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Abstract—Energy efficiency (EE) is undoubtedly an important
criterion for designing power-limited systems, and yet in a context
of global energy saving, its relevance for power-unlimited systems
is steadily growing. Equally, resource allocation is a well-known
method for improving the performance of cellular systems. In
this paper, we propose an EE optimization framework for the
downlink of planar cellular systems over frequency-selective
channels. Relying on this framework, we design two novel low-
complexity resource allocation algorithms for the single-cell and
coordinated multi-cell scenarios, which are EE-optimal and EE-
suboptimal, respectively. We then utilize our algorithms for
comparing the EE performance of the classic non-coordinated,
orthogonal and coordinated multi-cell approaches in realistic
power and system settings. Our results show that coordination
can be a simple and effective method for improving the EE
of cellular systems, especially for medium to large cell sizes.
Indeed, by using a coordinated rather than a non-coordinated
resource allocation approach, the per-sector energy consumption
and transmit power can be reduced by up to 15% and more
than 90%, respectively.

Index Terms—Energy efficiency, resource allocation, cellular
system, multi-user, realistic power model.

I. INTRODUCTION

For decades, spectral efficiency (SE) has been one of the

main criterion for designing reliable and scalable communi-

cation systems. In the current context of C02 reduction and

energy saving, energy efficiency (EE) is gradually becoming as

important as SE for the development of future communication

systems, e.g. LTE-advanced [1]. Although EE is nowadays

a very trendy topic in communications [2]–[4], it is not by

any means a new concept. Indeed, EE is already an important

design criterion for power-limited as well as battery-driven

systems and, consequently, many EE studies related to these

topics can be found in the literature [5]–[7]. However, it still

represents a new frontier for power-unlimited communication

systems, such as cellular networks [8], [9]. This new interest

in EE for power-unlimited systems can be explained by

two factors; first, the ICT community aims at drastically

decreasing its carbon footprint; second, network operators

focus hard on reducing their operational costs. Adapting the

energy consumption of such power-unlimited systems to their
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environment, i.e. channel conditions, user distributions, quality

of service, etc., can be beneficial for meeting both these

targets.

Such an adaptation can be performed through resource

allocation and/or link adaptation by taking a full advantage of

the channel state information. In the past, resource allocation

has been extensively utilized for improving the SE or peak

rate performance of communication systems [10], [11], but

with little if any consideration about the energy consumption.

With the growing importance of the EE as a system design

criterion, EE-based allocation is gaining momentum over SE-

based allocation [12]–[17]. When considering a transmission

over a frequency selective channel in a single-cell scenario, or

more generally the orthogonal multi-user channel (OMC), the

SE-optimal power and rate allocation can simply be obtained

through the classic water-filling algorithm [10], [18]. In order

to obtain the EE-optimal resource allocation for the uplink of

the OMC and, hence, saving user energy, the work in [13]

proposed an iterative gradient search algorithm. This work

assumed a linear power consumption model that served as a

basis for its EE-based objective function. This work has then

been revisited in [14] when considering a more complex power

model. It has also recently been simplified and extended into

a scheduling algorithm in [16]. Concerning the downlink of

the OMC, a framework for optimizing the EE in an elastic

traffic scenario has been introduced in [15]. Moreover, we

have recently proposed an EE-based optimization framework

for the broadcast channel in [17]. In a multi-cell context, multi-

site coordination and cooperation [19], [20] can be beneficial

to mitigate or even take advantage of the interference in the

downlink of cellular systems and, thus, improve the SE and/or

EE performance. For instance in [21] and [22], [23], SE-based

coordinated resource allocation strategies have been developed

for multi-cell OFDM and OFDMA systems, respectively.

In this paper, we propose an EE optimization framework

for the downlink of cellular systems over frequency-selective

channel. Relying on this framework, we design two novel

low-complexity EE-based resource allocation algorithms for

the single-cell and coordinated multi-cell scenarios. In the

single-cell scenario, we propose an EE-optimal algorithm for

the downlink of the OMC by taking into account the total

energy consumed within the cell rather than solely the users’

power as in [13] and [14]. We prove the convexity of our

objective function and derive the explicit formulations of the

optimal users’ power and rate for the unconstrained as well

as power and rate constrained cases. In turn, we use these

expressions for demonstrating that equal power allocation is
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both the most energy and spectral efficient strategy over the

OMC when the channel gain-to-noise ratio is high. Moreover,

our algorithm does not rely on a time-consuming iterative

method as in [13]; its complexity is similar to that of the

water-filling method. In the coordinated multi-cell scenario,

we propose a suboptimal algorithm by taking into account the

total energy consumed within a cluster of cells. We prove the

convexity of our objective function and use some symmetry

considerations on the cellular planar layout to come up with

a low-complexity algorithm based on the Newton-Raphson

method.

The rest of the paper is organized as follows. Section II

describes the downlink cellular EE framework, i.e. the cellular

system and power models, which is then used to formulate our

energy-based objective functions, i.e. by considering the Joule-

per-bit metric. In Section III, we propose our EE optimization

framework and demonstrate that under certain assumptions

both constrained and unconstrained EE optimization problems

can be greatly simplified, i.e. these multivariate problems

can be transformed into single variate problems. Based on

this framework, we propose two novel EE-based resource

allocation algorithms for the downlink of cellular systems in

Section IV. We then utilize our algorithms for comparing

the non-coordinated, orthogonal and coordinated multi-cell

allocation approaches in realistic power and system settings.

Our results indicate that coordination can be an effective

method for improving the EE of cellular systems, in particular

for medium to large cell sizes and when the main bulk of the

users are close to their serving access point. Coordination can

reduce the energy consumption and transmit power by up to

15% and more than 90%, respectively, in comparison with

the non-coordinated approach. A preliminary version of this

paper is available in [24]. Herein, we have generalized our

EE optimization framework to multi-cell systems, extended

our single-cell resource allocation algorithm for the rate con-

strained case, proposed a novel energy-efficient algorithm for

the coordinated multi-cell scenario, and compared our energy-

efficient strategies in a cellular layout.

