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Abstract

We consider a noisy Slepian-Wolf problem where two correlated sources are separately encoded

(using codes of fixed rate) and transmitted over two independent binary memoryless symmetric channels.

The capacity of each channel is characterized by a single parameter which is not known at the transmitter.

The goal is to design systems that retain near-optimal performance without channel knowledge at the

transmitter.

It was conjectured that it may be hard to design codes that perform well for symmetric channel

conditions. In this work, we present a provable capacity-achieving sequence of LDGM ensembles for

the erasure Slepian-Wolf problem with symmetric channel conditions. We also introduce a staggered

structure which enables codes optimized for single user channels to perform well for symmetric channel

conditions.

We provide a generic framework for analyzing the performance of joint iterative decoding, using

density evolution. Using differential evolution, we design punctured systematic LDPC codes to max-
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imize the region of achievable channel conditions. The resulting codes are then staggered to further

increase the region of achievable parameters. The main contribution of this paper is to demonstrate that

properly designed irregular LDPC codes can perform well simultaneously over a wide range of channel

parameters.

Index Terms

LDPC codes, LDGM codes, density evolution, correlated sources, non-systematic encoders, joint

decoding, differential evolution, area theorem.

I. INTRODUCTION

Wireless sensor networks have become very popular in recentyears and are being increasingly

used in many commercial applications. A good survey of the problems involved with designing

sensor networks can be found in [1], [2]. A sensor network typically has several transceivers

(also called nodes), each of which has one or several sensors. The task of these sensor nodes

is to collect measurements, encode them, and transmit them to some data collection points.

The topology of sensor networks varies widely with the application, but typically the data from

all the nodes is transmitted to a central node, also known as agateway node, before further

processing is done on the data. This problem is often referred to as the sensor reachback problem.

There are many constraints on the size and cost of the networks, so the nodes have limited

computational capabilities, communication bandwidth etc. Hence the nodes have to perform

distributed encoding, despite having to transmit correlated data. One of the main goals in the

area of wireless sensor networks is to reduce the amount of transmitted data by taking advantage

of the correlation between the sources. In many cases, thereis generally a medium access control

(MAC) protocol in place, which eliminates interference between the different nodes. In this case,

one can assume that each node transmits through an independent channel, from the same channel

family. A simple sensor network consisting of two sensors isshown in Fig.1. This problem

of distributed encoding and transmission over independentchannels gives a noisy version of
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the celebrated Slepian-Wolf (SW) problem. The SW problem was introduced and solved in the

landmark paper [3], and shows that the optimal coding scheme suffers no loss inperformance (in

terms of rate) even in the absence of communication between the various encoders. A variety

of coding schemes have been designed that can achieve the SW bound when channel state

information is known at the transmitter.

A. Prior Work

The first practical SW coding scheme was introduced by Wyner and is based on linear

error-correcting codes [4]. Chen et al. related the SW (distributed source coding) problem to

channel coding via an equivalent channel describing the source correlation [5], [6]. Using this

observation they used density evolution to design LDPC coset codes that approach the SW

bound. Distributed source coding using syndromes (DISCUS)also provides a practical method

to transmit information for this problem when the encoding rates are restricted to the corner

points of the rate region [7].

For transmision over noisy channels, separation between source and channel coding is known

to be optimal when the channel state is known at the transmitter [8]. When the channel state is

unknown, it is still desirable to take a joint source-channel coding (JSCC) approach (via direct

channel coding and joint decoding at the receiver). The mainreason is that separate source

and channel coding requires compression of the sources to their joint entropy prior to channel

encoding. After that, the variation in one channel’s parameter cannot be offset by variation in the

other channel. Further advantages of JSCC, over separated source coding and channel coding,

are discussed further in [9].

The performance of concatenated LDGM codes has been studiedin [10] and that of Turbo

codes in [9]. Serially concatenated LDPC and convolutional codes werealso considered in [11],

where the outer LDPC code is used for distributed source coding.

November 17, 2018 DRAFT
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It was conjectured in [12] that LDPC codes do not perform well for the noisy SW problem1

and that it is hard to design codes that perform well for symmetric channel conditions. In this

work, we show a sequence of LDGM codes which approach the SW bound for symmetric

channel conditions.

