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Abstract—An asymptotically optimal trellis-coded modulation ~ SP principle. For constellations having certain symmstr&P
(TCM) encoder requires the joint design of the encoder and can be achieved by using the natural binary code (NBC) [2,
the binary labeling of the constellation. Since analyticalap- Fig. 4], [4, Fig. 3]. On the other hand, BICM is typically a

proaches are unknown, the only available solution is to pedrm concatenation of a convolutional encoder and a constatiati
an exhaustive search over the encoder and the labeling. For

large constellation sizes and/or many encoder states, hoves, labeled by the binary reflected Gray code (BRGC) [11]) [12]
an exhaustive search is unfeasible. Traditional TCM design through a bit-level interleaver. The BRGC is often used in

overcome this problem by using a labeling that follows the ¢ BICM because it maximizes the BICM generalized mutual

partitioning principle and by performing an exhaustive seach — information for medium and high signal-to-noise ratios [9
over the encoders. In this paper we study binary labelings fo S . M3 s V1 In TCM. th lecti fth ’
TCM and show how they can be grouped into classes, which ec._ 1, [13, Sec. . 1. In , (N€ SE eC_ l(_)n o the ‘?0”'

considerably reduces the search space in a joint design. Ferary ~ Volutional encoder is done so that the minimum Euclidean

constellations, the number of different binary labelings hat must ~ distance (MED) is maximized, while in BICM the encoders
be tested is reduced from8! = 40320 to 240. For the particular  are the ones optimized for binary transmission. BICM system
case of an8-ary pulse amplitude modulation constellation, this are then based on maximum free Hamming distance codes

number is further reduced to 120 and for 8-ary phase shift keying . h
to only 30. An algorithm to generate one labeling in each class [7, Sec. 12.3] or on the so-called optimum distance spectrum

is also introduced. Asymptotically optimal TCM encoders ae  (ODS) encoders first tabulated in_[14, Tables IlI-V] ahdl [15,
tabulated which are up to 0.3 dB better than the previously best Tables II-1V] and later extended in_[16].
known encoders. It was recently shown in[]17] that if the interleaver is
Index Terms—Binary reflected Gray code, bit-interleaved removed in BICM, its performance over the AWGN channel
coded modulation, coded modulation, convolutional encode is greatly improved. This was later analyzed in detaillin][18
pgrforrnance .bounds, set-partitioning, trellis-coded modilation, for g rate R = 1/2 encoder and al-ary pulse amplitude
Viterbi decoding. . . -
modulation (PAM) constellation, where the system [in][17]
was called “BICM with trivial interleavers” (BICM-T) and
|. INTRODUCTION recognized as a TCM transmitter used with a BICM receiver.
The first breakthrough in coding for the bandwidth-limited/loreover, BICM-T was shown to perform asymptotically as
regime came with Ungerboeck’s trellis-coded modulationell as TCM (in terms of MED)[[2, Table I] if properly
(TCM) [1]-[4] in the early 80s where the concept of labelinghosen convolutional encoders are used [18, Table Ill]. The
by set-partitioning (SP) was introduced. TCM was quickljransmitters in[[2, Table I] and_[18, Table HlI] for the-
adopted in the modem standards in the early 90s and istate (memory, = 3) convolutional encodBrare shown in
well studied topic 5], [[6, Sec. 8.12](][7, Ch. 18]. AnothefFig.[d (a) and Figl11 (c), respectively.
important discovery in coded modulation (CM) design came The authors in[[18] failed to note that in fact the optimal
in 1992 when Zehavi introduced the so-called bit-intergghv TCM encoder found when analyzing BICM-T équivalerﬁ
coded modulation (BICM)[]8],[]9], usually referred to as do the one proposed by Ungerboeck 30 years agb [19]. For a
pragmatic approach for CM _[10]. 4PAM constellation, one simple (although not unique) way of
The design philosophies behind TCM and BICM for th@btaining Ungerboeck’s SP is by using the NBC. Moreover,
additive white Gaussian noise (AWGN) channel are quite difthe NBC can be generated using the BRGC plus one binary
ferent. Ungerboeck’s scheme is constructed coupling haget addition (which we calltransforn) applied to its inputs, as
a convolutional encoder and a constellation labeled ugieg tshown in Fig[L(b). If the transform is included in the mapper
barts of thi . d at the Information Theary Aboi the encoder in Fig.]1(a) is obtained, while if it is included
oo O e B et I the convolutional encoder, the TCM encoder in . 1(c)
International Symposium on Information Theory (ISIT) 20X2ambridge, IS Obtained. This equivalence also applies to encoders with
MA, July 2r?12- ed by the E c s Seventaindork larger number of statésand simply reveals that fotPAM,
P I s Suropean Conmuntys Seierisseierk & TCM transceiver based on a BRGC mapper wil have
Swedish Research Council under grants #621-2006-4872 &ad-2011- identical performance to Ungerboeck’s TCM if the encoder is

5950, and by the Swedish Agency for Innovation Systems (WINN) under  properly modified, where the modification is the applicatién
the P366@-1 MAGIC project. The calculations were performed on resesr
provided by the Swedish National Infrastructure for Commmut(SNIC) at
C3SE. IThroughout this paper, all polynomial generators are giveactal.
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¢ = [15.1] SP Mapper (NBC) hoc binary labeling. It has been known for many years that
4 E J o0 o1 10 1 optimal TCM encoders are obtained only joyntly designing
1n | T T L the convolutional encoder and the labeling of a TCM encoder
g 2o [7, p. 966]. However, to the best of our knowledge, there are
no works formally addressing this problem, and thus, optima
@ TCM encoders are yet to be found.
G = [13,4] In this paper, we address the joint design of the feedforward
' Transform grC Mapper convolutional encoder and the labeling for TCM. To this end,
_ ] I we show that binary labelings can be grouped into different
1yn | oy R I S L classes that lead to equivalent TCM encoders. The classes ar
O T closely related to théladamard classemtroduced in[[30] in
ST, the context of vector quantization. This classificatiorowh
(b) us to formally prove that in any TCM encoder, the NBC can
G = [13,17) be replaced by many other labelings (including the BRGC)
BRGC Mapper without causing any performance degradation, providedl tha
i O 00 01 1 10 |, the _encoder is properly selected. This explains the as_)xmpto
’ D—RCB—D’ e B equivalence between BICM-T and TCM observed [in] [18].
e Moreover, since the classification reduces the number of
labelings that must be tested in an exhaustive search, we

© use it to tabulate optimal TCM encoders ftiary and8-ary
constellations.

Fig. 1. Three equivalent TCM encodels [19]: (a) convoluioencoder with
polynomial generator€&s = [13, 4] and an SP mapper[2]; (c) convolutional
encoder with polynomial generato€s = [13,17] and a BRGC mapper [18]. II. PRELIMINARIES
The encoder in (b) shows how a transformation based on aybaddition
can be included in the mapper (to go from (b) to (a)) or in theoder (to A. Notation Convention
go from (b) to (c)).
Throughout this paper, scalars are denoted by italic ketter
row vectors by boldface letters = [z1, ..., zx], temporal se-

_ _ quences by underlined boldface lettars= [x[1], ..., z[N]],
a simple transform. The equivalence between TCM encodeclﬁd matrices by capital boldface letteXs wherez; ; repre-

and encoders optimized for the BRGC and the NBC as Well 5 the entry ofX at row i, column j. The transpose of
as the relationship between the encoders in [18] ahd [2] Wel€,,irix/vector is denoted by]T. Matrices are sometimes

first pointed out to us by R. F. H. Fischer [19]. The idea Oéxpressed in the compact forf = [z1; @»; .. . ; #ar], where
applying a linear transformation to the labeling/encoder be — [2i1,. .., 7] iS theith row. Sets are denoted using cal-

. T
traced back.to [20, Fig. 6.5] (see also [2:]:] and 22, C.Ih._ 2])ri raphic lettersC and the binary set is defined &= {0, 1}.
TCM designs based on SP are considered heuristic [ nary addition is denoted by & b.

