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Distributed Space-Time Coding Based on
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Abstract—An adaptive distributed space-time coding (DSTC)
scheme is proposed for two-hop cooperative MIMO networks.
Linear minimum mean square error (MMSE) receive filters and
adjustable code matrices are considered subject to a power con-
straint with an amplify-and-forward (AF) cooperation stra tegy.
In the proposed adaptive DSTC scheme, an adjustable code
matrix obtained by a feedback channel is employed to transform
the space-time coded matrix at the relay node. The effects
of the limited feedback and the feedback errors are assessed.
Linear MMSE expressions are devised to compute the parameters
of the adjustable code matrix and the linear receive filters.
Stochastic gradient (SG) and least-squares (LS) algorithms are
also developed with reduced computational complexity. An upper
bound on the pairwise error probability analysis is derived and
indicates the advantage of employing the adjustable code matrices
at the relay nodes. An alternative optimization algorithm for the
adaptive DSTC scheme is also derived in order to eliminate the
need for the feedback. The algorithm provides a fully distributed
scheme for the adaptive DSTC at the relay node based on the
minimization of the error probability. Simulation results show
that the proposed algorithms obtain significant performance
gains as compared to existing DSTC schemes.

Index Terms—Adaptive algorithms, space-time codes with
feedback, cooperative systems, distributed space time codes.

I. I NTRODUCTION

Cooperative multiple-input and multiple-output (MIMO)
systems, which employ multiple relay nodes with antennas
between the source node and the destination node as a dis-
tributed antenna array, can obtain diversity gains by providing
copies of the transmitted signals to improve the reliability
of wireless communication systems [1]. Among the links
between the relay nodes and the destination node, cooperation
strategies such as Amplify-and-Forward (AF), Decode-and-
Forward (DF), Compress-and-Forward (CF) [2] and various
distributed space-time coding (DSTC) schemes [3], [4], [5]
can be employed.

The use of distributed space-time codes (DSTC) at the
relay node in a cooperative network, providing more copies
of the desired symbols at the destination node, can offer
the system diversity and coding gains to mitigate the in-
terference. A recent focus on DSTC techniques lies on the
design of delay-tolerant codes and full-diversity schemeswith
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minimum outage probability. An opportunistic DSTC scheme
with the minimum outage probability is designed for a DF
cooperative network and compared with the fixed DSTC
schemes in [6], while in [7] a novel opportunistic relaying
algorithm is achieved by employing DSTC in an AF cooper-
ative MIMO network. An adaptive distributed-Alamouti (D-
Alamouti) space-time block code (STBC) design is proposed
in [8] for non-regenerative dual-hop wireless systems which
achieves the minimum outage probability. DSTC schemes
for the AF protocol are discussed in [9]-[11]. In [9], the
GABBA STC scheme is extended to a distributed MIMO
network with full-diversity and full-rate, while an optimal
algorithm for the design of the DSTC scheme to achieve
the optimal diversity and multiplexing tradeoff is derived
in [10]. A quasi-orthogonal DSTBC for cooperative MIMO
networks is presented and shown to achieve full rate and full
diversity with any number of antennas in [11]. In [12], a new
STC scheme that multiplies a randomized matrix by the STC
matrix at the relay node before the transmission is derived
and analyzed. The randomized space-time code (RSTC) can
achieve the performance of a centralized space-time code in
terms of coding gain and diversity order.

Optimal space-time codes can be obtained by transmitting
the channel or other useful information for code design back
to the source node, in order to achieve higher coding gains
by pre-processing the symbols. In [13], the trade-off between
the length of the feedback symbols, which is related to the
capacity loss and the transmission rate is discussed, whereas
in [14] one solution for this trade-off problem is derived. The
use of limited feedback for STC encoding has been widely
discussed in the literature. In [15], the phase informationis
sent back for STC encoding in order to maintain the full
diversity, and the phase feedback is employed in [16] to
improve the performance of the Alamouti STBC. A limited
feedback link is used in [17] and [18] to provide the channel
information for the pre-coding of an orthogonal STBC scheme.
Another limited feedback strategy has been considered for
power relay selection in [19].

In this paper, we propose an adaptive distributed space-time
coding scheme and algorithms for cooperative MIMO relaying
systems. This work was first introduced and discussed in [31].
We first develop a centralized algorithm with limited feedback
to compute the parameters of an adjustable code matrix, which
requires sending the adjustable code matrices back to the relay
nodes after the optimization via a feedback channel that is
modeled as a Binary Symmetric Channel (BSC). Then, adap-
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tive optimization algorithms are derived based on the MSE and
the ML criteria subject to constraints on the transmitted power
at the relays, in order to release the destination node from the
high computational complexity of the optimization process.
We focus on how the adjustable code matrix affects the DSTC
during the encoding and how to optimize the linear receive
filter with the code matrix iteratively or, alternatively, by
employing an ML detector and adjusting the code matrix. The
upper bound of the error probability of the proposed adaptive
DSTC is derived in order to show its advantages as compared
to the traditional DSTC schemes and the influence of the
imperfect feedback is discussed. It is shown that the use of an
adjustable code matrix benefits the performance of the system
compared to employing traditional STC schemes. Then, we
derive a fully distributed matrix optimization algorithm which
does not require feedback. The pairwise error probability
(PEP) of the adaptive DSTC is employed in order to devise a
distributed algorithm and to eliminate the need for feedback
channels. The fully distributed matrix optimization algorithm
allows the system to use the optimal adjustable matrix before
the transmission, and also achieves the minimum PEP when
the statistical information of the channel does not change.The
differences of our work compared with the existing works are
discussed as follows. First, an optimal adjustable code matrix
will be multiplied by an existing space-time coding scheme
at the relay node and the encoded data are forwarded to the
destination node. The code matrix is first generated randomly
as discussed in [12], and it is optimized according to different
criteria at the destination node by the proposed algorithms.
Second, in order to implement the adaptive algorithms, the
adjustable code matrix is optimized with the linear receive
filter iteratively, and then transmitted back to the relay node
via a feedback channel. The impact of the feedback errors is
considered and shown in the simulations. Third, the proposed
fully distributed optimization algorithm eliminates the effect
of the feedback by choosing the optimal code matrix before
transmission, and the receiver is released from the design task.

The paper is organized as follows. Section II introduces
a two-hop cooperative MIMO system with multiple relays
applying the AF strategy and the adaptive DSTC scheme.
In Section III the proposed optimization algorithms for the
adjustable code matrix are derived, and the pairwise error
probability is analyzed in Section IV. The fully distributed
optimization algorithm is derived in Section V, and the results
of the simulations are given in Section VI. Section VII gives
the conclusions of the work.