B. Universality

Another interesting line of research in the area of sensor networks is the sensor location

problem. The sensor locations are optimized in order to collect the most relevant data. A

possibility of using moving sensors is present in a variety of applications, including air pollution

estimation, traffic surveillance etc. [2]. A natural consequence of this is the variation in channel

conditions as a result of sensor mobility. As a result, it maybe unreasonable to assume that

transmitters have detailed channel state information. This problem of unknown channel state at

the transmitter naturally arises in the context of many multi-user scenarios, including cellular

telephony.

For fixed user code rates, reliable communication is theoretically possible over a wide range

of channel conditions [13]. We call a systemuniversal if it provides good performance for

all system parameters that do not violate theoretical limits. This designation neglects the fact

that the receiver is assumed to have channel state information and is based on the standard

assumption that the receiver can estimate the channel statewith negligible pilot overhead. While

irregular LDPC codes can be optimized to approach capacity for any particular channel condition,

the performance can deteriorate markedly as the channel conditions change. So, we design

LDPC codes which are robust to variation in channel conditions2. Such schemes are desirable

because they minimize the outage probability for quasi-static channels (e.g., when a probability

distribution is assigned to the set of possible channel parameters).

1The authors consider only systematic LDPC codes

2Unfortunately, the LDGM codes that achieve the symmetric channel condition are not universal.
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II. PROBLEM SETUP

Consider the problem of transmitting the outputs of two discrete memoryless correlated

sources,(U1, U2), to a central receiver through two independent discrete memoryless channels

with capacitiesC1 andC2, respectively. The system model is shown in Figure1. We will assume

that the channels belong to the same channel family, and thateach channel can be parametrized

by a single parameterα (e.g., the erasure probability for erasure channels). The two encoders

are not allowed to communicate. Hence they must use independent encoding functions, which

mapk input symbols(U1 andU2) to n1 andn2 output symbols(X1 andX2), respectively. The

rates of the encoders are given byR1 = k/n1 andR2 = k/n2. The decoder receives(Y1,Y2)

and makes an estimate of(U1,U2).

The problem we consider is to design a graph-based code, for which a joint iterative decoder

can successfully decode over a large set of channel parameters. For simplicity, we assume

that both the encoders use identical codes of rateR (i.e., R = k/n, n1 = n2 = n). Reliable

transmission over a channel pair(α1, α2) is possible as long as the SW conditions (1) are

satisfied.

C1(α1)

R
≥ H(U1|U2)

C2(α2)

R
≥ H(U2|U1)

C1(α1)

R
+

C2(α2)

R
≥ H(U1, U2)

(1)

For a given pair of encoding functions of rateR and a joint decoding algorithm, a pair of

November 17, 2018 DRAFT



6 IEEE TRANSACTIONS ON COMMUNICATIONS

ǫ1

ǫ2

1−H(U1|U2)R1−H(U1)R

1−H(U2|U1)R

1−H(U2)R

symmetric channel condition

Fig. 2. The SW region for erasure channels, for a fixed rate pair (R,R)

channel parameters(α1, α2) is achievableif the encoder/decoder combination can achieve an

arbitrarily low probability of error for limiting block-lengths (i.e.,k → ∞). We define the

achievable channel parameter region (ACPR) as the set of allchannel parameters which are

achievable. Note that the ACPR is the set of all channel parameters for which successful recovery

of the sources is possible for a fixed encoding rate pair(R,R). We also define theSW region

as the set of all channel parameters(α1, α2) for which (1) is satisfied. The SW region for the

erasure channel family is shown in Figure2.

In this paper, we consider the following scenarios:

1) The channels are erasure channels and the source correlation is modeled through erasures.

2) The channels are additive white Gaussian noise (AWGN) channels and the source corre-

lation is modeled through a virtual correlation channel analogous to a binary symmetric

channel (BSC).

These models might appear restrictive, but we believe they provide sufficient insight for the

design of codes that perform well for arbitrary correlated sources and channels. Our analysis in

SectionIII admits general correlation models and memoryless channels.
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A. Erasure Correlation

The erasure system model is based on communication over binary erasure channels (BECs)

and the source correlation is also modeled through erasures. Let Z be a Bernoulli-p random

variable andX,X ′ be i.i.d. Bernoulli-1
2

random variables. The sourcesU1 andU2 are defined

by

(U1, U2) =















(X,X ′) if Z = 0

(X,X) if Z = 1

.

