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Abstract— In this paper, we introduce an analytical framework
to compute the average rate of downlink heterogeneous cellular
networks. The framework leverages recent application of stochas-
tic geometry to other–cell interference modeling and analysis. The
heterogeneous cellular network is modeled as the superposition of
many tiers of Base Stations (BSs) having different transmitpower,
density, path–loss exponent, fading parameters and distribution,
and unequal biasing for flexible tier association. A long–term
averaged maximum biased–received–power tier associationis
considered. The positions of the BSs in each tier are modeled
as points of an independent Poisson Point Process (PPP). Under
these assumptions, we introduce a new analytical methodology
to evaluate the average rate, which avoids the computation of
the Coverage Probability (Pcov) and needs only the Moment
Generating Function (MGF) of the aggregate interference at
the probe mobile terminal. The distinguishable characteristic of
our analytical methodology consists in providing a tractable and
numerically efficient framework that is applicable to general
fading distributions, including composite fading channels with
small– and mid–scale fluctuations. In addition, our method can
efficiently handle correlated Log–Normal shadowing with little
increase of the computational complexity. The proposed MGF–
based approach needs the computation of either a single or
a two–fold numerical integral, thus reducing the complexity
of Pcov–based frameworks, which require, for general fading
distributions, the computation of a four–fold integral.

Index Terms— Heterogeneous cellular networks, aggregate in-
terference modeling, stochastic geometry, average rate.

I. I NTRODUCTION

T HE analytical performance modeling of cellular networks
is a long–standing open issue [1]. The mathematical

intractability mainly arises from the difficulty of accurately
modeling other–cell interference by taking into account the
spatial positions of the Base Stations (BSs) and the stochastic
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character of the wireless channel [2]. For this reason, accurate
performance analysis is usually conducted via costly, time–
consuming, and often proprietary system–level simulators[3].
This approach, however, seldom provides insightful informa-
tion on system design and on the dependency of the system
parameters to optimize. This situation is even exacerbated
in future cellular deployments, which are becoming more
heterogeneous with the introduction of new infrastructure
elements,e.g., femto/pico BSs, fixed/mobile relays, cognitive
radios, and distributed antennas [4]–[9] and [10] for a survey.

A. Abstraction Models for Analysis and Design of Cellular
Networks

To circumvent this problem, communications theorists usu-
ally resort to “abstractions” for tractable other–cell interference
modeling and for performance analysis. These abstractions
usually encompass simplified spatial models for the locations
of the BSs. In particular, three abstraction models are com-
monly adopted: i) the Wyner model [11]; ii) the single–cell
interfering model [12]; and iii) the regular hexagonal or square
grid model [13]. These abstraction models, however, are often
either over–simplistic or inaccurate [14]. Furthermore, in some
cases, as for the regular hexagonal/square grid model, they
still require either intensive numerical simulations or multi–
fold numerical integrations. Finally, these abstraction models
usually provide information forspecificBSs deployments, and
typically fail to provide useful information for more random,
unplanned, and/or clustered BSs deployments, which are typ-
ical of emerging heterogeneous cellular networks with,e.g.,
overlaid femtocells and picocells [9], [10]. Motivated by these
considerations, a new abstraction model is currently emerging
and gaining popularity, according to which the positions of
the BSs are modeled as points of a Poisson Point Process
(PPP) and powerful tools from applied probability, such as
stochastic geometry, are leveraged to develop tractable inte-
grals and closed–form mathematical frameworks for important
performance metrics (e.g., coverage and average rate) [15]–
[17].

B. Stochastic Geometry based Modeling of Heterogeneous
Cellular Networks

The stochastic geometry based abstraction model for the
analysis of cellular networks dates back to (at least) 1997

http://arxiv.org/abs/1303.0529v2
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[3], [18]. Subsequently, a similar shotgun–based,i.e., PPP–
based, abstraction model was proposed in [19], and it was
shown that, compared with the traditional hexagonal grid
model, the shotgun approach provides upper performance
bounds. More recently, the PPP model has been used for the
analysis of spatial and opportunistic Aloha protocols [20], and
for the characterization of the Signal–to–Interference–Ratio
(SIR) of (single–tier) cellular networks [21]. In spite of these
initial and pioneering attempts of applying the PPP model
and stochastic geometry to the analysis of cellular networks,
only recently the random–based abstraction model for the
positions of the BSs has received the attention it deserved.In
particular, its emergence and widespread adoption for cellular
networks analysis and design is mostly due to [22], where a
comprehensive framework to compute coverage and average
rate of single–tier deployments is provided. In [22], it is shown
that the PPP model is as accurate as regular grid models, but it
has the main advantage of being more analytically tractable. A
comprehensive study based on real BSs deployments obtained
from the open source project OpenCellID [23] has revealed
that the PPP model can indeed be used for accurate coverage
analysis in major cities worldwide. Recent results about the
validation of the PPP model for real BSs deployments are
available in [24], where data collected from Ofcom,i.e., the
independent regulator and competition authority in the UK,is
used. Fueled by these encouraging results, many researchers
are currently using the PPP–based abstraction model to study
single– and multi–tier cellular networks,e.g., [25]–[47] and
references therein. The PPP–based approach is also widely
adopted for network interference modeling,e.g., [48]–[65].

C. Analytical Computation of the Average Rate: State–of–the–
Art and Paper Contribution

In this paper, we capitalize on the emerging PPP–based
abstraction model for multi–tier cellular networks, and propose
a new mathematical methodology to compute the downlink
average rate over general fading channels. Recent papers
have developed frameworks to compute the average rate for
single–tier downlink [22], [39], multi–tier downlink [26], [43],
downlink multi–cell coordination [36], [44], and single–tier
uplink cellular networks [30]. All these papers use the same
two–step methodological approach to compute the average
rate, which was originally introduced in [20] and exploits the
Plancherel–Parseval theorem: i) first, the Coverage Probability
(Pcov) is computed; and ii) then, the average rate is obtained
by integrating Pcov over the positive real axis [20, Eq.
(2.12)]. Throughout this paper, this methodology is denoted by
Pcov–based approach. Although this technique avoids system–
level simulations, it requires, for general fading channels, the
computation of a four–fold integral [22, Appendix C]. For this
reason, many authors often limit the analysis to Rayleigh fad-
ing channels and/or to interference–limited networks, where
simplified frameworks can be obtained. Further details about
the computational complexity of the Pcov–based approach are
available in Section III-G.

To overcome this limitation, we propose a new analytical
framework which, at the same time, reduces the number of

integrals to be computed, and, similar to the Pcov–based
approach, is flexible enough for application to arbitrary fading
distributions (including correlated composite channel models).
The framework leverages the application of recent results
on the computation of the ergodic capacity in the presence
of interference and noise [66]. It avoids the computation of
Pcov, and needs only the Moment Generating Function (MGF)
of the aggregate interference at the probe mobile terminal.
Throughout this paper, this framework is denoted byMGF–
based approach. We show that it is applicable to multi–tier
cellular networks with long–term averaged maximum biased–
received–power tier association, and that either a single or a
two–fold numerical integral need to be computed for arbitrary
fading channels.

D. Paper Organization

The remainder of this paper is organized as follows. In
Section II, the system model is described. In Section III,
the MGF–based approach is introduced for single–tier cellular
networks. In Section IV, the proposed methodology is applied
to multi–tier cellular networks with flexible (biased) tierasso-
ciation. In Section V, extensive Monte Carlo simulations are
shown to substantiate the proposed mathematical framework
for various fading channel models and cellular networks
deployments. Finally, Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a downlink heterogeneous cellular networks
model similar to [31], [43], and [46]. However, the following
differences hold. In [31] and [46], the tier association policy
is based on the instantaneous Signal–to–Interference–plus–
Noise–Ratio (SINR). On the other hand, similar to [43], we
consider a biased long–term averaged tier association policy,
as described in Section II-B. Compared with [31], [43], and
[46] the analytical methodology to compute the average rateis
not based on the Pcov–based approach but on the MGF–based
approach.

Notation: E {·} denotes the expectation operator.MX (s) =
E {exp (−sX)} is the MGF of random variableX . fX (·)
denotes the Probability Density Function (PDF) of random
variable X . Γ (x) =

∫ +∞
0 exp (−t) tx−1dt is the gamma

function. erfc (x) = (2/
√
π)
∫ +∞
x

exp
{

−ξ2
}

dξ is the com-
plementary Gauss error function.Sa,b (·) is the Lommel func-

tion defined in [67, Sec. 7.5.5].Gm,n
p,q

(

(·)
∣

∣

∣

∣

(ap)
(bq)

)

is the

Meijer G–function defined in [68, Sec. 2.24].∆(n, x) =
[x/n, (x+ 1)/n, . . . , , (x+ n− 1)/n], with n being a positive
integer andx a real number. Thei–th entry of∆(n, x) is de-
noted by∆i (n, x). 2F1 (·, ·, ·, ·) is the Gauss hypergeometric
function defined in [69, Ch. 15].1F1 (·, ·, ·) is the confluent
hypergeometric function defined in [69, Ch. 13].(·!) is the fac-
torial operator.Γ (z, x) =

∫ +∞
x

tz−1 exp {−t} dt is the upper–
incomplete gamma function.γ (z, x) =

∫ x

0 tz−1 exp {−t} dt is
the lower–incomplete gamma function.δ (·) is the Dirac delta
function.Iν (·) is the modified Bessel function of the first kind
and orderν defined in [69, Sec. 9.6].H (·) is the Heaviside
function, i.e., H (x) = 1 if x ≥ 0 andH (x) = 0 if x < 0.
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pFq (·, ·, ·) is the generalized hypergeometric function defined
in [70, Ch. IV]. j =

√
−1 is the imaginary unit.card {·}

denotes the cardinality of a set.

