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Abstract

We consider a noisy Slepian-Wolf problem where two coreglagources are separately encoded
(using codes of fixed rate) and transmitted over two indepetidinary memoryless symmetric channels.
The capacity of each channel is characterized by a singépeter which is not known at the transmitter.
The goal is to design systems that retain near-optimal pedoce without channel knowledge at the
transmitter.

It was conjectured that it may be hard to design codes thdbmperwell for symmetric channel
conditions. In this work, we present a provable capacityi@dng sequence of LDGM ensembles for
the erasure Slepian-Wolf problem with symmetric channeldétions. We also introduce a staggered
structure which enables codes optimized for single usemratia to perform well for symmetric channel
conditions.

We provide a generic framework for analyzing the perforneaotjoint iterative decoding, using

density evolution. Using differential evolution, we desigunctured systematic LDPC codes to max-

This work was supported in part by the National Science Fatiod under Grant No. CCR-0515296 and by the Qatar National
Research Foundation under its National Research Prifregram. The material in this paper was presented in patteat
47th Annual Allerton Conference on Communications, Cdrdara@l Computing, Monticello, IL, October 2009 and in partfa t
6th IEEE International Symposium on Turbo Codes and Rela@tgics (ISTC), Brest, France, September 2010.

The authors are with the Department of Electrical and Complnhgineering, Texas A&M University, College Station, TX

77843, USA (email: yarvind@tamu.edu; hpfister@tamu.edu@ktamu.edu).

November 17, 2018 DRAFT


http://arxiv.org/abs/1201.0409v1

2 IEEE TRANSACTIONS ON COMMUNICATIONS

imize the region of achievable channel conditions. The ltiegucodes are then staggered to further
increase the region of achievable parameters. The maimilwotion of this paper is to demonstrate that
properly designed irregular LDPC codes can perform welusiameously over a wide range of channel

parameters.

Index Terms

LDPC codes, LDGM codes, density evolution, correlated sesir non-systematic encoders, joint

decoding, differential evolution, area theorem.

I. INTRODUCTION

Wireless sensor networks have become very popular in rgeams and are being increasingly
used in many commercial applications. A good survey of tlubl@ms involved with designing
sensor networks can be found in],[[Z]. A sensor network typically has several transceivers
(also called nodes), each of which has one or several senHuestask of these sensor nodes
is to collect measurements, encode them, and transmit tbesorhe data collection points.
The topology of sensor networks varies widely with the aggilon, but typically the data from
all the nodes is transmitted to a central node, also known gateway node, before further
processing is done on the data. This problem is often reféoras the sensor reachback problem.
There are many constraints on the size and cost of the netwedkthe nodes have limited
computational capabilities, communication bandwidth. élence the nodes have to perform
distributed encoding, despite having to transmit coreglaata. One of the main goals in the
area of wireless sensor networks is to reduce the amounramsrritted data by taking advantage
of the correlation between the sources. In many cases, ithgenerally a medium access control
(MAC) protocol in place, which eliminates interferenceweegn the different nodes. In this case,
one can assume that each node transmits through an indepehdenel, from the same channel
family. A simple sensor network consisting of two sensorshswn in Fig.1. This problem

of distributed encoding and transmission over independbatnels gives a noisy version of
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the celebrated Slepian-Wolf (SW) problem. The SW problers wm#&roduced and solved in the
landmark paperd], and shows that the optimal coding scheme suffers no lopsriformance (in

terms of rate) even in the absence of communication betweemwadrious encoders. A variety
of coding schemes have been designed that can achieve theoB8wWd vhen channel state

information is known at the transmitter.

A. Prior Work

The first practical SW coding scheme was introduced by Wymet ig based on linear
error-correcting codes/]. Chen et al. related the SW (distributed source codingplera to
channel coding via an equivalent channel describing thecsocorrelation $], [6]. Using this
observation they used density evolution to design LDPC tcosdes that approach the SW
bound. Distributed source coding using syndromes (DISC&IS) provides a practical method
to transmit information for this problem when the encodilages are restricted to the corner
points of the rate region/].