II. CELLULAR SYSTEM EE FRAMEWORK

A. System Model

We consider the downlink of a planar cellular system, where

sectorized base stations (BSs) with one antenna per sector

communicate over a frequency-selective and block faded chan-

nel with user equipments (UEs) having a single antenna. More

specifically, we consider a regular and symmetric cellular grid

layout, as it is depicted in Fig. 1, where M BSs serve K UEs

spread over M = 3M sectors such that each sector contains

Km users, with K =
∑M

m=1Km. Assuming that accurate

channel state information is available at both BS and UE ends,

the channel capacity per unit bandwidth of the k-th user within

the m-th sector can be expressed as [25]

Cm,k = log2

(
1 +

g
υ(m)
m,k pm,k

Γ(σ2 + Im,k)

)
, (1)

where g
υ(m)
m,k is the channel gain between the υ(m)-th BS and

the k-th user of sector m, υ(m) = ⌈m/3⌉ with ⌈.⌉ being
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Fig. 1. Cellular system hexagonal layout.

the ceil operator, such that the n-th BS serves UEs in sectors

3n−2, 3n−1 and 3n. In addition, σ2 is the noise power, Im,k

accounts for the interference and Γ represents the signal-to-

noise ratio gap between the channel capacity and a practical

coding and modulation scheme as in [13]. Moreover, m ∈
M = {1, . . . ,M} and k ∈ Km = {1, . . . ,Km}, where M
and Km are the sets of sector and user per sector indices,

respectively. Conversely, the transmit power of the k-th user

within the m-th sector, pm,k, can be given based on (1) as

pm,k =
(
2Cm,k − 1

)(
g
υ(m)
m,k

)−1

Γ(σ2 + Im,k). (2)

Consequently, the total transmit power and sum-rate of the

system can be respectively given by

P (C)=Γ

M∑

m=1

Km∑

k=1

(
2Cm,k− 1

)(
g
υ(m)
m,k

)−1

(σ2+Im,k) and (3a)

RΣ(P)=W

M∑

m=1

Km∑

k=1

log2

(
1 +

g
υ(m)
m,k pm,k

Γ(σ2 + Im,k)

)
, (3b)

where P = [p1,1, . . . , pm,Km
, . . . , pM,KM

] � 0 and C =
[C1,1, . . . , Cm,Km

, . . . , CM,KM
]�0.

B. EE-SE trade-off and power consumption

The existence of a trade-off between EE and SE [26] implies

that EE and SE cannot be optimized separately. Indeed, in

order to jointly optimize these two quantities, one has first to

obtain its EE-SE trade-off explicit expression and use it as an

objective function. In theory, the EE-SE trade-off of a point-to-

point communication system consuming a total power of PΣ

Watt for achieving a total rate of RΣ bit/s over a bandwidth

W (Hz) can be formulated as [26]

Eb

N0
=
C−1(C)

C , (4)

when only the radio frequency (RF) power of the transmitter

is considered as consumed power, i.e. PΣ = P . In addition,

Eb (Joule) is the transmitted energy per information bit, N0
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(Joule) is the noise spectral density, C is the channel capacity

per unit bandwidth of the system and C−1(C) is its inverse

function such that C−1(C) = P/σ2, where σ2 = N0W .

In a traditional cellular system composed of BS and UE

nodes, the total power consumption cannot be reduced only to

the RF power. Notably, it has recently been indicated in various

works [9], [27], [28] that the total consumed power of a BS

accounts for various components such as a transceiver, power

amplifier (PA), baseband interface, signal processing unit,

power supply regulator and cooling system. These works have

also shown that even though PAs are usually non-linear, the

relation between the RF output power and BS total consumed

power can be linearly abstracted as [9]

PBS = ∆BSP + tPCi
BS , (5)

where ∆BS and PCi
BS accounts for the RF dependent slope

and circuit (fixed) power consumptions, respectively, and t is

the number of transmit antennas at the BS. In addition, the

transmit power, i.e. RF output power, P ∈ [0, tPmax] with

Pmax being the maximum RF output power. As it has been

indicated in [13], the total consumed power of an UE with one

antenna can also be modeled via a linear relation, such that

PUE = ∆UEP + PCi
UE . (6)

Thus, the total power that is consumed by all the nodes in

the cellular system for transmitting and receiving data can be

linearly abstracted as

PΣ(C) = ∆P (C) + Pc, (7)

when assuming the power models in (5) and (6) for all

the BSs and UEs in the system, respectively. Moreover,

∆ = ∆BS, Pc = Pc(K) = MPCi
BS + ςKPCi

UE or ∆ = ∆UE,

Pc = Pc(K) = KPCi
UE + ςMPCi

BS in the downlink or uplink

scenario, respectively, where ς characterizes the ratio between

transmission and reception overhead powers with 0 ≤ ς ≤ 1.

Intuitively, less overhead power is necessary for receiving than

for transmitting signals.

According to (4), the energy consumption, Eb, or EE, 1/Eb,

is simply the ratio of the total consumed power to the sum-rate

such that the EE-SE trade-off can be generalized as

Eb(C) =
∆P (C) + Pc

WC1T
or (8a)

Eb =




Eb(P) =
∆P1T + Pc

RΣ(P)
(8b)

for the whole cellular system, where 1 is a 1×K vector of

ones and {.}T is the transpose operator.

III. EE OPTIMIZATION FRAMEWORK

In this section, we first provide a framework for solving the

unconstrained EE optimization problem in a simple manner

by showing how to simplify it into a single variate problem

under certain conditions. We then extend this framework to

the power and rate constrained scenarios.

A. Unconstrained Optimization

Theorem 1: Assuming that:

1) Eb in (8) is a convex function of C or P;

2) The partial derivatives of each user interference are equal

to each other, i.e.
∂Im,k

∂Cm,k
=

∂Im,k

∂Cn,l
and

∂Im,k

∂pm,k
=

∂Im,k

∂pn,l

for any (m,n) ∈ M2, (k, l) ∈ K2
m, m 6= n and k 6= l;

3) there is at least one active user in the system, e.g. the

l-th user of sector n;

then the optimal unconstrained EE can be expressed solely as

a function of the power or rate of the l-th user of sector n
such that

∆P (C⋆
n,l)+P

⋆
c

W

(
K⋆

[
C⋆
n,l+log2

(
Γ
(
g
υ(n)
n,l

)−1

(σ2+In,l)

)]
−β
) , (9a)

E⋆
b =





∆

[
K⋆

(
p⋆n,l+Γ

(
g
υ(n)
n,l

)−1

(σ2+In,l)

)
−α
]
+P ⋆

c

RΣ(p⋆n,l)
,(9b)

where

P (C⋆
n,l) = K⋆Γ

(
g
υ(n)
n,l

)−1

(σ2 + In,l)2
C⋆
n,l − α, (10a)

RΣ(p
⋆
n,l) =W

(
K⋆ log2

(
p⋆n,l + Γ

(
g
υ(n)
n,l

)−1

× (σ2 + In,l)

)
− β

)
, (10b)

α = Γ

M∑

m=1

∑

k∈K⋆
m

(
g
υ(m)
m,k

)−1

(σ2 + Im,k) and (10c)

β =

M∑

m=1

∑

k∈K⋆
m

log2

(
Γ
(
g
υ(m)
m,k

)−1

(σ2 + Im,k)

)
. (10d)

Moreover, C⋆
n,l and p⋆n,l are the optimal values of Cn,l and pn,l,

respectively, P ⋆
c = Pc(K

⋆), K⋆ is the optimal number of allo-

cated users such that K⋆ =
∑M

m=1K
⋆
m with 1 ≤ K⋆

m ≤ Km

for any m ∈ M, K⋆
m = |K⋆

m| and K⋆
m = {k ∈ Km|C⋆

m,k > 0}
is the optimal set of per-sector allocated user indices.