A. Heterogeneous Cellular Networks Model

Let us consider the PPP–based abstraction model for the
positions of the BSs in a bi–dimensional plane. Then, a
heterogeneous cellular deployment can be modeled as aT–tier
network where each tier models the BSs of a particular class.
Each class of BSs is distinguished by its spatial density (λt

for t = 1, 2, . . . , T ), transmit power (Pt for t = 1, 2, . . . , T ),
path–loss exponent (αt > 2 for t = 1, 2, . . . , T ), biasing factor
(Bt > 0 for t = 1, 2, . . . , T ), and fading parameters and
distribution. The BSs of each PPP are assumed to have the
same transmit power, the same path–loss exponent, the same
biasing factor, and their fading channels are independent and
identically distributed (i.i.d.). The extension to correlated and
identically distributed (c.i.d.) fading is discussed in Section
III-F. However, for mathematical generality, we assume that
the fading distribution of the serving (tagged) BS is different
from the fading distribution of the intra–tier interferingBSs.
The BSs of each tier are assumed to be spatially distributed
according to a homogeneous PPP (Φt for t = 1, 2, . . . , T ).
The T PPPs are assumed to be spatially independent. Our
analysis applies to a typical mobile terminal, as permissible
in any homogeneous PPP according to the Slivnyak–Mecke’s
theorem [17, vol. 1, Theorem 1.4.5]. Without loss of generality,
the typical Mobile Terminal (MT0) is assumed to be located
at the origin of the bi–dimensional plane. Theb–th BS of the
t–th tier is denoted byBSt,b. The distance fromBSt,b to MT0

is denoted bydt,b. The standard path–loss functionl (dt,b) =
d−αt

t,b is considered. The power channel gain of theBSt,b–to–
MT0 link is denoted bygt,b = |ht,b|2, whereht,b is the related
complex amplitude channel gain. For a fair comparison among
fading channels with different distributions, the normalization
constraintE {gt,b} = E

{

|ht,b|2
}

= Ω = 1 is assumed for
everyb and for t = 1, 2, . . . , T .

The frameworks developed in the present paper are ap-
plicable to single–input–single–output transmission systems.
In other words, BSs andMT0 are equipped with a single
transmit and receive antenna, respectively. The generalization
of the proposed analytical methodology to more advanced
transmission technologies is currently under investigation, but
it is beyond the scope of the present paper. The interested
reader can, however, find preliminary results to the analysis
of multi–antenna receivers and dual–hop relaying in [71] and
[72], respectively. The main limitation of [71] and [72] is
that cell association is not considered and that the distance
from serving BS to probe mobile terminal is assumed to be
fixed. Finally, we mention that the average rate is computed
under the same assumptions as in [22, Sec. IV],i.e., the
interference is treated as noise and the typical mobile terminal
uses adaptive modulation/coding such that the Shannon bound,
for the operating instantaneous SINR, can be achieved.

B. Biased Long–Term Averaged Tier and BS Association

We assume that the BSs of each tier operate in open access
mode forMT0 [8]. As a consequence,MT0 is allowed to
access to any tiers without any restrictions. In a multi–tier
cellular networks model, both tier and BS associations haveto
be properly defined. Similar to [43, Sec. II–A], throughout this
paper we consider a long–term averaged maximum biased–
received–power association policy. Letdt = min {dt,b} for
t = 1, 2, . . . , T be the distance fromMT0 to thenearestBS
of the t–th tier. LetBSt for t = 1, 2, . . . , T be theT nearest
BSs. Then,MT0 is associated (tagged) to the tiert∗ defined
as follows:

t∗ = argmax
t=1,2,...,T

{

Ptd
−αt

t Bt

}

(1)

and the tagged (serving) BS is denoted byBSt∗ = BS0.
In other words,MT0 is connected to the BS that offers the

highest average received power to it. Accordingly, theBS0–
to–MT0 link is the useful signal, while all the other BSs in
every tier act as interferers. Since the positions of the BSsare
random, theBS0–to–MT0 distance is a random variable as
well [22].

The biasing factor,Bt > 0 for t = 1, 2, . . . , T , modifies the
coverage range of each tier for a better offloading strategy.
For example, ifBt > 1 the coverage range of thet–th tier is
increased. Throughout this paper, we assume, similar to [43],
that all the BSs are fully–loaded (i.e., their queues are full
and, thus, they have always data to transmit). The analysis
of heterogeneous cellular networks with partially–loadedBSs
is postponed to future research, for example either using the
conditionally thinning approach proposed in [35] or the recent
results in [45] and [47].

C. Problem Statement

The main objective of this paper is to compute the average
(ergodic) rate of a heterogeneous cellular network, which
is modeled as the superposition ofT independent PPPs.
According to [22] and [43], the average rate can be written as
follows:

R =
T
∑

t=1

AtRt (2)

where: i)At is the probability thatMT0 is associated to the
t–th tier; and ii)Rt is the average rate ofMT0 conditioned on
its association to thet–th tier. For the tier association policy
introduced in Section II-B,At is available in [43, Lemma 1].
On the other hand,Rt is defined as follows [22, Sec. IV], [43,
Eq. (46)]:

Rt =

∫ +∞

0

Rt (ξ) fdt,0 (ξ) dξ (3)

where: i)dt,0 is the distance ofMT0 from its serving BS by
conditioning onMT0 being tagged to thet–th tier; ii) fdt,0 (·)
is the PDF of the random distancedt,0, which is given in [43,
Lemma 3]:

fdt,0 (ξ) =
2πλt

At

ξ exp

{

−π

T
∑

q=1

[

λq

(

Pq

Pt

Bq

Bt

)
2

αq

ξ
2αt
αq

]}

(4)
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R̃t = 2πλt

∫ +∞

0

ξ exp

{

−π

T
∑

q=1

[

λq

(

Pq

Pt

Bq

Bt

)
2

αq

ξ
2αt
αq

]}

E

{

ln

(

1 +
Ptgt,0ξ

−αt

σ2
N + Iagg (ξ)

)}

dξ (6)















R =

∫ +∞

0

[1−M0 (SNRy)]
GI (y)

y
dy

GI (y) =
1

ZI (SNRy)
− α

2

y

ZI (SNRy)

∫ +∞

0

ξ
α
2 −1 exp {−πλZI (SNRy) ξ} exp

{

−yξ
α
2

}

dξ

(8)

and iii) Rt (ξ) is the average rate ofMT0 conditioned on this
terminal being tagged to thet–th tier and ondt,0 being equal
to dt,0 = ξ. From [22, Sec. IV] and [43, Eq. (14)],Rt (·) can
be written as follows:



























Rt (ξ) = E {ln (1 + SINRt (ξ))}

= E

{

ln

(

1 +
Ptgt,0ξ

−αt

σ2
N + Iagg (ξ)

)}

Iagg (ξ) =
T
∑

q=1

∑

b∈Φq{\BSt,0(ξ)}

(

Pqgq,bd
−αq

q,b

)

(5)

where: i) σ2
N is the noise power; ii)BSt,0 (ξ) is the serving

BS at distancedt,0 = ξ andgt,0 is theBSt,0–to–MT0 power
channel gain; and iii)Iagg (ξ) is the aggregate interference
conditioned ondt,0 = ξ, which is generated by all BSs except
the serving BS1 BSt,0. From (2)–(5), the average rate reduces
to R =

∑T
t=1 R̃t with R̃t given in (6) at the top of this page.

The main objective of the next sections is to introduce
a new MGF–based approach to efficiently computeR̃t in
(6) for arbitrary fading channels. The main contribution is
to avoid the computational complexity of the state–of–the–
art Pcov–based approach [20], [22], [43]. To this end, we
introduce the simplified notation as follows, which originates
from the assumption of identically distributed fading in each
tier: i) ft,0 (·) andMt,0 (·) are PDF and MGF ofgt,0 in (6),
respectively; ii)ft,I (·) andMt,I (·) are PDF and MGF ofgt,b
in (5), respectively; iii)MIagg (·; ξ) is the MGF of Iagg (ξ)
in (5); and iv) Mq,Iagg (·; ξ) is the MGF of Iq,agg (ξ) =
∑

b∈Φq{\BSt,0(ξ)}

(

Pqgq,bd
−αq

q,b

)

, i.e., the per–tier aggregate
MGF in (5).

Finally, we mention that the average rate in (6) provides an
estimate of the mean data rate over a cell that is achievable
by a typical mobile terminal [22, Sec. IV]. This interpretation
immediately follows from the validation procedure of the
PPP–based abstraction model against conventional grid–based
abstraction models, as discussed in detail in [22, Sec. V–A].

III. S INGLE–TIER CELLULAR NETWORKS

To better introduce the proposed MGF–based analytical
methodology to compute the average rate in (6), we start by
considering the single–tier reference scenario withT = 1. In

1Throughout this paper, the serving BS is denoted byBSt,0 (ξ) when used
in equations, and byBSt,0 when used in the text.

this case, (6) simplifies as follows:

R = 2πλ

×
∫ +∞

0

ξ exp
{

−πλξ2
}

E

{

ln

(

1 +
Pg0ξ

−α

σ2
N + Iagg (ξ)

)}

dξ

(7)

with Iagg (ξ) =
∑

b∈Φ{\BS0(ξ)}
(

Pgbd
−α
b

)

. SinceT = 1, for
ease of notation, in (7) the subscriptt that denotes the tier is
dropped. Likewise, the subscriptt is dropped inf0 (·), M0 (·),
fI (·), andMI (·) as well.