For transmision over noisy channels, separation betwegrts@nd channel coding is known
to be optimal when the channel state is known at the transnfiil. When the channel state is
unknown, it is still desirable to take a joint source-chdrowling (JSCC) approach (via direct
channel coding and joint decoding at the receiver). The me&son is that separate source
and channel coding requires compression of the sourcesiojtiint entropy prior to channel
encoding. After that, the variation in one channel’s par@meannot be offset by variation in the
other channel. Further advantages of JSCC, over separatedescoding and channel coding,

are discussed further ird]|

The performance of concatenated LDGM codes has been stirdigd] and that of Turbo
codes in §]. Serially concatenated LDPC and convolutional codes vaése considered inl[l],

where the outer LDPC code is used for distributed sourcengodi
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It was conjectured in1[7] that LDPC codes do not perform well for the noisy SW problem
and that it is hard to design codes that perform well for sytimehannel conditions. In this
work, we show a sequence of LDGM codes which approach the SWhdbdor symmetric

channel conditions.

B. Universality

Another interesting line of research in the area of senstworks is the sensor location
problem. The sensor locations are optimized in order toecblthe most relevant data. A
possibility of using moving sensors is present in a varidtgmplications, including air pollution
estimation, traffic surveillance etc?][ A natural consequence of this is the variation in channel
conditions as a result of sensor mobility. As a result, it nb@yunreasonable to assume that
transmitters have detailed channel state informations phoblem of unknown channel state at
the transmitter naturally arises in the context of many ruder scenarios, including cellular
telephony.

For fixed user code rates, reliable communication is thaxalgt possible over a wide range
of channel conditions1[3. We call a systemuniversalif it provides good performance for
all system parameters that do not violate theoretical $imfthis designation neglects the fact
that the receiver is assumed to have channel state inf@maitid is based on the standard
assumption that the receiver can estimate the channelvgitht@egligible pilot overhead. While
irregular LDPC codes can be optimized to approach capamitsufy particular channel condition,
the performance can deteriorate markedly as the channdlitmors change. So, we design
LDPC codes which are robust to variation in channel condiioSuch schemes are desirable
because they minimize the outage probability for quagiestdnannels (e.g., when a probability

distribution is assigned to the set of possible channelrperars).

1The authors consider only systematic LDPC codes

2Unfortunately, the LDGM codes that achieve the symmetrianctel condition are not universal.
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Fig. 1. System Model
II. PROBLEM SETUP

Consider the problem of transmitting the outputs of two it& memoryless correlated
sources, (U, Us), to a central receiver through two independent discrete ongess channels
with capacitiex”; andCs, respectively. The system model is shown in FigiurgVe will assume
that the channels belong to the same channel family, ancetiht channel can be parametrized
by a single parametet (e.g., the erasure probability for erasure channels). Weeencoders
are not allowed to communicate. Hence they must use indepe¢rehcoding functions, which
mapk input symbolsU; andU,) to n; andn, output symbolgX; andXs,), respectively. The
rates of the encoders are given By = k/n; and Ry = k/ny. The decoder receivey,Y>)
and makes an estimate 0fJ;, Us).

The problem we consider is to design a graph-based code,Hwhva joint iterative decoder
can successfully decode over a large set of channel paranéter simplicity, we assume
that both the encoders use identical codes of faté.e., R = k/n,n; = ny = n). Reliable

transmission over a channel pdit,a,) is possible as long as the SW conditiorly ére

satisfied.
C
o) > wilvy)
022)‘2) > H(Us|U,) 1)
C C
155‘1) + 22)‘2) > H(Uy, Us)