In other words, under the three conditions listed above, the

multivariate problem of finding the optimal unconstrained EE

can be transformed into a single variate problem, which can

then be solved in a straightforward manner by using a binary

search algorithm [18] for finding K⋆. Note that equation (9)

implicitly assumes the existence of at least one active user in

the system, i.e. a user with a non-zero rate. Indeed, the energy

consumption would go to infinity in (8) if no user is active

in the system. Moreover, having sectors with no active user

is not energy efficient either, and simple mechanisms can be

used to disable temporarily such a sector [29], [30].

Proof: Assuming that Eb is a convex function, it im-

plies that there exists a unique C and P for which Eb is

optimal over its entire domain. Let C
⋆ and P⋆ be these

optimum values of C and P, respectively, they then satisfy

∇Eb(C
⋆) = 0 and ∇Eb(P

⋆) = 0 such that
∂Eb(C

⋆)
∂Cm,k

=
∆

WC⋆
1T

∂P (C⋆)
∂Cm,k

− WPΣ(C⋆)

(WC⋆
1T )2

= 0 and
∂Eb(P

⋆)
∂pm,k

= ∆
RΣ(P⋆) −
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∆P
⋆
1
T+P⋆

c

RΣ(P⋆)2
∂RΣ(P⋆)
∂pm,k

= 0. In turn, it implies that

E⋆
b = Eb(C

⋆) =
∆

W

∂P (C⋆)

∂Cm,k
and (11a)

1

E⋆
b

=
1

Eb(P⋆)
=

1

∆

∂RΣ(P
⋆)

∂pm,k
(11b)

for any m ∈ M and k ∈ K⋆
m. Relying on the definition of

P (C) in (3a),
∂P (C⋆)
∂Cm,k

= ∂P (C⋆)
∂Cn,l

is equivalent to

M∑

i=1

∑

j∈K⋆
i

∂Ii,j
∂Cm,k

(
g
υ(i)
i,j

)−1 (
2C

⋆
i,j − 1

)
+ln(2)

(
g
υ(m)
m,k

)−1

× 2C
⋆
m,k(σ2 + Im,k) = ln(2)

(
g
υ(n)
n,l

)−1

2C
⋆
n,l(σ2 + In,l)

+

M∑

i=1

∑

j∈K⋆
i

∂Ii,j
∂Cn,l

(
g
υ(i)
i,j

)−1 (
2C

⋆
i,j − 1

)
,

which yields the following relation between C⋆
n,l and C⋆

m,k

C⋆
m,k = C⋆

n,l + log2

(
g
υ(m)
m,k (σ2 + In,l)

g
υ(n)
n,l (σ2 + Im,k)

)
(12)

if
∂Im,k

∂Cm,k
=

∂Im,k

∂Cn,l
for any (m,n) ∈ M2, (k, l) ∈ K⋆2

m , m 6= n

and k 6= l. Similarly, relying on the definition of RΣ(P) in

(3b),
∂RΣ(P⋆)
∂pm,k

= ∂RΣ(P⋆)
∂pn,l

yields

p⋆m,k=p
⋆
n,l+Γ

[(
g
υ(n)
n,l

)−1

(σ2+In,l)−
(
g
υ(m)
m,k

)−1

(σ2+Im,k)

]

(13)

if
∂Im,k

∂pm,k
=

∂Im,k

∂pn,l
for any (m,n) ∈ M2 (k, l) ∈ K⋆2

m , m 6= n

and k 6= l. We then obtain that P (C⋆) = P (C⋆
n,l) in (10a) and

RΣ(P
⋆) = RΣ(p

⋆
n,l) in (10b) by inserting (12) and (13) into

(3a) and (3b), respectively. Next, equations (9a) and (9b) are

obtained by inserting the latter results as well as (12) and (13)

into (8a) and (8b), respectively.

B. Constrained Optimization

Thus far, we have shown that the EE optimization problem

can be greatly simplified in the unconstrained case; in the

following, we discuss the power and rate constrained cases.

Assuming a per-sector transmit power constraint, the EE

optimization problem is given by

min
P

Eb(P)

s.t. P � 0,Pm1T ≤ Pmax, ∀m ∈ M,
(14)

where Pm = [01×ϕm , pm,1, . . . , pm,Km
,01×(K−ϕm−Km)] is

the per-sector vector of transmit power, ϕm =
∑m−1

i=1 Ki

and 01×ϕm is a 1 × ϕm vector of zeros. As long as the

unconstrained optimal per-sector total power, P⋆
m1T , is below

Pmax for any sector, then the EE optimization problem in

(14) is equivalent to the unconstrained problem, which can

be possibly solved by using (9b). At the other extreme,

if all the antennas of all the BSs transmit at full power

then P1T = MPmax in (8b) and Eb(P) is equivalent to
M∆Pmax+Pc

RΣ(P) such that (14) reverts to maximizing RΣ(P)

subject to P1T = MPmax, i.e. a classic SE maximization

problem, which can solved via the water-filling method in

absence of interference (see example 5.2 of [18]). In the first

stage of the method, Karush-Kuhn-Tucker (KKT) conditions

are utilized to obtain the following equality

∂RΣ(P
⋆)

∂pm,k
= ν⋆, (15)

where
∂RΣ(P)
∂pm,k

=W

[
ln(2)

(
pm,k + Γσ2

(
g
υ(m)
m,k

)−1
)]−1

in

absence of interference and ν⋆ is the Lagrange multiplier for

the equality constraint. Consequently, the optimum per-user

power allocation is given by

p⋆m,k =

[
W (ln(2)ν⋆)−1 − Γσ2

(
g
υ(m)
m,k

)−1
]

+

, (16)

where (ν⋆)−1 represents the water-level and [x]+ =
max{x, 0}. Comparing equations (15) with (11b) indicates

that the unconstrained EE optimization problem can be solved

in a similar manner as in (16), but where (ν⋆)−1 = E⋆
b∆

−1

such that E⋆
b∆

−1 acts as a water-level.

Similarly, when assuming a per-sector sum-rate constraint,

the EE optimization problem is given by

min
C

Eb(C)

s.t. C � 0,WCm1T ≥ Rmin, ∀m ∈ M,
(17)

where Cm = [01×ϕm , Cm,1, . . . , Cm,Km
,01×(M−ϕm−Km)] is

the per-sector vector of channel capacity per unit bandwidth.

