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Abstract—We consider a multiuser OFDM system in which
users want to transmit videos via a base station. The base
station knows the channel state information (CSI) as well as
the rate distortion (RD) information of the video streams and
tries to allocate power and spectrum resources to the users
according to both physical layer CSI and application layer RD
information. We derive and analyze a condition for the optimal
resource allocation solution in a continuous frequency response
setting. The optimality condition for this cross layer optimization
scenario is similar to the equal slope condition for conventional
video multiplexing resource allocation. Based on our analysis, we
design an iterative subcarrier assignment and power allocation
algorithm for an uplink system, and provide numerical perfor-
mance analysis with different numbers of users. Comparing to
systems with either only physical layer or only applicationlayer
information available at the base station, our results showthat the
user capacity and the video PSNR performance can be increased
significantly by using cross layer design. Bit-level simulations
which take into account the imperfection of the video coding
rate control, the variation of RD curve fitting, as well as channel
errors, are presented.

Index Terms—Radio spectrum management, multimedia com-
munication, OFDMA, wireless power allocation, video coding
rate control.

I. I NTRODUCTION AND RELATED WORK

W E study video transmission in a cellular wireless
communication system, where multiple mobile stations

send compressed videos to a base station. We exploit both the
characteristics of video content as well as the instantaneous
wireless channel quality, and design a cross layer resource
allocation algorithm to optimize video transmission perfor-
mance.
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Orthogonal Frequency Division Multiplexing (OFDM) is
a promising solution to combat the problem of inter-symbol
interference (ISI) in a wideband communication system. By
allocating different subcarriers to users according to theuser’s
channel state information (CSI) in a multiuser setting, Or-
thogonal Frequency Division Multiple Access (OFDMA) is a
flexible and low-complexity way of managing communication
resources. The problem of assigning resources in an OFDMA
system was first studied in [3], where the authors formulated
and solved a total transmission power minimization prob-
lem for different user quality-of-service (QoS) requirements.
Research in [4]–[7] tried to solve the rate maximization
problem, given power and spectrum constraints in different
communication settings. Because of the complexity of the
optimization problems, most of the work above proposed
numerical algorithms instead of finding analytical solutions.
Power allocation for an imperfect CSI case was explored
in [8]. To reduce the complexity of resource allocation
algorithms, chunk-based resource allocation, which makes
allocation decisions on subcarriers in groups, was studied
by [9], [10]. Results show that when the chunk bandwidth
is smaller than the coherence bandwidth, the chunk-based
resource allocation can significantly reduce the computational
complexity while maintaining similar throughput performance
compared to subcarrier-based resource allocation algorithms.
Utility driven resource allocation was investigated by [11],
[12] and most recently by [13], [14] in an information theoretic
setting. In these papers, instead of maximizing the sum of the
throughputs, the objective of the optimization is the overall
utility, which is a function of throughput.

Regarding the application layer, video rate control algo-
rithms as well as rate distortion (RD) analysis were studied
by [1], [15]–[17]. The results of these papers show that
the complexity (high or low motion) of a video stream can
be reflected by its rate distortion curve. The diversity of
different video RD curves provides us an opportunity to
optimize the overall video quality when multiple video streams
share the same resource pool, i.e., video multiplexing. In
[18], the authors considered a multiple camera surveillance
system, and exploited the difference between high complexity
and low complexity videos. In [19], the economic concept
of competitive equilibrium is used to allocate bit rate. The
authors show that by trading bit rate between users across
time, the video quality of each individual user improves. For
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most of the literature on video multiplexing, the resource
pool is either bits or bit rate, and the authors assume an
error-free scenario. When multiplexing videos in a wireless
mobile communication case, bit rates will be determined by
the available bandwidth, transmission power and CSI. In this
sense, multiplexing video streams in a wireless environment
with a resource pool of power and bandwidth will be more
challenging than conventional video multiplexing.

In a cellular wireless OFDMA video transmission sys-
tem, the CSI as well as the complexity of video streams
can be collected by the base station. Both the multiuser
channel diversity and video complexity diversity could be
used simultaneously to optimize the power and subcarrier
assignment. In [20], the authors propose a joint uplink and
downlink cross layer resource allocation framework with the
resource being the channel access time duration. In [21] and
[22], the authors study a subcarrier and power assignment
problem in a downlink setting, where the subcarrier assign-
ment and power allocation are treated as two independent
steps. To better optimize the system, we propose an iterative
algorithm which allows the application layer and physical
layer to interact. Throughout this paper, we are interestedin a
cooperative setting for a slow fading scenario. Video streams
with high complexity should be given more subcarriers with
good channel gains, while streams with low complexity will
get a relatively small number of subcarriers.

The rest of the paper is organized as follows: Section II
first introduces the basic model of the OFDMA system and the
video compression rate-distortion model. We then formulate
the problem of cross layer optimization of an uplink cellular
system. We derive an optimality condition for this problem in a
continuous channel response setting in Section III. A resource
allocation algorithm is presented in Section IV. We propose
two baseline algorithms and compare the performance with
our cross layer algorithm in Sections V and VI. Finally, we
draw our conclusions in Section VII.

II. CROSSLAYER RESOURCEALLOCATION SYSTEM

MODEL

A. OFDMA System Description

Consider a cellular OFDMA video communication system
with the set of usersk={1, 2, 3 ...K}. The system occupies
a total frequency band ofW (Hz) equally divided intoM
orthogonal subcarriersm={1, 2, 3 ...M }. We assume that the
channel gain within each subcarrier is flat. In our design, each
subcarrier can only be used by one user, but it is possible for
one user to get more than one subcarrier.

The system operates in a slotted manner and the length
of one time slot isTs (sec) for both downlink and uplink.
One Group of Pictures (GOP) will be transmitted in one time
slot. LetHk(s) = [Hk,1(s), Hk,2(s), ...Hk,M (s)] denote the
complex channel gain of userk for the set of subcarriers in
time slot s. In addition, we assume that the channel remains
unchanged for the duration of one time slot. The subcarrier
assignment as well as the power allocation decision will be
made on a slot-by-slot basis. A block diagram of the transmit-
ter is shown in Fig. 1. LetT be the data duration andTcp be
the length of the cyclic prefix. We defineT0 = T + Tcp to be

Fig. 1. Cross-layer optimization system transmitter diagram.

the duration of an OFDM symbol. The baseband transmitted
signal for userk can be written as

xk(t) =
∑

l

M∑

m=1

√
Pk,mXk,m[l] exp

(
j2πmt

T

)
Π(t− lT0)

(1)
where Pk,m and Xk,m[l] are the transmission power and
coded symbol with unit variance of userk on subcarrierm,
respectively. Also,Π(t) = 1, ∀t ∈ [0, T0), and Π(t) = 0
otherwise.