Sec. 3.4], and thus, they do not necessarily lead to an optimarpe hopapility mass function (PMF) of the random variable
design [24, p. 68 .The_ pr(_)blgm of using non-SP labelings;- j5 genoted byPy (y) and the probability density function
for TCM has been studied in [24, Sec. 13.2.1],1[26, S_ec. 8'?19DF) of the random variabl& by py(y). Conditional
and [27]. TCM encoders using the BRGC were designed Bhrg are denoted a8y |x (y|z). The tail probability of a
[25], by searching over convolutional encoders maximizirg standard Gaussian random variable is denotedQty) 2
MED. In [20, Ch. 6] and[[211], a non-Gray non-SP labeling was; [ R dé
used and TCM encoders with optimal spectrum were tabulate®r 7+ '

In a related work, Wesadt al.introduced in[[28] the concept
of the edge profile (EP) of a labeling, and argued that in mgst TCM Encoder
cases, the EP can be used to find equivalent TCM encoders in . .
terms of MED. The EP is also claimed to be a good indicatign We consider the TCM encoder shown in Fig. 2 where a

of the quality of a labeling for TCM i [28, Sec. I]; howevets i feedforward convolutional encoder of rafe= k/m is serially

optimality is not proven. Consequently, an exhaustivedearconneaed to a mappdry, and the indexL, emphasizes the

over labelings with optimal EP does not necessarily leadhto gepenc_iency Of_ the_ mapper on the Iab_eIing_ (c_iefined Igter). At
optimal design([29] each discrete time instant the information bits; ,,, ..., % »

In summary, as clearly explained i [28, Sec. I], tradition are fed to the convolutional encoder, which is fully detereu

TCM designs either optimize the encoder for a constellati(at)l)ﬁ' k different v,-stage shift registers witlp = 1,....,

labeled using the SP principle, or simply connect a convola-nd the way the input sequences are connected (through the

. . ; o : registers) to its outputs. Closely following the notatioh o
tional encoder designed for binary transmission with an a7’ Sec. 11.1], we denote thmemoryof the convolutional

4 , encoder by = Zk_l vp, and thenumber of stateby 2”. The
Indeed, the results irl_[25, Tables 2-3]. [20, Ch. 6] and [2idvs the ion b P= he i d bits is defined by th
suboptimality of the SP principle in terms of the multiplies associated cpnnectlon Etwee.nt € Inputan _OUtpUt Its Is de "Te y the

with the events at MED. binary representation of theonvolutional encoder matrifd1,
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TCM Encoder ________ by = [by1-...bym] € B™. The bits of the BRGC can be

“—”r» Uin : generated from the NBC &g1 = ng,1 andb,; = ng,i—1®ng,
L E(;g%'er : oy JIM, for I = 2,...,m. Alternatively, we haven,; = by1 ©
ik | Um.n | @ bgi—1 B by for I = 1,...,m, or, in matrix notation,
Feeree e | B,, = N,T andN,, = B,,T"', where
Fig. 2. Generic TCM encoder under consideration: A feedémdaconvolu- [110...00] [111...11]
tional encoder of rated? = k/m with 2" states serially concatenated with a 011...00 011...11
memorylessm-bit mapper® . 001...00 001...11
T= , T'=1| . . |. ®
000...11 000...11
eq. (11.6)] 1000 ...01] 1000...01)
n @ (m)
g%l) 9%2) g%m) Example 1: The NBC and BRGC of ordemn = 3 are
ge | % 9o 1) [000] [000]
: : . : 001 001
g,(cl) gl(f) gl(cm) 010 011
011 010
where g 2 [¢V),... ,gz(f,)up+1]T € B»*! is a column Ns= 1100l Bs=|110| “)
vector representing the connection between thie input 101 111
sequence and thigh output sequence with=1,...,m. The 110 101
coeﬁicienthz(jf)l, - ,gz()l,z,p_‘_l are associated with the input bits 111 100

ipns - ipn—v,, respectively, andz € B#+~*m_ Through-
out this paper, we will show the vectogél) definingG either

in binary or octal notation. When shown in octal notatigzﬁ)1
represents the most significant bit (see Eig. 1).

where the pivots of the labeling matrices (defined in Beeg)ll
are highlighted.

To formally define the SP principle for a given constella-

: _ tion X and labelingL, we defineX;([umi1—i, ..., um]) £
The convolutional encoder matrikl(1) allows us to expre%sch e X[ s Cam] = [Umtiets -y Um],q =
the output of the convolutional encoder at timewhich we | * M} C 2(11,1:7(1)?1 L Aanc;tior{ally’wz define
_ I _ . =1,..., . :
define asu, = [uin,...,umn], @s a function of(v + k) tne minimum intra-Euclidean distance (intra-ED) at leveks
information bits, i.e.,
, o= min  fai-agl, 1=1,....m—-1 (5
u, =3,G, (2) @i,z €X;(u)
i#juch

wherez, £ [, ..., 3] with 4P 2 [i, ., ... ip,-,] are

i " : , A Sl and the MED of the constellation &s.
the information bits, and the matrix multiplication is in . ®

. L . Definition 1 (Set-partitioning[[2]):For a given constella-
The coded bitsu,, are mapped to realN-dimensional tion X, the labelingL is said to follow the SP principle if

constellation symbols using the mappég : B™ — X, S0 <1< ... <8 1.

whereX ¢ RY is the constellation used for transmission, with ) .
|X| = M = 2™. We usex[n] € X to denote the transmitted Example 2: Consider arBPSK constellation (formally de-

fined in SeclV). It can be easily verified that if this constell
dtion is labeled by the NBC if_{4), an SP-labeled consteltatio

constellation points. We assume that the symbols are gqué?l) obtained. Although the NBC is the most intuitive form

likely and that the constellatio’ is normalized to unit energy, 0" 9enerating an SP labeling far/PSK constellations, it is
e, B 2 Ex[| X2 =1/MY ||| = 1. As shown in not unique. As an example, consider the semi set-partitgoni
€., L = = zeX =1

Fig.[d, each symbol represeritsnformation bits. (SSF_))_ labeling p_r(_)po_sed in_[32, Fig._ 2(c)] a”‘?' the so-called
The binary labeling of thgth symbol in X is denoted by modified set-partitioning (MSP) labeling [33, Fig. 2(b)]:

symbols at timen and the matrixX = [z1;@9;...;T]
with £, € RN andg = 1,...,M to denote the ordere

cq = [cq1s---,cqm] € B™, wherec, is the bit associated [000] [000]
with theIth input of the mapper in Fidll 2. The labeling matrix 101 001
is defined ad = [c1; ¢o; . . . ; en], Wheree, in L corresponds 010 010
to the binary label of the symbeat, in X. Throughout this Lecn — 111 I 111 6
paper, we will show the vectors, in L in either binary or SSP = 1100| PMSP T 1100] (©)
integer notation. 001 101
110 110
C. Binary Labelings for TCM [011] [011]
The NBC of ordenn is defined asV,,, £ [ny;no;...;ny] It can be shown that both labelings follow the SP principle in
wheren, = [ng1,...,nqm] € B™ is the base-2 representaDefinition[d.

tion of the integer—1 andn, ., is the least significant bit. The Example[2 shows that there are multiple labelings that
BRGC of ordenn is defined asB,,, £ [by; bs;...; by where follow the SP principle. It can be shown that this is also the
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case forM PAM constellations, and that in this case, the NBC Lemma 1:®y(c) = ®; (cT') whereL = LT, for any two

is also an SP labeling. mappersby, and ®; that use the same constellatida, any
T < 7,,, and anyc € B™.
D. System Optimization and Search Problems Proof: Let v, £ [0,...,0,1,0,...,0] be a vector of

aTCM encoder Ie_r_19th M, where t_he one _is in_ position. From the defi-
nition of the labeling matrixL, it follows thatc, = v,L
for ¢ = 1,..., M. The mapping®; satisfies by definition

For a given constellatioX and memory,
is fully defined by the convolutional encoder matéxand the
labeling of the constellatiod., and thus, a TCM encoder is

defined by the pai® = |G, L|. Or.(cq) = x, for ¢ =1,..., M, or, making the dependency
For given integers:, m, andv, we define theeonvolutional °" £ explicit,
encoder universas the setjx ., of all (v + k) x m binary op(c) =z, if c=uv,L (®)

matrice§ G which result in a noncatastrophic feedforward o
encoder and equally likely symbdswe are also interestedfor any ¢ € B™. Similarly, for anyc € 5™,

in the labeling univers;_adefined f(_)r a given integer, as the O;(cT) =, IfcT= ,qu
setL,, of all M x m binary matrices whosé/ rows are all .
distinct. =g, Ife=v,L, ©)

To the best of our knowledge, there are no works addressiyiere the last step follows becauge= LT '. Since the
the problem of designing a TCM encoder lexhaustively right-hand sides of[{8) andl(9) are equél; (cT') = ®r(c)
searching over the labeling universe and the convolutiong} gj| ¢ € B™. N
encoder universe. We believe the reason for this is that anrpe following theorem is the main result of this paper.
exhaustive search over encoders and labelings is um‘easibl.l.heorem 1:For anyG € Gy Lerl. andT e T
[34, Sec. I]. For example, fas-ary constellations, there are iny, o'\ “toM encoder® — [Z‘UL] and 8 _ (G Q) are
general8! = 4032_O_differe_nt_bin_ary labelings. In this paper’equivalent, wherd, — LT andG*’: GT. ’
we show how a joint optimization over afl¥ € Gy, ,,,, and Proof: For anyj € B+, (I)i,(jé) _ 3,(jGT) =

L € ﬁ_m can be restricted, without loss of generality, to aJOI%L(jG), where the last equality follows by Lemnia 1. The
optimization over allG € Gy.,,,., and a subset of,,,. . o
T theorem now follows using Definitidnl 2. O

Theoreni]L shows that a full search o@r,, ., andL,,, will
] ) ] ] include many pairs of equivalent TCM encoders. Therefare, a
In this section, we show that binary labelings can bgntimal TCM encoder with given parameters can be found by
grouped into classes, and that all the labelings belong’ngste_arching over a subset@f ., , and the whole set,,, or vice

the same class lead to equivalent TCM encoders. This asalfi;sa In this paper, we choose the latter approach, searchi
is inspired by the one ir [30], where the so-called Hadamagder 5 subset of,..

classes were used to solve a related search problem in source
coding.