Following the same analysis as in the power-constrained case,

as long as WC
⋆
m1T is above Rmin for any sector then (17)

is equivalent to the unconstrained problem. However, in the

case that all the sectors achieve only the minimum sum-

rate, WC1T = MRmin in (8a) and Eb(C) is equivalent to
∆P (C)+Pc

MRmin
such that the optimization problem in (17) reverts to

minimizing P (C) subject to WC1T = MRmin, i.e. a classic

power minimization problem, which can also be solved via

water-filling in absence of interference.

The EE optimization problem becomes either a joint EE/rate

or EE/power problem when either some antennas transmit at

less than full power or some sectors achieve more than the

minimum sum-rate, respectively. Thus, EE optimization is a

generalization of both SE and power optimizations such that

the global optimal EE solution is the optimal unconstrained

EE solution. Enforcing rate or power constraints on EE can

provide either a SE or power optimal solution, which is

however only suboptimal in terms of EE. In other words, in

an ideal energy-efficient system, no antennas should transmit

at full power for meeting and keeping quality of service.

IV. USE CASE SCENARIOS

In the previous section, we proposed a generic EE optimiza-

tion framework for the downlink of cellular systems. We apply

it here for designing low-complexity EE-based resource allo-

cation algorithms in two specific scenarios: single-sector/cell

with no interference and multi-sector/cell coordination.

A. Single-cell EE optimization

Optimizing the EE of the whole cellular system requires that

each BS knows the channel gain and interference of all the
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links in the system, which is not a realistic assumption. A more

realistic assumption would be to consider that each BS knows

only the channel gains of its own cell users and optimizes its

EE as if each cell was insulated from the others. Note that

by design each sector of a cell is insulated from the others

and, hence, the optimization can be carried out on a per-sector

basis, i.e. equivalent to a single cell with an omnidirectional

antenna. Assuming that M = 1, K = K1 and I1,k = 0 for

any k ∈ K = K1 in (3b), the per-sector sum-rate simplifies to

RΣ(P) =W
K∑

k=1

log2

(
1 +

gkpk
Γσ2

)
, (18)

which corresponds for instance to the sum-rate of a point-

to-point transmission over a closed-loop multi-input multi-

output channel with K eigenmodes as well as of a K-user

OFDMA transmission over a frequency-selective and block

faded channel. We refer this scenario as OMC scenario.

1) Convexity of Eb: Since I1,k = 0 for any k ∈ K, then

assumption 2) of Theorem I is clearly satisfied. Moreover, Eb

in (8a) simplifies to

Eb(C) = Af(C)g(C)−1 (19)

in the OMC scenario, where

f(C) = B +
K∑

k=1

(
2Ck − 1

)
g−1
k and g(C) =

K∑

k=1

Ck. (20)

In addition, A = W−1Γσ2∆ and B = Pc

Γσ2∆ . The function

g(C)−1 is log-convex if Cl > 0, i.e. at least one user is active

in the sector/cell; whereas, f(C) is log-convex for Cl > 0 and

Pc ≥ ∆α, as it is proved in the Appendix. Hence, Eb(C)
in (19) is a log-convex and, thus, convex function such that

assumption 1) of Theorem I is satisfied.

2) Unconstrained EE optimization: Since equality (11a)

holds in the OMC scenario, it yields

E⋆
b = A ln(2)g−1

l 2C
⋆
l . (21)

Inserting (21) in the left side of equality (9a) allows us to re-

expressed the latter solely as a function of C⋆
l , such that the

l-th user unconstrained EE-optimal channel capacity per unit

bandwidth over the OMC can explicitly expressed as

C⋆
l =

1

ln(2)

[
W0

(
(P ⋆

c −∆α)χe−1

K⋆Γσ2∆

)
+ 1

]
+log2

( gl
Γσ2

)
+

β

K⋆
,

(22)

where χ = Γσ22−β/K⋆

= (
∏

k∈K⋆ gk)
1/K⋆

and W0 denotes

the real branch of the Lambert function [31]. Following the

same process but using (11b) and (9b) instead of (11a) and

(9a), the l-th user unconstrained EE-optimal transmit power

can be explicitly formulated as

p⋆l = e
W0

(
(P⋆

c −∆α)χe−1

K⋆Γσ2∆

)
+1+ ln(2)β

K⋆ − Γσ2g−1
l . (23)

3) Power constrained EE optimization: In the case that the

optimal unconstrained transmit power is equal or greater than

Pmax, the optimal constrained transmit power then becomes

Pmax, such that P (C⋆) = Pmax. Consequently, (10a) can be

re-expressed as Pmax = K⋆Γσ2g−1
l 2C

⋆
l −α for M = 1, K =

K1 and I1,k = 0, ∀k ∈ K, which in turn implies that the l-th

user power constrained EE-optimal channel capacity per unit

bandwidth is given by

C⋆
l = log2 (gl(Pmax + α)) − log 2(K⋆Γσ2). (24)

4) Rate constrained EE optimization: In the case that

the optimal unconstrained sum-rate is equal or lower than

Rmin, then RΣ(P
⋆) = Rmin. Consequently, (10b) can be re-

expressed as Rmin =W (K⋆ log2(p
⋆
l + Γσ2g−1

l )− β), which

in turn implies that the l-th user rate constrained EE-optimal

transmit power is given by

p⋆l = 2
1

K⋆

(
Rmin
W

+β
)

− Γσ2g−1
l . (25)

5) EE optimization algorithm: In order to obtain the opti-

mal unconstrained or constrained C⋆
l and p⋆l via the explicit

expressions in (22), (23), (24) and (25), K⋆ has to be known.

Let π be the user index order, with π = (π1, . . . , πK) denotes

a permutation of K, such that user π1 and πK are the users

with the largest and smallest channel gains, respectively. Given

that at least one user is active in the cell, it leads to Cπ1 > 0 as

well as C⋆
π1
> 0 with π1 ∈ K⋆ and, hence, K⋆ ≥ 1. Moreover,

the following inequality

Pc(U)

Γσ2∆
>

U∑

k=1

g−1
πk

− U

(
U∏

k=1

gπk

)− 1
U

, (26)

which is a direct consequence of the fact that the domain of

W0 is lower bounded by −e−1, can be used for obtaining K⋆.

Starting from U = K and decrementing U by 1 as long as

the inequality in (26) is not satisfied, a trimmed set of index

K\{πU , . . . , πK} is obtained. This set is then further trimmed

by removing the user index for which the inequality C⋆
πU

> 0
or p⋆πU

> 0 does not hold. Overall, our simple procedure for

optimizing the unconstrained or constrained EE in the single-

cell scenario is summarized below in Algorithm 1.