By using the MGF–based approach, an integral closed–form
expression of (7) is given inTheorem1.

Theorem 1:Let SNR = P
/

σ2
N be the Signal–to–Noise–

Ratio (SNR), then the average rate,R, of a single–tier cellular
network over generalized fading channels is given in (8) at the
top of this page, where:














ZI (y) = MI (y) + TI (y)
TI (y) = Γ

(

1− 2
α

)

+∞
∑

k=0

yk+1M(k)
I (y)

[

Γ
(

2− 2
α
+ k
)]−1

M(k)
I (y) = E

{

gk+1
b exp {−ygb}

}

(9)

Proof: See Appendix I. �

The framework in (8) and (9) is called MGF–based approach
becauseR can be directly computed from the MGFs of
useful and interference links. In fact,M(k)

I (·) can be obtained
from the (k + 1)–th derivative ofMI (·), i.e., M(k)

I (y) =

(−d/dy)k+1 MI (y) [73, Eq. (1.1.2.9)]. In the sequel, we
show thatM(k)

I (·) can be explicitly computed in closed–form
for many fading channel models. Furthermore, closed–form
expressions ofM0 (·) andMI (·) are available in [75, Sec.
2.2], [76, Tables II–IV], and [77, Tables II–V] for many fading
channel models. Compared with the Pcov–based approach in,
e.g., [20], [22], and [43], the framework in (8) reduces the
number of fold integrals to be computed from four to two.

By carefully looking at (9), some important conclusions
about the system behavior as a function of the BSs density,λ,
can be drawn, as summarized inRemark1.

Remark 1:Since the integrand function ofGI (·) in (8) is
always greater than zero, it follows thatR is a monotonically
increasing function ofλ. Furthermore,R is upper–bounded as
follows:

R ≤ lim
λ→+∞

R (λ) = R(λ∞) =

∫ +∞

0

1−M0 (z)

MI (z) + TI (z)
dz

z
(10)

The analytical derivation of (10) is available in Appendix
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

























GI (y)|α=4

(a)
= 1

4

√

π
y
exp

{

(πλ)2Z2
I (SNRy)
4y

}

erfc
(

(πλ)ZI(SNRy)
2
√
y

)

GI (y)|α=6

(b)
= 1

4

√

(πλ)ZI(SNRy)
27y S0,1/3

(

2
√

(πλ)3Z3
I
(SNRy)

27y

)

GI (y)|α/2=αN/αD

(c)
= 1

ZI(SNRy) − α
2

y

(πλ)να+1Zνα+2
I

(SNRy)

√
αDα

να+1
2

N

(2π)
αN+αD

2
−1

GαD ,αN
αN ,αD

(

α
αN
N

yαD

α
αD
D

(πλ)αNZαN
I

(SNRy)

∣

∣

∣

∆(αN ,−να)
∆ (αD, 0)

)

(11)

II. From (10), we observe that: i)R(λ∞) is independent of
the SNR = P

/

σ2
N . Thus, for very dense BSs deployments

increasing the transmit–power does not help in increasing the
average rate; and ii) the existence of a finite upper–bound for
increasingλ confirms that the deployment of many BSs is not
sufficient to achieve very high data rates but more advanced
interference management techniques seem to be needed.�

In the remainder of this section, we show that the two–
fold integral in (8) can often be reduced to a single integral,
since closed–form expressions ofGI (·) exist for many path–
loss exponentsα. Also, we show that the infinite series in
(9) can be calculated for common fading distributions of the
interference channels.

Let us consider the computation ofGI (·) as a function of
the path–loss exponentα. The main result is summarized in
Corollary 1.

Corollary 1: Let α = 4, α = 6, andα/2 = αN/αD with
αN andαD being two positive integer numbers, thenGI (·)
in (8) has closed–form expression shown in (11) at the top of
this page, whereνα = α/2− 1.

Proof: Equation (11) follows from some notable integrals.
More specifically: (a) from [73, Eq. (2.2.1.8)]; (b) from [73,
Eq. (2.2.1.13), Eq. (2.2.1.14)]; (c) from [73, Eq. (2.2.1.22)].
This concludes the proof. �

Since the case studyα/2 = αN/αD encompasses many
scenarios of practical interest, when referring toCorollary 1,
we will implicitly assume the closed–form expression ofGI (·)
using the Meijer G–function.

The single–integral expression inTheorem1 can be effi-
ciently computed by using the Gauss–Chebyshev quadrature
rule, as summarized inRemark2 as follows.

Remark 2:By using Gauss–Chebyshev integration,R in
Theorem1 can be computed as [69, Eq. (25.4.39)]:

R ≈
NGCQ
∑

n=1

wn

sn
[1−M0 (SNRsn)]GI (sn) (12)

wherewn and sn for n = 1, 2, . . . , NGCQ are weights and
abscissas, respectively, of the quadrature rule [74, Eq. (22)
and Eq. (23)]:



























wn =
π2 sin

(

2n−1
2NGCQ

π
)

4NGCQ cos2
[

π
4 cos

(

2n−1
2NGCQ

π
)

+ π
4

]

sn = tan

[

π

4
cos

(

2n− 1

2NGCQ
π

)

+
π

4

]

(13)

�

A. Computation ofTI (·) in (9) for General Fading Channels

Theorem1 andCorollary 1 need the computation ofTI (·),
which depends on the fading distribution of the interference
channels. As mentioned inTheorem1, TI (·) can, in principle,
be computed from the derivatives ofMI (·). However, closed–
form expressions can be obtained for many fading channel
models by also avoiding the computation of the infinite series
in (9). Some key case studies are analyzed inPropositions1–4
for Nakagami–m, Log–Normal, composite Nakagami–m and
Log–Normal, and composite Rice and Log–Normal fading,
respectively.

Proposition 1: Let the interference links experience
Nakagami–m fading. Accordingly, gb follows a Gamma
distribution with parameters(m,Ω), which we denote as
gb ∼ Gamma (m,Ω) [75, Sec. 2.2.1.4]. Then,TI (·) in (9)
has closed–form expression as follows:

TI (y) = m
(m

Ω

)m
(

1− 2

α

)−1

y
(

y +
m

Ω

)−(m+1)

× 2F1

(

m+ 1, 1, 2− 2

α
, y
(

y +
m

Ω

)−1
) (14)

Proof: See Appendix III. �

Proposition 2: Let the interference links experience Log–
Normal fading. Accordingly,gb follows a Log–Normal distri-
bution with parameters (in dB)

(

µ, σ2
)

, which we denote as
gb ∼ LogN

(

µ, σ2
)

[75, Sec. 2.2.2]. Then,TI (·) in (9) has
closed–form expression as follows:

TI (y) ≈
(

1− 2

α

)−1

y
1√
π

NGHQ
∑

n=1

w̃n10(
√
2σs̃n+µ)/10

× exp
{

−10(
√
2σs̃n+µ)/10y

}

× 1F1

(

1, 2− 2

α
, 10(

√
2σs̃n+µ)/10y

)

(15)

where w̃n and s̃n for n = 1, 2, . . . , NGHQ are weights and
abscissas, respectively, of the Gauss–Hermite quadraturerule
[69, Eq. (25.4.46)].

Proof: See Appendix IV. �

Proposition 3: Let the interference links experience com-
posite Nakagami–m and Log–Normal fading. Accordingly,gb
follows a Gamma distribution by conditioning on its mean
power, which, in turn, follows a Log–Normal distribution. We
denote this distribution asgb ∼ Gamma/LogN

(

m,µ, σ2
)

[75, Sec. 2.2.3.1]. Then,TI (·) in (9) has closed–form expres-
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











TI (y) ≈ (1 +K) exp {−K}
(

1− 2

α

)−1

y
1√
π

NGHQ
∑

n=1

w̃nω̃n [y + (1 +K) ω̃n]
−2 T (n)

I (y)

T (n)
I (y) =

+∞
∑

l=0

l + 1

(l!)

[

K (1 +K)

1 +K + (y/ω̃n)

]l

2F1

(

l + 2, 1, 2− 2

α
, y [y + (1 +K) ω̃n]

−1

)

(17)

sion as follows:

TI (y) ≈ mm+1

(

1− 2

α

)−1

y
1√
π

×
NGHQ
∑

n=1

w̃nω̃
m
n (y +mω̃n)

−(m+1)

× 2F1

(

m+ 1, 1, 2− 2

α
, y (y +mω̃n)

−1

)

(16)

with ω̃n = 10−(
√
2σs̃n+µ)/10.

Proof: See Appendix V. �

Proposition 4: Let the interference links experience com-
posite Rice and Log–Normal fading. Accordingly,gb fol-
lows a non–central Chi–Square distribution by condition-
ing on its mean power, which, in turn, follows a Log–
Normal distribution. We denote this distribution asgb ∼
ChiSquare/LogN

(

K,µ, σ2
)

[78, Eq. (6)], with K being
the Rice factor. IfK 6= 0, TI (·) in (9) has closed–form
expression given in (17) at the top of this page. IfK = 0,
the composite Rice and Log–Normal fading reduces to the
composite Nakagami–m and Log–Normal fading withm = 1
(Suzuki distribution [75, Sec. 2.2.3.2]) andProposition3 can
be used.

Proof: See Appendix VI. �

From (17), we observe that, unlike the other fading distribu-
tions inPropositions1–3, for composite Rice and Log–Normal
fading we still need to calculate an infinite series to compute
TI (·) in (9). The computation of the series can be avoided as
suggested inRemark3 as follows.