IIl. EQUIVALENT LABELINGS FORTCM ENCODERS

] B. Matrix Factorization
A. Equivalent TCM Encoders

The transmitted symbol at time of a given TCM encoder We briefly summarize here some matrix algebra. The fol-

© = [G, L] can be expressed usirg (2) as lowing definition of areduced column echelon matreomes
from [35, pp. 183-184], adapted to the fact that we only
x[n] = or(u,) = €1(5,G). (7) consider binary labeling matrices whose columns are all

nonzero. The first nonzero element of #ta column is called

Definition 2: Two TCM encoders® = [G,L] and © = . : o
[G, L] are said to beequivalentif they give the same output itseé;h pivotof L. The pivots forlV; and B are highlighted

symbol for the same information bit sequence, i.e., if they
fulfil @1 (jG) = ®;(§G) for any j € B+,

The concept of “equivalent encoders” is more restricti
than the more well-known concept of “equivalent codes”. Twol) Every row with a pivot has all its other entries zero.
equivalent encoders have the same bit error rate (BER) ang) The pivot in columri is located in a row below the pivot
frame error rate (FER), whereas two equivalent codes have in columnl+1,forl=1,...,m — 1.
the same FER but in general different BER. In this paper,

where BER is an important figure of merit, we are therefore The matrix N5 in ExampleL1 (or more gene_rallwm) IS
i . . an example of a reduced column echelon matrix. On the other
more interested in equivalent encoders.

. hand, B,, is not a reduced column echelon matrix because it
From now on we usé€/,, to denote the set of all binary . X . "
. . . does not fulfill the first condition in Definitiohl 3.
invertible m x m matrices. . . -
The following theorem will be used to develop an efficient
®Note that wheneve(G is given in its binary formu,..., v, are also search algorithm in the next section. We refer the reader to
needed to interpre6 correctly according td{1). _ _ [5, p. 187, Corollary 1] for a proof. From now on we use
For some matrice€z, the symbolsz[n] can be nonequally likely. This R d h f all d d | hel bi
would induce nonequally likely symbols (signal shaping)ickhwe do not m 0 aenote the set of all reduced column echelon binary

consider in this work. matrices.

Definition 3: A matrix L € BM*™ is a reduced column
V%chelon matrix if the following two conditions are fulfilled
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TABLE | : o : :
NUMBER OF CLASSES( M, — |Ron]), THEIR CARDINALITY Algorithm 1 Modified full linear search algorithm (MFLSA)
(Mt = |Tm|), AND THE TOTAL NUMBER OF LABELINGS (2™!) FOR Input: The orderm
DIFFERENT VALUES OFm. Output: Print the My different reduced column echelon vectars

L7« [0,1,...,M—1]

m 12 3 4 5 6 2: loop
3:  print »

Mr 2 4 240 1.038-10° 2.632-10%® 6.294-10"® 4 index « 0

Mr 1 6 168 20160  9.999-10° 2.016 - 10*° 5: wh[ile Ty = index o]lo [ ]

m 13 35 89 6: Tindes+1s -+, TM| < [V M, Tindex+1y -+« > TM—1

2™ 2 24 40320 2.092 - 10 2.631-10 1.269 - 10 7: inder — index + 1
8: while indez is a power of 2do
9: index < index + 1
10: end while

Theorem 2:Any binary labelingL € £, can be uniquely 11 if indexr = M — 1 then
factorized as 12: Quit
13: end if
L = LRT, (10) 14: end while
15:  Find pointer such thatr,einier = index
whereT € 7,, andLg € R,,. 161 SWapTpeinter AN Tpointert1

Theorem[ 2 shows that all binary labeling matridkscan 17: end loop
be uniquely generated by finding all the invertible matriges
(the set7,,) and all reduced column echelon matrides (the
setR,,). In particular, we have [36, eq. (1)],.[30, eq. (18)]

each modified Hadamard class, the one that corresponds to a

N o reduced column echelon matrikg. Its pseudocode is shown
Mr = |Tn| = H(2 -2, (11) in Algorithm 1. In this algorithm, the vectar = [ry, . .., 7]
=1 - denotes the integer representation of the rows of the mAigix
Mg 2 [Rin| = =m 2m! n— (12) Whergrq = cq,ml+2cq,m_1+. . .+2.m_lcq71.f0r qg=1,...,M.
[[Z,(2m =271 The first labeling generated (line 1) is always the NBC.

In Table[, the values forMg and Mt for 1 < m < 6 Then the algorithm proceeds by generating all permutations
are shown. In this table we also show the number of binaffjereof, under the condition that no power of two%,4,.. )
labelings (£,,| = 2™ = MgMy), i.e., the number of is preceded by a larger value. By Definitibh 3, this simple
matricesL in the labeling universe. condition assures that only reduced column echelon matrice

The modified Hadamard clasassociated with the reducedare generated. _
column echelon matrisLy, is defined as the set of matrices ~ Example 3:For m = 2, the MFLSA returns the following
that can be generated via{10) by applyingElk 7,,. Note reduced column echelon matrices:

that these modified Hadamard classes are narrower than the 00 01 01 01
regular Hadamard classes defined!in [30], each includihg 01 00 10 10
reduced column echelon matrices. There are Mgsamodified Ro = 10/’110]°]00]° |11 ’ (13)
Hadamard classes, each with cardinalifit. 11 11 11 00

As a consequence of Theorefs 1 ddd 2, the two TC . . . .
encoders[G, L] and [GT ', Ly] are equivalent for any wnere the first element iR5 is the NBC defined in SeE._1l1C

G € Gum, andL € L, where Ly and T are given by and again we highlighted the pivots of the matrices. The 6

the factorization[(Tl0). In other words, all nonequivale@N binary invertible marices fom = 2 are
encoders can be generated using one member of each modified_ [ {01| [01| [10] [10]| (11] |11 (14)
Hadamard class only, and thus, a joint optimization over all ' — | 10|’ 11|’ |01]’>|11]’|01| |10

G € Gim,y and L € Ly, can be reduced to an Optlm'Z":mo'ﬁ'l.Jsing Theoreni12, all the 24 binary labelings i, (see

over allG € Gg m,, andL € Ry, with no loss in performance. Table[l) can be generated by multiplying the matricesRin
This means that the search space is reduced by at IeasénaT2

factor of Mt = M!/Mpg. For example, foB-ary constellations

. . . Example 4:For m = 3, the reduced column echelon
m = 3), the total number of different binary labelings that . ’ . .
Snust bg tested is reduced frath— 40320 to 230. Morec?ver matrices generated by the MFLSA are shown in Tafle Il (in

as we will see in Sec]V, this can be reduced even further'ﬁteger notation). The MFLSA first generates row number one,
) ; . then row number two, then row number three, etc., where each
the constellationX possesses certain symmetries.