Since we assume flat fading for each subcarrier, the
lowpass equivalent received signal of userk on subcarrierm
is given by

yk,m(t) =
√
Pk,mHk,mXk,m[l] exp

(
j2πmt

T

)
+ nk,m(t)

(2)
wherenk,m(t) is Additive White Gaussian Noise (AWGN)
with two-sided power spectral densityN0.

To detect the signal on subcarrierm, a correlation oper-
ation is performedYk,m = 1

T

∫ T

0 yk,m(t) exp(−j2πmt/T )dt.
The noise power can be calculated asPN = E[|Nk,m|2] =
2N0/T and the power for the desired signal isPk,m|Hk,m|2.
If the modulation format is M-QAM, from [23], the symbol
error rate (SER) can be approximated as

SER ≈ 4Q



√

3

M − 1

Pk,m|Hk,m|2

PN


 (3)

For a given targetSERt, the information rate (number of bits
each symbol can carry)Rk,m(Pk,m, Hk,m) (in bits/symbol)
can be written as a function of transmission power and channel
response gain:

Rk,m(Pk,m,Hk,m) = min{⌊log
2

[

1 + ηPk,m|Hk,m|2
]

⌋, Rmax}
(4)
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Fig. 2. Uplink OFDMA video communication system.

whereη = 3
PN

[
Q−1 (SERt/4)

]−2
andRmax is the largest

alphabet size the system allows. The bit rate (in bits/sec) then
can be written as:Rk,m(Pk,m, Hk,m)/T0.

B. Video Rate-Distortion Model

LetDs
k(B) be the rate distortion function of userk in time

slot s, whereB is the number of bits the encoder generated.
For each GOP, the mean square error (MSE) distortion can be
approximated as [24]

Ds
k(B) = ak +

wk

B + vk
(5)

whereak, vk andwk are constants which depend on the video
content. For video with high complexity (e.g., high motion),
wk is relatively large. To protect the data, a channel code of
fixed rateu is added. Since the channel slot time is equal
to the duration of one GOP, the number of information bits
which the physical layer can support for one user with a fixed

target symbol error rate is

Bk =
M∑

m=1

u ·Rk,m(Pk,m, Hk,m) · Ts/T0 (6)

For the purpose of resource allocation algorithm design, we
ignore the effect of channel errors. In Sections III and IV,
we use (6) as the channel throughput for our mathematical
analysis and algorithm design. The effect of channel errorson
the performance of the system will be evaluated by simulation
in Section VI.

If we plug (6) into (5), then the MSE distortion for user
k can be written as

ak +
bk

M∑
m=1

Rk,m(Pk,m, Hk,m) + ck

(7)

Here we have divided both the numerator and denominator by
u·Ts/T0 for simplicity, sobk = wk

(u·Ts/T0)
, andck = vk

(v·Ts/T0)
.
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C. Uplink Resource Allocation Formulation

In an uplink OFDMA system (Fig. 2), the mobile stations
submit the RD values (ak, bk, andck) of the current GOP in
their buffers. We assume that the base station has perfect CSI
of each subcarrier for each user. Our resource allocation goal
is to minimize the sum of distortions at each time slots. The
optimization objective is

min
P

K∑

k=1

bk
M∑

m=1
Rk,m(Pk,m, Hk,m) + ck

(8)

whereP is the power allocation matrix whose entry in the
k-th row andm-th column,Pk,m, is the power allocation of
them-th subcarrier for userk. We drop theak term as it is
constant with respect toP .

We assume that each user has a total power constraint of
P over all subcarriers and any subcarrier is used by at most
one user exclusively, so the feasible solutions for this problem
satisfy the following two constraints:
(C1) Form ∈ {1, 2, 3...M}, if ∃k′ such that, ifPk′,m 6= 0,
thenPk,m = 0, ∀k 6= k′

(C2)
M∑

m=1
Pk,m ≤ P ∀k ∈ {1, 2, 3...K}

For the optimization problem defined in (8), since con-
straint C1 is not a convex set, and this optimization problemis
NP-hard, we propose an algorithm for a sub-optimal solution
with two steps:
Step 1: The base station assigns subcarriers to different users
according to channel conditions and rate-distortion curves;
Step 2: Given a subset of subcarriers, each user solves the
optimization problem of minimizing its own distortion curve
reduction under the power constraint;

We then iteratively update both the subcarrier assignments
(according to the RD curve) and the power allocation strategy
(based on the CSI). One of the major differences between
our algorithm and those in [21] and [22] is that we allow
application layer information and physical layer information
to interact in our decision process. Before providing the details
of the algorithm in Section IV, we first investigate a condition
for the optimal solution in a continuous channel setting, where
there can be variations within a subcarrier, as opposed to a
block fading model. This condition inspires our algorithm.

III. C ONTINUOUS FREQUENCYCHANNEL RESPONSE

RESOURCEALLOCATION ANALYSIS

We consider a system with only two users,K = 2, in a
continuous channel setting. In this scenario, the allocator can
divide the total frequency bandBtot into infinitely small bands
for resource allocation. Note that|Hk(f)|

2 is the channel gain
for userk at frequencyf .

