47 dB while ILP-UBK,,,) shows an improvement of 0.13 dB. And for BCH[63,57,3], the
difference between LP-UK,,,) and LPOK,,,) is about 0.62 dB while ILP-UBC,,,) shows
an improvement of 0.16 dB.

The results of the LDPC Tanner code were omitted, since therawement of the ILP-

UB(K.u,) over the LP-UBK,,;,) at error rate ofi0~3 is dropped to about 0.05 dB. The reason for
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that is twofold. First, the Tanner code has a large averagkeashb.16°. Second, the generators
have an high pseudo-weighit;" ~ 16.403. These two values are high as compared to the other

tested codes.

0
10 -
.
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S Sy
10+ . . 1
\\\\\\ “ 1
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) O\ il
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Fig. 7. A comparison between ILP-UB, LP-UB, LPD and LPD FER HDPC codes.

Fig .[7 together with Fid.16 show that the lower the averagdeaisgthe more improvement the
ILP-UB has. A small average angle is typical for HDPC codbsrdfore, the advantage of ILP-
UB over the LP-UB will be reflected better on such type of codizg on the other hand, as the
larger the average angle is, the better the LP-UB will be.[FEgpresents the highest improvement

of the ILP-UB(K,,,) among the other codes. This result correlates to Golay’'dlestaverage

14th July 2018 DRAFT



23

angle: 19.85°. However, it presents the largest gap toli8D(K,,). This apparently happens
because there are a significant probabilities of intersestbetween three error events or more.
Bukszar and Prékopa have suggested [26] a third order upperdbon the probability of a
finite union of events. Their bound considers intersectwinsvo and three events. They proved
that this third order bound, which is obtained by the use offe tof graph called cherry tree, is
at least as strong as the second-order bound. Therefornrapting such a bound will improve

(or at least will be equal to) the proposed ILP-UB.

VIlI. CONCLUSIONS

In this paper, we have presented an improved union bound erettor probability of LP
decoding of binary linear HDPC codes transmitted over argirgput AWGN channel. It is
based on the second-order upper bound on the probability fofita union of events. It has
low computational complexity since it only involves the @ittion. It can be implemented
with running time of O(|G|?), whereG is a set of generators of the fundamental cone arisen
from a given parity check matrix. We examined the proposedhddor several HDPC codes:
Golay[24,12,8], BCH[31,26,3], BCH[63,57,3], and for th®BC Tanner [155,64,20] code. The
improvement of the proposed bound over the union bound pteskpendency on the pseudo-
weight of the generators and their density. We studied anthaped the generator density through
the angle distribution of various codes and parity-checkrices. Finally, a third order upper
bound was proposed, it is based on a type of graph calledyctres, and is left open for further

research.
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