row is generated from left to right. The first column in the
table corresponds to the output of the FLSA[0of|[30]. Columns
C. Modified Full Linear Search Algorithm two to eight show the additional matrices generated by the
The problem of finding the seR,, of reduced column MFLSA, which are obtained from the first column by shifting
echelon matrices for a givem can be solved by using athe symbol zero to the right. In this table we also highlight
modified version of the full linear search algorithm (FLSA}Jhe labelings generated by the MFLSA that at the same time
introduced in[[30, Sec. VIII]. We call this algorithm the mod have optimal EP[28] foBPAM and8PSK (see Se¢.1V).
ified FLSA (MFLSA). The MFLSA generates one member of Example 5:1f we study the labelings in Examplg 2, we
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TABLE 1l
REDUCED COLUMN ECHELON MATRICES FORn = 3 GENERATED BY THEMFLSA. THE MFLSA FIRST GENERATES ROW NUMBER ONETHEN ROW
NUMBER TWO, ETC. THE LABELINGS SHOWN IN BOLDFACE HAVE OPTIMALEPFOR8PAM (FIRST FOUR COLUMNSY AND FOR 8PSK [FIRST COLUMN).
01234567 10234567 12034567 12304567 12340567 12345067 12345607 45830
01243567 10243567 12043567 12403567 12430567 12435067/ 35887 12435670
01245367 10245367 12045367 12405367 12450367 12453067 53887 12453670
01245637 10245637 12045637 12405637 12450637/ 12456037 56387/ 12456370
01245673 10245673 12045673 12405673 12450673 12456073 562083 12456730
01234657 10234657 12034657 12304657 12340657 12346057 46887 12346570
01243657 10243657 12043657 12403657 12430657 12436057 36807 12436570
01246357 10246357 12046357 12406357 12460357 12463057 63807 12463570
01246537 10246537 12046537 12406537 12460537 12465037 12465307 12465370
01246573 10246573 12046573 12406573 12460573 12465073 12465703 12465730
01234675 10234675 12034675 12304675 12340675 12346075 46285 12346750
01243675 10243675 12043675 12403675 12430675 12436075 36205 12436750
01246375 10246375 12046375 12406375 12460375 12463075 63285 12463750
01246735 10246735 12046735 12406735 12460735 12467035 61305 12467350
01246753 10246753 12046753 12406753 12460753 12467053 12467503 12467530
01234576 10234576 12034576 12304576 12340576 12345076 12345706 12345760
01243576 10243576 12043576 12403576 12430576 12435076 35206 12435760
01245376 10245376 12045376 12405376 12450376 12453076 53286 12453760
01245736 10245736 12045736 12405736 12450736 12457036 51386 12457360
01245763 10245763 12045763 12405763 12450763 12457063 51883 12457630
01234756 10234756 12034756 12304756 12340756 12347056 12347506 12347560
01243756 10243756 12043756 12403756 12430756 12437056 31806 12437560
01247356 10247356 12047356 12407356 12470356 12473056 73806 12473560
01247536 10247536 12047536 12407536 12470536 12475036 75306 12475360
01247563 10247563 12047563 12407563 12470563 12475063 /5883 12475630
01234765 10234765 1203476512304765 12340765 12347065 12347605 12347650
01243765 10243765 12043765 12403765 12430765 12437065 31885 12437650
01247365 10247365 12047365 12407365 12470365 12473065 /3885 12473650
01247635 10247635 12047635 12407635 12470635 12476035 76305 12476350
01247653 10247653 12047653 12407653 12470653 12476053 12476503 76830
find that the SSP belongs to the first modified Hadamard claasd BRGC labelings are related viB, = N,T, i.e.,
(Lg = N3) while the MSP belongs to a different class, i.e., 00 00
100 111 01 01] |11 (16)
Lssp = N3 |010|, Lysp=Lg (010], (15) 11 10] |01]"
101 001 10 11
where L-Il; — [07 1,2,4,7,6, 573] (|n integer notation) is the Thus, the BRGC and the NBC of order = 2 b8|0ng to the

233th labeling generated by the MFLSA (see Table I1). Thi§ame modified Hadamard class, and convolutional encoders

shows that the NBC does not span all the labelings that folld#n be chosen to make the two resulting TCM encoders equiv-
the SP principle. alent. This was illustrated in Fif] 1, where the transforockl

corresponds to the transform matflx = [1,1;0,1] = T~ ..
Since N, = B,T~ ", the TCM encoder$G ;3 17}, B2] and
[G13,4), N 2] are equivalent, where

D. NBC and BRGC 101117 » 101117 111
Clsg = [0100} = Guaan T = [1111} [0 1} '

Another way of interpreting the result in Theoréin 1 is that

for any TCM encodel©® = [G, L], a new equivalent TCM  Example[6 and Theoreml 3 explain, in part, the results

encoder can be generated using an encéer GT~! and obtained in[18], where it is shown that the encodersin [18,

a labelingL = LT that belongs to the same modifiedTable 1] used with the BRGC perform asymptotically as well

Hadamard class as the original labelihg One direct conse- as Ungerboeck’s TCN.

guence of this result is that any TCM encoder using the NBC

labeling INV,,, and a convolutional encodé&¥ is equivalent to

a TCM encoder using the BRG®,,, and a convolutional V. ERRORPROBABILITY ANALYSIS

encoderGT with T given by [3). This is formalized in the
following theorem.
Theorem 3:The BRGC and the NBC of any orden
belong to the same modified Hadamard class.
Proof: The BRGC and NBC are related vi&,, =
N, T, with T given by [3). The theorem now follows from

TheorenT 2 and the definition of a modified Hadamard clas

O

The results in Se€ Il are valid for any memoryless channel
model and any receiver; however, from now on we focus on the
AWGN channel and a maximum likelihood (ML) decoder. In
this section, we briefly review bounds on the error probshbili
of TCM encoders under these constraints. These bounds will
be used in Sed._TVIB to define optimal TCM encoders. The
%ounds we develop can be found in standard textbooks, see,

"The “in part” comes from the fact that the system studied ] [dses a

Example 6:For the two TCM encoders in Fig] 1, the NBC(suboptimal) BICM receiver.
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e.g.,, [5, Ch. 4] and[[23, Ch. 6], and are re-derived here betweenz andz and can be shown to be
make the paper self-contained.
Since TCM encoders are in general not lifledine proba- PEP(2. &) — E;
bility of error depends on the transmitted sequence, tés, i (z,2) = Q
not possible to make the assumption that the all-zero seguen
was transmitted |5, p. 101]. This constraint can be liftethd Let A;2 , denote the number of paits € A, andz €
TCM encoder is “regular([37, Lemma 2], “superlineal” [34,%;(z) at accumulated SE@? = Y _, ||lz[n] — &[n]|? and
Sec. 1I-D], “scrambled”[[18], or “uniform”([[3B],[[7, Ch. 18] let A, 42 , denote the number of pairs at accumulated SED
However, regularity, superlinearity and uniformity do tmid generated by input sequences at Hamming distanddsing
for all constellation and labelingsand thus, we cannot use it(I8)-(I9) and the definition ofl,2 ,, (I7) can be expressed

4

o, 2l —elall? | 9

in this paper. as
We consider a baseband-equivalent discrete-time reakdal .
multi-dimensional AWGN channel. The transmitted sequence P, < Z ApQ d*Eq 7 (20)
of equally likely symbols is denoted by = [z[1], ..., z[NJ]] T sep 2Ny
where z[n] € X is the N-dimensional symbol transmitted
at discrete timex and N, is the block length. The receivedVhere
sequence of symbols ig = [y[1], ..., y[Ns]], wherey[n] = 11 11 &
x[n]+z[n] € RN is the received vector at time instant The Ag = ; QTWA‘P’é - ; v 9kt Zl Apaze (21)

channel noisez[n] € RY is an N-dimensional vector with _ o
samples of independent and identically distributed ().icn- i the distance multiplicityof the TCM encoder. In[(20D
dom variables with zero mean and varianég/2 per dimen- is the set of all possible accumulated SEDs between any two

sion. The signal-to-noise ratio (SNR) is defined/ag N, = sequences, i.e., all the valuesdsf for which Az # 0.
1/N,. The conditional transition PDF of the channel is given To obtain a bound on the BER, each error event must be
by py|x (ylzy) = (Nom)~ ¥ exp(—No ™}y — z42). weighted by the number of bits in errow (out of k), i.e.,
d2FE;
<
A. Error Bounds BER < > BQ 9Ny |’ (22)

d?eD
Let X, be the set of all lengtli-symbol sequences that star(Nh
X S A ere
at an arbitrary time instant and encoder state. Kgfzr) be - -
the set of length-sequenceg: # z that start and end at the p,aN L1 vy, 23
same encoder state asc X; and where all the othef — 1 @ Z Qv okt wz::l et (23)
intermediate states are different. An error event occurerwh. hebi ltinlicity of the TC d
the decoder chooses a sequestce X;(x) which is different IS It:_e I:t mu tlpb|C|_ty 0 E c Td M er;\coFeErI.? lize th
from the transmitted sequenae Using the union bound, the inally, to o tal_n 6‘ ound on t € We generalize the
probability of an error event of an ML TCM decoder at JJound presented in_[89] for convolutional codes to obtain
given time instant can be upper-bounded|as [5, eq. @.1)]
- FER < N, Z Ag2Q
Fo<) ) Px(z) ) PEP(z.@), (17) 42eD