For a given pair of encoding functions of rafe and a joint decoding algorithm, a pair of
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Fig. 2. The SW region for erasure channels, for a fixed rate (#j R)

channel parameterSy,, ay) is achievableif the encoder/decoder combination can achieve an
arbitrarily low probability of error for limiting block-legths (i.e.,k — oc). We define the
achievable channel parameter region (ACPR) as the set afhalhinel parameters which are
achievable. Note that the ACPR is the set of all channel peirarms for which successful recovery
of the sources is possible for a fixed encoding rate pAirR). We also define th&W region

as the set of all channel parametérs, a,) for which (1) is satisfied. The SW region for the

erasure channel family is shown in Figute

In this paper, we consider the following scenarios:

1) The channels are erasure channels and the source domretamodeled through erasures.
2) The channels are additive white Gaussian noise (AWGNhméla and the source corre-
lation is modeled through a virtual correlation channellagaus to a binary symmetric

channel (BSC).

These models might appear restrictive, but we believe theyige sufficient insight for the
design of codes that perform well for arbitrary correlatedrses and channels. Our analysis in

Sectionlll admits general correlation models and memoryless channels
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A. Erasure Correlation

The erasure system model is based on communication overybénasure channels (BECS)
and the source correlation is also modeled through erasuets” be a Bernoullip random
variable andX, X’ be i.i.d. Bernoulli% random variables. The sourcés and U, are defined

by

(X,X') if Z=0
(U17 UQ) =

(X, X) if Z=1
We haveH (U,|Uy) = H(Us|Uy) =1—p and H(U;, Us) = 2 — p. This correlation model can be
incorporated into the Tanner graph (see Sectlos , IlI-C) at the decoder with the presence
or absence of a check node between the source bits depemndihg auxiliary random variable
Z. Note that the decoder requires the realization of the nandariableZ, for each source bit,
as side information. Because of this requirement, one nighsider this a toy model that is
used mainly to gain a better understanding of the probleit, &wvery similar model was used
recently to model internet file streaming from multiple smag [L4].

This model can also be thought of as having two types of BS@&laiion between the source
bits (as described in the next section), one with paramétand one with parameter. The
correlation parameter determines how many bits are correlated with paramet&he receiver

knows which bits are correlated with parameter

B. BSC Correlation

A more realistic model is the BSC/AWGN system model, whermmmnication takes place
over a binary-input additive white Gaussian-noise cha(@&/VGNC) and the symmetric source
correlation is defined in terms of a single parameter, nampelyPr(U; = U,). It is useful to
visualize this correlation by the presence of an auxilianalty symmetric channel (BSC) with
parameterl — p between the sources. In other words, is the output of a BSC with input/;

i.e., Uy, = Uy + Z. Here Z is a Bernoulli-( — p) random variable and can be thought of as an
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error. Let hy(-) denote the binary entropy function. Thel(U;|Us) = H(Us|U;) = he(p) and
H(Uy,Us) =1+ ha(p).

This correlation model can be incorporated into the Tanmaply at the decoder (described
in Sectionlll-C) as check nodes between the source bits, with a hidden npdesenting the
auxiliary random variableZ (which carries a constant log-likelihood ratiag 1%”) attached to
the check node. For this scenario, the decoder does noteeguy side information i.e., it does

not need to know the realization of the auxiliary random afale ~Z.

C. Existence of Universal codes

In this section, we discuss the existence of universal gpdohemes, for the system model
considered in Figuré. Let I, (X;;Y;) and /., (X»;Y3) denote the mutual information between
the channel inputs and outputs when the channel paramatergiveen bya; and a,. The

following theorem shows the existence of codes which hakgelACPRs.

Theorem 1. Consider encoders with rate pai?, R). For a fixed pair of channel conditions
(a1, a2), which are not known at the transmitter, random coding witpi¢al-set decoding at
the receiver can achieve an average probability of erRy,, ., bounded above by—"(@1.e2),

where
v(aq, ag) = min {Ial(Xl;Yl) — RH(U; | Usy),
I.,(X9;Y2) — RH(Uy | Uy),
Lo, (X1; Y1) + 10, (X2 Ya) — RH(Uy, Us) .
Hence, there exists an encoder for which the probabilityradre

< 2‘”7(0617042).