Remark 3:Using the mapping between them parameter
of a Nakagami–m distribution and theK factor of a Rice
distribution [75, Eq. (2.26)], (17) can be approximated by (16)
with m = (1 +K)

2
/

(1 + 2K). �

Finally, we would like to emphasize that the fading dis-
tributions studied inPropositions1–4 are just some selected
examples, which have been chosen because they are often used
in theoretical analysis. However, our analytical methodology
to computeTI (·) in (9) is applicable to arbitrary fading
distributions as described inRemark4.

Remark 4:From (9), we observe thatTI (·) needs the
computation of M(k)

I (y) = E
{

gk+1
b exp {−ygb}

}

=
∫ +∞
0 xk+1 exp {−yx} fgb (x) dx. With the exception of the

Log–Normal distribution, which is studied inProposition2,
from [75, Sec. 2.2], [76, Tables II–IV], and [77, Tables II–V]
we note that two general situations can arise:

1) f̃ (x; y) = exp {−yx} fgb (x) = A exp {−B (y)x},
where A is a constant andB (·) is a function of y.
In other words,f̃ (·; ·) is still an exponential function
in x. In this case, closed–form expressions ofTI (·)

can be obtained by using the same development as in
Proposition1 for Nakagami–m fading.

2) fgb (x) = CxυGm,n
p,q

(

Dx

∣

∣

∣

∣

(ap)
(bq)

)

, whereC, D, and

υ are constants. In other words, the distribution of the
power channel gaingb can be cast in terms of a Meijer
G–function. Accordingly,M(k)

I (·) can be computed in
closed–form as another Meijer G–function by using the
Mellin–Barnes theorem and the notable integral in [68,
Eq. (2.24.3.1)]. In general, in this case it is not possible
to avoid the computation of the infinite series in (9).�

B. Efficient Computation of the Meijer G–Function in (11)

The computation of the average rate in (7) by usingTheorem
1 and Corollary 1 needs, in general, the calculation of the
Meijer G–function in (11). This special function is commonly
used in wireless communications theory,e.g., [76], [77], [79]–
[81], and it is available in several standard mathematical
software packages. Thus, in general, its computation can be
performed very efficiently. However, in (8) the Meijer G–
function must be calculated for all positive real values, and
it is known that the numerical complexity and the numerical
accuracy of common algorithms to compute the Meijer G–
function increases and decreases, respectively, for smallvalues
of its argument,i.e., for y → 0 in (11), see,e.g., [82] and [83].
In order to provide a framework that is general and accurate
but also simple and stable to compute,Corollary 2 provides
a numerically efficient and stable solution to computeGI (·)
in (11), which exploits an asymptotic expansion of the Meijer
G–function for large values of its argument.

Corollary 2: Let α/2 = αN/αD with αN andαD being
two positive integer numbers, thenGI (·) in (8) can be effi-
ciently computed as shown in (18) at the top of the next page,
whereε is a small positive constant.

Proof: See Appendix VII. �

The rationale behindCorollary 2 is to avoid the calculation
of the Meijer G–function for small values of its argument, and
to replace the Meijer G–function with an accurate, simple to
compute, and numerically stable expansion formula. In other
words,GI (·) is computed by usingU (·), i.e., the exact formula
in Corollary 2, as long as the argument of the Meijer G–
function is no smaller thanε. On the other hand, when this
occurs the asymptotical expansionU (asymptote) (·) is used,
which is simple and fast to be computed. This “adaptive”
approach allows us to keep the desired accuracy without
increasing the numerical complexity and without incurringin
numerical instabilities. The key parameter for the efficient
computation ofGI (·) in (18) is ε, which depends on the
mathematical software package being used to compute the
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
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
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

GI (y) ≈ 1
ZI (SNRy) − α

2
y

(πλ)να+1Zνα+2
I

(SNRy)

√
αDα

να+1
2

N

(2π)
αN+αD

2
−1

ΥH
(

α
αN
N

yαD

α
αD
D

(πλ)αNZαN
I

(SNRy)

)

ΥH (z) = U (z)H (z − ε) + U (asymptote) (z) [1−H (z − ε)]

U (z) = GαD ,αN
αN ,αD

(

z

∣

∣

∣

∣

∆(αN ,−να)
∆ (αD, 0)

)

U (asymptote) (z) = lim
z→0+

U (z) =
αD
∑

q=1







z∆q(αD ,0)
αD
∏

r=1
r 6=q

Γ (∆r (αD, 0)−∆q (αD, 0))
αN
∏

p=1
Γ (1 + ∆q (αD, 0)−∆p (αN ,−να))







(18)

GI (y) ≈
1

ZI (SNRy)
− α

2

y

(πλ)
να+1 Zνα+2

I (SNRy)

√
αDα

να+ 1
2

N

(2π)
αN+αD

2 −1
GαD ,αN

αN ,αD

(

ααN

N yαD

ααD

D (πλ)
αN ZαN

I (SNRy)

∣

∣

∣

∣

∆(αN ,−να)
∆ (αD, 0)

)

×H
(

ααN

N yαD

ααD

D (πλ)
αN ZαN

I (SNRy)
− ε

)

(19)

Meijer G–function. In practice,ε is the smallest value of
the argument of the Meijer G–function for which it can
be efficiently computed. Ifε = 0, Corollary 2 reduces to
Corollary 1.

Finally, we close this section withRemark5 andRemark
6.

Remark 5:From (18), we note that a very computation-
ally efficient framework, which is accurate for sufficiently
small values ofε, can be obtained by simply neglecting
U (asymptote) (·), as shown in (19) at the top of this page�.

Remark 6:The integral inGI (·) belongs to the so–called
“Weibull–type” integrals, since it coincides with the integral
to be computed to obtain the MGF of the Weibull distribution
[84, Eq. (2)] and [85, Eq. (2)]. Similar toCorollary 1, it can
be computed in terms of Meijer G–function [84] and [86]
or in terms of generalized hypergeometric function [85]. Fur-
thermore, various closed–form approximations are available
in the literature, such as [87]–[90] and references therein. The
interested reader can consult these papers and the references
therein to identify alternative ways of computingGI (·) that
avoid special functions, such as the Meijer G–function. On the
other hand, to the best of the authors knowledge, the approach
proposed inCorollary 2 is not available in the literature.�.

C. Interference–Limited Scenario

In many practical situations of interest, the background
noise is often negligible compared to the aggregate interfer-
ence [22] and [43]. In this case,Theorem1 simplifies as shown
in Corollary 3.

Corollary 3: Let σ2
N = 0, then the average rate,R, in (7)

simplifies as follows:

R|σ2
N
=0 = R(SNR∞) =

∫ +∞

0

1−M0 (z)

MI (z) + TI (z)
dz

z
(20)

Proof: By using the change of variableSNRy = z in (8),
it follows that GI

(

SNR−1z
)

= 1/ZI (z) sinceSNR → ∞ if
σ2
N = 0. This concludes the proof. �

From (20), interesting considerations about the average rate
can be made, as summarized inRemark7.

Remark 7:Similar to [22, Eq. (8)], (20) confirms that
for interference–limited cellular networks the average rate is
independent of the density of BSs as well as of the transmit–
power. Thus, increasing either the BSs density or the transmit–
power are not effective solutions to increase the average
rate. More advanced interference management mechanisms
are needed. Furthermore, our framework shows that these two
trends hold regardless of the fading channel model, and that
they seem to be mainly related to the PPP spatial model of
the BSs. Finally, by comparing (20) with (10) we observe that
R ≤ R(λ∞) = R(SNR∞). This implies that the average rate
of a cellular system with unbounded BSs density and finite
transmit–power is the same as the average rate of a cellular
system with unbounded transmit–power and finite BSs density.
�

D. High–SNR Scenario

In Corollary 3, we have studied the average rate in the
absence of background noise. InCorollary 4, we study the
scenario with small but non–zero noise,i.e., the high–SNR
setup.

Corollary 4: As a function of the SNR, the average rate,
R, in (7) is upper– and lower–bounded as follows:

R(SNR≫1) = R(SNR∞) − (πλ)
−α/2

Γ
(

1 +
α

2

) 1

SNR

×
∫ +∞

0

1−M0 (z)

[MI (z) + TI (z)]1+(α/2)
dz

≤ R (SNR) ≤ R(SNR∞)

(21)

Proof: Equation (21) immediately follows, with the same
analytical steps, from (39) in Appendix II, and by using the
identity (α/2) Γ (α/2) = Γ (1 + α/2) in (40). This concludes
the proof. �

From (21), interesting considerations about the average rate
can be made, as summarized inRemark8.
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Remark 8:By direct inspection of (21), we observe that: i)
the lower–bound,R(SNR≫1), is the high–SNR approximation
of the average rate sincelimSNR→+∞ R(SNR≫1) = R(SNR∞);
ii) the average rate increases with the SNR by approaching the
upper–boundR(SNR∞) with linear convergence rate; iii) the
average rate increases with the BSs density by approaching
the upper–boundR(SNR∞) = R(λ∞) with (α/2)–order con-
vergence rate; and iv) the larger the path–loss exponent,α,
the faster the convergence speed toR(SNR∞) = R(λ∞) as a
function ofλ. �

E. Frequency Reuse

In this section, we study the impact of frequency reuse on
the average rate. In particular, we consider a cellular network
with FB ≥ 1 frequency bands. The setup withFB = 1
corresponds to the universal frequency reuse case studied
in Theorem1. Also, similar to [22], we assume that each
interfering BS picks at random one of theFB frequency bands
when transmitting. The average rate is given inCorollary 5.