We haveH(U1|U2) = H(U2|U1) = 1− p andH(U1, U2) = 2− p. This correlation model can be

incorporated into the Tanner graph (see SectionIII-A , III-C) at the decoder with the presence

or absence of a check node between the source bits depending on the auxiliary random variable

Z. Note that the decoder requires the realization of the random variableZ, for each source bit,

as side information. Because of this requirement, one mightconsider this a toy model that is

used mainly to gain a better understanding of the problem. Still, a very similar model was used

recently to model internet file streaming from multiple sources [14].

This model can also be thought of as having two types of BSC correlation between the source

bits (as described in the next section), one with parameter0 and one with parameter1. The

correlation parameterp determines how many bits are correlated with parameter1. The receiver

knows which bits are correlated with parameter1.

B. BSC Correlation

A more realistic model is the BSC/AWGN system model, where communication takes place

over a binary-input additive white Gaussian-noise channel(BAWGNC) and the symmetric source

correlation is defined in terms of a single parameter, namelyp = Pr(U1 = U2). It is useful to

visualize this correlation by the presence of an auxiliary binary symmetric channel (BSC) with

parameter1 − p between the sources. In other words,U2 is the output of a BSC with inputU1

i.e., U2 = U1 + Z. HereZ is a Bernoulli-(1 − p) random variable and can be thought of as an

November 17, 2018 DRAFT
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error. Let h2(·) denote the binary entropy function. Then,H(U1|U2) = H(U2|U1) = h2(p) and

H(U1, U2) = 1 + h2(p).

This correlation model can be incorporated into the Tanner graph at the decoder (described

in SectionIII-C) as check nodes between the source bits, with a hidden node representing the

auxiliary random variableZ (which carries a constant log-likelihood ratiolog 1−p
p

) attached to

the check node. For this scenario, the decoder does not require any side information i.e., it does

not need to know the realization of the auxiliary random variableZ.

C. Existence of Universal codes

In this section, we discuss the existence of universal coding schemes, for the system model

considered in Figure1. Let Iα1(X1; Y1) andIα2(X2; Y2) denote the mutual information between

the channel inputs and outputs when the channel parameters are given byα1 and α2. The

following theorem shows the existence of codes which have large ACPRs.

Theorem 1. Consider encoders with rate pair(R,R). For a fixed pair of channel conditions

(α1, α2), which are not known at the transmitter, random coding with typical-set decoding at

the receiver can achieve an average probability of errorP̄e,α1,α2 bounded above by2−nγ(α1,α2),

where

γ(α1, α2) = min
{

Iα1(X1; Y1)− RH(U1 | U2),

Iα2(X2; Y2)−RH(U2 | U1),

Iα1(X1; Y1) + Iα2(X2; Y2)−RH(U1, U2)
}

.

Hence, there exists an encoder for which the probability of error

Pe,α1,α2 ≤ 2−nγ(α1,α2).

Proof: This follows from extending the proofs in [15] to the SW problem.
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Remark 1. A simple application of Fano’s inequality shows that any pair of channel parameters

for which γ(α1, α2) < 0 are not achievable (the probability of error is strictly bounded away

from zero). For binary memoryless symmetric (BMS) channels, the conditionγ(α1, α2) > 0

translates to the conditions in (1). So, the conditions in (1) are both necessary and sufficient for

transmission over BMS channels.

Remark 2. For BMS channels, the achievable channel parameter region for a random code is a

dense subset of the entire SW region for limiting block-lengths. This follows by using Theorem1

and applying the Markov inequality. This result is also easily extended to random linear codes.

We conclude that, for a given rate pair(R,R), a single encoder/decoder pair suffices to

communicate the sources over all pairs of BMS channels in theSW region. Thus, one can

obtain optimal performance even without knowledge of(α1, α2) at the transmitter. We refer to

such encoder/decoder pairs as beinguniversal. This means that random codes with typical-set

decoding are universal for BMS channels.

While random codes with typical-set decoding are universally good, encoding and decoding is

known to be impractical due to its large complexity. This motivates the search for low complexity

encoding/decoding schemes which are universal.