Let Bi be the frequency band assigned to useri. If we
ignore the upper bound of the modulation alphabet size, the
optimization problem becomes

min
P

2∑

k=1

bk∫

B̂k

log2[1 + ηPk(f)|Hk(f)|2]df + ck
(9)

subject to
(C1)B̂1 ∩ B̂2 = ∅,

(
B̂1 ∪ B̂2

)
⊂ Btot

(C2)
∫
Bk

Pk(f)df ≤ P, k = 1, 2

Here,Pk(f) is given by the water filling solution after
the band allocation is decided. GivenBtot, the optimal
band allocation can be viewed as a partition of the band
Btot = Bopt

1 ∪ Bopt
2 ∪ Bextra. Here,Bopt

1 andBopt
2 are the

optimal sets of frequency bands assigned to two users in
the sense that the sum of distortions is minimized, and no
frequency component inBopt

i exceeds the water level of user
i. The parameterBextra is the set of bands not assigned to
either user. We introduce the following definitions.
Definitions I:
a) Let |.| be the bandwidth in Hz, e.g.,

∣∣Bopt
1

∣∣ is the optimal
bandwidth assigned to user 1.
b) Let r1 =

∫

Bopt
1

log2(1 + ηP1(f)|H1(f)|
2)df and

r2 =
∫

Bopt
2

log2(1 + ηP2(f)|H2(f)|2)df be the average

optimal rate (in bits/sec) of two users. Here,|H1(f)|2 and
|H2(f)|

2 are the frequency channel responses of the two
users. LetP1(f) andP2(f) be the power allocations which
obey the water filling solution [25].
c) Define W1 = P1(f) + η 1

|H1(f)|2
and W2 =

P2(f) + η 1
|H2(f)|2

to be the water levels for the two
users at the optimal solution. See Fig. 3 and Fig. 4.
d) Let θ ∈ Bopt

2 be an infinitesimally small bandθ assigned
to user 2. Note that|Hθ

1 |
2 and|Hθ

2 |
2 are the channel gains for

user 1 and user 2 for bandθ, respectively. They are constant
since the band is infinitesimally small.

e) Let φθi =
(
Wi − η 1

|Hθ
i
|2

)+
be the non-negative distance

between the water level of useri and the noise level of band
|Hθ

i |
2. By definition, [x]+ = x if x > 0 and [x]+ = 0 if

x ≤ 0. For any frequency bandθ of Bopt
2 , W2 − η 1

|Hθ
2 |

2 > 0.

For user 2, the value ofφθ2 is always positive.

Theorem 1: For a continuous frequency channelBtot, the
optimal band allocation ofBopt

1 andBopt
2 for minimizing the

sum of distortions should satisfy (10) at the top of next page,
for any frequency bandθ assigned to user 2. The proof of (10)
can be found in Appendix A.

To find the optimal allocation in this cross layer problem,
we wish to maximize the combination of application and
physical layer metrics, which is the product of the absolute
value of application layer RD slope, as seen in (10),

Si =
bi

(ri + ci)2
(11)

and the physical layer information given in (12).
For video RD characteristics in the form ofDi =

ai +
bi

ri+ci
, (11) is the absolute value of the slope of the RD

curve for useri at rate ri. In this sense, for an allocation
scheme to be optimal, the application layer contribution to
the overall metric should be the slope of the curve instead
of the distortion value [1], [2]. To solve the optimization
problem of Section II, the algorithm should give priority to
the user with the steepest slope. On the other hand, (12)
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b1
(r1+c1)2



ln

(
1 + ηφθ1|H

θ
1 |

2
)
−
∫

Bopt
1

η|H1(f)|
2

|Bopt
1 |(1+ηP1(f)|H1(f)|

2)
φθ1df





b2
(r2+c2)2



ln

(
1 + ηφθ2|H

θ
2 |

2
)
−
∫

Bopt
2

η|H2(f)|
2

|Bopt
2 |(1+ηP2(f)|H2(f)|

2)
φθ2df





≤ 1 (10)




ln
(
1 + ηφθi |H

θ
i |

2
)
−

∫

Bopt
i

η |Hi(f)|
2

∣∣Bopt
i

∣∣ (1 + ηPi(f) |Hi(f)|
2
)
φθi df





(12)

Fig. 3. Water level change for user 1 gaining one band. The water level
drops fromW1 to W ′

1
after user 1 gains one additional bandθ.

is an explicit relation between the physical layer rate (in
bits/sec) and channel state information. As the bandwidth of
θ becomes infinitesimally small, (12) can be considered as the
marginal rate change (either increase or decrease) of switching
a band from one user to the other. More specifically, one may
treat ln

(
1 + ηφθi |H

θ
i |

2
)

as the direct rate change caused by

gaining or losingθ, and
∫

Bopt
i

η|Hi(f)|
2

|Bopt
i |(1+ηPi(f)|Hi(f)|

2)
φθi df as

the corresponding rate decrease or increase due to the effect of
water level change. The optimal cross layer allocation would
assign bandθ to the user who has the maximum physical layer
marginal rate increase given by (12) weighted by the slope of
the RD curve.

To solve (8), given finite subcarrier bandwidths, the
physical layer metric expression of (12) would not be valid,as
the frequency bands are modeled as experiencing block fading.
We thus design an iterative subcarrier allocation algorithm
in the next section. Similar to the optimal condition derived
in (10), the application layer metric is the slope of the RD
curve. We will give users with steep slope priority to access

Fig. 4. Water level change for user 2 loses one band. The waterlevel raises
from W2 to W ′

2
after user 2 losing one bandθ.

subcarriers. In the continuous channel response allocation
analysis, the increment considered for switching between users
was infinitesimal, whereas in the algorithm, the increment is
the bandwidth of a single subcarrier.

IV. U PLINK RESOURCEALLOCATION ALGORITHM

To find a solution to the problem defined in (8), we
design an iterative algorithm which allows physical layer
CSI and application layer RD information to interact. This
algorithm first assigns the subcarriers purely based on
channel conditions. However, it is possible that the overall
performance (from an average distortion perspective) might
be better if we assign some subcarriers to a user with worse
channel conditions, but who might need a greater bit rate.
We then try to reassign one subcarrier to the user with the
steepest distortion curve slope. To solve a conventional video
multiplexing bit rate allocation problem, a condition for a
global optimum is that users operate at a rate with the same
slope of their corresponding RD curves [1] [19] [26]. Note
that at each iteration we only change the assignment of one
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Fig. 5. Uplink optimization algorithm flow chart.

subcarrier through a search process, and for every subcarrier
which is not assigned to the user with the steepest slope,
the calculations of distortion loss for the user losing that
subcarrier and the performance improvement for the user
with the steepest slope gaining that subcarrier is of low
complexity. We then make the reassignment of the subcarrier
that can most effectively reduce the overall distortion. We
repeat this procedure iteratively until we run out of the
possibility of reassigning subcarriers. We introduce the
following definitions that will be used in the algorithm.
Definitions II:
a) Let ρ(i)m denote the user who is assigned subcarrierm at
the i-th iteration. For example,ρ(1)2 = 3 means user 3 is
assigned subcarrier 2 at the first iteration of the algorithm.
b) DefineA(i)

k to be the set of subcarriers assigned to userk
at thei-th iteration.
c) Define the potential setΩ as the set of users that have the
potential to improve the average performance by receiving
extra subcarriers, and define|Ω| as the cardinality of the
potential set.
d) Define ∆k,m ≥ 0 as the absolute value of the video
distortion change of userk by gaining or losing subcarrier
m.