=1 zeX, @62/5(@)

(=1

d?E;
2Ny

(24)

. _ . B. Opti Dist Spect TCM Encod
where PEP(x,z) is the pairwise error probability (PEP) pimum Listance spectriim neoders

and Px (z) is the probability that the encoder generates the N this section we define TCM encoders that are optimal
sequencez. for asymptotically high SNR. These definitions will be used

Assuming i.i.d. information bits, the probability of theln Sec.[V to tabulate optimized TCM encoders for different

sequence starting at a given staté i12”. There are* equally conﬂguratlons_. . ) ) i

likely branches leaving each state of the trellis at eacle tim We call the infinite S?t of tripletgd”, A.2, By2} the distance
instant. and thus spectrum (DS) of a given TCM encodér = [G, L], where

' ' d?> € D. We also define théth SED of a given TCM encoder
(18) by d7 with i = 1,2,3,..., whered;,, > d; and d: is the

minimum SED of the TCM encoder. These SEDs correspond
The PEP depends only on the accumulated squared ED (Sk®)he ordered set of SEDs iR. Based on[(22) and(4) we
define an optimum DS-TCM (ODS-TCM) as follows.
8Note that the usual definition of linearity applies to codesGFq)" . Definition 4: A TCM encoder® = [G’ L] with DS

ngf‘::ﬁt‘l’g; ;'TizzaLgMd(fgsd?]f)ta;gpﬁfﬂ”ed over the real numbeesusial (g2 4, B2} is said to have a superior DS to another TCM

= jad . ~2 =~ -
9For 8PSK for example, there is in fact no binary labeling that sive enCOd_erG = [G7 L] _W'th PS {d*, Agp, Bg} if one of the
regular TCM encodef [23, Sec. 3.3]. following conditions is fulfilled:
10All the bounds in this section are dependent on the TCM enc@ie ) 72
1) df > dj, or

However, to alleviate the notation, we omit writing ot as an explicit 3 = ~ ~
argument. 2) dy =dj, Agp < Aéf andBd? < BJ%, or

11
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3) there exist an integér> 1 such thaui? = d2, Ap = Aég 10
and Bz = BJ? fori=1,2,...,1 —1andd? > d? or
d%ZJ?,Adlz <AJL2 andBdlz <Bd‘lz. 10 i

Definition 5: For a given constellatiodX and memoryw, B ANy

the TCM encode® = [G, L] is said to be an ODS-TCM 10 Tl

encoder if no other TCM encod® = |G, L], for all G €

Grymv andL € L,,, has a superior DS compared @ & 10°
An ODS-TCM encoder in Definitionl5 is the asymptoticall

optimal TCM encoder in terms of BER and FER for gl 54

given block lengthV. Unlike the more classical definition of

optimal encoders, ODS-TCM encoders are definedasencoc | s~~~

that are optimal in terms dfoth A, and Bg2. This implies FER Boun f\\

that in principle, for some combinations df m, v, it is /| = = = BER Bound

possible that no ODS-TCM encoder exists. As we will see 10 ¢ o sSim.[]Y ‘ VAN NN
Secl[V, this is not an uncommon situation. Moreover, by usir o Sim.[JAB | BENRE
this somehow nonstandard definition we avoid listing encede 10— ' : :

that have optimal BER performance but possibly rather po 2 3 4 P /Ni [dB] 6 7

FER performance (or vice versa). This situation happens iu

R =1/2 and4PAM, as we will show in Sed. V-A. Fig. 3. BER/FER bounds if_{(22) anld {24) and simulations fogé&thoeck’s
encoders and the ODS-TCM encoders in Table Il My = 1000, 4PAM,

V. NUMERICAL RESULTS R =1/2 (1 [bit/'symbol]), andv = 4, 6.

In this section we study well-structured one- and two-
dimensional constellations, i.e}J/PAM and MPSK con-
stellations. An MPAM constellation is defined byX = to be evaluated, respectively, instead of 24 and 40320 in an
[x1,72,...,20]" With 2, = —(M + 1 — 2¢)A € R, exhaustive search, see Tafle I.
q=1,...,M, and A2 = 3/(M? — 1) so thatE, = 1. To generate only theV/g /2 nonequivalent labelings for
An MPSK constellation is defined b¥X = [x1;x2;...;xn] MPAM, the MFLSA in Algorithm 1 can be modified as
with @, = [cos (2m(q — 1)/M),sin (27(¢ — 1)/M)] € R?* follows. ReplaceM on lines 5 and 6 withe(indez), where
andg=1,..., M. the integer functiore(q) is defined asM/2 if ¢ = 0 and M

In the following sections we show results of exhaustivetherwise. This has the effect of only generating labelimgs
searches ovegy .., andR,,, and thus, these results shouldvhich the all-zero label is among the fitkf/2 positions (i.e.,
be understood as a complete answer to the problem of jointhe first 4 columns of Tablelll fosPAM).
designing the feedforward encoder and the labeling for TCM 1) R =1/2 and4PAM: The results obtained foR = 1/2
encoders. The ODS-TCM encoders presented are obtainecahd4PAM and different values af are shown in Tablglll. The
comparing the first five nonzero elements in the spectrugaple reports the DS as well as the labeling and convolutiona
which we numerically calculate using a_generalization @fncoder for the ODS-TCM encoders (shown [48P). For
the algorithm presented in [31, Sec. 12.4£BDn the other , — 5 however, no ODS-TCM encoder was found, i.e., there
hand, the bounds used to compare with simulation resuiésno TCM encoder that is optimal in terms of bath. and
were calculated using 20 terms. The tabulated results age,. Instead, we list the TCM encoder with bes}: among
ordered first in terms of the output of the MFLSA, then iRhose with optimalB,2 (shown ag-]B), or vice versa (shown
lexicographic order for the memories, ..., v, and then in as[.]4). In this table we also include Ungerboeck’s encdtfers
lexicographic order for the encoder matrig@s This ordering which we denote by:]V. When Ungerboeck’s labeling (NBC)
becomes relevant when there are multiple TCM encoder wigh Ungerboeck’s convolutional encoder coincide V\{n]ﬁB or

identical (and optimal) five-term DS. []B, we use the notatiof]VB or []UB, respectively. The
results in Tablé Tl show that no gains in terms of MED are
A. ODS-TCM Encoders fol/ PAM obtained and that the NBC is indeed the optimal labeling

MPAM constellations are symmetric around zero. Becauécg f"I" memories. The key dlfferencef between Unger.bqe.c_k’s
of this. two TCM encoders based on AAPAM constellation. 9€SigN and the ODS-TCM encoders is the better multiplgitie
: " obtained. To compare the gains obtained by the ODS-TCM

the first one using the labelin§ = [ci;c2;...;cpm—1;Cn g .
and the secondg one usingga r[g\l/;;;a |’acbjg”iécM:] encoders over Ungerboeck’s encoders, we show inFFig. 3 their
[em;em—1;.- .- c2; ¢1], are equivalent for any/. This result BER/FER forv = 4,6. This figure clearly shows the gains

implies that the number of binary labelings that give noriequ obtained by u§ing the ODS-TCM encoders which are visible
alent TCM encoders 91y /2. Specifically, form — 2 and not only at high SNR, but also for low SNR values (see,

m = 3 (4PAM and 8PAM), only 2 and 120 labelings need €.g., the FER markers for = G).