Notation: the italic, bold lower-case and bold upper-case
letters denote scalars, vectors and matrices, respectively. The
operatorsE[·] and (·)H stand for expected value and the
Hermitian operator. TheN × N identity matrix is written

as IN . ‖ X ‖F=
√

Tr(XH ·X) =
√

Tr(X ·XH) is the
Frobenius norm.ℜ[·] and ℑ[·] stand for the real part and
the imaginary part, respectively.Tr(·) stands for the trace
of a matrix, and(·)† for pseudo-inverse, and

⊗

denotes the
Kronecker product.
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Fig. 1. Cooperative MIMO system model withnr relay nodes

II. COOPERATIVE MIMO SYSTEM MODEL

The communication system under consideration is a two-
hop cooperative MIMO system which employs multiple relay
nodes as shown in Fig. 1. The first hop is devoted to the source
transmission, which broadcasts the information symbols to
the relay nodes and to the destination node. The second hop
forwards the amplified and re-encoded information symbols
from the relay nodes to the destination node. An orthogonal
transmission protocol is considered which requires that the
source node does not transmit during the time period of the
second hop. In order to evaluate the adaptive optimization
algorithms, a BSC is considered as the feedback channel.

Consider a cooperative MIMO system withnr relay nodes
that employ an AF cooperative strategy as well as a DSTC
scheme. All nodes haveN antennas to transmit and re-
ceive. We consider only one user at the source node in
our system that operates in a spatial multiplexing configu-
ration. Let s[i] denotes the transmitted information symbol
vector at the source node, which containsN parameters,
s[i] = [s1[i], s2[i], ..., sN [i]], and has a covariance matrix
E
[

s[i]sH [i]
]

= σ2
sIN , whereσ2

s is the signal power which
we assume to be equal to 1. The source node broadcastss[i]
from the source tonr relay nodes as well as to the destination
node in the first hop, which can be described by

rSD[i] = HSD[i]s[i]+nSD[i], rSRk
[i] = F SRk

[i]s[i]+nSRk
[i],

(1)
i = 1, 2, ... , N, k = 1, 2, ... nr,

whererSRk
[i] andrSD[i] denote the received symbol vectors

at thekth relay node and at the destination node, respectively.
TheN × 1 vectornSRk

[i] andnSD[i] denote the zero mean
complex circular symmetric additive white Gaussian noise
(AWGN) vector generated at thekth relay node and at the
destination node with varianceσ2. The matricesF SRk

[i] and
HSD[i] are theN ×N channel coefficient matrices between
the source node and thekth relay node, and between the source
node and the destination node, respectively.

The received symbols are amplified and re-encoded at each
relay node prior to transmission to the destination node in the
second hop. We assume that the synchronization at each node
is perfect. After amplifying the received vectorrSRk

[i] at the
kth relay node, the signal vector̃sSRk

[i] = ARkD[i]rSRk
[i]

can be obtained, whereARkD[i] stands for theN×N diagonal
amplification matrix assigned at thekth relay node. TheN×1
signal vector̃sSRk

[i] will be re-encoded by anN × T DSTC
schemeM (s̃), multiplied by anN×N adjustable code matrix
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Φk[i] generated randomly [12], and then forwarded to the
destination node. The relationship between thekth relay and
the destination node can be described as

RRkD[i] = GRkD[i]Φk[i]MRkD[i] +NRkD[i]. (2)

The N × T received symbol matrixRRkD[i] in (2) can be
written as anNT × 1 vectorrRkD[i] given by

rRkD[i] = Φeqk [i]Geqk
[i]s̃SRk

[i] + nRkD[i], (3)

where the block diagonalNT × NT matrix Φeqk [i] denotes
the equivalent adjustable code matrix and theNT × N
matrixGeqk [i] stands for the equivalent channel matrix which
is the DSTC schemeM(s̃[i]) combined with the channel
matrixGRkD[i]. TheNT ×1 equivalent noise vectornRkD[i]
generated at the destination node contains the noise parameters
in NRkD[i].

The use of an adjustable code matrix or a randomized
matrix Φeqk [i] which achieves the full diversity order and
provides a lower error probability has been discussed in [12].
The uniform sphere randomized matrix which achieves the
lowest BER of the analyzed schemes and contains elements
that are uniformly distributed on the surface of a complex
hyper-sphere of radiusρ is used in our system. The proposed
adaptive algorithms detailed in the next section optimize the
code matrices employed at the relay nodes in order to achieve
a lower BER. At each relay node, the adjustable code matrices
are normalized so that no increase in the energy is introduced
at the relay nodes and the comparison between different
schemes is fair.

After rewriting RRkD[i] we can consider the received
symbol vector at the destination node as a(T + 1)N × 1
vector with two parts, one is from the source node and another
one is the superposition of the received vectors from each
relay node. Therefore, the received symbol vector for the
cooperative MIMO system can be written as

r[i] =

[

HSD[i]s[i]
∑nr

k=1 Φeqk [i]Geqk
[i]s̃SRk

[i]

]

+

[

nSD[i]
nRD[i]

]

= DD[i]s̃D[i] + nD[i],

(4)

where the(T + 1)N × 2N block diagonal matrixDD[i]
denotes the channel gain matrix of all the links in the network
which contains theN×N channel coefficients matrixHSD[i]
between the source node and the destination node, theNT×N
equivalent channel matrixGeqk

[i] for k = 1, 2, ..., nr between
each relay node and the destination node. We assume that
the coefficients in all channel matrices are independent and
remain constant over the transmission. The(T + 1)N × 1
noise vectornD[i] contains the equivalent received noise
vector at the destination node, which can be modeled as
an AWGN with zero mean and covariance matrixσ2(1+ ‖
∑nr

k=1 Φeqk [i]Geqk
[i]ARkD[i] ‖2F )I(T+1)N .

III. JOINT ADAPTIVE CODE MATRIX OPTIMIZATION AND

RECEIVER DESIGN

In this section, we jointly design an MMSE adjustable
code matrix and the receiver for the proposed DSTC scheme.
Adaptive SG and RLS algorithms [20] for determining the

parameters of the adjustable code matrix with reduced com-
plexity are also devised. The DSTC scheme used at the
relay node employs an MMSE-based adjustable code matrix,
which is computed at the destination node and obtained by a
feedback channel in order to process the data symbols prior
to transmission to the destination node. It is worth to mention
that the code matrices are only used at the relay node so the
direct link from the source node to the destination node is not
considered in this section.

A. Linear MMSE Receiver Design with Adaptive DSTC Opti-
mization

The linear MMSE receiver design with optimal code matri-
ces is derived as follows. By defining theTN × 1 parameter
vector wj [i] to determine thejth symbol sj [i], we propose
the MSE based optimization with a power constraint at the
destination node described by

[wj [i],Φeqk [i]] = arg min
wj [i],Φeqk

[i]
E
[

‖sj[i]−wH
j [i]r[i]‖2

]

, s.t. Tr(Φeqk
[i]ΦH

eqk
[i]) ≤ PR,

(5)
wherer[i] denotes the received symbol vector at the desti-
nation node. By employing a Lagrange multiplierλ we can
obtain the Lagrange expression shown as

L = E
[

‖sj [i]−wH
j [i]r[i]‖2

]

+λ(Tr(Φeqk
[i]ΦH

eqk
[i])−PR).