III. A NALYSIS

A. LDGM Codes

Assume that the sequencesU1 and U2 are encoded using LDGM codes with a degree

distribution pair(λ, ρ). Based on standard notation [16], we let λ(x) =
∑

i λix
i−1 be the degree

distribution (from an edge perspective) corresponding to the variable nodes andρ(x) =
∑

i ρix
i−1

be the degree distribution (from an edge perspective) of theparity-check nodes in the decoding

graph. The coefficientλi (resp.ρi) gives the fraction of edges that connect to the variable nodes

November 17, 2018 DRAFT
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permutationπ1

permutationπ2

ǫ1

ρ(x)

λ(x)

p

ǫ2

ρ(x)

λ(x)

Fig. 3. Tanner Graph of an LDGM (LT) Code with erasure correlation between the sources

(resp. parity-check nodes) of degreei. Likewise,Li (resp.Ri) is the fraction of variable nodes

(resp. check nodes) with degreei.

Since the encoded variable nodes are are attached to the check nodes randomly, the degree of

each variable node is a Poisson random variable whose mean isgiven by the average number

of edges attached to each check node. This mean is given bym = R′(1), whereR′(1) is the

average check degree. Therefore, the resulting degree distribution isL(x) = em(x−1). Throughout

this section, we consider the erasure correlation model described in SectionII-A .

The Tanner graph [16] for the code is shown in Fig.3. Code1 corresponds to the bottom half

of the graph, code2 corresponds to the top half and both the codes are connected by correlation

nodes at the source variable nodes. One can verify that the computation graph for decoding a

particular bit is asymptotically tree-like, for a fixed number of iterations as the blocklength tends

to infinity. This enables the use of density evolution to compute the performance of the joint

iterative decoder.

Let xℓ and yℓ denote the average erasure probability of the variable nodes at iterationℓ for

users1 and 2 respectively. The density evolution equations [16] in terms of the variable-node
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to check-node messages can be written as

xℓ+1 = [(1− p) + pL (̺(ǫ2, yℓ))]λ (̺(ǫ1, xℓ))

yℓ+1 = [(1− p) + pL (̺(ǫ1, xℓ))]λ (̺(ǫ2, yℓ)) ,

where̺(ǫ, x) = 1−(1−ǫ)ρ(1−x). Notice that, for LT codes, the variable-node degree distribution

from the edge perspective is given byλ(i)(x) = L(i)(x) becauseλ(x) , L′(x)/L′(1) = L(x),

when L(x) is Poisson. With this simplification, the density evolutionfor symmetric channel

conditions (ǫ1 = ǫ2 = ǫ) can be written as

xℓ+1=
[

(1− p) + pλ
(

1− (1− ǫ)ρ(1− xℓ)
)]

λ
(

1− (1− ǫ)ρ(1 − xℓ)
)

. (2)

This recursion can be solved analytically, resulting in theunique non-negativeρ(x) which satisfies

x =
[

(1− p) + pλ
(

1− (1− ǫ)ρ(1− x)
)]

λ
(

1− (1− ǫ)ρ(1 − x)
)

.

The solution is given by

ρ(x) =
−1

α(1− ǫ)
· log

(

√

(1− p)2 + 4p(1− x)− (1− p)

2p

)

=
1

α(1− ǫ)

∞
∑

i=1

∑i−1
k=0

(

2i−1
k

)

pk

i(1 + p)2i−1
xi,

which is not a valid degree distribution because it has infinite mean. To overcome this, we define

a truncated version of the check degree distribution via

ρN (x) =
µ+

∑N
i=1

∑i−1
k=0 (

2i−1
k )pk

i(1+p)2i−1 xi + xN

µ+GN(p) + 1

GN(p) =
N
∑

i=1

∑i−1
k=0

(

2i−1
k

)

pk

i(1 + p)2i−1
,

(3)

for someµ > 0 andN ∈ N. This is a well defined degree distribution as all the coefficients

are non-negative andρN(1) = 1. The parameterµ increases the number of degree one generator

nodes and is introduced in order to overcome the stability problem at the beginning of the

decoding process [17].