Peval a2 —

Proof: This follows from extending the proofs in f] to the SW problem. [ ]
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Remark 1. A simple application of Fano’s inequality shows that anyrmdichannel parameters
for which v(a1, as) < 0 are not achievable (the probability of error is strictly baded away
from zero). For binary memoryless symmetric (BMS) chanréks conditiony(ay, as) > 0
translates to the conditions i), So, the conditions inlj are both necessary and sufficient for

transmission over BMS channels.

Remark 2. For BMS channels, the achievable channel parameter regiom fandom code is a
dense subset of the entire SW region for limiting blockdlesgThis follows by using Theorein

and applying the Markov inequality. This result is also gasiktended to random linear codes.

We conclude that, for a given rate pdiR, R), a single encoder/decoder pair suffices to
communicate the sources over all pairs of BMS channels inSWé region. Thus, one can
obtain optimal performance even without knowledge(®f, o) at the transmitter. We refer to
such encoder/decoder pairs as beimiversal This means that random codes with typical-set
decoding are universal for BMS channels.

While random codes with typical-set decoding are univérggiod, encoding and decoding is
known to be impractical due to its large complexity. This ivetes the search for low complexity

encoding/decoding schemes which are universal.

[Il. A NALYSIS

A. LDGM Codes

Assume that the sequenc&$, and U, are encoded using LDGM codes with a degree
distribution pair(), p). Based on standard notationd], we let \(z) = Y, A,z be the degree
distribution (from an edge perspective) correspondingéoviariable nodes andz) = >~ p;z*™*
be the degree distribution (from an edge perspective) optréy-check nodes in the decoding

graph. The coefficienk; (resp.p;) gives the fraction of edges that connect to the variableesod
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p ......
Az
permutationr, |
p(x) F VYV V

Fig. 3. Tanner Graph of an LDGM (LT) Code with erasure cotietabetween the sources

(resp. parity-check nodes) of degred.ikewise, L; (resp.R;) is the fraction of variable nodes

(resp. check nodes) with degree

Since the encoded variable nodes are are attached to thie mbees randomly, the degree of
each variable node is a Poisson random variable whose meagiveis by the average number
of edges attached to each check node. This mean is given byR/(1), where R'(1) is the
average check degree. Therefore, the resulting degredbdtiin is L(z) = e"@~. Throughout

this section, we consider the erasure correlation moddribesi in Sectionl-A.

The Tanner graphl[] for the code is shown in Fig3. Codel corresponds to the bottom half
of the graph, code corresponds to the top half and both the codes are connegtearilation
nodes at the source variable nodes. One can verify that tm@wation graph for decoding a
particular bit is asymptotically tree-like, for a fixed nuerlof iterations as the blocklength tends
to infinity. This enables the use of density evolution to catepthe performance of the joint

iterative decoder.

Let x, andy, denote the average erasure probability of the variable sratiéeration? for

usersl and 2 respectively. The density evolution equations][in terms of the variable-node
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to check-node messages can be written as

Tep1 = [(1 —p) + oL (0(€2,ye))] A (0(€1, 2¢))
Yesr1 = [(1 —p) + pL (oler, we))] A (o€, ye))

wherep(e, ) = 1—(1—€)p(1—2x). Notice that, for LT codes, the variable-node degree distion
from the edge perspective is given BY)(z) = L% (z) because\(z) = L'(x)/L'(1) = L(x),
when L(x) is Poisson. With this simplification, the density evolutifor symmetric channel

conditions €; = e; = ¢€) can be written as

o1 =[(1=p) +pA(1 = (1= €)p(1 —z)) A1 = (1 = €)p(1 — ). (2)

This recursion can be solved analytically, resulting indh&ue non-negative(x) which satisfies

=[(1=p)+pA(1—=(1—e)p(l—2)]A(1—(1-ep(l—2a)).