(6)
By expanding the right-hand side of (6) and taking the

gradient with respect tow∗
j [i] and equating the terms to zero,

we can obtain thejth MMSE receive filter vector for thejth
symbol

wj [i] = R−1p, (7)

where the first termR = E
[

r[i]rH[i]
]

denotes the auto-
correlation matrix and the second termp = E

[

r[i]s∗j [i]
]

stands for the cross-correlation vector. To optimize the code
matrix Φeqkj

[i] for each symbol at each relay node, we can
calculate the code matrix by taking the gradient with respect
to Φ

∗
eqkj

[i] and equating the terms to zero, resulting in

Φeqkj
[i] = R̃

−1
P̃ , (8)

where R̃ = E
[

sj [i]s̃SRkj
[i]wj [i]w

H
j [i] + λI

]

and P̃ =

E
[

sj [i]s̃SRkj
[i]wj [i]g

H
eqkj

[i]
]

are NT × NT matrices. The
value of the Lagrange multiplierλ can be determined by sub-
stitutingΦeqkj

[i] into λTr(Φeqk
[i]ΦH

eqk
[i]) = PR and solving

the power constraint function. In the proposed adaptive algo-
rithm we employ quantization instead of using the Lagrange
multiplier, which requires less computational complexity. The
detailed explanation is shown in the next section. Note that
non-linear detection algorithms [26] can also be employed at
the receiver for an improved performance.

Appendix A includes a detailed derivation ofwj [i] and
Φeqj [i]. The power constraint can be enforced by employ-
ing the Lagrange multiplier and by substituting the power
constraint into the MSE cost function. In (8) a closed-form
expression of the code matrixΦeqkj

[i] assigned for thejth
received symbol at thekth relay node is derived. The problem
is that the optimization method requires the calculation of
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TABLE I
SUMMARY OF THE C-ARMO SG ALGORITHM

1: Initialize: wj [0] = 0NT×1,
2: Φ[0] is generated randomly with the power constraintTr(Φeqk

Φ
H
eqk

) ≤ PR.
3: For each instant of time,i=1, 2, ..., compute
4: ∇Lw∗

j
[i] = −e∗j [i]r[i],

5: ∇LΦ∗

eqkj
[i] = −ej[i]s

∗
j [i]wj [i]d

H
kj
[i],

6: whereej [i] = sj [i]−wH
j [i]r[i].

7: Updatewj [i] andΦeqkj
[i] by

8: wj [i+ 1] = wj [i] + β(e∗j [i]r[i]),
9: Φeqkj

[i+ 1] = Φeqkj
[i] + µ(ej [i]s

∗
j [i]wj [i]d

H
kj
[i]),

10: Φeqkj
[i+ 1] =

√
PRΦeqkj

[i+1]
√

∑

N
j=1

Tr(Φeqkj
[i+1]ΦH

eqkj
[i+1])

.

a matrix inversion with a high computational complexity of
O((NT )3), and with the increase in the number of antennas
employed at each node or the use of more complicated STC
encoders at the relay nodes, the computational complexity
increases cubically according to the matrix sizes in (7) and
(8).

B. Adaptive Stochastic Gradient Optimization Algorithm

In order to reduce the computational complexity and achieve
an optimal performance, a centralized adaptive robust matrix
optimization (C-ARMO) algorithm based on an SG algorithm
with a linear receiver design is proposed as follows.

The Lagrangian resulting from the optimization problem is
derived in (6), and a simple adaptive algorithm for determining
the linear receive filters and the code matrices can be derived
by taking the instantaneous gradient term of (6) with respect
to w∗

j [i] and with respect toΦ∗
eqkj

[i], respectively, which are

∇Lw∗

j
[i] = ∇E

[

‖sj [i]−wH
j [i]r[i]‖2

]

w∗

j
[i]

= −e∗j [i]r[i],

∇LΦ∗

eqkj
[i] = ∇E

[

‖sj [i]−wH
j [i]r[i]‖2

]

Φ
∗

eqkj
[i]

= −ej[i]s
∗
j [i]wj [i]d

H
kj
[i],

(9)
whereej [i] = sj [i]−wH

j [i]r[i] stands for thejth error signal,
and theNT × 1 vector dkj

[i] denotes thejth column of
the channel matrix which contains the product of the channel
matricesF SRk

andGRkD and the power allocation matrices
ARkD. After we obtain (9) the proposed algorithm can be
obtained by introducing a step size into a gradient optimization
algorithm to update the result until the convergence is reached,
and the algorithm is given by

wj [i+1] = wj [i]+β(e∗j [i]r[i]), Φeqkj
[i+1] = Φeqkj

[i]+µ(ej[i]s
∗
j [i]wj [i]d

H
kj
[i]),

(10)
whereβ andµ denote the step sizes in the recursions for the
estimation. A detailed derivation is included in Appendix B.

The energy of the code matrices in (10) will be increased
with the processing of the adaptive algorithm, which will
contribute to the reduction of the error probability. A normal-
ization of the code matrix after the optimization is required and

implemented asΦeqkj
[i+ 1] =

√
PRΦeqkj

[i+1]
√

∑

N
j=1

Tr(Φeqkj
[i+1]ΦH

eqkj
[i+1])

to ensure that the energy is not increased and for a fair
comparison among the analyzed DSTC schemes. A summary
of the C-ARMO SG algorithm is given in Table I.

According to (10), the receive filterwj [i] and the code
matrix Φeqkj

[i] depend on each other. Therefore, alternating
optimization algorithms [23], [25] can be used to determinethe
linear MMSE receive filter and the code matrix iteratively, and
the optimization procedure can be completed. The complexity
of calculating the optimalwj [i] andΦeqkj

[i] is O(NT ) and
O(N2T 2), respectively, which is much less thanO(N4T 4)
andO(N5T 5) by using (7) and (8). As mentioned in Section
I, the optimal MMSE code matrices will be sent back to the
relay nodes via a feedback channel, and the influence of the
imperfect feedback is shown and discussed in simulations.

C. ML Detection and LS Code Matrix Estimation Algorithm

The criterion for optimizing the adjustable code matrices
and performing symbol detection in the C-ARMO algorithm
can be changed to the maximum likelihood (ML) criterion,
which is equivalent to a Least-squares (LS) criterion in this
case. For example, if we take the ML instead of the MSE
criterion to determine the code matrices, then we have to store
anN ×D matrixS at the destination node which contains all
the possible combinations of the transmitted symbol vectors.
The ML optimization problem can be written as

[ŝdj
[i], Φ̂eqkj

[i]] = arg min
sdj [i],Φeqkj

[i]
‖r[i]−r̂[i]‖2, s.t. Tr(Φeqk

[i]ΦH
eqk

[i]) ≤ PR, for d = 1, 2, ...,D,

(11)
where r̂[i] =

∑nr

k=1

∑N
j=1 Φeqkj

[i]dkj
[i]ŝdj

[i] denotes the
received symbol vector without noise which is determined by
substituting each column ofS into (11). It is worth to mention
that the optimization algorithm contains a discrete part which
refers to the ML detection and a continuous part which refers
to the optimization of the code matrix, and the detection and
the optimization can be implemented separately as they do
not depend on each other. The optimization algorithm can be
considered as a mixed discrete-continues optimization. Inthis
case, other detectors such as sphere decoders can be used in
the optimization algorithm in the detection part in order to
reduce the computational complexity without an impact on
the performance, and the algorithm will converge after several
iterations.