November 17, 2018 DRAFT
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Theorem 2. Consider transmission over erasure channels with parameters ǫ1 = ǫ2 = ǫ. For

N ∈ N andµ > 0, define

GN(p) =

N
∑

i=1

∑i−1
k=0

(

2i−1
k

)

pk

i(1 + p)2i−1
, andm =

µ+GN (p) + 1

1− ǫ
.

Then, in the limit of infinite blocklengths, the ensemble LDGM
(

n, λ(x), ρN(x)
)

, where

λ(x) = em(x−1) and ρN(x) =
µ+

∑N
i=1

∑i−1
k=0 (

2i−1
k )pk

i(1+p)2i−1 xi + xN

µ+GN(p) + 1
, (4)

enables transmission at a rateR = (1−ǫ)(1−e−m)
µ+1−p/2

, with a bit error probability not exceeding1/N .

Proof: See AppendixA.

From Theorem2, we conclude that the optimized ensemble LDGM
(

n, λ(x), ρN(x)
)

can

achieve the extremal symmetric point of the capacity region. Unfortunately, one can show that

this ensemble cannot simultaneously achieve both the extremal symmetric point and the corner

points of the SW region. In Figure4, this can also be observed numerically via the density

evolution ACPR (DE-ACPR) of this ensemble forN = 2048.

B. Puncturing and LDPC Codes

In [18], it is shown that correlated codes are suboptimal when transmitting correlated sources

over independent channels. The conditions in (1) implicitly assume the use of uncorrelated codes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.4

0.5

0.6
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0.9

1
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ǫ 2

Fig. 4. ACPR (Density Evolution threshold) of the optimized(erasure channel) LT Code withN = 2048
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Fig. 5. Tanner Graph of an LDPC Code with source correlation

i.e., we require the average mutual information (over the code ensemble)I(X1;X2) = 0.

This condition is clearly not satisfied when we use a systematic LDPC ensemble. This also

explains the loss in performance of systematic LDPC codes when compared to Turbo codes, as

shown in [12]. To ensure the independence of the transmitted symbols, weuse LDPC ensembles

with punctured systematic encoders.

C. Density Evolution for LDPC codes

Assume that the sequencesU1 andU2 are encoded using LDPC codes with a degree distri-

bution pair(λ, ρ) and a punctured systematic encoder. Let the fraction of punctured (systematic)

bits beγ.

The Tanner graph [16] for the joint decoder is shown in Figure5. Codes1 and2 correspond

to the bottom and top half of the graph. The codes are connected by correlation nodes attached

to the punctured bits. The joint iterative decoder proceedsin rounds, by alternating one round

of decoding for code1 with one round of decoding for code2. Let aℓ andbℓ denote the density3

of the messages emanating from the variable nodes at iteration ℓ, corresponding to codes1 and

3Assuming that the transmission alphabet is{±1}, the densities are conditioned on the transmission of a+1.
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2. The density evolution equations [16] can be written as follows

aℓ+1 =
[

γf
(

L (ρ(bℓ))
)

+ (1− γ)aBMSC

]

� λ(ρ(aℓ))

bℓ+1 =
[

γf
(

L (ρ(aℓ))
)

+ (1− γ)bBMSC

]

� λ(ρ(bℓ)),

(5)

whereλ(a) =
∑

i λia
�(i−1), L(a) =

∑

i Lia
�(i−1), ρ(a) =

∑

i ρia
�(i−1), aBMSC andbBMSC are the

densities of the log-likelihood ratios received from the channel. The functionf at the correlation

nodes depends on the equivalent channel corresponding to the correlation model, as described

in [5]. Although one cannot assume that the all-zero codeword is sent simultaneously by both

users, one can show that this DE recursion suffices for typical message pairs.

First consider the BSC correlation model. By symmetry of theproblem, we can assume that

user1 transmits the all-zero codeword and the second user transmits a typical codeword. Due

to the constraints imposed by the correlation, the fractionof ones in the systematic part of the

codeword is1−p. Density evolution proceeds with two types of messages (those connected to a

variable node with transmitted value+1 and those connected to a variable node with transmitted

value−1). By symmetry of the message passing rules [16, p. 210], we can factor out the sign for

the messages connected to variable nodes with transmitted value−1. This sign can be factored

into the correlation node (once again by the symmetry condition). The fraction of correlation

nodes which are flipped is1−p. So, we introduce a parity-check at the correlation nodes which

evaluates to a Bernoulli-p random variable i.e.,f(a) = aBSC(p) � a. This simplification enables

us to proceed with density evolution assuming the transmission of an all-zero codeword for both

the users.