The solution is given by

ple) = a(l —e¢) 2p

-1 'log<¢<1—p>2+4p<1—x>—<1—p>>

1
Z > o (e DP" 2,
a(l —e¢) i(1+p)2-1
which is not a valid degree distribution because it has it#fimean. To overcome this, we define

a truncated version of the check degree distribution via

i—1 2L1 .
M_'_EN Z,k(l(_),_g, 2i— )p zt+
w+ Gn(p)+1

>k
ZH()

p221’

pM(z) =

3)

for somep > 0 and N € N. This is a well defined degree distribution as all the coeffits
are non-negative and" (1) = 1. The parameter increases the number of degree one generator
nodes and is introduced in order to overcome the stabiligblem at the beginning of the

decoding processL[].
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Theorem 2. Consider transmission over erasure channels with pararsete= ¢; = €. For

N € N and p > 0, define

, and
i(I+pzt o 0 1—c

N i—1 (2i—1\ Kk
Z - p +dG +1
Then, in the limit of infinite blocklengths, the ensemble M@, A(z), p™(z)), where

i—1 (21;1):0&

N - i
_M+Zi:1f(13rpﬁx + z
p+Gnp)+1

Az) = €@~ and p" (z) , (4)

(1—e)(1—e™

enables transmission at a rafe = s ) with a bit error probability not exceeding/N.

Proof: See AppendiA. [ |
From Theorem2, we conclude that the optimized ensemble LDGM\(z), p™(z)) can
achieve the extremal symmetric point of the capacity regidmfortunately, one can show that
this ensemble cannot simultaneously achieve both thersatreymmetric point and the corner
points of the SW region. In Figuré, this can also be observed numerically via the density

evolution ACPR (DE-ACPR) of this ensemble for = 2048.

B. Puncturing and LDPC Codes

In [1€], it is shown that correlated codes are suboptimal wherstrgiting correlated sources

over independent channels. The conditionslinifplicitly assume the use of uncorrelated codes
1 T T T T T T T T T

0.9r
0.8

0.7¢
0.6

&'0.5}
0.4F
0.3F
0.2F
0.1}

0

0 0.1 02 0.3 04 %o 06 0.7 0.8 00 1
1

Fig. 4. ACPR (Density Evolution threshold) of the optimizgstasure channel) LT Code witN = 2048
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Fig. 5. Tanner Graph of an LDPC Code with source correlation

i.e., we require the average mutual information (over theéecensemble) (X;; X5) = 0.

This condition is clearly not satisfied when we use a system&dPC ensemble. This also
explains the loss in performance of systematic LDPC codesnvdompared to Turbo codes, as
shown in [LZ]. To ensure the independence of the transmitted symbolsised DPC ensembles

with punctured systematic encoders.

C. Density Evolution for LDPC codes

Assume that the sequencks and U, are encoded using LDPC codes with a degree distri-
bution pair(\, p) and a punctured systematic encoder. Let the fraction of tpued (systematic)
bits be~.

The Tanner graphl[j] for the joint decoder is shown in Figute Codesl and2 correspond
to the bottom and top half of the graph. The codes are conhdsgteorrelation nodes attached
to the punctured bits. The joint iterative decoder procaad®unds, by alternating one round
of decoding for codé with one round of decoding for code Let a, andb, denote the density

of the messages emanating from the variable nodes at @ergtcorresponding to codelsand

®Assuming that the transmission alphabe{isl}, the densities are conditioned on the transmission @fla
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2. The density evolution equationsf] can be written as follows

2 = |1 (L (0(b0))) + (1 = 7)ammsc| @ A(p(a0)) o
bess = |17 (L (p(@0)) + (1= 7)bawsc| @ A(p(be)),

whereA(a) = >, A;a® Y, L(a) =Y, Lia®=Y, p(a) = Y, p;:a®Y, agusc andbgysc are the
densities of the log-likelihood ratios received from theuchel. The functiory at the correlation
nodes depends on the equivalent channel correspondinge tootinelation model, as described
in [5]. Although one cannot assume that the all-zero codewor@n$ simultaneously by both

users, one can show that this DE recursion suffices for typiessage pairs.