1INote that if more than five elements are considered diffe@DS-TCM 12yngerboeck did not report results for= 1, and thus, we do not include
encoders might be found. them in the Tables, i.e., we only show the ODS-TCM encodern/fer 1.
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TABLE Il
DISTANCE SPECTRUM OFODS-TCMENCODERS([-]AB) AND UNGERBOECK S ENCODERS([-]Y) FORE = 1 [BIT/SYMBOL] AND 4PAM (m = 2). THE
NOTATION [-]* AND []B IS USED WHEN NOODS-TCMENCODER WAS FOUND

u| LT | G | Distance Spectrur{d?, A 2, B2}

1110,1,2,3]"8 | [3,1]"® {4.00,0.50,0.5p, {4.80,0.50,1.0p, {5.60,0.50,1.5p, {6.40,0.50, 2.09, {7.20,0.50, 2.5

2| 0,1,2,55%8 [5,2]Y {7.20,1.00,1.0p, {8.00,1.25,2.5p, {8.80,1.75,5.25, {9.60,2.56,10.25,  {10.40,3.81,19.0p
e [7,2]%8 {7.20,0.50,0.5p, {8.00,1.25,2.5p, {8.80,1.63,4.83, {9.60,2.56,10.25,  {10.40,3.78,18.91

3([0,1,2,3]Y48| [13,4]""® | {8.00,0.25,0.5p, {8.80,1.00,3.09, {9.60,1.56,6.25, {10.40,2.75,9.75,  {11.20,3.14,16.8¢

4] [0,1,2,558 [23,4]Y {8.80,0.63,1.88, {9.60,0.50,2.09, {10.40,2.00,6.0p,  {11.20,2.02,10.08 {12.00,2.03,13.2p

[23,10/"® |{8.80,0.13,0.3, {9.60,0.50,2.09, {10.40,1.88,5.38,  {11.20,2.39,10.3), {12.00,3.72,21.0
[45,10]Y®  |{10.40,1.13,1.63 {11.20,1.52,5.09, {12.00,2.59,12.1p {12.80,3.58,22.18 {13.60,5.29,38.6P
[55,4] {10.40,0.75,1.75, {11.20,2.13,8.75, {12.00,2.14,10.48 {12.80,4.47,24.75,  {13.60,5.45,37.01
[103,24]Y |{11.20,2.34,5.9}, {12.80,2.82,22.04, {14.40,7.60,57.35  {16.00,31.39,268.35 {17.60, 74.37,779.76
[107,32]"® |{11.20,0.13,0.5p, {12.00,1.44,5.8), {12.80,1.41,5.7, {13.60,1.73,12.58 {14.40,4.58,31.58
[235,126]Y |{12.80,2.19,8.19, {14.40,3.05,17.6F, {16.00,10.09,89.48 {17.60,25.03,231.04 {19.20,90.45,920.63
[313,126]"® | {12.80, 1.46,8.0p, {14.40,4.77,34.6p, {16.00,15.42,130.51 {17.60,35.60,375.08 {19.20, 103.30, 1213.§9
[515,362]Y |{13.60,0.53,4.6F, {14.40,1.89,10.7D {15.20,1.66,14.1p, {16.00,3.81,30.45 {16.80,6.03,49.3%
[677,362]"® | {13.60,0.36,2.05, {14.40,1.06,6.4), {15.20,1.47,11.0p, {16.00,3.44,23.6p, {16.80,5.25,41.3p

[0,1,2,3]"®

ot

6[0,1,2,3]U8

7110,1,2,3]%8

81[0,1,2,3]U8

2) R = 2/3 and 8PAM: The results forR = 2/3 and  10° Q 0:8:8 @ NN
8PAM are shown in TablelV. For = 1,2, 3, 4, 6 the reported NG €
encoders are in the forff*B, while for v = 5 no ODS-TCM
was found, and we use the same notation agRéM. Unlike :
for R = 1/2, the parity-check matrix reported by Ungerboec Oj NN
for R = 2/3 specifies the code but not the encoder. To have 107 ip
fair comparison between Ungerboeck’s codes with the OD
TCM encoders, we first listed all the convolutional encodeu
that give Ungerboeck’s parity-check matrix and then piak tE . s s : PN
one with optimalB,;: (all of them have the samé,:). These & S B N B N
are the encoders reported in Tabld IV [@8. Even though 10 - ;
Ungerboeck’s encoders in Taljle]IV are the best encoders il

that particular parity-check matrix, they coincide witte fh® o5l FER Bound

encoders only for one out of six cases= 5). For all the other — — — BER Bound

cases, the ODS-TCM encoders result in a better spectrt O S?m-HU

Also, unlike for4PAM, TableT¥ shows that the NBC is not the 10°F|__ 8 ‘S'm‘[.]'A.B‘ B EERRRRTSS o :
optimal labeling. For example, far = 4, the optimal labeling 10 105 11 115 12 12 5 13 135 14 145
is LT =[1,2,4,0,6,5,3,7*B, which does not follow the SP E,/N, [dB]

principle (cf. Definition[1). In Fig[¥, we show the BER/FER
results obtained by the ODS-TCM encoders f@r= 2/3, Fig. 4. BER/FER bounds ifi{22) arid{24) and simulations fogethoeck's
8PAM, and v = 4,6. This figure shows the tightness of th{znCOderS and the ODS-TCM encoders in T4DIP IV foy = 1000, 8PAM,

= 2/3 (2 [bit/symbol]), andv = 4, 6.
bounds and again gains over Ungerboeck’s encoders. /3 (2 [bit/symbol)

B. ODS-TCM Encoders fak/PSK 1) R = 1/2 and 4PSK: In this case there is only one

A TCM encoder based on ah/PSK constellation is not labeling to be tested (the NBC), and thus, only a search over
affected by a circular rotation of its labeling, i.e., witlto the encoders needs to be performed. Moreover, without loss

loss of generality it can be assumed that the all zero lals¥] generality, we can use the BRGC instead (because it is
is assigned to the constellation poiat = [1,0]. The conse- in the same Hadamard class as the NBC) and search over
quence of this is that foA/PSK constellations, the numberencoders for this labeling. Since?SK with the BRGC can

of reduced column echelon matrices that give nonequivaldif considered as two independefAM constellations (one
TCM encoders is further reduced by a factor/df. In view in each dimension), the design of TCM encoders in this case
of the results in TablB I, fodPSK, there is only one labeling boils down to selecting convolutional encoders with optima
that needs to be tested, e.g., the NBC. Feor > 3, the Spectrum (in the sense of Definitioh 5).

nonequivalent labelings can be obtained from the MFLSA by We have performed an exhaustive search for convolutional
setting index < 3 in line 4, which gives the FLSA of_ [30]. encoders with optimal spectrum up to= 12 and found that
For example, fordM = 8, the output corresponds to the firsbur results coincide with those reported [in ][40, Table I]r Fo
column of Tabldl, which gives 30 labelings. v =1,2,3,4,56,11,12 the optimal convolutional encoders
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TABLE IV
DISTANCE SPECTRUM OFODS-TCMENCODERS([-]AB) AND UNGERBOECK S ENCODERS([-]Y) FORE = 2 [BIT/SYMBOL] AND 8PAM (m = 3). THE
NOTATION [-]* AND []B IS USED WHEN NOODS-TCMENCODER WAS FOUND

v | LT | G | Distance Spectrur{d®, A2, B2}

1[1,2,4,0,6,5,3,7]"% |[1,1,1;1,3,0]"® {0.95,1.13,0.8%, {1.14,1.13,1.69, {1.33,1.13,2.53, {1.52,1.13,3.38, {1.71,1.13,4.22
0.1.2,3.4.5,6,7%° [1,0,0;0,5,2]Y {1.71,2.25,1.88, {1.90,3.52,5.1}, {2.10,6.05,12.35, {2.29,10.56,27.6f  {2.48,18.47,58.91

T [1,0,0;0,7,2]"8 {1.71,1.69,1.69, {1.90,3.52,5.1}, {2.10,6.01,12.3%, {2.29,10.56,27.6§  {2.48,18.46,58.91

[0,1,2,3,4,5,6,7]Y |[1,0,0;0,13,4]Y {1.90,1.27,2.1}, {2.10,3.38,6.75, {2.29,5.49,14.1}%, {2.48,12.45,32.48  {2.67,18.59,64.81
[1,2,4,0,6,5,3,7]8 |[1,1,1;2,15,01"® |{1.90,1.27,1.99, {2.10,3.38,8.4%, {2.29,5.49,17.25, {2.48,12.45,38.5p,  {2.67,18.59,74.8}
[0,1,2,3,4,5,6,7]Y |[1,0,0;0,23,4]Y {2.10,2.64,5.59, {2.29,2.53,6.75, {2.48,6.75,13.5p, {2.67,12.11,40.55  {2.86,15.99,66.51
[

1,2,4,0,6,5,3,7]"® |[1,1,1;2,31,0]"®
[1,0,0;0,45,10]Y®
[1,0,0;0,55,4]*
[1,0,0;0,103,24]Y

[1,0,0;0,107,32]"8

{2.10,0.95,1.9p, {2.29,2.53,7.59, {2.48,7.91,21.78, {2.67,13.21,45.7p
{2.48,4.32,6.5%, {2.67,7.99,19.45, {2.86,14.26,46.28, {3.05,27.05,102.88 {3.24,44.27,201.38
{2.48,3.80,6.95, {2.67,8.74,21.6B, {2.86,13.53,45.1) {3.05,29.51,106.50 {3.24,44.49,198.08
{2.67,10.74,22.9¥, {3.05,19.91,86.98 {3.43,72.68,343.40 {3.81,353.99,1927.40 {4.19,1137.86, 7442.94