Iterative Cross Layer Resource Allocation Algorithm:
Step (1) Initialization:

Initialize ρ
(0)
m = argmax

k
{|Hk,m|2} for m ∈

{1, 2, 3...M}. Initialize the potential setΩ = {1, 2, 3...K}.
We first assign each subcarrier to the user who has the best
channel response, and let the potential set be the total set.

Step (2) Water Filling and Slope Calculation:

After subcarrier assignment, each user tries to solve a
MSE distortion minimization problem as follows:

min
Pk,m

bk∑

m∈A
(i)
k

log2[1 + ηPk,m|Hk,m|2] + ck
(13)

s.t.
∑

m∈A
(i)
k

Pk,m ≤ P (14)

The optimization problem can be further simplified as

max
Pk,m

∑

m∈A
(i)
k

log2[1 + ηPk,m|Hk,m|2] (15)

The solution to this problem is the conventional power water
filling allocation [25]

P ∗
k,m = [

1

λk
−

1

η|Hk,m|2
]+, ∀m ∈ A

(i)
k (16)

whereλk can be found numerically to make the total power
equal toP . Let

r∗k =
∑

m∈A
(i)
k

log2[1 + ηP ∗
k,m|Hk,m|2] (17)

be the optimal rate (in bits/symbol) userk gets using water

filling. ThenSk =
d

bk
rk+ck

drk

∣∣∣∣
rk=r∗

k

= − bk
(r∗

k
+ck)

2 is the slope of

the k-th user’s RD curve evaluated at the rate that userk is
assigned. Letk∗ = argmin

k∈Ω
{Sk} be the user with the steepest

slope in the potential set. This is the user who stands to benefit
the most from receiving an increment of rate.

Step (3) Subcarrier Reassignment:
We consider taking one subcarrier away from some other

users inΩ and reassigning it to userk∗, as userk∗ has
the largest marginal performance increment in the potential
set. We consider each subcarrierm ∈ {1, 2, 3...M}\A

(i)
k∗ ,

which is not currently assigned to userk∗. We calculate the
MSE performance change−∆

ρ
(i)
m ,m

< 0 of user ρ(i)m from
losing one subcarrier, and the performance gain of the user
k∗, ∆k∗,m > 0. The rate change for switching subcarriers
is similar to the derivation for (12) in a continuous channel
case, and the details of the calculation are in Appendix B.
Since we only take one subcarrier from one user each time, the
MSE performance loss and gain can be found analytically. We
then findm∗ = argmax

m∈{1,2,3...M}\A
(i)

k∗

(∆k∗,m − ∆
ρ
(i)
m ,m

), which

maximizes the performance change.
If (∆k∗,m∗ −∆

ρ
(i)
m ,m∗

) > 0 , we reassign subcarrierm∗

to userk∗ at iterationi+1, ρ(i+1)
m = k∗, and return to Step (2)

to updatek∗.
If (∆k∗,m∗ −∆

ρ
(i)
m ,m∗

) < 0 , which means that the overall
performance will not be enhanced by reassigning any subcar-
rier to userk∗ , we update the potential setΩ = Ω\{k∗}. User
k∗ is dropped from the potential set. Userk∗ will keep the
subcarriers already assigned to him, but will not be assigned
any additional subcarriers. Next, we check the cardinalityof
Ω. If |Ω| = 1, we stop, otherwise,i is incremented, and we
go back to step (2) to updatek∗.
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Based on our analysis in Section III, from the perspective
of minimizing the sum of distortions, the subcarrier assign-
ment balances both the application layer metric (the slope of
the RD curve) and the physical layer metric. The initialization
step, which is purely based on the physical layer metric, will
most likely mismatch the optimal criteria we described in
(12). The idea of reassignment is that, when we are using
the iterative method to allocate limited resources, the user
operating at the steepest rate distortion curve has the priority
to be assigned extra subcarriers.

V. BASELINE ALGORITHMS

We compare the performance of our cross layer opti-
mization algorithm to two baseline algorithms, one with only
application layer RD information and the other with only
physical layer CSI available for resource allocation at thebase
station.

A. Application Layer Optimization Algorithm

The application layer optimization allocates subcarriers
purely based on the RD information of the video streams.
Since CSI is not used, the allocator will treat all subcarriers the
same when making the allocation decision. As we will see in
the numerical results, to determine the number of subcarriers
assigned to each user, we first choose a PSNR value (e.g.,
PSNR=28dB). To achieve this PSNR, userk needs video
coding raterk based on his RD information. The number of
subcarriers assigned to thek-th user is proportional to thek-th
user’s rate, or

Lk ∼M ·
rk∑
i

ri
(18)

whereM is the total number of subcarriers in the system.
Subcarriers are then randomly assigned to users.

After being informed of the resource allocation decision,
we assume that users know their CSI, and can use it to select
their modulation and coding scheme. In other words, CSI is
not used for resource allocation, but is used to determine
the transmitted waveform. Similar to the cross layer and
algorithm, userk conducts a water filling calculation for
transmission power assignment, and the modulation format is
chosen based on (4) for each subcarrier. The source encoding
rate is then determined using (6).

B. Physical Layer Optimization Algorithm

Suppose[H1,m, H2,m...HK,m] is the vector of channel
gains of users {1,2...K} at subcarrierm. Similar to con-
ventional resource allocation based on multi-user diversity
(MUD), we assign subcarrierm to the userk∗, where

k∗ = argmax
k

{
|Hk,m|2

|Hk|
2

}
(19)

And, |Hk|
2
= 1

M

M∑
m=1

|Hk,m|2. After subcarrier assignment,

every user would apply water-filling to allocate power to each
assigned subcarrier.

DefineBc to be the coherence bandwidth of the system.
For simplicity, we assume that the coherence bandwidth is

always an integer multiple of the subcarrier bandwidth, i.e.,
Bc = ΨW/M,Ψ ∈ Z

+ in the simulation. Further, we assume
that the channel gains are identical within the coherence band-
width, but independent between different coherence bands.