Corollary 5: The average rate,R(FB), of a single–tier
cellular network withFB ≥ 1 available frequency bands
and random frequency reuse coincides withR in (8), (10),
(20), and (21) by replacingZI (·) in (9) with Z(FB)

I (z) =
(FB − 1) + MI (z) + TI (z), and λ (when available) with
λ(FB) = λ

/

FB.

Proof: The proof follows by taking into account that for
FB ≥ 1: i) the average rate in (5) becomesR(FB) (ξ) =
(1/FB)E {ln (1 + SINR (ξ))}; ii) on average, the interference
originates from a PPP with BSs density equal toλ(FB) =
λ/FB; and iii) the tier and BS association PDF is independent
of FB [22, Sec. VI–A]. Accordingly, the proof proceeds along
the same lines asTheorem1. This concludes the proof. �

From Corollary 5, interesting considerations about the av-
erage rate can be made, as given inRemark9.

Remark 9:By direct inspection ofR(FB) in Corollary 5, it
follows that the average rate is maximized forFB = 1, i.e.,
for universal frequency reuse. Also, for densely deployed BSs
(10) and for interference–limited cellular networks (20),the
average rate linearly decreases with the number of available
frequency bandsFB. These trends are in agreement with [22,
Sec. VI–B] and hold for general fading channel models.�

F. Correlated Log–Normal Shadowing

The MGF–based approach introduced so far can be applied
to a wide variety of channel conditions, notably composite
fading channels that account for Log–Normal shadowing (see
Proposition3 andProposition4). The average rate inTheorem
1 is applicable, however, only to i.i.d. fast–fading and Log–
Normal shadowing. It is well–known, on the other hand,
that shadowing correlation severely affects the performance
of cellular networks [93]–[97]. In this section, we providea
simple methodology to extend the framework inTheorem1
to c.i.d. fading channels. The reason of restricting the anal-
ysis to equi–correlated fading originates from the stochastic
geometry approach for other–cell interference modeling used
in the present paper, which is applicable only to identically

distributed fading. The methodology used to obtain equi–
correlated Log–Normal random variables exploits the Owen
and Steck method for the generation of equi–correlated mul-
tivariate Normal distributions [98].

As an illustrative example, let the generic downlink chan-
nel experience composite Nakagami–m fast–fading and Log–
Normal shadowing, as described inProposition 3. The pro-
posed methodology is readily applicable to other fading
channel models with correlated Log–Normal shadowing, as
well as to multi–tier cellular networks by applying the same
methodology to the framework discussed in Section IV. More
specifically, we assume i.i.d. fast–fading and c.i.d. shadowing.
Accordingly, card {Φ} channel power gainsgb for b ∈ Φ
with correlation coefficientρ and parameters(m,µ, σ2) can
be obtained as follows [98]:

Step 1: Generatecard {Φ} equi–correlated Normal random
variables asXb = σ

√
ρS̄+σ

√
1− ρSb+µ for b ∈ Φ,

whereS̄ andSb for b ∈ Φ are a set of i.i.d. Normal
random variables with zero mean and unit variance.
Thecard {Φ} random variablesXb have meanµ and
varianceσ2, for b ∈ Φ, regardless of the correlation
coefficientρ.

Step 2: Convert the set ofcard {Φ} equi–correlated Nor-
mal random variables into a set ofcard {Φ} equi–
correlated Log–Normal random variables asYb =
10Xb/10 for b ∈ Φ.

Step 3: Generatecard {Φ} independent Gamma random
variablesgb with fading severitym and mean value
Yb for b ∈ Φ.

From the above generation mechanism of c.i.d. com-
posite Nakagami–m and Log–Normal fading, it follows
that the card {Φ} random variablesgb are, by condition-
ing upon the random variablēS, i.i.d. with parameters
(

m,µ+ σ
√
ρS̄, σ2 (1− ρ)

)

. Accordingly, we propose the fol-
lowing approach to compute the downlink average rate of
cellular networks:

Step 1: The framework inTheorem1 is applied by con-
ditioning upon the random variablēS and by sub-
stituting µ 7→ µ + σ

√
ρS̄ and σ 7→ σ

√
1− ρ. The

resulting average rate is denoted byR
(

S̄
)

.
Step 2: The conditioning upon the standard Normal random

variable S̄ is removed by averaging over its PDF
fS̄ (x) =

(

1
/√

2π
)

exp
{

−x2
/

2
}

.

In formulas, the downlink average rate over c.i.d. fading
channels can be computed as follows:

R =

∫ +∞

−∞
R (x) fS̄ (x) dx

(a)
≈ 1√

π

NGHQ
∑

η=1

w̃ηR
(√

2s̃η

)

(22)

where(a) is obtained by applying Gauss–Hermite quadratures,
and R (x) is the average rate inTheorem1 with fading
parametersm (x) = m, µ (x) = µ + σ

√
ρx, and σ (x) =

σ
√
1− ρ.

In summary, the rationale behind the proposed approach to
deal with shadowing correlation consists in: i) first, generating
a set of correlated Log–Normal random variables that are
conditionally independent and, thus, applying the framework
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R (a)
= 2πλ

∫ +∞

0

∫ +∞

0

r exp
{

−πλr2
}

T̄1 (r, t) drdt

T̄1 (r, t)
(b)
=

∫ +∞

−∞
exp

{

−2πσ2
Njs

}

(2πjs)−1
[

M0

(

−2πr−α
(

et − 1
)−1

js
)

− 1
]

T̄2 (r, s) ds

T̄2 (r, s)
(c)
= exp

{

πλr2 − 2πλα−1 (2πjs)
2/α
∫ +∞

0

x2/α
[

Γ
(

−2/α, 2πjsr−αx
)

− Γ (−2/α)
]

fI (x) dx

}

(23)

for independent shadowing; and ii) then, removing the con-
ditioning via a single numerical integration. Accordingly,
shadowing correlation can be taken into account with only
a single extra numerical integral, which can be efficiently
computed using Gauss–Hermite quadratures as shown in (22).

G. Pcov– vs. MGF–based Approach: A Comparison

In Section I-C, we have stated that both Pcov– and MGF–
based approaches can be applied to general fading distribu-
tions. However, Pcov– and MGF–based approaches need, in
general, the computation of a four– and a two–fold numerical
integral, respectively. In both cases, the integrals may involve
the computation of special functions, which, however, are
efficiently implemented in commercially available software
packages. Due to the reduction of the number of fold integrals
to be computed, the MGF–based approach is expected to be
more computationally efficient. The aim of this section is
to better compare strengths, weaknesses, and computational
complexity of these two approaches.

To better conduct this comparison, we summarize in (23),
shown at the top of this page, the four–fold integral expression
of the average rate that is obtained from the Pcov–based
approach. More specifically, (23) is obtained from [22] as
follows: (a) originates from [22, Appendix C]; (b) originates
from [22, Appendix B]; and (c) originates from [22, Theorem
4, Eq. (4)]. For consistency and ease of comparison, the same
notation as for the MGF–based approach is used.

By comparing the MGF–based approach in (8) with the
Pcov–based approach in (23) the following comments can be
made:

• Both approaches may need the computation of some
special functions. More specifically, the MGF–based ap-
proach involves the computation of hypergeometric func-
tions in TI (·), and the Pcov–based approach involves
the computation of the incomplete Gamma function in
T̄2 (·, ·).

• Both approaches may need to use Gauss–Hermite quadra-
tures to computef0 (·), M0 (·), fI (·), andMI (·) for
composite channel models. This need originates from the
analytical intractability of Log–Normal shadowing and it
is independent of either the Pcov– or the MGF–based
approach being used.

• By using Corollary 1, the two–fold integral in (8) may
be reduced to a single–integral for some path–loss ex-
ponents. Likewise, by using the Mellin–Barnes theorem
in [68, Eq. (2.24.2.1)] and the Meijer G–function rep-
resentation of the upper–incomplete Gamma function in
[68, Ea. (8.4.16.2)], a closed–form expression ofT̄2 (·, ·)

in (23) may be obtained. As a consequence, the MGF–
based approach reduces the number of fold integrals to
be computed and avoids the computation of complex
integrals.

• In interference–limited scenarios, the MGF–based ap-
proach inCorollary 3 offers a significant reduction of
the computational complexity and the average rate can
be calculated from the simple single integral in (20).
On the other hand, the computational complexity of
the Pcov–based approach is not significantly affected in
this scenario. In fact, the only simplification in (23) is
exp

{

−2πσ2
N js

}

= 1 in T̄1 (·, ·), which does not lead to
further reduction of the number of fold integrals to be
computed.

• The desired form of the average rate offered by the MGF–
based approach leads to simple and intuitive understand-
ing of the performance of cellular networks for a variety
of special operating scenarios, such as dense cellular net-
works deployments (Remark1), interference–dominated
environments (Remark7 andRemark8), frequency reuse
strategies (Remark9). On the other hand, little insight
can be gained from (23) for general fading distributions.
However, (23) can be significantly simplified for Rayleigh
fading channels and interesting design guidelines can be
inferred from it [22].