After determining the transmitted symbol vector, we can
calculate the optimal code matrixΦeqkj

[i] by employing the
LS estimation algorithm. The Lagrangian expression is given
by

L = ‖r[i]−(

nr
∑

k=1

N
∑

j=1

Φeqkj
[i]dkj

[i]ŝdj
[i])‖2+λ(Tr[Φeqk [i]Φ

H
eqk

[i]]−PR),

(12)
and by taking the instantaneous gradient ofL with respect to
the code matrixΦ∗

eqkj
[i] we can obtain

∇LΦ∗

eqkj
[i] = (r[i]− r̂[i])∇Φ∗

eqkj
[i](r[i]− r̂[i])H

= (rej [i]−Φeqkj
[i]dkj

[i]ŝdj
[i])(−ŝ∗dj

[i]dHkj
[i]),

(13)
where rej [i] = r[i] −

∑nr

k=1

∑N
l=1,l 6=j Φeqkl

[i]dkl
[i]ŝdl

[i]
stands for the received vector without the desired code matrix.
The optimal code matrix̂Φeqkj

[i] requires∇LΦ∗

eqkj
[i] = 0,
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and the optimal adjustable code matrix as given by

Φeqkj
[i] = ŝ∗dj

[i]rej [i]d
H
kj
[i](| ŝdj

[i] |2 dkj
[i]dH

kj
[i])†. (14)

The power constraint is not considered because the quanti-
zation method can be employed in order to reduce the high
computational complexity for determining the value of the
Lagrange multiplier.

D. RLS Code Matrix Estimation Algorithm

The RLS estimation algorithm for the code matrixΦeqkj
[i]

is derived in this section. The ML detector is employed so
that the detection and the optimization procedures are separate
as explained in the previous section, so we focus on how
to optimize the code matrix rather than the detection. The
superior convergence behavior of the LS algorithm when the
size of the adjustable code matrix is large indicates the reason
of the utilization of an RLS estimation, and it is worth to
mention that the computational complexity reduces from cubic
to square by employing the RLS algorithm.

According to the RLS algorithm, the optimization problem
is given by

[Φ̂eqkj
[i]] = arg min

Φeqkj
[i]

i
∑

n=1

λi−n‖r[n]−r̂[i]‖2, s.t. Tr(Φeqk
[i]ΦH

eqk
[i]) ≤ PR,

(15)
where λ stands for the forgetting factor. By expanding the
right-hand side of (15) and taking gradient with respect to
Φ

∗
eqkj

[i] and equaling the terms to zero, we obtain

Φeqkj
[i] = (

i
∑

n=1

λi−nre[n]r
H
kj
[n])(

n
∑

i=1

λi−nrkj
[n]rH

kj
[n])−1,

(16)
where theNT × 1 vector re[n] = Φeqkj

[n]dkj
[n]ŝdj

[n]

and rkj
[n] = dkj

[n]ŝdj
[n]. The power constraint is still not

considered during the optimization. We define

Ψ[i] =

i
∑

n=1

λi−nrkj
[n]rH

kj
[n] = λΨ[i − 1] + rkj

[n]rH
kj
[n],

(17)

Z[i] =
i
∑

n=1

λi−nre[n]r
H
kj
[n] = λZ[i−1]+re[n]r

H
kj
[n], (18)

so that we can rewrite (16) as

Φeqkj
[i] = Z[i]Ψ−1[i]. (19)

By employing the matrix inversion lemma in [30], we can
obtain

Ψ
−1[i] = λ−1

Ψ
−1[i− 1]− λ−1k[i]rH

kj
[i]Ψ−1[i− 1], (20)

wherek[i] = (λ−1
Ψ

−1[i − 1]rkj
[i])/(1 + λ−1rH

kj
[i]Ψ−1[i −

1]rkj
[i]). We defineP [i] = Ψ

−1[i] and by substituting (18)
and (20) into (19), the expression of the code matrix is given

TABLE II
SUMMARY OF THE C-ARMO RLS ALGORITHM

1: Initialize: P [0] = δ−1INT×NT , Z[0] = INT×NT ,
2: the value ofδ is small when SNR is high and is large when SNR is low,
3: Φ[0] is generated randomly with the power constrainttrace(Φeqk

[i]ΦH
eqk

[i]) ≤ PR.
4: For each instant of time,i=1, 2, ..., compute

5: k[i] =
λ−1

Ψ
−1[i−1]rkj

[i]

1+λ−1rH
kj

[i]Ψ−1[i−1]rkj
[i]

,

6: Φeqkj
[i] = Φeqkj

[i− 1] + λ−1(re[i]−Z[i− 1]k[i])rH
kj
[i]P [i − 1],

7: P [i] = λ−1P [i− 1]− λ−1k[i]rH
kl
[i]P [i− 1],

8: Z[i] = λZ [i− 1] + re[i]r
H
kj
[i].

12: Φeqkj
[i] =

√
PRΦeqkj

[i]
√

∑

N
j=1

Tr(Φeqkj
[i]ΦH

eqkj
[i])

.

by

Φeqkj
[i] = λZ[i− 1]P [i] + re[i]r

H
kj
[i]P [i]

= Z[i− 1]P [i− 1] +Z[i− 1]k[i]rH
kj
[i]P [i− 1] + re[i]r

H
kj
[i]P [i]

= Φeqkj
[i− 1] + λ−1(re[i]−Z[i− 1]k[i])rH

kj
[i]P [i− 1].
(21)

Table II shows a summary of the C-ARMO RLS algorithm.

E. Convergence Analysis

The C-ARMO algorithms can be divided into two cases:
the first one performs the optimization by updating the receive
filter and the code matrix iteratively, i.e., the MSE based C-
ARMO algorithm, the second one only optimizes the code
matrix itself according to the Lagrangian function, i.e., the
ML and RLS based C-ARMO algorithms. In this subsection,
we will illustrate how the C-ARMO algorithms converge to
the global optimum solution.

1) MSE based C-ARMO algorithm:The proposed MSE
based C-ARMO algorithm allows the optimization of the
receive filter w[i] and the code matrixΦ[i] iteratively. A
detailed proof of the convergence of this type of algorithm
is derived in [32]. We will give a brief outline on how these
results can be used to prove the convergence of our algorithms.