Note that such a simplification is not necessary for the erasure correlation model. For a BEC

correlation with probabilityp, there is a parity-check at the correlation node with probability p

and with probability1− p there is no parity-check, sof(a) = (1− p) + pa.

The residual error probability at iterationℓ, (eℓ1, e
ℓ
2), is computed using the error functional

DRAFT November 17, 2018
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E(·) defined in [16, p. 201]:

eℓ1 = E

([

γf
(

L (ρ(bℓ))
)

+ (1− γ)aBMSC

]

� L(ρ(aℓ))
)

eℓ2 = E

([

γf
(

L (ρ(aℓ))
)

+ (1− γ)bBMSC

]

� L(ρ(bℓ))
)

.

D. Staggered Block Codes

It is well known that single-user codes perform well at the corner points of the SW region.

Although single-user codes do not perform well for symmetric channel conditions, they can

be used to construct staggered codes that perform well at thecorner points and for symmetric

channel conditions. Consider2 sources withLk+(1−β)k bits each. Without loss of generality,

add βk zeros at the beginning for sourceU1 and addβk zeros at the end for sourceU2, to

get (L+ 1)k bits. We callβ the staggering fraction. Next encode each block ofk bits using a

punctured(n−k, k) LDPC code. The rate loss incurred by the addition ofβk zeros can be made

arbitrarily small by increasing the number of blocksL. At the decoder, one has the following

structure: The performance of this staggered structure canbe understood by considering the

erasure case in the limitL → ∞.

Theorem 3. Consider transmission over erasure channels with erasure rates(ǫ1, ǫ2) using ca-

pacity approaching punctured(n−k, k) LDPC codes. The staggered block code (with staggering

fraction β) allows reliable communication for channel parameters

ǫ1 ≤ min{1− R(1− β), 1− R(1− pβ)}, and

ǫ2 ≤ 1−R(1− p(1− β)),

whereR = k/(n− k) is the design rate of the code.

Proof: Consider the first block for sourceU1. The parity bits see a BEC(ǫ1) channel and

the source bits see an effective BEC(1 − β) channel (assuming no information comes from the

November 17, 2018 DRAFT
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n− k
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n− k
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1
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parity bits

punctured systematic bits
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Fig. 6. Decoder structure for staggered codes

decoder on the other side). So the effective erasure rate at the first block is(1−R′)ǫ1+R′(1−β)

(R′ = k/n is the rate of the code before puncturing). The code can decode as long asR′ ≤

1 − ((1 − R′)ǫ1 + R′(1 − β)) i.e., ǫ1 ≤ 1 − R(1 − β). Suppose the first block ofU1 can

decode successfully, then the source bits in the first block of U2 see an effective channel of

(1 − β)(1− p) + β. The parity bits see a channel with erasure probabilityǫ2. So, the effective

channel seen by the first block of the second code is(1−R′)ǫ2+R′(1−p(1−β)). So this block

can be decoded as long asǫ2 ≤ 1 − R(1 − p(1 − β)). The decoding continues by alternating

between blocks ofU1 andU2. This proves the claim.

Corollary 1. Consider transmission over erasure channels using capacity approaching punctured

(n − k, k) LDPC codes. The staggered block code (with staggering fraction β = 1/2) allows

reliable communication at both the corner points and the symmetric channel condition.
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Proof: The proof follows by matching the conditions of the previoustheorem to a corner

point and the extremal symmetric point of the SW region.

For general channels we can analyze the performance of the staggered code using density

evolution. Let i ∈ {1, . . . , L} and a
(i)
ℓ and b

(i)
ℓ denote the density of the messages emanating

from the variable nodes at iterationℓ, corresponding to codes1 and 2 in block i. The DE

equations can be written as follows:

a
(i)
ℓ+1 =

[

γ
(

βf
(

L
(

ρ(b
(i−1)
ℓ )

))

+ (1− β)f
(

L
(

ρ(b
(i)
ℓ )
)))

+ (1− γ)aBMSC

]

� λ(ρ(aℓ))

b
(i)
ℓ+1 =

[

γ
(

(1− β)f
(

L
(

ρ(a
(i)
ℓ )
))

+ βf
(

L
(

ρ(a
(i+1)
ℓ )

)))

+ (1− γ)bBMSC

]

� λ(ρ(bℓ)).