Algorithm 1 Fast Algorithm for optiMizing the EE over the OMC
channel (FAME-OMC)

1: Inputs: Pmax, Rmin, Pc,∆,W, σ2,Γ, K and g = [g1, . . . , gK ];
2: Obtain π by sorting g in descending order;
3: Set U = K;

4: while
Pc(U)
Γσ2∆

≤
∑U

k=1 g
−1
πk

− U
(∏U

k=1 gπk

)
−

1
U

do

5: Set U = U − 1;
6: end while
7: Compute α and β in (10c) and (10d) for k ∈ {π1, . . . , πU};
8: while C⋆

πU
≤ 0 do {Unconstrained; C⋆

πU
in (22)}

9: Set U = U − 1; Update α and β in (10c) and (10d);
10: end while
11: Set K⋆ = {π1, . . . , πU} and get C⋆ via (22) and P⋆ via (23);
12: if P (C⋆) ≥ Pmax then {Power constraint}
13: while C⋆

πU
≤ 0 do {C⋆

πU
in (24)}

14: Set U = U − 1; Update α in (10c) and (10d);
15: end while
16: Set K⋆ = {π1, . . . , πU} and get C⋆ via (24) and P⋆ via (2);
17: else if RΣ(P

⋆) ≤ Rmin then {Rate constraint}
18: while p⋆πU

≤ 0 do {p⋆πU
in (25)}

19: Set U = U − 1; Update β in (10c) nd (10d);
20: Set K⋆ = {π1, . . . , πU} and get P⋆ via (25) and C

⋆ via
(1);

21: end while
22: end if
23: Obtain E⋆

b via (9a) or (9b);
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Fig. 2. Optimal energy-per-bit consumption and per-user power as a function
of the channel gain multiplier δ.

6) EE optimization insights: As far as the optimization of

the sum-rate over the OMC is concerned, it is well-known

that the optimal SE-based power allocation strategy is obtained

via water-filling [10] such that p⋆k is given as in (16). Hence,

the most spectral efficient power allocation is equal power

allocation when Γσ2g−1
k ≪ 1, i.e. when the channel gain-to-

noise ratio is high, such that p⋆k = Pmax

K . Similarly, inserting

(21) in (2), it turns out that

p⋆k =
[
(ln(2)∆)−1WE⋆

b − Γσ2g−1
k

]
+
, (27)

which clearly indicates that equal power allocation is also the

most energy efficient power allocation when Γσ2g−1
k ≪ 1,

such that p⋆k = (ln(2)∆)−1WE⋆
b , which reverts to p⋆k = Pmax

K
when E⋆

b ≥ ln(2)∆(WK)−1Pmax.

In Fig. 2, we depict the optimal energy-per-bit and per-user

transmit power for Pc = 130 W, ∆ = 4.7, Pmax = 5 W, N0 =
W = 1, Γ = 1, K = 5 users, and the channel gain values g =
δ[5, 0.2, 2, 0.5, 1], where δ varies from 1 to 1000. In the lower

part of the graph, it can clearly be seen that as δ increases, or

equivalently as the channel gain-to-noise ratio increases (since

σ2 is fixed), as the optimal per-user power allocation converges

first towards p⋆k = Pmax

K for δ up to 680 and then towards p⋆k =
(ln(2)∆)−1WE⋆

b thereafter. The transition begins when E⋆
b

becomes lower than ln(2)∆(WK)−1Pmax in the upper part

of the graph. Thus, it is in line with our analysis and confirms

that equal power allocation is the most energy efficient power

allocation over the OMC when the channel gain-to-noise ratio

is high.

B. Multi-sector EE optimization

In the previous subsection, we assumed that no inter-sector

interferences occur. In a realistic cellular system, interferences

do occur between sectors of different BSs and one practical

way to mitigate them is coordination [20]. In the cellular

layout of Fig. 1, any given user is surrounded by at least

three BSs, i.e. its own serving BS and two closest neighboring

BSs. As a result, within the perimeter delimited by the thick

black line in Fig. 1, i.e. a cluster of three sectors of three

different BSs, the main bulk of the downlink interferences

that are experienced by a UE in one of the sectors will arise

from its two closest non-serving BSs. In order to improve the

EE of cellular systems but with limited feedback, i.e. when

assuming that each serving BS has some knowledge about the

channel between itself and its own users as well as between

the two other non-serving BSs and its own users, we develop

a low-complexity energy-efficient optimization algorithm for

coordinating the resource allocation within a cluster of three

adjacent sectors. Note that the pattern in Fig. 1 can be repeated

over the whole cellular system and, without loss of generality,

we discuss the coordinated EE optimization for one of this

cluster.

Numbering the light, medium and dark grey colored sectors

within the cluster of adjacent sectors as sector 1 of BS 1, sector

2 of BS 2 and sector 3 of BS 3, respectively, the interferences

that are generated by the non-serving BSs towards the k-users

of sector m can be formulated as

Im,k =

M∑

i=1, i6=m

Pi1
T gim,k, (28)

where M = 3. Furthermore, we assume that users are

uniformly distributed (UD) within each sector and each sector

has the same number of users. As this number goes to infinity,

as the likelihood of having users in different sectors with

similar relative positions towards their serving BS and the

two non-serving BSs increases, such that d11,k ≃ d22,k ≃ d33,k,

d12,k ≃ d23,k ≃ d31,k and d13,k ≃ d21,k ≃ d32,k. Thus, it

is expected that the k-th user channel gain of each sector

asymptotically verifies g11,k ≃ g22,k ≃ g33,k, g12,k ≃ g23,k ≃ g31,k
and g13,k ≃ g21,k ≃ g32,k when considering a distance dependent

path-loss for gim,k. In this symmetric scenario, it then makes

sense in terms of fairness to allocate the same amount of

transmit power to each BS, such that (28) simplifies to

Ik = P1TGk, (29)

where P = P1 and Gk =
∑M

i=2 g
i
1,k. Using this assumption,

P (C) in (3a) can be rewritten as

P (C) = P1T =
Γ
∑K

k=1

(
2Ck − 1

)
g−1
k σ2

1− Γ
∑K

k=1 (2
Ck − 1) g−1

k Gk

(30)

by inserting (29) in (3a). Because of the perfect symmetry,

the interference that is experienced by user k of each sector

will be identical. Thus, optimizing the transmit power and

rate of one of the sectors will at the same time optimize

the resource allocation of the two other sectors. However, the

limitation of using (28) instead of (29) for modeling the inter-

sector interference is that the equality in (29) only holds if

the system is perfectly symmetric in terms of channel gains,

which can only be the case in theory; in practice (29) is only an

approximation of (28), which is likely to be accurate for large

numbers of UD users in each sector, making the optimization

method suboptimal. By contrast, the major advantage of (29)

over (28) is that it greatly simplifies the optimization problem.
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Indeed, (29) satisfies assumption 2) of Theorem I and, hence,

the EE optimization framework of Section III can be directly

applied to solve this optimization problem in a low-complexity

manner as long as the convexity condition also holds.