First consider the BSC correlation model. By symmetry of pheblem, we can assume that
user1 transmits the all-zero codeword and the second user trémsntypical codeword. Due
to the constraints imposed by the correlation, the fractibones in the systematic part of the
codeword isl — p. Density evolution proceeds with two types of messagesélmonnected to a
variable node with transmitted valuel and those connected to a variable node with transmitted
value—1). By symmetry of the message passing rulss p. 210], we can factor out the sign for
the messages connected to variable nodes with transmdtad v1. This sign can be factored
into the correlation node (once again by the symmetry cangit The fraction of correlation
nodes which are flipped is— p. So, we introduce a parity-check at the correlation nodeshwh
evaluates to a Bernoulli-random variable i.e.f(a) = agsgy) ® a. This simplification enables
us to proceed with density evolution assuming the transamiss an all-zero codeword for both

the users.

Note that such a simplification is not necessary for the eeasorrelation model. For a BEC
correlation with probabilityp, there is a parity-check at the correlation node with prdhgbp
and with probabilityl — p there is no parity-check, sfi(a) = (1 — p) + pa.

The residual error probability at iteratioh (ef, €5), is computed using the error functional
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&(-) defined in L6, p. 201]:

i = & (|7 (£ (pb))) + (1 = )ammsc| © L(p(ar)))

¢ = & (| 7£(L (0(20)) + (1 = )bawsc| @ Lp(be)))

D. Staggered Block Codes

It is well known that single-user codes perform well at theneo points of the SW region.
Although single-user codes do not perform well for symneetihannel conditions, they can
be used to construct staggered codes that perform well atdimer points and for symmetric
channel conditions. Considersources withLk + (1 — 3)k bits each. Without loss of generality,
add Sk zeros at the beginning for sourég§ and addgk zeros at the end for sourdg,, to
get (L + 1)k bits. We callg the staggering fraction. Next encode each block dfits using a
puncturedn —k, k) LDPC code. The rate loss incurred by the additiortbfzeros can be made
arbitrarily small by increasing the number of blocks At the decoder, one has the following
structure: The performance of this staggered structurebeaminderstood by considering the

erasure case in the limft — oo.

Theorem 3. Consider transmission over erasure channels with erasatest(¢;, ¢;) using ca-
pacity approaching puncturegh —k, k) LDPC codes. The staggered block code (with staggering

fraction () allows reliable communication for channel parameters
€1 <min{l — R(1 - 6),1 — R(1 —pp)}, and
e <1-R(1-p(l-7)),

whereR = k/(n — k) is the design rate of the code.

Proof: Consider the first block for sourdé,. The parity bits see a BEE ) channel and

the source bits see an effective BEG- §) channel (assuming no information comes from the
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block ¢ blocki + 1
n:k n:k
B | W A
x permutationr; permutationr]
" permutationr, permutationr;
$. 4 S S
Pk (1= B)k

. correlation nodes perrfutaﬁoni ?
° parity bits X * * Co X
O punctured systematic bits permutationr),
m parity check nodes | & & o l
n—=k
block i

Fig. 6. Decoder structure for staggered codes

decoder on the other side). So the effective erasure rake dirst block is(1— R')e; + R'(1— )
(R = k/n is the rate of the code before puncturing). The code can @eesdong ask’ <
1-((1—-R)g+ R((1-p))ie,e < 1— R(1—p). Suppose the first block of/; can
decode successfully, then the source bits in the first bldcki;osee an effective channel of
(1 —5)(1 —p)+ B. The parity bits see a channel with erasure probabilitySo, the effective
channel seen by the first block of the second codg is R')e, + R'(1 — p(1—3)). So this block
can be decoded as long as< 1 — R(1 — p(1 — /3)). The decoding continues by alternating