According to [32], the optimization problem in (5) can be
described as: Given an initial(w0,Φ0) ∈ W0 × P0, we have
to find a sequence of points(wn,Φn) ∈ Wn × Pn that

lim
n→∞

L (wn,Φn) = L (W ,P), (22)

where the sequence of compact sets{(Wn,Pn)}n≥0 : Wn,Pn

that are revealed at timen such that asn → ∞, Pn
dH→ P and

Wn
dH→ W , and

dH(A,B) = max{ sup
A∈A

inf
B∈B

d(A,B), sup
B∈B

inf
A∈A

d(A,B)}
(23)

denotes the Hausdorff distance betweenA and B. The pro-
posed algorithm is written recursively forn ≥ 1 as described
by

wn ∈ arg min
w∈Wn

L (w,Φn−1), Φn ∈ arg min
Φ∈Pn

L (wn,Φ).

(24)
According to the three-point property and the four-point prop-
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erty in [32], we can obtain

L (wn,Φn)+L (w,Φn) ≤ L (w,Φn−1)+L (w,Φ)+ω(γn)
(25)

for all w ∈ Wn and Φ ∈ Pn, where ω(γn) denotes the
modulus of continuity ofL (wn,Φn) with ω(γn) → 0 as
γn → 0, andγn = εn + εn−1 with εn → 0 asn → ∞.

SincePn
dH→ P andWn

dH→ W , there must exists a sequence
(w′

n,Φ
′
n) ∈ Wn × Pn such that(w′

n,Φ
′
n) → (w′,Φ′) ∈

argminL (W ,P) and d(w′
n,w

′) + d(Φ′
n,Φ

′) ≤ εn for all
n ≥ 0. By replacing (w,Φ) with (w′,Φ′) and choosing
L (w′

n,Φ
′
n) ≤ L (w′,Φ′) + ω(εn), we can obtain

L (wn,Φn)+L (w′
n,Φn) ≤ L (w′

n−1,Φn−1)+L (w′,Φ′)+2ω(γn)+ω(εn),
(26)

and further derive

lim inf
n→∞

L (wn,Φn) ≤ L (w,Φ). (27)

By defining a subsequence{nk}k>0 such that
lim infn→∞ L (wn,Φn) = limk→∞ L (wnk

,Φnk
), and

assuming compactness ofW andP , we can obtainw ∈ W ,
Φ ∈ P , and

lim inf
n→∞

L (wn,Φn) = lim
k→∞

L (wnk
,Φnk

) ≥ L (w,Φ).

(28)
Combining (27) and (28), we can obtain
lim infn→∞ L (wn,Φn) = L (w,Φ) which indicates
(22) converges to the optimum values.

2) ML and RLS based C-ARMO algorithm:The ML and
RLS based C-ARMO algorithms just optimize the code matrix,
and we can analyze the Hessian matrix of (12) and check its
positive (semi-)definiteness. By taking the second-order partial
derivatives of the Lagrangian cost function in (12), we can
obtain

H(L ) =
∂

∂Φeqkj
[i]

(
∂L

∂Φ∗
eqkj

[i]
) =

∂

∂Φeqkj
[i]

(r[i]s∗j [i]d
H
kj
[i]+ | sj |2 Φeqkj

[i]dkj
[i]dH

kj
[i])

=| sj |2 dkj
[i]dH

kj
[i],

(29)
where the first term| sj |2 is a positive scalar and the
rest of the terms denotes the multiplication of the equivalent
channel vectors which is a positive-definite matrix and the
problem is convex. We conclude that the Hessian matrix of
the Lagrangian cost function is a positive-definite matrix so
that the ML and RLS based C-ARMO algorithms converge to
the global optimum under the usual assumptions used to prove
the convergence of these algorithms for convex problems.

IV. PROBABILITY OF ERROR ANALYSIS

In this section, the pairwise error probability (PEP) of the
system employing the adaptive DSTC will be derived. As we
mentioned in Section I, the adjustable code matrices will be
considered in the derivation as it affects the performance by
reducing the upper bound of the pairwise error probability.The
PEP upper bound of the traditional STC schemes in [21] is
introduced for comparison, and the main difference lies in the
eigenvalues of the adjustable code matrices. Please note that
the direct link is ignored in the PEP upper bound derivation

in order to concentrate on the effects of the adjustable code
matrix on the performance. The expression of the upper bound
holds for systems with different sizes and an arbitrary number
of relay nodes.

Consider anN ×N STC scheme at the relay node withT
codewords, and the codewordC1 is transmitted and decoded
as another codewordCi at the destination node, wherei =
1, 2, ..., T . According to [21], the probability of error for this
code can be upper bounded by the sum of all the probabilities
of incorrect decoding, which is given by

Pe ≤
T
∑

i=2

P(C1 → Ci). (30)

Assuming that the codewordC2 is decoded at the destination
node and that we know the channel information perfectly, we
can derive the conditional pairwise error probability of the
DSTC encoded with the adjustable code matrixΦ as [33]

P(C1 → C2 | Φ) = Q

(
√

γ

2
‖ ΦD(C1 −C2) ‖F

)

, (31)

whereD stands for the matrix with the channel coefficients
for all links. Let UH

ΛCU be the eigenvalue decomposition
of (C1 − C2)H(C1 − C2), where U is a unitary matrix
with the eigenvectors andΛC is a diagonal matrix which
contains all the eigenvalues of the difference between two
different codewordsC1 andC2. Let V H

ΛΦV stand for the
eigenvalue decomposition of(ΦDU)HΦDU , whereV is
a unitary matrix that contains the eigenvectors andΛΦ is a
diagonal matrix with the eigenvalues arranged in decreasing
order. Therefore, the conditional pairwise probability oferror
can be written as

P(C1 → C2 | Φ) = Q





√

√

√

√

γ

2

NT
∑

m=1

N
∑

n=1

λΦn
λCn

|ξn,m|2


 ,

(32)
whereξn,m is the (n,m)th element inV , andλΦn

andλCn

are thenth eigenvalues inΛΦ and Λs, respectively. It is
important to note that the value ofλΦ is positive and real
because(ΦDU)HΦDU is Hermitian symmetric. According
to [21], an appropriate upper bound assumption of theQ

function isQ(x) ≤ 1
2e

−x2

2 , thus we can derive the upper bound
of the pairwise error probability for an adaptive STC scheme
as

PeΦ ≤ E

[

1

2
exp

(

−γ

4

NT
∑

m=1

N
∑

n=1

λΦn
λCn

|ξn,m|2
)]

=
1

∏N
n=1(1 +

γ
4λΦn

λCn
)NT

,

(33)
while the upper bound of the error probability expression for
a traditional STC in [21] is given by

PeD ≤ E

[

1

2
exp

(

−γ

4

NT
∑

m=1

N
∑

n=1

λCn
|ξn,m|2

)]

=
1

∏N
n=1(1 +

γ
4λCn

)NT
.