1) Convexity of Eb: Inserting (30) into (8a), the per-sector

Eb can be re-formulated as

Eb(C) = A[f(C) +B[h(C)− 1]]g(C)−1h(C)−1 (31)

in the coordinated multi-cell scenario, where h(C) = 1 −
Γ
∑K

k=1

(
2Ck − 1

)
g−1
k Gk and f(C) as well as g(C) are given

in (20). It can been shown (see proof the Appendix) that both

f(C)+B[h(C)− 1] and h(C)−1 are log-convex functions and

since their product is also log-convex, we can conclude that

Eb in (31) is log-convex and, hence, convex, as long as C � 0,

Cl > 0, h(C) > 0, f(C) +B[h(C)− 1] > 0 and Pc ≥ ∆α.

2) Unconstrained EE optimization: Inserting (12) into

(10a), we can express C⋆
l solely as a function of the EE-optimal

transmit power P (C⋆) = P⋆1T = P ⋆ such that

C⋆
l = log2(P

⋆+α(P ⋆))− log2(K
⋆Γg−1

l (σ2+P ⋆Gl)). (32)

Inserting (32) into (9a), the latter can be re-expressed solely

as a function of P ⋆ such that

E⋆
b = Eb(P

⋆) =
∆P ⋆ + P ⋆

c

W
[
K⋆ log2

(
P⋆+α(P⋆)

K⋆

)
− β(P ⋆)

] , (33)

where α(P ⋆) = Γ
∑

k∈K⋆ g
−1
k (σ2 + P ⋆Gk) and β(P ⋆) =∑

k∈K⋆ log2
(
Γg−1

k (σ2 + P ⋆Gk)
)

according to (10c), (10d)

and (29). The problem of finding P ⋆ can then be simply

solved by using a modified line search algorithm knowing that
∂Eb(P=P⋆)

∂P = 0 (see Algorithm 2).

3) Constrained EE optimization: The optimal power-

constrained EE can be straightforwardly obtained by inserting

P ⋆ = Pmax in (33); whereas, in the rate-constrained case

Rmin =W

[
K⋆ log2

(
P ⋆ + α(P ⋆)

K⋆

)
− β(P ⋆)

]
, (34)

and, thus, a simple line search on P ⋆ can be performed for

solving (34). Then, the optimal rate-constrained EE can be

directly obtained by inserting the result of (34) into (33).

4) Practical considerations for coordinated EE optimiza-

tion: The perfect symmetric scenario that has previously been

described for simplifying the coordinated multi-cell EE opti-

mization is not realistic. However, in a realistic scenario, user

ordering and grouping can be used at the BS for mimicking

this scenario. For instance, each BS can order their users in

descending order according to the amplitude of their channel

gains and, then, the average user channel and interferer gains

can be computed as

g̃πk
=

1

3

3∑

m=1

gmm,πk
and G̃πk

=
1

3

3∑

m=1

3∑

n=1,n6=m

gnm,πk
. (35)

Next, gk and Gk can be replaced by g̃πk
and G̃πk

in (30) for

optimizing the EE. Using averaged instead of actual channel

gains is clearly suboptimal, but it becomes more reliable as

the number of users increases, as it is indicated in Fig. 3.

In order to show the reliability of our multi-cell EE opti-

mization algorithm, i.e. the Fast Algorithm for optiMizing the

Algorithm 2 Fast Algorithm for optiMizing the EE in the Coordi-
nated Multi-Cell scenario (FAME-CMC)

1: Inputs: Pmax, Rmin, Pc,∆,W, σ2,Γ, K, g = [g1, . . . , gK ] and
G = [G1, . . . , GK ];

2: Compute g̃k and G̃k by using (35) for any k ∈ K;

3: Obtain π by sorting {g̃k/G̃k} in descending order;
4: Set ǫ = 10−6 and P ⋆ = ǫ;
5: Compute [C⋆

πk
]+ in (32) for any k ∈ {π1, . . . , πK};

6: Set U = K −
∑K

k=1(C
⋆
πk

== 0); Update α(P ⋆) and β(P ⋆);

7: Compute F (P ⋆, U) = U ln
(

P⋆+α(P⋆)
U

)
− β(P ⋆) +

(
P ⋆ + Pc

∆

) [
−U

(
1+Γ

∑U
k=1 g̃−1

πk
G̃πk

P⋆+α(P⋆)

)
+

∑U

k=1

G̃πk

P⋆G̃πk
+σ2

]
;

8: while |F | > ǫ do
9: Compute dF (P ⋆, U) =

(
P ⋆ + Pc

∆

)

×

[
U

(
1+Γ

∑U
k=1 g̃−1

πk
G̃πk

P⋆+α(P⋆)

)2

−
∑U

k=1

(
G̃πk

P⋆G̃πk
+σ2

)2
]
;

10: Set P ⋆ = max{min{P ⋆ −F/dF, Pmax}, ǫ}; Update α(P ⋆);
11: Compute [C⋆

πk
]+ in (32) for k ∈ {π1, . . . , πU};

12: while
[∑U

k=1(C
⋆
πk

== 0)
]
== 0 & U < K do

13: Set U = U + 1; Update α(P ⋆);
14: Compute [C⋆

πk
]+ in (32) for k ∈ {π1, . . . , πU};

15: end while
16: Set U = U −

∑U

k=1(C
⋆
πk

== 0); Update α(P ⋆)and β(P ⋆);
17: Compute F (P ⋆, U) (as given in Step 7:)
18: end while
19: if P ⋆ ≥ Pmax then {Power constraint}
20: Set P ⋆ = Pmax and U = K; Update α(P ⋆);
21: while C⋆

πU
≤ 0 do {C⋆

πU
in (32)}

22: Set U = U − 1; Update α(P ⋆);
23: end while
24: else if RΣ(P

⋆) ≤ Rmin then {Rate constraint}
25: Set P ⋆ = Pmax;
26: Do Steps 5: to 17: but with F (P ⋆, U) =

U log2

(
P⋆+α(P⋆)

U

)
− β(P ⋆) − Rmin

W
and

dF (P ⋆, U) = U

(
1+Γ

∑U
k=1 g̃−1

πk
G̃πk

P⋆+α(P⋆)

)
−

∑U

k=1

G̃πk

P⋆G̃πk
+σ2 ;

27: end if
28: Obtain E⋆

b via (33);
29: Set K⋆ = {π1, . . . , πU} and obtain C

⋆ via (32) and P⋆ via (3);