(6)

Here,a(i)ℓ , b
(i)
ℓ = ∆+∞ (the delta function at∞) for i /∈ {1, . . . , L}.

E. Differential Evolution

Throughout this section, we usex to denote an element ofRn for somen ∈ N, andxi to

denote itsith component. LetV = {i | λi 6= 0} and P = {i | ρi 6= 0} be the support sets of

the variable and parity-check degree distributions respectively, which are assumed to be known.

The correlation parameterp is fixed. We design LDPC codes for this scenario using differential

evolution [19], for a design rateRd. Let

∆n−1 =

{

x ∈ R
n

∣

∣

∣

∣

∣

n
∑

i=1

xi = 1, xi ≥ 0, i = 1, · · · , n
}

denote the unit simplex andnv = |V|, np = |P|. Then, the search space for all variable (check)

degree profiles is∆nv−1 (∆np−1). The optimization is performed over the search spaceS =

∆nv−1 × ∆np−1, with parameter vectorsx = [xλ, xρ]
4, where xλ ∈ ∆nv−1, xρ ∈ ∆np−1. In

our optimization procedure, we expand the search space toS ′ = {x ∈ R
nv+np,

∑

i(xλ)i =

1,
∑

i(xρ)i = 1}, for simplicity in the crossover stage. We generate an initial population of trial

degree distributions by uniformly sampling the degree distributions from the unit simplex.

4(xλ,V) and (xρ,P) correspond to the variable and parity node degree profiles respectively.
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Let C be a finite subset of channel parameters(α1, α2) that correspond to the sum rate

constraint of the SW conditions for a design rateRd. Let Γ : S ′ × C → [0, 1] × [0, 1],

(x, α1, α2) 7→ (e1, e2) be the function that gives the residual error probability5 (using joint

density evolution as described in SectionIII-C) for each decoder, for a pair of codes with degree

distributionx (i.e., (xλ, xρ)), when transmitted over channels with parameters(α1, α2). We use

discretized density evolution [21]6 to compute the performance of an ensemble.

For our design, we want the code to achieve an arbitrarily lowprobability of error onC and

we want the rate of the codeR(x) to be as close to the design rateRd as possible. So, we define

the cost function,

F(x) = a ·





∑

(α1,α2)∈C

(

1− 1{(α1,α2)|Γ(x,α1,α2)�(τ,τ)}

)



 + b · (Rd −R(x)),

if x ∈ S and F(x) = ∞, if x ∈ S ′\S. The constantsa and b are chosen through trial and

error. The parameters chosen for the designs considered in this paper areτ = 10−5, a = 10 and

b = 30. The optimization is then setup asminx∈S′ F(x).

We use a variant of differential evolution, with the mutation and recombination scheme given

in [20]. The resulting codes are then staggered as described in Section III-D .

IV. RESULTS AND CONCLUDING REMARKS

This paper shows that the SW conditions are necessary and sufficient for communication of

correlated sources through independent BMS channels, without channel state information at the

transmitter. This implies that a single random code is sufficient to communicate with vanishing

probability of error, for the entire SW region. We showed theachievability of the symmetric

5We set the maximum number of iterations to100 for all the designs considered in this paper. Density evolution is stopped

when the maximum number of iterations is reached or the difference in the residual error probability between successiveiterations

is less than10−8.

6A 9 bit linear quantization is used over a likelihood ratio range [−20, 20]
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channel condition under message passing by providing a sequence of LDGM ensembles which

can achieve an arbitrarly low probability of error.

We designed punctured systematic LDPC codes for the scenarios described in SectionII .

The design was performed to maximize the ACPR, in contrast toprevious work. For the erasure

correlation model, the optimization was performed for a design rate ofRd = 0.57 after puncturing

and source correlationp = 0.5. The resulting degree profile

λ(x) = 0.3633x+ 0.2834x2 + 0.2315x6 + 0.1217x19,

ρ(x) = 0.531776x3 + 0.468224x5,

has a design rate of0.3308 and transmission rate0.4962. The ACPR for this code is shown

in Figure 7 along with the SW region for the rate pair(0.4962, 0.4962). This shows optimized

ensembles can achieve a large portion of the SW region.