between blocks of/; and U,. This proves the claim. [ |

Corollary 1. Consider transmission over erasure channels using capagpiproaching punctured
(n — k, k) LDPC codes. The staggered block code (with staggeringitmagt = 1/2) allows

reliable communication at both the corner points and the mgtnic channel condition.
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Proof: The proof follows by matching the conditions of the previadgheorem to a corner
point and the extremal symmetric point of the SW region. [ |
For general channels we can analyze the performance of déiggesed code using density
evolution. Leti € {1,...,L} anda!”’ andb!” denote the density of the messages emanating
from the variable nodes at iteratio corresponding to codes and 2 in block i. The DE

equations can be written as follows:
aily = [ (8(2 (p6f ™)) + @ =) (L (o)) + (0 = Vasusc| @ Ap(ar)
oy = [v (1= 8)F (2 (pa))) + 8£(L (0 ™)) )) + (1 = 1)bausc| ® A(o(be)).

Here,a!” bl = A, (the delta function ato) for i ¢ {1,...,L}.

(6)

E. Differential Evolution

Throughout this section, we useto denote an element &" for somen € N, andz; to
denote itsith component. Le¥ = {i|\; # 0} andP = {i|p; # 0} be the support sets of
the variable and parity-check degree distributions retbpdyg, which are assumed to be known.
The correlation parameteris fixed. We design LDPC codes for this scenario using diffeaé¢
evolution [LY], for a design rateR,. Let

il’lzl,l’lzo,lzl, ,n}

i=1

. { e

denote the unit simplex and, = |V|, n, = |P|. Then, the search space for all variable (check)
degree profiles isA™~! (A™~1). The optimization is performed over the search sp&ce
A=l Am~l with parameter vectors = [zy,z,]%, wherezy, € A™ 'z, € A™ ! In
our optimization procedure, we expand the search spac®# te {z € R™*" %" (z,); =
1,>,(z,); = 1}, for simplicity in the crossover stage. We generate anahfiopulation of trial

degree distributions by uniformly sampling the degreeritistions from the unit simplex.

4(xx, V) and (z,, P) correspond to the variable and parity node degree profiksectively.
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Let C be a finite subset of channel parametéss, ) that correspond to the sum rate
constraint of the SW conditions for a design rag. LetI' : &’ x C — [0,1] x [0,1],
(z,a1,02) — (e1,ez) be the function that gives the residual error probabilifysing joint
density evolution as described in SectidihC) for each decoder, for a pair of codes with degree
distributionz (i.e., (zx,x,)), when transmitted over channels with parameters ). We use
discretized density evolutior?[]° to compute the performance of an ensemble.

For our design, we want the code to achieve an arbitrarily poabability of error onC and
we want the rate of the code(z) to be as close to the design rdtg as possible. So, we define
the cost function,

Fa)=a-| > (1= Tjaayr@anan=n) | +0- (Ri— R(x)),

(a1,02)€C

if x € §and F(z) = oo, if x € S'\S. The constants and b are chosen through trial and
error. The parameters chosen for the designs considerdusipaper are- = 107°,a = 10 and
b = 30. The optimization is then setup asin,cs' F(x).

We use a variant of differential evolution, with the mutatiand recombination scheme given

in [20]. The resulting codes are then staggered as described tioiB&e¢D .

V. RESULTS AND CONCLUDING REMARKS

This paper shows that the SW conditions are necessary afidientf for communication of
correlated sources through independent BMS channelspuiitthannel state information at the
transmitter. This implies that a single random code is defiicto communicate with vanishing

probability of error, for the entire SW region. We showed #whievability of the symmetric

*We set the maximum number of iterations @0 for all the designs considered in this paper. Density eimfiuis stopped
when the maximum number of iterations is reached or therefffee in the residual error probability between succestavations

is less thanl0~8.

®A 9 bit linear quantization is used over a likelihood ratio rarg 20, 20]
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channel condition under message passing by providing aesegquf LDGM ensembles which

can achieve an arbitrarly low probability of error.