EE in the Coordinated Multi-Cell scenario (FAME-CMC) in

Algorithm 2, we compare in Fig. 3 the per-sector Eb values

returned by our FAME-CMC algorithm and the Matlab “fmin-

con” function averaged over 1000 runs against the number

of users in symmetric and non-symmetric (uniform) channel

gain conditions. In the symmetric scenario, we deliberately set

g11,k = g22,k = g33,k, g12,k = g23,k = g31,k and g13,k = g21,k = g32,k
for any k user. We rely on the power and system model

parameters of Table I and set Γ = 1 as well as ς = 0.5 for

plotting these graphs, where the path-loss dependent channel

gain between the υ(m)-th BS and the k-th user of sector m
is expressed as

g
υ(m)
m,k = 10

(
GTxRx−PL

(
d
υ(m)
m,k

))
/10
. (36)

In (36), GTxRx is the antenna gain of the BS-UE transmission

and PL(d) = PbLOS(d)PLLOS(d)+(1−PbLOS)PLNLOS(d) is the

distance dependent path-loss function. In addition, PLLOS(d)
and PLNLOS(d) are the LOS and non-LOS (NLOS) path-loss

functions, respectively, and PbLOS is the line-of-sight (LOS)

probability, whose values can be found in Table 27 of [32].
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TABLE I
SIMULATION PARAMETER VALUES

Parameters Values

P BS [9] ∆BS 4.7

o (1 sector) PCi
BS 130 W

w Pmax 20 W

. UE [13] PCi
UE 100 mW

fc 2.1 GHz

W 10 MHz

N0 −165.2 dBm/Hz

System GTxRx 14 dBi

[32] hBS 25 or 35m if ISD ≤ or > 600m

hav 20 or 5m if ISD ≤ or > 600m

WSt 20m

hUT 1.5m
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Fig. 3. Per-sector unconstrained Eb vs. the number of users in symmetric
and uniform channel gain conditions.

Note that we considered here the urban macro (UMa) setting

in Table 27 of [32]. The results of our FAME-CMC algorithm

and “fmincon” based on (31) in the upper part of Fig. 3 tightly

match each other, which numerically confirms the reliability

of our algorithm as well as the convexity of (31). We also

compare our algorithm with “fmincon” based on (8b) and

(28) with a Jain’s fairness constraint [33] of 2/3 in both the

symmetric and non-symmetric channel gain scenarios in the

upper and lower parts of Fig. 3, respectively. The results

confirm the sub-optimality of our algorithm; “fmincon” returns

lower Eb values than our algorithm, however, the performance

gap between the two algorithms decreases with the number of

users. Thus, in line with our expectation, the reliability of our

FAME-CMC improves with the number of users.

V. NUMERICAL RESULTS AND DISCUSSIONS

In order to demonstrate the EE of our coordinated multi-

cell approach, we benchmark it against the non-coordinated

and orthogonal resource allocation (RA) approaches within

a cluster of three adjacent cells (see Fig. 1). In the non-

coordinated approach, i.e. full reuse case, we consider that

all the three sectors share the same bandwidth W and allocate

their resources by using the single-cell optimization of Section

IV-A, i.e. the Fast Algorithm for optiMizing the EE over the

OMC channel (FAME-OMC), without being aware of interfer-

ences from other cells. In the coordinated approach, again all

the three sectors share the same bandwidth W , but resources

are allocated by using the multi-cell optimization method of

Section IV-B, i.e. FAME-CMC, such that interferences from

other cells are taken into account. Finally, in the orthogonal

approach, i.e. no reuse case, each sector has a bandwidth of

W/3 to avoid any inter-cell interference and the resource is

allocated on a per-sector basis via FAME-OMC. We rely here

on the same power and system model parameters as in Fig. 3

(see Table I). Note that the extra energy consumption due to

the coordination process has not been included in our power

model. Our results, which have been obtained through Monte-

Carlo simulations, depict the per-sector values of the energy

consumption, sum-rate and BS transmit power averaged over

10000 runs for each of the three RA approaches.

Intuitively, coordination has a great potential for power and

energy savings; indeed, reducing transmit power will reduce

interferences, which in turn will counterbalance the loss of

rate due to power reduction and, hence, decrease the energy

consumption. For instance, let us assume that each sector has

one user, i.e. K = 1, that is placed in the middle of the

sector in Fig. 1 such that the distance of the user to its serving

BS is dmm,1 = ISD/3 and to its two closest BSs is d
τ(m)
m,1 =

2ISD/3 and d
τ(m+1)
m,1 =

√(√
3ISD/2

)2
+ (ISD/6)2 for any

m ∈ {1, 2, 3}, where τ(m) = m mod {3}+ 1, mod {.} is

the modulo operator and ISD stands for inter-site distance,

the distance between BSs. Relying on the pathloss model

described in (36) and the values of Table I, these distances

correspond to the following channel gains of gmm,1 ≃ 10−9,

g
τ(m)
m,1 ≃ 5.10−11 and g

τ(m+1)
m,1 ≃ 10−11 for an ISD of 500 m;

whereas, the noise power is such that σ2 = 3.10−13. Inserting

these values in (1) for p1,1 = p2,1 = p3,1 = P = 20 W,

indicates that transmitting at full power provides a maximum

SE of 4.14 bit/s/Hz per sector with a total consumed power

of about 224 W; whereas, transmitting at P = 0.1 W gives a

SE of 4.08 bit/s/Hz per sector with a total consumed power of

about 130.5 W. Hence, the energy consumption at full power

is about 54 J/bit/Hz, whereas the energy effort at P = 0.1
W is about 32 J/bit/Hz. Thus, a reduction of 40% in energy

consumption can be achieved through coordination by willing

to trade-off 2% of the SE in this simple example.

In Fig. 4, we compare the three RA approaches that are

described above as a function of the ISD for K = 10 users

per sector. Undoubtedly, coordination is really effective for

reducing the transmit power at the BS; in this scenario, the

latter is reduced by at least 77% and more than 90% for

small and large ISDs, respectively, in comparison with the

orthogonal and non-coordinated approaches. In terms of sum-

rate, it can be noted that the coordinated approach has a

small advantage over the non-coordinated scheme and that

the orthogonal method performs better for small to average
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Fig. 4. Comparison of the non-coordinated, coordinated and orthogonal RA
approaches in terms of the per-sector transmit power, sum-rate and energy-
per-bit consumption vs. ISD for K = 10.
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Fig. 5. Comparison of the non-coordinated, coordinated and orthogonal RA
approaches in terms of the per-sector transmit power, sum-rate and energy-
per-bit consumption vs. the number of users for ISD = 500 m.

ISDs. The smaller the cell is, the stronger is the interference

from other neighboring cells and, thus, avoiding interference

is preferable in that case. Having a very good transmit power

reduction capability and edging the non-cooperative approach

in terms of sum-rate, the coordinated RA method reduces

the energy consumption by 10 to 15% in comparison with

the latter. The coordinated approach outperforms as well the

orthogonal approach in terms of Eb for ISDs around 500 m

as well as above 1.1 km. Note that the distortion in the shape

of the curves occurring at an ISD of around 650 m is due to

a breakpoint in the path-loss model.