The considerations above originate from the direct inspec-
tion of (8) and (23), and provide a qualitative comparison
of the reduction of computational complexity that can be
expected by using the MGF– instead of the Pcov–based
approach. To better understand the advantages of the MGF–
based approach, we have also conducted some numerical tests
with the goal of providing a more quantitative assessment of
the computational complexity. The conventional approach that
is often used to conduct these tests it to consider a case study
for which, with further analytical manipulations, the integral
expressions in (8) and (23) can be simplified or even computed
in closed–form, and to compare their accuracy and computa-
tional time without applying any mathematical manipulations.
Following this line of thought, we have considered Rayleigh
fading as a benchmark and have implemented in Mathematica
the formulas in (8) and (23) as they appear in the present paper.
In fact, simple closed–form expressions for Rayleigh fading
are available in [22]. As far as the MGF–based approach is
concerned, the outer integral in (8) is computed using (12)
with NGCQ = 2000. The high value ofNGCQ is chosen as a
worst case setup for the MGF–based approach. Various com-
binations of path–loss exponents,α = {2.05, 2.2, 2.5, 3, 4, 5},
and densities of BSs,λ =

{

10−6, 10−4, 10−2, 10−1
}

, have
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





















R̃t = 2πλt

∫ +∞

0

[1−Mt,0 (SNRty)]
G̃(t)
I (y)

y
dy

G̃(t)
I (y) =

∫ +∞

0

ξ exp

{

−π

T
∑

q=1

λqZ̃(t,q)
I (y) ξ

2
αt
αq

}

exp {−yξαt} dξ
(24)



















R̃t =

∫ +∞

0

[1−Mt,0 (SNRty)]
G̃(t)
I (y)

y
dy

G̃(t)
I (y) =

1

Z̃(t)
I (y)

− α

2

y

Z̃(t)
I (y)

∫ +∞

0

ξ
α
2 −1 exp

{

−πλtZ̃(t)
I (y) ξ

}

exp
{

−yξ
α
2

}

dξ

(27)

been considered. The chosen path–loss exponents cover typical
propagation environments for cellular applications [99, Table
2.2], [100, Ch. 2, Sec. 5], and the chosen densities of BSs
cover sparse, normal, and dense cellular deployments [22],
[42]. The tests have been executed in a laptop computer. In
all the analyzed scenarios, the MGF–based approach in (8)
has been able to provide accurate estimates of the average
rate in less than five/six seconds for eachSNR point to be
computed. On the other hand, the Pcov–based approach in
(23) has not been able to provide any numerical estimates after
five minutes of computation. In interference–limited scenarios,
i.e., σ2

N = 0, the computational complexity of the MGF–
based approach is further reduced, while the computational
complexity of the Pcov–based approach is not affected. These
outcomes confirm the advantages of the proposed MGF–based
approach for analysis and design of cellular networks.

IV. M ULTI –TIER CELLULAR NETWORKS

In this section, we extend the analytical framework to
generic multi–tier cellular networks. The analytical develop-
ment is, in many ways, similar to Section III. Thus, only the
most important analytical details are reported in what follows.
The departing point is (6) and the main result is summarized
in Theorem2.

Theorem 2:Let R̃t for t = 1, 2, . . . , T in (6). Let SNRt =
Pt

/

σ2
N be the SNR of thet–th tier, an explicit closed–form

expression ofR̃t for arbitrary fading channels is given in (24)
at the top of this page, where:

Z̃(t,q)
I (y) =

(

Pq

Pt

Bq

Bt

)2/αq

Mq,I

(

(

Pq

Pt

Bq

Bt

)−1

SNRqy

)

+

(

Pq

Pt

Bq

Bt

)2/αq

Tq,I
(

(

Pq

Pt

Bq

Bt

)−1

SNRqy

)

(25)

Tq,I (y) = Γ

(

1− 2

αq

)

×
+∞
∑

k=0

yk+1M(k)
q,I (y)

[

Γ

(

2− 2

αq

+ k

)]−1 (26)

andM(k)
q,I (s) = E

{

gk+1
q,b exp {−sgq,b}

}

.

Proof: The proof follows by using the same steps as in
Appendix I and by taking into account that, thanks to the

spatial and channel independence of the PPPs, the MGF
of the aggregate interference for the generict–th tier is
MIagg (s; ξ) =

∏T
q=1 Mq,Iagg (s; ξq) whereMq,Iagg (·; ξq) is

given in (36) and can be computed in closed–form fromλq,
Mq,I (·), Tq,I (·), andξq = (Pq/Pt)

1/αq (Bq/Bt)
1/αq ξαt/αq

[43, Eq. (42)]. This concludes the proof. �

Theorem 2 provides a very general expression for the
average rate of multi–tier cellular networks that, in general,
needs the computation of a two–fold numerical integral but
is applicable to tiers having different path–loss exponents and
fading distributions. Furthermore, closed–form expressions for
Tq,I (·) in (26) can be obtained fromPropositions1–4, similar
to the single–tier case. The extension to correlated Log–
Normal shadowing follows immediately from Section III-F.

Even though general,Theorem2 provides a framework that
is less analytically tractable thanTheorem1 and Corollary
1. A simpler and more insightful analytical framework can be
obtained by assuming that all the tiers have the same path–loss
exponent,i.e., αt = α for t = 1, 2, . . . , T while still keeping
the assumption that the per–tier fading distribution is different.
The related framework is given inCorollary 6.

Corollary 6: Let αt = α for t = 1, 2, . . . , T , then R̃t in
(6) can be explicitly computed as shown in (27) at the top of
this page, where:














































Z̃(t)
I (y) =

T
∑

q=1

[

λq

λt

Z̃(t,q)
I (y)

]

Z̃(t,q)
I (y) =

(

Pq

Pt

Bq

Bt

)2/α

Mq,I

(

(

Pq

Pt

Bq

Bt

)−1

SNRqy

)

+

(

Pq

Pt

Bq

Bt

)2/α

Tq,I
(

(

Pq

Pt

Bq

Bt

)−1

SNRqy

)

(28)

Proof: The proof follows directly from (24) and from some
algebraic manipulations similar to Appendix I. This concludes
the proof. �

From Corollary 6, the following important remark can be
made.

Remark 10:By comparingCorollary 6 andCorollary 1, we
observe that the two formulas have the same structure. More
specifically, R̃t in (27) can be obtained fromR in (8) by
simply replacingZI (·) with Z̃(t)

I (·). Furthermore,Theorem1
reduces toCorollary 6, as expected, forT = 1. �
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R̃t ≤ lim
λ→+∞

R̃t (λ) = R̃
(λ∞)
t

=

∫ +∞

0

1−Mt,0 (z)
T
∑

q=1

{(

κq

F
(q)
B

F
(t)
B

κt

)

(

Pq

Pt

Bq

Bt

)2/α
[

(

F
(q)
B

− 1
)

+Mq,I

(

(

Pq

Pt

Bq

Bt

)−1
SNRqz

)

+ Tq,I

(

(

Pq

Pt

Bq

Bt

)−1
SNRqz

)]}

dz

z
(30)

R̃
(SNR≫1)
t ≈ R̃

(SNR∞)
t −

(

π
λt

F
(t)
B

)−α/2

Γ
(

1 +
α

2

) 1

SNRt

×

∫ +∞

0

1−Mt,0 (z)
(

T
∑

q=1

{(

κq

F
(q)
B

F
(t)
B

κt

)

(

Pq

Pt

Bq

Bt

)2/α
[

(

F
(q)
B

− 1
)

+Mq,I

(

(

Pq

Pt

Bq

Bt

)−1
SNRqz

)

+ Tq,I

(

(

Pq

Pt

Bq

Bt

)−1
SNRqz

)]}

)1+(α/2)
dz

(31)

Remark10 allows us to easily generalize many important
results obtained for the single–tier setup to the multi–tier case.
In particular,Corollary 7 generalizesCorollary 5 for multi–
tier cellular networks with random frequency reuse;Corollary
8 generalizesRemark1 by investigating the impact of dense
BSs deployments; andCorollary 9 generalizesCorollary 3
and Corollary 4 by studying interference–limited multi–tier
cellular systems and high–SNR operating conditions.

Corollary 7: The average rate of thet–th tier of a multi–
tier cellular network withαt = α and withF (t)

B ≥ 1 available
frequency bands and random frequency reuse for every tiert =

1, 2, . . . , T can be obtained from (27) by replacing̃Z(t,q)
I (·)

in (28) with:

Z̃(t,q)
I (y) =

(

Pq

Pt

Bq

Bt

)2/α
(

F
(q)
B − 1

)

+

(

Pq

Pt

Bq

Bt

)2/α

Mq,I

(

(

Pq

Pt

Bq

Bt

)−1

SNRqy

)

+

(

Pq

Pt

Bq

Bt

)2/α

Tq,I
(

(

Pq

Pt

Bq

Bt

)−1

SNRqy

)

(29)

for t, q = 1, 2, . . . , T , and λt with λ

(

F
(t)
B

)

t = λt/F
(t)
B for

t = 1, 2, . . . , T .

Proof: It follows from Corollary 5 and Remark10. This
concludes the proof. �

Corollary 8: Let us consider a multi–tier cellular network
with αt = α and with F

(t)
B ≥ 1 available frequency bands

and random frequency reuse for every tiert = 1, 2, . . . , T .
Also, let λt = κtλ andSNRt = χtSNR for t = 1, 2, . . . , T .
If λ → +∞, then the average rate inCorollary 7 is upper–
bounded as shown in (30) at the top of this page.

Proof: The proof follows immediately fromRemark1 and
Remark10. This concludes the proof. �

Corollary 9: Let us consider a multi–tier cellular network
with αt = α and with F

(t)
B ≥ 1 available frequency bands

and random frequency reuse for every tiert = 1, 2, . . . , T .
Also, let λt = κtλ andSNRt = χtSNR for t = 1, 2, . . . , T .
If σ2

N = 0 (i.e., SNR → +∞), which implies that the system
is interference–limited, then the average rate inCorollary 7 is

upper–bounded as̃Rt ≤ R̃(SNR∞)
t = R̃(λ∞)

t , whereR̃(λ∞)
t

is given in (30). Furthermore, ifσ2
N is small but non–zero,

i.e., SNR ≫ 1, then the average rate inCorollary 7 can be
approximated as shown in (31) at the top of this page.