For a system with coherence bandwidth larger than the
subcarrier bandwidth, i.e.,Ψ > 1, an MUD based algorithm
proposed by [9] [10] allocates subcarriers in chunks, i.e.,if
a given user is assigned a particular subcarrier, that user will
also get all the other subcarriers in the chunk. For a system
using MUD with largeΨ, since individual users could get
multiple chunks with large bandwidth, the resource allocation
might be unbalanced and the average video performance will
suffer a large degradation. To avoid a scenario where a small
set of users dominate the use of the subcarriers, we design
an algorithm that limits the number of subcarriers assignedto
each user.

Definitions III:
a) DefineΛ as the set of users who are eligible for being
assigned additional subcarriers;
b) DefineΘ as the set of users who have not been assigned
any subcarrier yet in the iteration. We design the algorithm
such that each user will get at least one subcarrier;
c) DefineΓ as the set of subcarriers whose allocation decision
has not been made yet;
d) Similar to the application layer optimization algorithm, let
Lk be the number of subcarriers userk is assigned. To control
the degree of imbalance in the number of subcarriers that users
receive, we impose set of thresholds ofψn, n = 1, 2...K − 1,
such that the sum of subcarriers for any group ofn users will
not exceedψn.

We setψn, for 1 ≤ n ≤ K − 1, equal to

ψn = ψn−1 +

⌈
ǫ

(
M − ψn−1

K − (n− 1)

)⌉
(20)

where, forn = 1, this expression reduces toψ1 =
⌈
ǫMK
⌉
. In

(20), the parameterǫ is chosen to be greater than or equal to 1,
and controls the imbalance of the resource allocation. A larger
value ofǫ means that the resource allocation decision will be
more unbalanced, biased to the users who have larger channel
gains. For each individual user, the number of subcarriers
thresholdψ1 is set to beǫ times larger than the average
number of subcarriers per userM/K subcarriers. Assuming
that one user has already been assigned the maximum of
ψ1 =

⌈
ǫMK
⌉

subcarriers, the average number of subcarriers for
the remaining(K − 1) users is given by(M − ψ1)/(K − 1)
and the resource for any combination of two users is limited
by ψ1 + ⌈ǫ(M − ψ1)/(K − 1)⌉ subcarriers. We repeat this
process iteratively forn ≤ (K − 1), and the total number
of subcarriers assigned to any group ofn users can be found
iteratively using (20). As a specific example, consider a system
with 1000 subcarriers, 3 users, andǫ = 1.5. The threshold
would beψ1 = 500 subcarriers for each individual user, and
ψ2 = 875 subcarriers for any group of two users. When the
coherence bandwidth is equal to the entire bandwidth, the user
with the strongest channel gain will get 500 subcarriers. Any
group of two users cannot get more than 875 subcarriers, so
the user with second best channel gain gets 375 subcarriers.
The remaining 125 subcarriers are assigned to the third user.
When the coherence bandwidth becomes smaller, it will be



8 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

4 5 6 7 8 9 10 11 12
27

28

29

30

31

32

33

34

35

Number of Users

A
ve

ra
ge

 P
S

N
R

 (
dB

)
SER

t
=0.2, SNR=18 dB, Ψ=1, Performance Comparison

 

 

Cross Layer Optimization Error Free
PHY Layer Optimization Error Free
APP Layer Optimization Error Free
Cross Layer Optimization Decoder
PHY Layer Optimization Decoder
APP Layer Optimization Decoder

Fig. 6. Video PSNR performance vs. number of users. 0.2 target error, 16
subcarriers,Ψ=1, average SNR=18dB if only one subcarrier is assigned, users
for PHY layer optimization are limited to be assigned at most1.5 times the
average remaining resources.

increasingly unlikely that the total number of subcarriersfor
a group ofn users will reach the threshold ofψn.

Physical Layer Optimization Algorithm:
Step 1 Initialization: We initializeΛ andΘ as the complete

set of users, i.e.Λ = {1, 2, ...K}, Θ = {1, 2, ...K}, Γ as the
complete set of subcarriersΓ = {1, 2, ...M} andψn is given
by (20).

Step 2 Subcarrier Assignment: We choose the best chan-
nel gain from all the possible assignments,

(k∗,m∗) = argmax
k∈Λ,m∈Γ

{
|Hk,m|2

|Hk|
2

}
(21)

with |Hk|
2
= 1

M

M∑
m=1

|Hk,m|2, and assign subcarrierm∗ to

user k∗. We updateΓ = Γ \ m∗. If k∗ ∈ Θ, we update
Θ = Θ \ k∗, meaning that userk∗ has been assigned at least
one subcarrier. Here,|Hk∗,m∗ |2 stands for the best channel
response in all possible subcarrier assignment combinations
at the current step.

Step 3 Status Update: We check the remaining resource
and conduct the following two updates:

1) For everyn, (1 ≤ n ≤ K − 1), we compare the sum of
subcarriers for all groups ofn users withψn. If the sum is
equal toψn for any group, all the users in that group will be
excluded fromΛ.

2) We then check the relation between the number of
subcarriers left and the cardinality ofΘ. To ensure that
each user can get at least one subcarrier, if|Γ| = |Θ|, we
will terminate the algorithm by assigning exactly one of the
remaining unallocated subcarriers to each of the users who
has no subcarrier yet using (21). We then go back to Step.2
and repeat (21) to assign subcarriers untilΓ is empty.

VI. RESULTS

A. Simulation Setup

We study an uplink OFDM system with 16 subcarriers,
each with a bandwidth of 50 kHz. We evaluate performance by
the Peak-Signal-to-Noise Ratio (PSNR), defined asPSNR =
10log10

255×255
MSE . For all three optimization algorithms, the

modulation decision will be rounded down to a valid integer
value corresponding to a modulation format of MQAM, with
M=4, 8, 16, 32, 64, 128 or 256 based on (4). For example,
if the cross layer allocation assigns a rate of any real value
R1,4 ∈ [3, 4) for user 1 on subcarrier 4, the actual alphabet
size would be 8-QAM. The channel response consists of both
the path loss and multi-path fading, and the magnitude square
of the channel can be written as|Hk,m|2 = α2 · K0 · (

d0

dk
)γ

[25], where γ = 2.4 is the path-loss exponent [25].dk is
the distance between userk and the base station, andd0 is a
reference distance set to 10m [25]. In addition,α is assumed to
be a Rayleigh random variable, andK0 is a constant of -24dB.
We assume that the distancedk between userk and the base
station is a random variable, and follows a uniform distribution
between[30, 120] meters. For the user who is 75 meters away
from the base station, the average SNR is assumed to be 18
dB if only one subcarrier is assigned. Unless otherwise stated,
the subcarriers are assumed to fade independently. For the
physical layer optimization algorithm, we setǫ = 1.5, which
means that one user cannot be assigned more than 150% of
the average number of subcarriers.