(34)
If we neglect the1 in the denominator in (33), the exponent
of the SNRγ indicates the diversity order which means the
full diversity NTN can be achieved in (33). By comparing
(33) and (34), employing an adjustable code matrix for an
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STC scheme at the relay node introducesλΦn
in the BER

upper bound. With the aid of simulations, we found thatΛΦ

is diagonal with one eigenvalue less than1 and others much
greater than1. As a result, employing the adjustable code
matrices can provide a decrease in the BER upper bound since
the value in the denominator increases.

V. THE FULLY DISTRIBUTED ADAPTIVE ROBUST MATRIX

OPTIMIZATION ALGORITHM

Inspired by the analysis developed in the previous section,
we derive a fully distributed ARMO (FD-ARMO) algorithm
which does not require the feedback channel in this section.
We will extend the exact PEP expression in [29] for MIMO
communication systems to the AF cooperative MIMO systems
with the adaptive DSTC schemes. Then, we design the FD-
ARMO algorithm to determine and store the adjustable code
matrices at the relay nodes before the transmission in Phase
II.

The exact PEP expression of an STC has been given by
Taricco and Biglieri in [29], which contains the sum of the
real part and the imaginary part of the mean value of the
error probability, and the moment generating function (MGF)
is employed to compute the mean value. To extend the exact
PEP expression to the cooperative MIMO systems, we can
rewrite the received symbol vector at the destination node as

RRD =

nr
∑

k=1

Φk[i]Dk[i]C[i] +NRD[i],

whereDk[i] denotes the channel matrix. For simplicity, we
assume the synchronization is perfect, and each relay node
transmits the STC matrix simultaneously and the received
symbol vector at the destination node will be the superposition
of each column of each STC code. The equivalent noise vector
contains the AWGN at the destination node as well as the
amplified and re-encoded noise vectors at the relay nodes. Asa
result the PEP expression of the AF cooperative MIMO system
with the adaptive DSTC can be derived as

P(C1 → C2 | Φeq) = Q

(‖ ΦD(C1 −C2) ‖F√
2No

)

, (35)

where N0 = Tr(I + ΦD) denotes the received noise
variance at the destination node. We define∆ = C1 −
C2 as the distance between the code words, andτ =
√

1
2No

ΦD∆∆
HDH

Φ
H and we assume that the eigenvalue

decomposition of∆∆
H can be written asV ΛV H, whereV

stands for a unitary matrix that contains the eigenvectors of
∆∆

H and Λ contains all the eigenvalues of the square of
the distance vector. Define anN × N matrix Z = ΦD,
and Z ∼ Nc(µZ ,ΣZ), where µZ = 0 denotes the mean
andΣZ = E

[

ΣZΣ
H
Z

]

stands for the covariance matrix. The

TABLE III
SUMMARY OF THE FD-ARMO ALGORITHM

1: Choose theN × T STC scheme used at the relay node
2: Determine the dimension of the adjustable code matrixΦ which isN ×N
3: Compute the eigenvalue decomposition of∆∆H and store the result inΛ
4: Generate a set ofΦ randomly with the power constraintTr(ΦkΦ

H
k ) ≤ PR

5: For allΦ, compute

Θ(c) = det
(

I + c

2
√
2N0

ΦΛΦ
H
)−1

6: Choose the code matrix according to
Θopt(c) = argmaxl Θl(c)

7: Store the optimal code matrixΦopt at the relay node

expression of the error probability is given by

Θ(c) = E [exp(−cξ)] = E

[

exp(−c

√

1

2No

[ΦD∆∆HDH
Φ

H])

]

= E

[

exp

(

−c

√

1

2No

[ZΛZH]

)]

=
exp

(

−µH
Z
B(I +ΣZB)−1µZ

)

det
(

I + c

2
√
2N0

ΦΛΦ
H
)

= det

(

I +
c

2
√
2N0

ΦΛΦ
H

)−1

,

(36)
whereB = I

⊗

∆∆
H, andc = a+ jb is the variable defined

in the MGF witha = 1
4 andb is a constant. By inserting (36)

into the pairwise error probability expression in [29], we can
obtain the exact PEP of the adaptive DSTC scheme written as

Pe =
1

2J

J
∑

i=1

{ℜ[Φ(c)] + b

a
ℑ[Φ(c)]}+ EJ , (37)

whereEJ → 0 asJ → ∞.
Since the PEP is proportional to (36), it is clear that

minimizing the PEP is equal to maximizing the determinant
of I + c

2
√
2No

ΦΛΦ
H. As a result, the optimization problem

can be written as

Θopt(c) = argmax
l

Θl(c), l = 1, 2, ... (38)

where Θl(c) stands for thelth candidate code matrix. For
simplicity the candidate code matrices are generated randomly
and satisfy the power constraint. In order to obtain the ad-
justable code matrix we can first randomly generate a set of
matrices, and then substitute them into (36) to compute the
determinant. In the simulation, we randomly generate500 code
matrices and choose the optimal one according to the FD-
ARMO algorithm. The optimal code matrix with the largest
value of the determinant which achieves the minimal PEP
will be employed at the relay node. A summary of the FD-
ARMO is given in Table III. It is worth to mention that the
FD-ARMO algorithm is non-convex, but it can still achieve
the optimal performance by choosing the optimal code matrix
from a number of candidates even though this not guaranteed.

VI. SIMULATIONS

The simulation results are provided in this section to assess
the proposed scheme and algorithms. The cooperative MIMO
system considered employs an AF protocol with the Alamouti
STBC scheme in [5] using QPSK modulation in a quasi-static
block fading channel with AWGN. The effect of the direct link
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Fig. 2. BER Performance vs.SNR for the Upper Bound of the Alamouti
Schemes without the Direct Link
is also considered. It is possible to employ the DF protocol or
use different number of antennas and relay nodes with a simple
modification. The system is equipped withnr = 1 relay node
andN = 2 antennas at each node. In the simulations, we set
the symbol powerσ2

s as equal to 1, and the power of the ad-
justable code matrix in the ARMO algorithms are normalized.
The SNR in the simulations is the receivedSNR which is
calculated bySNR =

‖
∑nr

k=1
Φeqk

[i]D‖2
F

1+‖∑nr
k=1

Φeqk
[i]Geqk

[i]ARkD[i]‖2
F

.
The upper bounds of the D-Alamouti, the R-Alamouti

in [12] and the adaptive Alamouti STC in C-ARMO RLS
algorithm are shown in Fig. 2. The theoretical pairwise error
probabilities provide the largest decoding errors of the three
different coding schemes and as shown in the figure, by
employing a randomized matrix at the relay node it decreases
the decoding error upper bound. The bounds become tighter to
the respective coding schemes as the SNR increases. The com-
parison of the simulation results in a better BER performance
of the R-Alamouti and the D-Alamouti which indicates the
advantage of using the randomized matrix at relay nodes. The
C-ARMO RLS algorithm optimizes the randomized matrices
after each transmission which contributes to a lower error
probability upper bound, and the ML detection algorithm
provides the optimal performance at the cost of a higher
computation complexity.