We designed punctured systematic LDPC codes for the sosndascribed in Sectioii.
The design was performed to maximize the ACPR, in contrapt@gious work. For the erasure
correlation model, the optimization was performed for aglesate of R, = 0.57 after puncturing

and source correlation = 0.5. The resulting degree profile

AMx) = 0.3633x + 0.28342% + 0.23152° 4 0.12172",

p(x) = 0.5317762> + 0.4682242°,

has a design rate df.3308 and transmission rat@.4962. The ACPR for this code is shown
in Figure 7 along with the SW region for the rate pdi?.4962,0.4962). This shows optimized

ensembles can achieve a large portion of the SW region.

The BSC source correlation parameter was 0.9 and the optimization was performed for

0.9r
0.8

0.7F
0.6} \
$'0.5]

0.4F

0.3}
0.2}

0.1f

0

0 0.1 02 03 04 (és 0.6 0.7 08 0.9 1
1

Fig. 7. ACPR (Density Evolution threshold) of an optimizedasure channel) LDPC Code of rdte308 is shown in blue.

The grey area is the ACPR after staggering.
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6 5 4 3 2 1 0 1 2 3
SNR, (dB)

Fig. 8. ACPR (Density Evolution threshold) of an optimize®WW(GN channel) LDPC Code of rat@.323 is shown in blue.
The grey area is the ACPR after staggering.
a design ratei?, = 0.5 after puncturing. The resulting degree profile

M) = 0.26725z + 0.268232% + 0.075572% 4 0.2122° + 0.0278982" + 0.00615932°+
0.00116542' + 0.141732",

p(x) = 0.378562° + 0.562112° + 0.0080803z° + 0.028448z'* + 0.00953192 + 0.013267x*,

has a design rate df.323 and transmission rat@.476. The ACPR for this code is shown in
Figure 8 along with the SW region for the rate p&i0.476,0.476). These results show that

ensembles optimized using differential evolution aimadti@ve the entire SW region.

APPENDIX A

PROOF OFTHEOREM 2

We will use the following Lemma to show that the density etioln equations converge to

zero at the extremal symmetric point.

Lemma 1.

+ p(x) 1
Ng) > —F cforo<az<1-——.
P > ) 1 = N
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Proof: For0 <z < 1 — +, we have

RS s e L
o) = p+Gn(p) +1
_ptp(x) + N Z;ZNH %xi
Cu+Gyp)+1l p+Ga(p)+1
ptple) @)
p+Gn(p) +1

(7) follows from the fact that

2i—1

E (k)p '’ 1 = ;1 V! N
Z 1+p)2zl ;7 +1Z$—7N+1- <x.

. 1—x
i=N-+1 i=N-+1

The last step follows from explicit calculations, takingdraccount thad < z <1 — % [ |

From (2), the convergence criteria for the density evolution eigumais given by
> [(1 - p) + pS‘N(@ [E’)] S\N(Ev Zlf),
where AV (e, z) = A (1 — (1 — €)p™ (1 — z)). We have,

A (e, ) = e~m=erN 10

utp(l—z)
<e (1—5)#++c]§<p>+1’ if 2> % (8)
o VO PP Apr—(1-p)
2p
VI =pP+dpr—(1-p)
2p ’

where @) follows from Lemmal. The polynomialf(y) = py* + (1 — p)y — x is a convex

function ofy, with the only positive root ay = (l_p)%;;m_(l_p). So, ify < (l_p)h;;m_(l_p),

then f(y) < 0. Hence,[(1 — p) + pA(e, )] A(e,z) — z < 0 and the density evolution equation

converges, as long as> % So, the probability of erasure is upper bounded1piy .
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Note thatfo1 p™N) () dx is a monotonically increasing sequence, upper boundet-by. So,

in the limit of infinite blocklengths the design rate is given
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B @A (-9
N-o0 fol pM)(x) d p+(1=5)
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