For all three optimization schemes, we use a rate 1/2
convolutional code with code generator polynomial [23, 35]
in octal, and the coded bits are interleaved across different
subcarriers. For example, if one user gets three subcarriers,
the first coded bit goes to the first subcarrier, the second coded
bit goes to the second subcarrier, etc. We use log-likelihood
ratio demodulation to detect each bit of the QAM symbol. We
then decode the bitstream using soft-decision decoding with
eight reliability ranges.

We use a sequence of CIF videos of total length
50 seconds at 30 frames per second. Compression is by the
baseline profile of H.264/AVC reference software JM 11.0
[27]. The GOP size is 15 frames (I-P-P-P) and the frames
inside one GOP are encoded using H.264 rate control. We
encode each GOP at rates of 80, 100, 120, 140, 160, 180,
200, 220, 240, 280, 300, 340, 380, 420, 460, 500 and 600
kbps, and use these operational points to fit the rate distortion
functionD(R) = ak + bk/(R + ck) by nonlinear regression.
We randomly assign different starting points of the same video
to different users, and the resource allocation decision isdone
in every GOP. The video in the simulation is a travel docu-
mentary which consists of both high motion and low motion
GOP’s. By assigning random starting points of the same cyclic
video to different users, we create application layer diversity
among users and yet have the same average complexity over
time for different users. Each video is encoded at 10 slices
per frame, and any channel error will make the system lose
the entire slice. At the decoder side, slice copying conceals
losses.
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B. Systems with Different SERt

As discussed in Section II, the uplink resource allocation
algorithm needs a target error rate; we usedSERt = 0.2, and
varied the number of users from 4 to 12 in the system of 16
subcarriers. Fig. 6 shows the performance of the three opti-
mization algorithms. The solid lines represent the numerical
results obtained from the RD curves. That is, the resource
allocator decides the rate for each user, and the distortionis
calculated directly fromD(R). This can be considered the
error-free distortion, or distortion at the encoder side. The
dashed lines are the distortion results measured at the decoder;
the videos are reconstructed from the bitstream corrupted by
the channel. The effects of packet loss, errors in RD curve
fitting, and imperfection of encoder rate control are included
in the simulation.

With SERt set to 0.2, we find that the decoded
bit error rate is small, and distortion curves at the encoder
and decoder are close. Comparing the performance of these
three algorithms, we see that when the number of users in the
system is small, the physical layer optimization outperforms
the application layer optimization algorithm, and the gap
between the cross layer and the physical layer algorithms
is relatively small. When the system has abundant resources
so each user can be assigned several subcarriers, both the
cross layer optimization algorithm and the physical layer
optimization algorithm will allow users to operate at a high
data rate, or in the flat region of the convex RD curves.
Utilizing application RD information in the resource allocation
will thus not benefit the overall users’ performance by much.
Fig. 7 shows a sample of the performance for individual users
in systems with different numbers of users employing the cross
layer algorithm. In the first row of the plot, we see that all
four users are operating near the right end of their RD curves
and the slopes of users are relatively small. When the average
resource for each user gets smaller, the users are forced to
operate at steeper parts of the RD curves (see the second and
third rows of Fig. 7). As we increase the number of users
in the system to 8 and 12, the gap between the cross layer
and the physical layer algorithms widens. We conjecture this
is because source characteristics play a more important role
when many users compete for the available resources. For a
system with large number of users, it becomes important to
combine the information of CSI and RD in the system design
for a resource-scarce system, as most users operate on the
steep slope of their individual RD curve. Mismatch of the
physical layer resource with the RD curve would cause a large
loss of system performance.

As seen in Fig. 6, when the system has 12 users, cross
layer optimization outperforms physical layer optimization by
about 1.25 dB, and the gap to application layer optimization
is even larger. For a system with average PSNR of 30.5 dB,
the cross layer scheme can support 12 users, compared to 8
users for physical layer optimization and less than 5 users for
application layer optimization. In this sense, the cross layer
algorithm can almost increase the capacity (the number of
users a system can support) by 50%.

We now change the value ofSERt to 0.1 and 0.25
(Fig. 8 and 9, respectively). When we setSERt = 0.1, the
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Fig. 8. Video PSNR performance vs. number of users. 0.1 target error,
16 subcarriers,Ψ=1, average SNR=18dB if only one subcarrier is assigned.
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Fig. 9. Video PSNR performance vs. number of users. 0.25 target error, 16
subcarriers,Ψ=1, average SNR=18dB if only one subcarrier is assigned.

modulation alphabet size will be chosen more conservatively
and thus force the video source encoding rate to be smaller
than forSERt = 0.2. On the other hand, a highSERt value
will lead to a relatively large gap between the error free curves
and curves for PSNR performance at the decoder side, and we
see that forSERt = 0.25, the impact of channel errors has
significantly decreased the throughput of the system and the
PSNR of the video from the error free scenarios. Comparing
the performance of the three algorithms, we see a similar
performance gain of adopting cross layer optimization, and
the capacity gain by adopting the cross layer algorithm is still
around 1.5.
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Fig. 7. Individual user’s performance in systems with different number of users. Each column indicates the same user’s RD relations in systems with four,
eight and twelve users.
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Fig. 10. Video PSNR performance vs. number of users. 0.2 target error, 16
subcarriers,Ψ=2, average SNR=18dB if only one subcarrier is assigned.

C. Systems with Different Coherence Bandwidths

In Fig. 10, we setΨ = 2. For simplicity in the
simulation, we assume that two adjacent subcarriers have
the same realization, and the correlation coefficient between
different coherence bands is zero. We observe a very slight
performance degradation for both the cross layer and the
application layer optimization algorithms. From the results
shown in Fig. 6, which are shown in (11) and (12), since
the cross layer optimization algorithm exploits both physical
layer multiuser channel diversity and application layer RD
diversity, increasing the coherence bandwidth will not affect
the cross layer optimization’s ability to utilize the application
layer diversity. Similarly, for application layer optimization,
increasing the coherence bandwidth will not change the num-
ber of subcarriers assigned to each user, and the performance
loss is very limited. On the other hand, compared to the
scenario ofΨ = 1, we see a large performance degradation
for the physical layer optimization. As subcarriers will have
the same fading realization in groups of two, we lose half of
the frequency diversity. Since physical layer optimization does
not exploit any application layer diversity, losing frequency
diversity at the physical layer will have a big impact on
the system performance. If we further increaseΨ to four,
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as shown in Fig. 11, the performance for the physical layer
optimization will further decrease, while the performanceof
the proposed cross layer algorithm is still robust. Comparing
the performance between different algorithms, we see that
when the cross layer optimization can support 12 users with
an average PSNR of about 29.5dB, the baseline algorithms
can at most support 7 users.