The proposed C-ARMO SG algorithm with a linear MMSE
receiver is compared with the SM scheme and the DSTC
algorithms in [34], [35], [12] and [7] in Fig. 3. It is worth
to mention that the coding schemes in the simulations are
different. In the proposed algorithm and the algorithms in
[34], [35] and [12], a spatial multiplexing scheme is sent from
the source node and re-encoded at the relay node, while the
full-opportunistic code [7] requires an STC encoding at the
source node instead of re-encoding at the relay node. The
step sizes for the iterative optimization areβ = 0.01 and
µ = 0.03, which are chosen according to [36]. The results
illustrate that without the direct link, by making use of the
STC technique, a significant performance improvement can
be achieved compared to the spatial multiplexing system. The
RSTC algorithm in [12] outperforms the STC-AF schemes
in [34] and [35], while the C-ARMO SG algorithm can
improve the performance by about3dB as compared to the
RSTC algorithm. The STC scheme in [7] achieves a much
better performance compared to other schemes although this
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Fig. 3. BER Performance vs.SNR for C-ARMO SG Algorithm with and
without the Direct Link
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Fig. 4. BER Performance vs.SNR for C-ARMO RLS Algorithm with and
without the Direct Link
comparison must be considered with caution. In [7] the
standard2 × 2 Alamouti STBC is employed at the source
node, which indicates the received matrix at the relay node
is amplified without the interference to the orthogonality of
the code. Moreover, encoding at the source node requires
more time slots to transmit so that the transmission rate is
half compared to the proposed C-ARMO algorithm. It is
also worth to mention that the C-ARMO algorithm can be
employed in an opportunistic scheme to achieve a better BER
performance as both of the algorithms employ the STCs and
can perform the optimization at the destination node. With the
consideration of the direct link, the results indicate thatthe
diversity order can be increased, and using the C-ARMO SG
algorithm an improved performance is achieved with2dB of
gain as compared to employing the RSTC algorithm in [12]
and 3dB of gain as compared to employing the traditional
STC-AF algorithm in [34].

In Fig. 4, BER curves of different Alamouti coding schemes
and the proposed C-ARMO RLS algorithm with and with-
out the direct link using an ML detector are compared. In
Fig. 4, the R-Alamouti scheme improves the performance
by about 4dB without the direct link compared to the D-
Alamouti scheme, and the C-ARMO RLS algorithm provides
a significant improvement in terms of gains compared to the
other DSTC schemes. When the direct link is considered,
all the coding schemes can achieve the full diversity order
and obtain lower BER performances compared to that without
the direct link, and still the C-ARMO RLS algorithm which
optimizes the adjustable code matrix achieves the lowest BER
performance.
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Fig. 5. BER Performance vs. Number of Samples for C-ARMO SG
Algorithm without the Direct Link

The simulation results shown in Fig. 5 illustrate the con-
vergence property of the C-ARMO SG algorithm. All the
schemes have an error probability of1 at the beginning, and
after the first20 symbols are received and detected, the R-
Alamouti scheme in [34] achieves a better BER performance
compared with the spatial multiplexing scheme and the R-
Alamouti scheme in [12] can reach a lower BER than the
C-ARMO algorithm. With the number of received symbol
increasing, the BER curve of the spatial multiplexing, the D-
Alamouti and the R-Alamouti schemes are almost straight,
while the BER performance of the C-ARMO algorithm can be
further improved and obtain a fast convergence after receiving
140 symbols.

The simulation results shown in Fig. 6 illustrate the influ-
ence of the feedback channel on the C-ARMO SG algorithm.
As mentioned in Section I, the optimized code matrix will
be sent back to each relay node through a feedback channel.
The quantization and feedback errors are not considered in
the simulation results in Fig. 3 and Fig. 4, so the optimized
code matrix is perfectly known at the relay node after the
C-ARMO algorithm; while in Fig. 6, it indicates that the
performance of the proposed algorithm will be affected by
the accuracy of the feedback information. In the simulation,
we use4 bits to quantize the real part and the imaginary
part of the element in the code matrixΦeqkj

[i], and the
feedback channel is modeled as a binary symmetric channel
with different error probabilities. As we can see from Fig. 6,
by decreasing the error probabilities for the feedback channel
with fixed quantization bits, the BER performance approaches
the performance with the perfect feedback, and by making
use of4 quantization bits for the real and imaginary part of
each parameter in the code matrix, the performance of the C-
ARMO SG algorithm is about 1dB worse with feedback error
probability of 10−3.

In Fig. 7, we plot the average error probability with respect
to the SNR for the FD-ARMO algorithm and the C-ARMO
SG algorithm with perfect feedback. The C-ARMO curve
and the FD-ARMO curve outperforms the others because
they optimize the adjustable code matrices with the same
criterion, but1dB of gain has been obtained by the C-ARMO
SG algorithm because the exact adjustable code matrix is
transmitted back to the relay node in a delay-free and error-free
feedback channel. While the FD-ARMO chooses the optimal
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Fig. 7. Full-Distributed ARMO Algorithm and C-ARMO SG Algorithm
adjustable code matrix by using the statistical information of
the channel before transmission so that the performance will
be influenced, resulting in a gain less than1dB.

VII. C ONCLUSION

We have proposed centralized adaptive robust matrix opti-
mization (C-ARMO) algorithms for the AF cooperative MIMO
system using a linear MMSE receive filter and an ML receiver
at the destination node. The pairwise error probability of in-
troducing the adaptive DSTC in a cooperative MIMO network
with the AF protocol has been derived. In order to eliminate
the need for a feedback channel we have derived a fully-
distributed ARMO (FD-ARMO) algorithm which can achieve
a similar coding gain without the feedback as compared to
the C-ARMO algorithms. The simulation results illustrate the
advantage of the proposed ARMO algorithms by comparing
them with the cooperative network employing the traditional
DSTC scheme and the RSTC scheme. The proposed algo-
rithms can be used with different DSTC schemes using the
AF strategy and can also be extended to the DF cooperation
protocol.

APPENDIX A

We show how to obtain the expression of the linear MMSE
receive filterwj [i] and the adjustable code matrixΦeqkj

[i] in
equation (7) and (8) in Section III in the following.