The BSC source correlation parameter wasp = 0.9 and the optimization was performed for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ǫ1

ǫ 2

Fig. 7. ACPR (Density Evolution threshold) of an optimized (erasure channel) LDPC Code of rate0.3308 is shown in blue.

The grey area is the ACPR after staggering.
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Fig. 8. ACPR (Density Evolution threshold) of an optimized (AWGN channel) LDPC Code of rate0.323 is shown in blue.

The grey area is the ACPR after staggering.

a design rateRd = 0.5 after puncturing. The resulting degree profile

λ(x) = 0.26725x+ 0.26823x2 + 0.07557x3 + 0.212x6 + 0.027898x7 + 0.0061593x8+

0.0011654x14 + 0.14173x19,

ρ(x) = 0.37856x3 + 0.56211x5 + 0.0080803x9 + 0.028448x14 + 0.0095319x19 + 0.013267x24,

has a design rate of0.323 and transmission rate0.476. The ACPR for this code is shown in

Figure 8 along with the SW region for the rate pair(0.476, 0.476). These results show that

ensembles optimized using differential evolution almost achieve the entire SW region.

APPENDIX A

PROOF OFTHEOREM 2

We will use the following Lemma to show that the density evolution equations converge to

zero at the extremal symmetric point.

Lemma 1.

ρN(x) >
µ+ ρ(x)

µ+GN (p) + 1
, for 0 ≤ x < 1− 1

N
.
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Proof: For 0 ≤ x < 1− 1
N

, we have

ρN(x) =
µ+

∑N
i=1

∑i−1
k=0 (

2i−1
k )pk

i(1+p)2i−1 xi + xN

µ+GN(p) + 1

=
µ+ ρ(x) + xN

µ+GN (p) + 1
−
∑∞

i=N+1

∑i−1
k=0 (

2i−1
k )pk

i(1+p)2i−1 xi

µ+GN(p) + 1

>
µ+ ρ(x)

µ+GN (p) + 1
. (7)

(7) follows from the fact that

∞
∑

i=N+1

∑i−1
k=0

(

2i−1
k

)

pk

i(1 + p)2i−1
xi <

∞
∑

i=N+1

xi

i
<

1

N + 1

∞
∑

i=N+1

xi =
1

N + 1
· x

N+1

1− x
< xN .

The last step follows from explicit calculations, taking into account that0 ≤ x < 1− 1
N

.

From (2), the convergence criteria for the density evolution equation is given by

x >
[

(1− p) + pλ̄N(ǫ, x)
]

λ̄N(ǫ, x),

whereλ̄N(ǫ, x) = λ
(

1− (1− ǫ)ρN (1− x)
)

. We have,

λ̄N (ǫ, x) = e−m(1−ǫ)·ρN (1−x)

≤ e
−m(1−ǫ) µ+ρ(1−x)

µ+GN (p)+1 , if x ≥ 1

N
(8)

< e−µ ·
√

(1− p)2 + 4px− (1− p)

2p

<

√

(1− p)2 + 4px− (1− p)

2p
,

where (8) follows from Lemma1. The polynomialf(y) = py2 + (1 − p)y − x is a convex

function ofy, with the only positive root aty =

√
(1−p)2+4px−(1−p)

2p
. So, if y <

√
(1−p)2+4px−(1−p)

2p
,

then f(y) < 0. Hence,
[

(1− p) + pλ̄(ǫ, x)
]

λ̄(ǫ, x) − x < 0 and the density evolution equation

converges, as long asx ≥ 1
N

. So, the probability of erasure is upper bounded by1/N .
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Note that
∫ 1

0
ρ(N)(x) dx is a monotonically increasing sequence, upper bounded by1− p

2
. So,

in the limit of infinite blocklengths the design rate is givenby

R = lim
N→∞

∫ 1

0
λ(x) dx

∫ 1

0
ρ(N)(x) dx

=
(1− ǫ)(1− e−α)

µ+ (1− p
2
)

.
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