Proof: The proof follows fromCorollary 3, Corollary 4,
andRemark10. This concludes the proof. �

V. NUMERICAL AND SIMULATION RESULTS

In this section, we show some numerical examples in order
to verify the accuracy of the proposed analytical methodol-
ogy against Monte Carlo simulations, as well as to show
the impact of different fading parameters and distributions
on the average rate. For a fair comparison among different
fading distributions, the mean square value of each fading
distribution is normalized and set equal to one. This implies
Ω = 1 for Rayleigh and Nakagami–m distributions, and
µ = −ln (10)σ2

/

20 for Log–Normal, composite Nakagami–
m and Log–Normal, and composite Rice and Log–Normal
distributions. Furthermore, useful and interference links are
assumed to have the same fading distribution. The analytical
framework is implemented as described in the captions of
each figure. As far as the composite Rice and Log–Normal
fading model is concerned, both frameworks inProposition4
and Remark3 are implemented. We have verified that both
frameworks provide the same accuracy. Thus, the application
of Remark3 is recommended since it is simpler to compute.

a) Monte Carlo Simulations:As far as Monte Carlo sim-
ulations are concerned, we have used the following method-
ology [46, Appendix F].

Step 1: A finite circular area of (normalized) radiusRA

around the origin,i.e., where the probe mobile ter-
minal is located, is considered. The radius is chosen
sufficiently large to minimize the error commit-
ted in simulating the infinite bi–dimensional plane.
In the considered setup, the radiusRA is cho-
sen such thatλminR

2
A ≥ 100, where λmin =

min {λ1, λ2, . . . , λT }. For example,RA = 100 if
λmin = 10−1 and λmin = 10−2, RA = 1000 if
λmin = 10−4, andRA = 10000 if λmin = 10−6.

Step 2: For each tier, the number of BSs is generated
following a Poisson distribution with densityλt and
areaπR2

A.
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Step 3: The BSs of each tier are distributed following a
uniform distribution over the circular region of area
πR2

A.
Step 4: Independent channel gains are generated for each

BS of every tier.
Step 5: The tier and BS association policy described in

Section II-B is applied, and useful and interference
links are identified.

Step 6: Given the associated tier and its tagged BS, the
SINR is computed as shown in (5).

Step 7: The rate of the generic Monte Carlo trial is com-
puted asRmc = (1/F

(t∗)
B ) ln (1 + SINRt∗), where

t∗ is the tagged tier.
Step 8: Finally, the average rate is computed by repeating

Step 1–Step 7for Nmc times and eventually calculat-
ing R = (1/Nmc)

∑Nmc

mc=1 Rmc. In our simulations,
we have consideredNmc = 106.

In Section III-G, we have compared the computational
complexity of Pcov– and MGF–based approaches, and we
have shown that the proposed analytical methodology turns
out to be more computational efficient for general fading dis-
tributions. As far as the computational complexity comparison
with Monte Carlo simulations is concerned, our experiments
have revealed that each simulation curve shown in this section
can be obtained in a computation time of the order of a few
minutes (five to ten minutes depending on the setup) by using
the MGF–based approach. On the other hand, the same curve
can be obtained in tens of hours (ten to sixty depending on the
setup) of computation time by using Monte Carlo simulations.
In addition to the longer simulation time and to the more
resources for the computation, it is important to mention that
Monte Carlo simulations tend to be less accurate for: i) sparse
cellular networks; ii) low path–loss exponents; and iii) high–
SNR. The reason is that in these operating scenariosRA and
Nmc must be increased in order to account for the interfering
BSs that are far from the probe mobile terminal, and which,
in these cases, can no longer be neglected.

b) Framework Validation for Single–Tier Cellular Net-
works: In Figs. 1–5, the average rate of Rayleigh, Nakagami–
m, Log–Normal, composite Nakagami–m and Log–Normal,
and composite Rice and Log–Normal fading is shown, respec-
tively, for a single–tier cellular network. Overall, we observe
a very good accuracy of the proposed MGF–based approach.
Furthermore, we observe, as expected, that the average rate:
i) increases with the BSs density; ii) depends on the fading
distribution; and iii) increases with the path–loss exponent.

In Figs. 1–5, we have considered dense cellular networks
(λ ≥ 0.1) and large path–loss exponents (α ≥ 4). The
reason of this choice is mainly due to the long time needed
to obtained Monte Carlo simulations for less dense cellular
networks and for smaller path–loss exponents. However, it is
important to verify the accuracy of the proposed MGF–based
approach for more practical densities of BSs and for a wider
range of path–loss exponents. In general, practical densities
for macro BSs deployments are of the order ofλ ≈ 10−6

[22], [42], [43]. Thus, to test numerical accuracy and stability
of the MGF–based approach, we consider densities of BSs
in the setλ =

{

10−6, 10−4, 10−2, 10−1
}

, in order to study
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Fig. 1. Average rate of a single–tier cellular network over Rayleigh fading
(FB = 1). Markers show Monte Carlo simulations. Solid lines show the
analytical framework, which is computed by usingTheorem1, Corollary 2
with ε = 0.05, Proposition 1 with (m = 1, Ω = 1), and Remark2 with
NGCQ = 2000. Furthermore,M0 (·) = MI (·) are obtained from [75, Eq.
(2.8)].
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Fig. 2. Average rate of a single–tier cellular network over Nakagami–m
fading (FB = 1). Markers show Monte Carlo simulations. Solid lines show
the analytical framework, which is computed by usingTheorem1, Corollary
2 with ε = 0.05, Proposition1 with (m = 2.5, Ω = 1), andRemark2 with
NGCQ = 2000. Furthermore,M0 (·) = MI (·) are obtained from [75, Eq.
(2.22)].

sparse, medium, and dense deployments. As far as the path–
loss exponent is concerned, we consider values in the setα =
{2.05, 2.2, 2.4, 3, 4, 5} > 2, which cover typical propagation
environments for cellular applications [99, Table 2.2], [100,
Ch. 2, Sec. 5]. The results of this study are shown in Figs.
6–8.

In Figs. 6 and 7, we compare Monte Carlo simulations
with the MGF–based approach. In particular, numerical results
are obtained by using both the (exact) two–fold integral in
Theorem1 and the (approximated) single–integral inCorollary
2 in order to test complexity and accuracy of both meth-
ods. As far as Monte Carlo simulations are concerned, it
is worth mentioning that only some SNR points (markers)
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Fig. 3. Average rate of a single–tier cellular network over Log–Normal
fading (FB = 1). Markers show Monte Carlo simulations. Solid lines show
the analytical framework, which is computed by usingTheorem1, Corollary 2
with ε = 0.05, Proposition2 with (σ = 6dB, µ = − ln (10)σ2/20 dB) and
NGHQ = 5, and Remark2 with NGCQ = 2000. Furthermore,M0 (·) =
MI (·) are obtained from [75, Eq. (2.54)] withNGHQ = 5.
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Fig. 4. Average rate of a single–tier cellular network over composite
Nakagami–m and Log–Normal fading (FB = 1). Markers show Monte Carlo
simulations. Solid lines show the analytical framework, which is computed by
usingTheorem1, Corollary 2 with ε = 0.05, Proposition3 with (m = 2.5,
σ = 6dB, µ = − ln (10)σ2/20 dB) andNGHQ = 5, andRemark2 with
NGCQ = 2000. Furthermore,M0 (·) = MI (·) are obtained from [75, Eq.
(2.58)] with NGHQ = 5.

are shown in the figures. The missing SNR points are not
shown because of the long simulation time and the need to
consider very large simulation areas to get accurate estimates
of the average rate. The simulation time increases, in general,
for more sparse cellular networks and for smaller path–loss
exponents. The SNR points shown in the figures are those for
which accurate estimates can be obtained with the simulation
setup described above. The numerical examples confirm the
very good accuracy and the numerical stability of the MGF–
based approach for all cellular network setups. By comparing
the curves obtained usingTheorem1 and Corollary 2, we
notice that the latter is very accurate except in the transition
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Fig. 5. Average rate of a single–tier cellular network over composite Rice and
Log–Normal fading (FB = 1). Markers show Monte Carlo simulations. Solid
lines show the analytical framework, which is computed by using Theorem
1, Corollary 2 with ε = 0.05, Proposition4 with (K = 10, σ = 6 dB, µ =
− ln (10)σ2/20 dB) andNGHQ = 5, andRemark2 with NGCQ = 2000.
In Proposition 4, the series in (17) is truncated to the first 100 terms. The
application ofRemark3 provides the same result and accuracy, but with less
computational complexity. Furthermore,M0 (·) = MI (·) are obtained from
(46) with NGHQ = 5.
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Fig. 6. Average rate of a single–tier cellular network over composite
Nakagami–m and Log–Normal fading (FB = 1). Markers show Monte Carlo
simulations. Solid lines show the analytical framework, which is computed by
usingTheorem1, Corollary 2 with ε = 0.05, Proposition3 with (m = 2.5,
σ = 6dB, µ = − ln (10) σ2/20 dB) andNGHQ = 5, andRemark2 with
NGCQ = 2000. Furthermore,M0 (·) = MI (·) are obtained from [75, Eq.
(2.58)] with NGHQ = 5. The black dashed lines are obtained by directly
computing the two–fold integral inTheorem1 without using the Meijer G–
function in Corollary 2.