{2.67,1.42,4.2], {2.86,8.46,24.43, {3.05,12.94,40.4], {3.24,15.68,74.2p,  {3.43,40.61,182.47

{2.86,19.77,88.01

51[0,1,2,3,4,5,6,7] VA8

61[0,1,2,3,4,5,6,7]"8

([]*B) are in fact the encoders from [16, Table 1] (which wer
initially optimized only in terms ofB;2). Forv = 7,8,9, 10
we found that no optimal encoder exists, i.e., the convohati
encoders optimal in terms of ;2 are not optimal in terms of
B2 and vice versBi These encoders are in fact shownlin [4C
Table IE, which extends the results in [14]-[16] becauseg
considers both 2 and B2 as optimization criteria. g
Based on the discussion above, we conclude that an
TCM encoders can be constructed by concatenating theg
coders in [[4D, Table 1] with atPSK constellation labeleds
by the BRGC. Alternatively, ODS-TCM encoders can B
obtained by using @PSK constellation labeled by the NBC
and using the encoders in_[40, Table I] after applying tF
transformation ' = [1,1;0,1]. For example, forv = 8, 10
we foundGs:5 677 andG 435 657) to be the optimal encoders
in terms of A;2 and Bz, respectively, and thus, the two pairs
of equivalent ODS-TCM encoders af = G515 677], B
ando© = [Gs15.67T !, NaJ, and© = [Guss 657), B2] and
© = [Guss,esmT ', N2l _ _
2) R =2/3 and8PSK: The results obtained foR = 2/3 Fig. 5. DS for encoders witly = 4 for R = 2/3 and8PSK from Tabld’V.
and 8PSK are shown in Table]V. Somehow disappointingly,
this table shows that the NBC is indeed the optimal labeling

in all the cases, and thus, the selection of the labeling fg{ose Jisted in[[23, Table 3.2]. [20, Table 6.f8]The reason
this particular configuration does not provide any gain_srovgbr this is that the codes tabulated in [23, Table 3.2]) [20,
Ungerboeck’s TCM schernes._ The better spectrum obtained-yy|e 6.10] are found by searching over parity check magrice
the ODS-TCM encoders in this case then comes only from th&d then converted to feedback encoders (in observer canoni
selection of the convolutional encoder. _ “cal form [20, Fig. 2.2]). On the other hand, we search over a
In Fig.[3, we show the DS for the encoders in Tdble V witQjtferent set of encoders, namely, over all the noncatghico
v = 4. It is clear from the figure that an encoder optimal ifeedforward encoders.
terms of Ag2 can be suboptimal in terms d8,;2, and vice | japelings we found for the ODS-TCM encoders (i.e., the
versa. In addition, the figure shows how the set of SEDS pighiighted labelings in Tablg]lll and the optimal ones in
is in general different for different encoders. It also skowrapiedTy andV) have optimal EP. This makes us conjecture
how Ungerboeck’s encoder is optimal in termsAf: for the - ih4; good TCM encoders can be found by using the EP of [28]
term at MED, but in general suboptimal if the whole DS i3y, op of the proposed classification. This approach would
considered. _ _ indeed reduce the search space (for exampleg®#M and
We note that depending an, the ODS-TCM encoders in gpgi constellations, only eight and two labelings, respec-
Table[M have inferior, equivalent, or superiBi: Spectrum to tjyely would need to be tested). However, it would not allow

us to claim optimality in the sense of Definitigh 5.

10"

B3Convolutional encoders with optimal ;2 and memories up to = 26
have been recently published [n 41, Table 7.1].

14Although the search if_[40] was performed only consideringnés at
minimum Hamming distance and not over the whole spectrum.

15To have a fair comparison, the values Bfj> listed in [23, Table 3.2],
[20, Table 6.10] should be scaled by a factgik = 1/2.
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TABLE V
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DISTANCE SPECTRUM OFODS-TCMENCODERS([-]*B) AND UNGERBOECK S ENCODERY([]Y) FORE = 2 [BIT/SYMBOL] AND 8PSK (m = 3). THE
NOTATION [-]* AND []B IS USED WHEN NOODS-TCMENCODER WAS FOUND

1/| LT G | Distance Spectrur{d®, A2, B2 }
1[0,1,2,3,4,5,6,7]"% |[1,0,0;0,1,2]"8 {2.59,2.00,1.5p, {3.17,2.00,3.09, {3.76,2.00,4.59,  {4.00,1.00,0.5p, {4.34,2.00,6.09
21[0,1,2,3,4,5,6,7]"®| [1,0,0; 0,5,2]"*® | {4.00,1.00,0.5p, {4.59,4.00,4.09, {5.17,8.00,14.0p, {5.76,16.00,38.0p, {6.34,32.00, 96.0p
31 01.2.3.4,5,6.7]%8 [1,2,0;4,1,2]Y {4.59,2.00,2.59, {5.17,4.00,8.5p, {5.76,8.00,25.0p, {6.00,1.00,0.5p, {6.34,16.00,66.0p
T [1,2,0;4,5,2]"8 {4.59,2.00,2.09, {5.17,4.00,8.5p, {5.76,8.00,25.0p, {6.00,1.00,0.5p, {6.34,16.00,66.0p
[2,7,0;7,3,2]Y {5.17,2.25,5.59, {5.76,4.63,14.13, {6.00,1.00,0.5p,  {6.34,6.06,26.5p, {6.59,4.00,5.5p
41[0,1,2,3,4,5,6,7]"8| [2,7,0; 7,1,2]* {5.17,2.25,5.0p, {5.76,3.88,11.5p, {6.00,1.00,0.5p, {6.34,9.56,38.8], {6.59,4.00,5.5p
[1,4,2;6,1,0]° {5.17,2.50,5.09, {5.76,3.75,11.25, {6.34,8.13,32.4%, {6.59,3.50,4.5p, {6.93,16.19,80.9%

[0,1,2,3,4,5,6,7]"8

[1,2,0; 30,25,16]V

{5.76,4.00, 10.5p, {6.00, 1.00,0.59,

{6.34,4.00,16.25,

{6.93,4.00,24.13,

{7.17,3.00,7.5p

[1,2,0; 30,25,10]"B
[4,11,0;13,4,6]Y
[1,6,0;27,25,12)A
[1,6,0;35,31,6]®

{5.76,2.00,5.75, {6.00,1.00,0.5, {6.34,3.63,15.55, {6.59,3.00,5.5,
{6.34,5.25,22.5p, {7.17,10.00,28.8 {7.51,14.53,98.50 {8.00,3.00,3.75,
{6.34,3.25,12.0p, {7.17,7.25,17.88, {7.51,19.13,119.1%, {8.00,3.00,5.09,
{6.34,3.56,11.5p, {7.17,7.25,16.88, {7.51,16.58,92.05 {8.00,3.50,4.75,

{6.93,8.06,40.68

{8.34,38.56,199.78
{8.34,36.69,159.69
{8.34,30.63,150.81

61[0,1,2,3,4,5,6,7] /8

VI. CONCLUSIONS [2] G. Ungerboeck, “Channel coding with multilevel/phasgnsls,” IEEE

In thi | d th bl f iointly desiani Trans. Inf. Theoryvol. 28, no. 1, pp. 55-67, Jan. 1982.
n this paper we analyze € problem of jointly eS|gmng[3] ——, “Trellis-coded modulation with redundant signaltsePart I:

the feedforward convolutional encoder and the labeling of a  Introduction,” IEEE Commun. Magvol. 25, no. 2, pp. 5-11, Feb. 1987.
TCM encoder. It was shown that the number of labelings thd#l — “Trellis-coded modulation with redundant signats@art II: State
need to be checked can be reduced if they are grouped irfsq of the art;"|EEE Commun. Magyol. 25, no. 2, pp. 12-21, Feb. 1987.

e . . . E. Biglieri, D. Divsalar, P. J. McLane, and M. K. Simommtroduction
modified Hadamard classes. This classification allowed us 10 {o Trellis-Coded Modulation with Applications Macmillan, 1991.

prove that it is always possible to design a TCM encoder basgé] J. G. Proakis and M. SaletDigital Communications5th ed. McGraw-

on the BRGC with identical performance to the one proposed Hill. 2008. .
. . .J7] S.Linand D. J. Costello, JiError Control Coding 2nd ed. Englewood
by Ungerboeck in 1982. The numerical results show that in" s NI Prentice Hall. 2004.

most cases, the NBC is the optimal binary labeling for TCMg8] E. zehavi, “8-PSK trellis codes for a Rayleigh channeéEEE Trans.
encoders and that gains up to 0.3 dB over the previously best Commun.vol. 40, no. 3, pp. 873-884, May 1992.