The MSE optimization problem is given by

[wj [i],Φeqk [i]] = arg min
wj [i],Φeqk

[i]
E
[

‖sj[i]−wH
j [i]r[i]‖2

]

, s.t. Tr(Φeqk
[i]ΦH

eqk
[i]) ≤ PR.
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We define a cost function associated with the optimization
problem above and expand it as follows

L = E
[

‖sj [i]−wH
j [i]r[i]‖2

]

+ λ(Tr(Φeqk
[i]ΦH

eqk
[i])− PR)

= E
[

sj [i]s
∗
j [i]
]

−wH
j [i]E

[

r[i]s∗j [i]
]

− E
[

sj [i]r
H[i]
]

wj [i] +wH
j [i]E

[

r[i]rH[i]
]

wj [i]

+ λ(Tr(Φeqk
[i]ΦH

eqk
[i])− PR),

(39)
where λ stands for the Lagrange multiplier and should be
determined before the calculation. It is worth to notice that
the first, the third and the fifth terms are not functions of
wH

j [i], so by taking the gradient ofL with respect towH
j [i]

and equating the terms to0, we can obtain

L
′
w∗

j
[i] = −E

[

r[i]s∗j [i]
]

+ E
[

r[i]rH[i]
]

wj [i] = 0. (40)

By moving the first term in (40) to the right-hand side and by
multiplying the inverse of the auto-correlation of the received
symbol vector, we obtain the expression of the linear MMSE
receive filter aswj [i] = R−1p, where the auto-correlation
matrixR = E

[

r[i]rH[i]
]

and the cross-correlation vectorp =
E
[

r[i]s∗j [i]
]

.
In order to obtain the expression of the adjustable code

matrixΦeqkj
[i] we have to rewrite the received symbol vector

r[i] as

r[i] =

nr
∑

k=1

Φeqk [i]Geqk
[i]s̃SRk

[i]+nRD[i] =

nr
∑

k=1

N
∑

j=1

Φeqkj
[i]geqkj

[i]s̃SRkj
[i]+nRD[i],

(41)
whereΦeqkj

[i] denotes the adjustable code matrix assigned to
the jth received symbol̃sSRkj

[i] at thekth relay node, and
geqkj

[i] stands for thejth column of the equivalent channel
matrix Geqk

[i]. By substituting (41) into (39), the expression
of L can be written as

L =E
[

sj [i]s
∗
j [i]
]

−wH
j [i]E[(r̃ + nRD[i])s∗j [i]]− E[sj [i](w

H
j [i](r̃ + nRD[i]))H]

+ E[(wH
j [i](r̃ + nRD[i]))HwH

j [i](r̃ + nRD[i])] + λ(Tr(Φeqk
[i]ΦH

eqk
[i])− PR),

where r̃ =
∑nr

k=1

∑N
j=1 Φeqkj

[i]geqkj
[i]s̃SRkj

[i]. We do not
have to consider the first and the second terms because they
are not functions ofΦH

eqkj
[i] so taking the gradient ofL with

respect toΦ∗
eqkj

[i] these terms will disappear. The last three
terms contain the sum of the adjustable code matrices, and we
focus on the exactjth code matrix we need and consider the
rest of the sum terms as constants. We can rewriteL as

L =− E
[

sj[i](w
H
j [i]Φeqkj

[i]geqkj
s̃SRkj

[i])H
]

+ λ(Φeqkj
[i]ΦH

eqkj
[i]− PRI)

+ E[(wH
j [i]Φeqkj

[i]geqkj
[i]s̃SRkj

[i])HwH
j [i]Φeqkj

[i]geqkj
[i]s̃SRkj

[i]],

(42)
and by taking the gradient ofL in (42) with
respect to Φ

∗
eqkj

[i] and equating the terms to

zero, we can obtain Φeqkj
[i] = R̃

−1
P̃ , where

R̃ = E
[

sj [i]s̃SRkj
[i]wj [i]w

H
j [i] + λI

]

and

P̃ = E
[

sj [i]s̃SRkj
[i]wj [i]g

H
eqkj

[i]
]

.

APPENDIX B

We show the detailed derivation of the C-ARMO SG
algorithm in this section. First, we have to rewrite the received

symbol vectorrRkD transmitted from thekth relay node.
By employing the AF cooperative strategy and space-time
coding schemes at the relay node, the received symbol vector
at the relay nodes will be amplified and re-encoded prior to
being forwarded to the destination node. Let us first define the
amplified symbol vector before re-encoding as

s̃SRk
[i] = ARkD[i](F SRk

[i]s[i] + nSRk
[i]) = ARkD[i]F SRk

[i]s[i] +ARkD[i]nSRk
[i]

= FRk
[i]s[i] + nRk

[i],
(43)

whereARkD[i] denotes theN ×N amplify matrix at thekth
relay node. The symbol vector̃sSRk

[i] will be mapped to an
N × T space-time code matrixM (s̃), and multiplied by an
adjustable code matrix which is generated randomly before
being forwarded to the destination node. By substituting (43)
into (4), the relationship between all the relay nodes and the
destination node can be written as

rRD =

nr
∑

k=1

Φeqk [i]Geqk
[i](FRk

[i]s[i] + nRk
[i]) + nRD[i] =

nr
∑

k=1

Φeqk [i]Dk[i]s[i] + nD[i]

=

nr
∑

k=1

N
∑

j=1

Φeqkj
[i]dkj

[i]sj [i] + nD[i],

(44)
where theNT × N matrix Dk[i] contains all the channel
information between the source node and thekth relay node,
and between thekth relay node and the destination node. The
noise vector at the destination nodenD[i] is Gaussian with
covariance matrixσ2(1 + Tr(

∑nr

k=1 Φeqk [i]Dk[i]))IN . By
substituting (44) into (5), we can rewrite the MSE optimization
problem as

[wj [i],Φeqkj
[i]] = arg min

wj [i],Φeqkj
[i]
E



‖sj [i]−wH
j [i](

nr
∑

k=1

N
∑

j=1

Φeqkj
[i]dkj

[i]sj [i] + nD[i])‖2


 ,

s.t. Tr(

N
∑

j=1

Φeqkj
[i]ΦH

eqkj
[i]) ≤ PR.

(45)

By taking the instantaneous gradient ofL in (39) with
respect towH

j [i] andΦH
eqkj

[i] we can obtain

∇Lw∗

j [i]
= ∇E

[

‖sj[i]−wH
j [i]r[i]‖2

]

w∗

j [i]
= (sj [i]−wH

j [i]r[i])
H∇w∗

j [i]
(sj [i]−wH

j [i]r[i])

= −e∗j [i]r[i],

∇LΦ∗

eqkj
[i] = ∇E



‖sj[i]−wH
j [i](

nr
∑

k=1

N
∑

j=1

Φeqkj
[i]dkj

[i]sj[i] + nRD[i])‖2




Φ∗

eqkj
[i]

= ∇Φ∗

eqkj
[i](sj [i]−wH

j [i](

nr
∑

k=1

N
∑

j=1

Φeqkj
[i]dkj

[i]sj [i] + nRD[i]))H(sj [i]−wH
j [i]r[i])

= −ej [i]s
∗
j [i]wj [i]d

H
kj
[i],

(46)
where ej [i] = sj [i] − wH

j [i]r[i] stands for thejth detected
error. By employing step sizesβ andµ for the receive filter
and the code matrix recursions, respectively, we obtain the
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C-ARMO SG algorithm derived as

wj [i+ 1] = wj [i] + β(e∗j [i]r[i]),

Φeqkj
[i+ 1] = Φeqkj

[i] + µ(ej [i]s
∗
j [i]wj [i]d

H
kj
[i]).
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