In Fig. 5, we compare the same approaches as a function

of the number of users per sector for ISD = 500 m. The
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Fig. 6. Comparison of the non-coordinated, coordinated and orthogonal
RA approaches in terms of the per-sector energy-per-bit consumption vs. the
number of users for ISD = 500 m and two different power model values as
well as user distributions.

results first indicate that our coordinated approach is again

really effective for reducing the transmit power at the BS and

that it always outperforms the non-coordinated approach for

any of the three metrics. In this particular system parameters’

setting, the noise power is in the order of (1/K).10−13

W, whereas the amplitude of the channel gain of a user

near the cell edge, i.e. at dk = ISD/2 m, is in the order

of 10−10. Thus, Γσ2g−1
k ≪ 1 in this setting and, hence,

equal power allocation is the EE-optimal power allocation

for the orthogonal approach according to (27). Consequently,

we expect that p⋆k ≃ (ln(2)∆)−1(W/(3K))E⋆
b and RΣ ≃

W
3K

∑K
k=1 log2(1 + gk(ln(2)∆ΓN0)

−1E⋆
b ) such that the per-

sector total transmit power, sum-rate and energy-per-bit are

near-invariant with K in the orthogonal method when the users

are UD. Whereas, extra users implies extra interferences for

both the non-coordinated and coordinated approaches such that

their sum-rate and Eb performances degrade with the number

of users. As a result, the coordinated approach is only more

energy efficient than the orthogonal approach for up to K = 15
users. It can also be remarked that as K increases as the

gap between the non-coordinated and coordinated approaches

increases, which graphically confirms that the reliability of our

approach improves with the number of users.

In Fig. 6, we assess the effects of user distributions and

power parameter values on the energy-per-bit performance of

the same three approaches for ISD = 500 m. In addition to the

UD, we introduce a biased distribution (BD) of users where all

the users in a sector are uniformly distributed within a radius

of ISD/3 instead of a radius of ISD/2 for UD. In other words,

more users are closer to their serving BS in BD. Consequently,

a lower energy consumption is achieved by all the three

approaches when using BD rather than UD. More interestingly,

the coordinated approach outperforms the orthogonal scheme

for a wider range of users, up to K = 50, which emphasizes
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that the coordinated approach is more suitable for serving

users within a radius of ISD/3 from their own BS rather than

cell edge users. Modifying the power parameters such that

∆BS = 6.5 and PCi
BS = 70 W also increases the range of

K values for which the coordinated method outperforms the

orthogonal approach. Since the coordinated approach has a

very low power consumption, increasing the slope of the power

model favors the coordinated scheme over the two other RA

approaches in terms of total consumed power and, in turn,

this widens the relative Eb performance gap between these

approaches.

VI. CONCLUSION

In this paper, a framework for optimizing the EE in

the downlink of a planar cellular system over a frequency-

selective and block faded channel has been proposed. We

have demonstrated that both constrained and unconstrained

EE optimization problems can be greatly simplified under

the three assumptions of Section III-A, leading us to the

design of one simple and optimal EE-based resource allocation

algorithm for the single-cell scenario and one low-complexity

and suboptimal EE-based algorithm for the coordinated multi-

cell scenario. In the single-cell scenario, we have derived

the explicit formulations of the optimal users’ power and

rate that minimize the energy consumption of the system

for the unconstrained as well as power and rate constrained

cases. In turn, we have demonstrated that equal power alloca-

tion is both the most energy and spectral efficient strategy

when the channel gain-to-noise ratio is high. In addition,

this framework has helped to comprehend the very nature

of the EE; EE optimization is a generalization of both SE

and power optimizations such that the global optimal EE

solution is the optimal unconstrained EE solution. Enforcing

rate or power constraints on EE can provide a SE or power

optimal solution, which is only suboptimal in terms of EE.

Using our low-complexity algorithms for comparing the non-

coordinated, orthogonal and coordinated multi-cell resource

allocation strategies in realistic power and system settings, we

have shown that coordination can be a simple and effective

method for improving the EE of cellular systems, especially

for medium to large cell sizes and when the main bulk of

the users are close to their serving BS. Our results indicate

that the per-sector energy consumption of the system can

be reduced by up to 15% by using a coordinated instead

of a non-coordinated approach. Moreover, the coordinated

approach can reduce the transmit power by more than 90% in

comparison with the two other approaches. We understand that

our coordinated resource allocation algorithm is suboptimal

and, thus, we plan to further improve it in the future. We also

plan to refine our power model by taking into account the

extra energy consumption due to coordination.
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APPENDIX

A. Proof of convexity for f(C), h(C) and f(C)+B[h(C)−1]

Proof: Let H(ln(f)) be the Hessian matrix of the natural

logarithm of f and z = [z1, z2, . . . , zK ], z ∈ R
K . According

to the second-order convexity condition in [18], if H(ln(f))

exists and ψ = f
2
zH(ln(f))z† ≥ 0, i.e. H(ln(f)) is positive

semi-definite, then f would be log-convex. Considering that

f = f in (20), ψ can be expressed after simplifications as

ψ = (−1)ζ ln(2)2



K−1∑

i=1

K∑

j=i+1

(zi − zj)
22Ci+Cjg−1

i g−1
j ρiρj

+

(
B −

K∑

i=1

g−1
i ρi

)
K∑

i=1

z2i 2
Cig−1

i ρi

]
,

(37)

where ρi = 1 for any i ∈ K and ζ = 0. Thus ψ ≥ 0 and,

hence, f is log-convex as long as B ≥∑K
i=1 g

−1
i , since f ≥ 0.

Next, considering that f = h−1 in (31), ψ can be expressed

as in (37) but with ρi = −ΓGi, ζ = 1 and B = 1.

Given that P (C) ≥ 0 in (30), it implies that h(C) ≥ 0, i.e.

1 + Γ
∑K

i=1 g
−1
i Gi ≥ Γ

∑K
i=1 2

Cig−1
i Gi. Inserting the latter

inequality in (37), we obtain

ψ ≥ ln(2)2Γ2

(
K−1∑

i=1

zi2
Cig−1

i Gi

)2

, (38)

such that ψ ≥ 0 and, hence, h−1 is log-convex as long as

h(C) > 0.

Finally, considering that f = f(C) + B[h(C) − 1], ψ can

be expressed as in (37) but with ρi = 1 − BΓGi and ζ = 0.

Thus, f is log-convex as long as f(C)+B[h(C)− 1] > 0 and

B ≥
∑K

i=1 g
−1
i ≥

∑K
i=1 g

−1
i (1−BΓGi).
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