. : [9] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleavecbded modula-
known TCM schemes can indeed be obtained. tion,” IEEE Trans. Inf. Theoryvol. 44, no. 3, pp. 927-946, May 1998.

The classification of labelings presented this paper dogg] A. Guillen i Fabregas, A. Martinez, and G. Caire, “Biterleaved
not make any assumption on the channel nor on the receiver. coded modulation,’Foundations and Trends in Communications and
; ; Information Theoryvol. 5, no. 1-2, pp. 1-153, 2008.
Becau.se of th!S, the presented deSIQn methOdOIOgy can de lﬁﬁ F. Gray, “Pulse code communications,” U. S. Patent 262 Mar.
to design optimal TCM encoders for other channels as w 1953.
as for suboptimal (BICM) decoders. [12] E. Agrell, J. Lassing, E. G. Strom, and T. Ottosson, “@he optimality
The algorithm introduced in this paper to find all the label-  ©f the binary reflected Gray codelEEE Trans. Inf. Theoryvol. 50,
. that d to be tested i h ti h b no. 12, pp. 3170-3182, Dec. 2004.
!ngs a need to be e§ e m. an exhaustive Sea_rC gcomgsA_ Alvarado, F. Brannstrom, and E. Agrell, “High SNRimds for the
impractical for constellations with more than 16 pointsthis BICM capacity,” in IEEE Information Theory Workshop (ITWparaty,
case, a suboptimal solution based on an algorithm (inspiyed Brazil, Oct. 2011. .
the linearity increasing swap algorithm 6f [30, Sec. IXJath (141 J-J: €hang, D.-J. Hwang, and M.-C. Lin, "Some extentieilits on the

. ’ . search for good convolutional code$ZEE Trans. Inf. Theoryvol. 43,
generates a subset of (good) labelings could be devised. Thi no. 6, pp. 1682-1697, Sep. 1997.

approach could also be combined with the concept of labeling5] I. E. Bocharova and B. D. Kudryashov, “Rational rate guned

; ; q ; ; ; convolutional codes for soft-decision Viterbi decodingZEE Trans.
with opumal EP _[26]_. The design of such an algorithm is left Inf. Theory vol. 43, no. 4, pp. 1305-1313, July 1997.
for further investigation.

[16] P. Frenger, P. Orten, and T. Ottosson, “Convolutionadles with op-
timum distance spectrumJEEE Trans. Commun.yol. 3, no. 11, pp.
317-319, Nov. 1999.

ACKNOWLEDGEMENT [17] C. Stierstorfer, R. F. H. Fischer, and J. B. Huber, “@pting BICM

The authors would like to thank R. F. H. Fischer for pointing  with convolutional codes for transmission over the AWGN rufie,” in

out the equivalence between TCM encoders with encoders ',{A‘;erm;éfga' Zurich Seminar on Communicatip@urich, Switzerland,

optimized for the BRGC and the NBC, and showing hoyig) a. Alvarado, L. Szczecinski, and E. Agrell, “On BICM reivers for
the encoders in[18] and[2] are related. These observations TCM transmission,1EEE Trans. Communvol. 59, no. 10, pp. 2692~
inspired this full paper. The authors would also like to ﬂhan[lg] 2702, Oct. 2011.

. . . R. F. H. Fischerprivate communicationJan. 2011.
R. D. Wesel for fruitful discussions. [20] W. Zhang, “Finite state systems in mobile communiaadid Ph.D.

dissertation, University of South Australia, Adelaide, stralia, Feb.
1996.

[21] W. Zhang, C. Schlegel, and P. Alexander, “The bit er@te rreduction
for systematic 8PSK trellis codes by a Gray scrambler,” |HEE
International Conference on Universal Wireless AccelStelbourne,
Australia, Apr. 1994.

[22] P. K. Gray, “Serially concatenated trellis coded matdioh,” Ph.D.

REFERENCES

[1] G. Ungerboeck and I. Csajka, “On improving data-link fpemance
by increasing channel alphabet and introducing sequencedifsy,”
in International Symposium on Information Theory (ISIRonneby,
Sweden, June 1976, (Book of abstracts).



Preprint, September 17, 2018.

(23]
[24]

[25]

[26]

[27]

(28]

[29]
[30]

(31]

[32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

dissertation, University of South Australia, Adelaide, stalia, Mar.
1999.

C. B. Schlegel and L. C. Perezrellis and Turbo Codinglst ed. John
Wiley & Sons, 2004.

J. B. Barry, E. A. Lee, and D. G. Messerschniiitgital Communication
3rd ed. Springer, 2004.

J. Du and M. Kasahara, “Improvements of the informatiinerror rate
of trellis code modulation systemsThe Transactions of the IEIGEoI.
E 72, no. 5, pp. 609-614, May 1989.

G. C. Clark, Jr. and J. B. Cairkrror-correction coding for digital
communications2nd ed. Plenum Press, 1981.

A. J. Viterbi, J. K. Wolf, E. Zehavi, and R. Padovani, “Aggmatic
approach to trellis-coded modulationEEE Commun. Mag.vol. 27,
no. 7, pp. 11-19, July 1989.

R. D. Wesel, X. Liu, J. M. Cioffi, and C. Komninakis, “Caedation
labeling for linear encoders]JEEE Trans. Inf. Theoryvol. 47, no. 6,
pp. 2417-2431, Sep. 2001.

R. D. Wesel,private communicationJuly 2012.

P. Knagenhjelm and E. Agrell, “The Hadamard transforeteol for
index assignment,IEEE Trans. Inf. Theoryvol. 42, no. 4, pp. 1139—
1151, July 1996.

S. Benedetto and E. BiglierPrinciples of Digital Transmission with
Wireless Applications Kluwer Academic, 1999.

X. Li, A. Chindapol, and J. A. Ritcey, “Bit-interlavedoded modulation
with iterative decoding and 8PSK signalindEEE Trans. Commun.
vol. 50, no. 6, pp. 1250-1257, Aug. 2002.

N. H. Tran and H. H. Nguyen, “Signal mappings of 8-ary smliations
for bit interleaved coded modulation with iterative decadi |IEEE
Trans. Broadcast.vol. 52, no. 1, pp. 92—99, Mar. 2006.

S. Benedetto, M. A. Marsan, G. Albertengo, and E. GiacttCombined
coding and modulation: Theory and application#£EE Trans. Inf.
Theory vol. 34, no. 2, pp. 223-236, Mar. 1988.

G. Birkhoff and S. Mac LaneA Survey of Modern Algebradth ed.
New York: Macmillan, 1977.

P. F. Duvall, Jr. and P. W. Harley, Ill, “A note on courginmatrices,”
SIAM Journal on Applied Mathematicsol. 20, no. 3, pp. 374-377,
May 1971.

A. R. Calderbank and N. J. A. Sloane, “New trellis codesédsl on
lattices and cosets|EEE Trans. Inf. Theoryvol. IT-33, no. 2, pp. 177—
195, Mar. 1987.

E. Zehavi and J. K. Wolf, “On the performance evaluatiohtrellis
codes,”"IEEE Trans. Inf. Theoryvol. IT-33, no. 2, pp. 196-202, Mar.
1987.

G. Caire and E. Viterbo, “Upper bound on the frame errabability
of terminated trellis codes[EEE Commun. Lettvol. 2, no. 1, pp. 24,
Jan. 1998.

N. Sone, M. Mohri, M. Morii, and H. Sasano, “On good colut®mnal
codes with optimal free distance for rates 1/2, 1/3 and 1FCE Trans.
Commun,. vol. E84-B, no. 1, pp. 116-119, Jan. 2001.

F. Hug, “Codes on graphs and more,” Ph.D. dissertatiamd Univer-
sity, Lund, Sweden, May 2012.

12



	I Introduction
	II Preliminaries
	II-A Notation Convention
	II-B TCM Encoder
	II-C Binary Labelings for TCM
	II-D System Optimization and Search Problems

	III Equivalent Labelings for TCM Encoders
	III-A Equivalent TCM Encoders
	III-B Matrix Factorization
	III-C Modified Full Linear Search Algorithm
	III-D NBC and BRGC

	IV Error Probability Analysis
	IV-A Error Bounds
	IV-B Optimum Distance Spectrum TCM Encoders

	V Numerical Results
	V-A ODS-TCM Encoders for MPAM
	V-A1 R=1/2 and 4PAM
	V-A2 R=2/3 and 8PAM

	V-B ODS-TCM Encoders for MPSK
	V-B1 R=1/2 and 4PSK
	V-B2 R=2/3 and 8PSK


	VI Conclusions
	References