D. Complexity of Iterative Water Filling Algorithm

To show the path of performance improvement from
initialization to convergence of the cross layer algorithm, in
Fig. 12 we plot the average MSE for the systems with different
numbers of users versus the iteration number. To obtain this
plot, we observe the MSE values after each iteration for each
individual user and average over the entire video sequence
and all the users. The iteration number equal to one corre-
sponds to the performance of the initialization step. Because
of the greediness of the algorithm, the biggest performance
improvement occurs in the first few iterations, and MSE curves
appear to be convex. After the eighth step, we see a very small
performance improvement. As shown in Appendix B, since we
can find the performance improvement switching subcarriers
at each iteration analytically, the overall complexity of the
proposed algorithm is much lower than that of an exhaustive
search.

VII. C ONCLUSION

We proposed a cross layer resource allocation framework
for transmitting video in an uplink OFDMA setting, and de-
rived an optimality condition for the bandwidth allocationin a
continuous frequency response channel. The power allocation
and subcarrier assignment strategy are jointly decided by each
user’s CSI and RD characteristics. Our analytical results show
that the optimal allocation is achieved only if the product of
the RD slope and a physical layer metric related to the water
filling solution, given by (12), is minimized for each band and
each user. With a similar technique of switching bandwidth
increments as in the analysis, we designed an iterative resource
allocation algorithm. At each iteration, our algorithm first
evaluates the application layer metric defined by (11), and
then greedily updates the resource allocation decision jointly
according to (11) and (12). Compared to a resource allocation
using either only application layer or only physical layer
information, for the same video performance, the cross layer
optimization significantly increased the capacity of the system,
and resulted in robust performance as the coherence bandwidth
changed, over the range of parameter values considered in our
numerical results.

APPENDIX A
OPTIMALITY CONDITION FOR CONTINUOUS CHANNEL

ALLOCATION SOLUTION

If an assignment is optimal, any reassignment will not
decrease the sum of distortions. LetBopt

1 , Bopt
2 be the optimal

assignment, and letBopt
1 ∪ θ, Bopt

2 − θ be a new assignment
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Fig. 11. Video PSNR performance vs. number of users. 0.2 target error, 16
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which reassigns bandθ to user 1. If an assignment is optimal,
then

b1
r1 + c1

+
b2

r2 + c2
≤

b1
(r1 +∆r1) + c1

+
b2

(r2 −∆r2) + c2
(A.1)

where∆r1 and∆r2 are the rate changes caused by switching
bandθ. We have two scenarios.

Scenario A: W1 > η 1
|Hθ

1 |
2 or φθ1 > 0

In this case, user 1 would get positive rate gain by
acquiring the additional bandθ. In other words,∆r1 > 0 and
∆r2 > 0. Continuing from (A.1), we can go one step further
and get
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b1

(r1 + c1)
2
+∆r1 (r1 + c1)

∆r1

≤
b2

(r2 + c2)
2 −∆r2 (r2 + c2)

∆r2 (A.2)

BecauseD(R) = ak + bk
R+ck

is strictly convex, (A.1)
must be satisfied as we take|θ| → 0. It is easy to see that
as |θ| → 0, ∆ri

ri+ci
→ 0 for i=1 and 2. We thus can drop the

∆ri (ri + ci) terms, as they will be small compared to the
squared term. So the optimal condition is negligible.

b1

(r1 + c1)
2∆r1 ≤

b2

(r2 + c2)
2∆r2 (A.3)

Now, we are interested in findinglim
|θ|→0

∆r1
∆r2

, which is the

ratio of rate change as|θ| → 0. Again, in the new frequency
assignment, user 1 getsBopt

1 ∪ θ and user 2 getsBopt
2 − θ.

Fig. 3 shows the power redistribution after switching bandθ.
P1,θ is the total power user 1 will put over bandθ after the
reassignment. Since we consider|θ| → 0, P1,θ is collected
uniformly from Bopt

1 and redistributed uniformly over band
θ. Note thatW1 = P1(f)+

1
|H1(f)|2

is the water level of user
1 before reallocation, andW ′

1 is the level after reallocation.
We then have

W1 −
P1,θ∣∣Bopt
1

∣∣ = η
1

|Hθ
1 |

2
+
P1,θ

|θ|
=W ′

1 (A.4)

where|Hθ
1 |

2 = |H1(f0 +
|θ|
2 )|2 is the channel response over

the bandθ, and f0 is the left limit of θ. To go further, we
have

P1,θ =

(
W1 − η

1

|Hθ
1 |

2

)( ∣∣Bopt
1

∣∣ |θ|
|θ|+

∣∣Bopt
1

∣∣

)
(A.5)

Before reallocation, the rate for user 1 is:∫

Bopt
1

log2

(
1 + ηP1(f) |H1(f)|

2
)
df . After getting θ, the

new rate is given by

∫

Bopt
1

log2

(
1 + η

(
P1(f)−

P1,θ∣∣Bopt
1

∣∣

)
|H1(f)|

2

)
df+

|θ| log2

(
1 + η

P1,θ

|θ|
|Hθ

1 |
2

)
(A.6)

We then can calculate the rate difference as

∆r1 =

∫

Bopt
1

log2

(
1−

ηP1,θ |H1(f)|
2

∣∣Bopt
1

∣∣ (1 + ηP1(f) |H1(f)|
2
)

)
df+

|θ| log2

(
1 + η

P1,θ

|θ|
|Hθ

1 |
2

)
(A.7)

Similar to the setting for user 1,P2,θ is the power allocation
for band θ and |Hθ

2 |
2 is the frequency response of user 2

over this band. Fig. 4 shows the power redistribution after
reallocation for user 2, and we can calculateP2,θ,

W2 − η
1

|Hθ
2 |

2
=
P2,θ

|θ|
(A.8)

as well as the absolute value of the rate change given by (A.9)
at the top of next page.

We are interested in finding the ratio between the rate
changes of these two user expressed as (A.10). We then use
L’Hopital’s rule and obtain (A.11).

From (A.3) and (A.11), for a two-user uplink video
transmission scenario, the optimal frequency and power allo-
cation scheme should satisfy (A.12) for any frequency bandθ
assigned to user 2.

Scenario B:W1 ≤ η 1
|Hθ

1 |
2 or φθ1 = 0

This condition means that when we try to switch band
θ from user 2 to user 1, the frequency response of user 1 over
this band does not exceed the original water level, and the
optimal solution will not put any power into this band. In this
case∆r1 = 0, ∆r2 > 0, andφθ1 = 0 . If we plugφθ1 = 0 into
the numerator of (A.11), we have (A.13).

Combining both scenarios, for a two-user uplink video
transmission scenario, the optimal frequency and power allo-
cation scheme should satisfy (A.12).

Similarly, in a system with an arbitrary number of users,
it is easy to conclude that, for frequency bandθ to be assigned
to userj, the (A.14) condition must be satisfied for any user
i 6= j.

APPENDIX B
PERFORMANCECHANGE CALCULATION FOR

REASSIGNING SUBCARRIERS

Consider a userk who gets assigned a set ofA(i)
k

subcarriers. As discussed in Step (2) of Section IV, the optimal
power allocation scheme is

P ∗
k,m = [

1

λk
−

1

η|Hk,m|2
]+ (B.1)

∀m ∈ A
(i)
k . We want to find the video performance degrada-

tion of userk after losing a subcarrier̂m, m̂ ∈ A
(i)
k , 1

λk
>

1
η|Hk,m̂|2

. For the scenario that all the subcarriers’ frequency

responses are below the water level, or1
λk

> 1
η|Hk,m|2

, the
operating rate (in bits/symbol) of userk is given by

r∗k =
∑

m∈A
(i)
k

log2

[
1 + η |Hk,m|2

(
1

λk
−

1

η |Hk,m|2

)]

(B.2)
Note that we start the resource allocation by assigning the
subcarrier to the user with the best response, so we expect
that the condition of 1

λk
> 1

η|Hk,m|2
holds for most of

the subcarriers at the beginning of the iterations. The video
distortion is

Dk = ak+
bk

∑

m∈A
(i)
k

log2

[
1 + η |Hk,m|2

(
1
λk

− 1
η|Hk,m|2

)]
+ ck

(B.3)
After losing subcarrier̂m, the water level will increase

by (
1

λk
−

1

η |Hk,m̂|2

)/(∣∣∣A(i)
k

∣∣∣− 1
)

(B.4)

and the updated video distortion is expressed as (B.5) on the
next page.

We can then calculate the performance change of user
k for losing subcarrier̂m as−∆k,m̂ = D̂k −Dk. If a userk
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∆r2 = |θ| log2

(
1 + η

P2,θ

|θ|
|Hθ

2 |
2

)
−

∫

Bopt
2

log2

(
1 +

ηP2,θ |H2(f)|
2

|Bopt
2 |(1 + ηP2(f) |H2(f)|

2
)

)
df (A.9)

lim
|θ|→0

∆r1
∆r2

= lim
|θ|→0

∫

Bopt
1

log2

(
1−

ηP1,θ |H1(f)|
2

|Bopt
1 |(1+ηP1(f)|H1(f)|

2)

)
df + |θ| log2

(
1 + η

P1,θ

|θ| |H
θ
1 |

2
)

|θ| log2

(
1 + η

P2,θ

|θ| |H
θ
2 |

2
)
−
∫

Bopt
2

log2

(
1 +

ηP2,θ |H2(f)|
2

|Bopt
2 |(1+ηP2(f)|H2(f)|

2)

)
df

(A.10)

lim
|θ|→0

∆r1
∆r2

=

ln
(
1 + ηφθ1|H

θ
1 |

2
)
−
∫

Bopt
1

η|H1(f)|
2

|Bopt
1 |(1+ηP1(f)|H1(f)|

2)
φθ1df

ln
(
1 + ηφθ2|H

θ
2 |

2
)
−
∫

Bopt
2

η|H2(f)|
2

|Bopt
2 |(1+ηP2(f)|H2(f)|

2)
φθ2df

(A.11)

b1
(r1+c1)2



ln

(
1 + ηφθ1|H

θ
1 |

2
)
−
∫

Bopt
1

η|H1(f)|
2

|Bopt
1 |(1+ηP1(f)|H1(f)|

2)
φθ1df





b2
(r2+c2)2



ln

(
1 + ηφθ2|H

θ
2 |

2
)
−
∫

Bopt
2

η|H2(f)|
2

|Bopt
2 |(1+ηP2(f)|H2(f)|

2)
φθ2df





≤ 1 (A.12)

b1
(r1+c1)2



ln

(
1 + ηφθ1|H

θ
1 |

2
)
−
∫

Bopt
1

η|H1(f)|
2

|Bopt
1 |(1+ηP1(f)|H1(f)|

2)
φθ1df





b2
(r2+c2)2



ln

(
1 + ηφθ2|H

θ
2 |

2
)
−
∫

Bopt
2

η|H2(f)|
2

|Bopt
2 |(1+ηP2(f)|H2(f)|

2)
φθ2df





= 0 < 1 (A.13)

bi
(ri+ci)2



ln

(
1 + ηφθi |H

θ
i |

2
)
−
∫

Bopt
i

η|Hi(f)|
2

|Bopt
i |(1+ηPi(f)|Hi(f)|

2)
φθi df





bj
(rj+cj)2



ln

(
1 + ηφθj |H

θ
j |

2
)
−
∫

Bopt
j

η|Hj(f)|
2

|Bopt
j |(1+ηPj(f)|Hj(f)|

2)
φθjdf





≤ 1 (A.14)

D̂k = ak +
bk

∑

m∈
(

A
(i)
k

−m̂
)

log2

[
1 + η |Hk,m|2

( ∣

∣

∣
A

(i)
k

∣

∣

∣

(
∣

∣

∣A
(i)
k

∣

∣

∣−1
)

λk

− 1
η|Hk,m|2

− 1

η|Hk,m̂|2
(
∣

∣

∣A
(i)
k

∣

∣

∣−1
)

)]
+ ck

(B.5)

is given one subcarrier, the performance improvement for that
user can be found in a similar way.
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