(corner) region from noise– to interference–limited operating
conditions, where the average rate reaches the asymptote
calculated inCorollary 3 (further comments are available
below where the high–SNR scenario is discussed). The reason
of this (in practice negligible) numerical inaccuracy originates
from the non–smooth transition introduced by the adoption of
the Heaviside function inCorollary 3.

In Fig. 8, we compare the average rate as a function of the
path–loss exponent. Only numerical results obtained from the
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MGF–based approach are shown in this figure. The curves are
obtained by using the two–fold integral inTheorem1. As far
as the application ofCorollary 2 is concerned, its accuracy
for α ≥ 2.4 is shown in Figs. 6 and 7. Forα < 2.4, it is less
practical to use the Meijer G–function inCorollary 2 since
for such values ofα we would haveαN ≫ 1 andαD ≫ 1,
and, thus, computation time and numerical accuracy would
highly depend on the specific implementation of the Meijer G–
function. On the other hand,Theorem1 provides very accurate
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fading (FB = 1, SNR = 10 dB). Markers show Monte Carlo simulations.
Solid lines show the analytical framework, which is computed by using
Theorem1, Corollary 2 with ε = 0.05, Proposition 1 with Ω = 1, and
Remark2 with NGCQ = 2000. Furthermore,M0 (·) = MI (·) are obtained
from [75, Eq. (2.22)].

estimates in a few seconds (for each SNR point), as discussed
in Section III-G. Figure 8 clearly shows thatTheorem1
provides reliable numerical estimates for the considered set
of path–loss exponents, includingα ≈ 2. As far as the
performance trend is concerned, Fig. 8 shows a very different
behavior for dense (λ = 10−2) and medium/sparse (λ = 10−4)
cellular networks. In dense cellular networks, the higher the
path–loss exponent the better the average rate regardless of the
operating SNR. On the other hand, in medium/sparse cellular
networks two SNR regions can be identified: i) for low–SNR
(noise–limited regime), the lower the path–loss exponent the
higher the average rate. This is due to that fact that the useful
signal undergoes a lower attenuation and that the aggregate
interference is negligible compared to the additive noise;and
ii) for high–SNR (interference–limited regime), the higher the
path–loss exponent the higher the average rate. This is due to
the fact that the additive noise is negligible compared to the
aggregate interference and that the interfering BSs undergo
a larger attenuation, which has a more pronounced effect on
the average rate than the larger attenuation undergone by the
useful signal. These results are in agreement with intuition and
confirm the usefulness of the proposed MGF–based approach
for cellular networks analysis and design.

For ease of comparison with Monte Carlo simulations, in the
following only large path–loss exponents and dense cellular
networks deployments are considered.

c) Impact of Fading Model and Fading Parameters:In
Figs. 9–12, the average rate of Nakagami–m, Log–Normal,
composite Nakagami–mand Log–Normal, and composite Rice
and Log–Normal fading is shown, respectively, for a single–
tier cellular network and for different choices of the fading
parameters. Also in this case, the framework provides very
accurate estimates. More specifically, we observe that: i) the
average rate is slightly sensitive tom andK fading parameters
of Nakagami–m, composite Nakagami–m and Log–Normal,
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Fig. 11. Average rate of a single–tier cellular network overcomposite
Nakagami–m and Log–Normal fading (FB = 1, SNR = 10 dB, and
λ = 0.25). Markers show Monte Carlo simulations. Solid lines show the
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obtained from [75, Eq. (2.58)] withNGHQ = 5.

and composite Rice and Log–Normal distributions, as well
as that it increases for less severe fading (m increases) and
in the presence of a stronger line–of–sight component (K
increases); and ii) the average rate strongly depends on the
shadowing standard deviationσ of Log–Normal, composite
Nakagami–m and Log–Normal, and composite Rice and Log–
Normal distributions, as well as that it decreases significantly
for more severe shadowing (σ increases).

d) Correlated Log–Normal Shadowing:In Figs. 13 and
14, numerical examples in the presence of shadowing corre-
lation over a composite Nakagami–m and Log–Normal fading
channel are shown. We observe that the proposed approach
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Fig. 13. Average rate of a single–tier cellular network overcorrelated
composite Nakagami–m and Log–Normal fading (FB = 1). Markers show
Monte Carlo simulations. Solid lines show the analytical framework, which is
computed by using (22) withNGHQ = 5, Theorem1, Corollary 2 with ε =
0.05, Proposition3 with (m = 2.5, σ = 6dB, µ = − ln (10)σ2/20 dB,
α = 4) andNGHQ = 5, andRemark2 with NGCQ = 1000. Furthermore,
M0 (·) = MI (·) are obtained from [75, Eq. (2.58)] withNGHQ = 5.

for correlated Log–Normal shadowing is very accurate for
different choices of the correlation coefficient. Furthermore,
by comparing Figs. 13 and 14 with Fig. 4, we note that the
framework in Section III-F reduces to the independent case
for ρ = 0. More specifically, the figures show the following
performance trends: i) for high–SNR, the average rate is
independent of the density of BSs regardless of the shad-
owing correlation coefficient; ii) for low–SNR, the average
rate slightly decreases if the shadowing correlation coefficient
increases; and iii) for high–SNR, the average rate increases if
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Fig. 14. Average rate of a single–tier cellular network overcorrelated
composite Nakagami–m and Log–Normal fading (FB = 1). Markers show
Monte Carlo simulations. Solid lines show the analytical framework, which is
computed by using (22) withNGHQ = 5, Theorem1, Corollary 2 with ε =
0.05, Proposition3 with (m = 2.5, σ = 6dB, µ = − ln (10)σ2/20 dB,
α = 5) andNGHQ = 5, andRemark2 with NGCQ = 1000. Furthermore,
M0 (·) = MI (·) are obtained from [75, Eq. (2.58)] withNGHQ = 5.

the shadowing correlation coefficient increases. Even though it
may seem counterintuitive that the average rate increases with
shadowing correlation, this result seems to originate fromthe
BSs association policy adopted in the present paper (the probe
mobile terminal is associated with the closest BS). Finally,
we emphasize that (apparently) counterintuitive trends inthe
presence of Log–Normal shadowing have been observed in
other papers,e.g., [22] and [97] where it is shown that the cov-
erage probability increases and that the blocking probability is
not always increasing with the shadowing standard deviation,
respectively. This confirms, once again, the importance of
taking into account correlated Log–Normal shadowing for
accurate performance prediction.

e) Impact of Frequency Reuse:In Fig. 15, the impact of
frequency reuse on the average rate of a single–tier cellular
network over composite Nakagami–mand Log–Normal fading
is studied. Our numerical analysis confirms the findings in
Section III-E, and that frequency reuse is detrimental for the
average rate. As suggested in [22], frequency reuse signif-
icantly improves the coverage probability. The analysis of
this trade–off is out of the scope of the present paper but
is currently being investigated by the authors.

f) Framework Validation for Multi–Tier Cellular Net-
works: In Fig. 16 and Fig. 17, the average rate of a two–
tier cellular network over composite Nakagami–m and Log–
Normal and composite Rice and Log–Normal fading is ana-
lyzed, respectively. As an illustrative example, we consider the
situation where the BSs of every tier transmit with a power
that is inversely proportional to their spatial density. This is
a reasonable choice if,e.g., the first tier is used to model
macro BSs and the second tier is used to model femto BSs.
We observe, as expected, that the average rate significantly
increases when the BSs density of the lower tier increases.
The framework provides a very good accuracy. Furthermore,
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Fig. 16. Average rate of a two–tier cellular network over composite
Nakagami–m and Log–Normal fading (F (t)

B
= 1 for t = 1, 2, and

SNR = SNR1). Markers show Monte Carlo simulations. Solid lines show
the analytical framework, which is computed by usingCorollary 6, Corollary
2 with ε = 0.05, Proposition 3 with (m = 2.5, σ = 6dB, µ =
− ln (10)σ2/20 dB) andNGHQ = 5, andRemark2 with NGCQ = 2000.
Furthermore,Mt,0 (·) = Mt,I (·) for t = 1, 2 are obtained from [75, Eq.
(2.58)] with NGHQ = 5.

we note a negligible difference between the two fading models
for the chosen set of parameters.

g) High–SNR Scenario:Finally, we observe that, in all
figures, the average rate increases with the SNR tending
towards a horizontal asymptote for high–SNR. By direct
inspection, the reader can verify that the horizontal asymptote
coincides with the average rate that can be computed by
using Corollary 3 andCorollary 8 with R̃(SNR∞)

t = R̃(λ∞)
t

in Corollary 9. In other words, the SNR region where the
average rate is flat corresponds to the interference–limited
operating regime. As a consequence, we conclude that the
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Fig. 17. Average rate of a two–tier cellular network over composite Rice and
Log–Normal fading (F (t)

B
= 1 for t = 1, 2, andSNR = SNR1). Markers

show Monte Carlo simulations. Solid lines show the analytical framework,
which is computed by usingCorollary 6, Corollary 2 with ε = 0.05,
Proposition 4 with (K = 10, σ = 6dB, µ = − ln (10)σ2/20 dB) and
NGHQ = 5, and Remark2 with NGCQ = 2000. In Proposition 4, the
series in (17) is truncated to the first 100 terms. The application of Remark3
provides the same result and accuracy, but with less computational complexity.
Furthermore,Mt,0 (·) = Mt,I (·) for t = 1, 2 are obtained from (46) with
NGHQ = 5.

simple formulas given in these corollaries are quite accurate
for SNR ≥ SNR∗, whereSNR∗ is the corner point where the
average rate starts approaching the horizontal asymptote.For
example,SNR∗ ≈ 20dB for α = 4 in Fig. 1. In general,SNR∗

depends on the density of BSs, the path–loss exponent, and
the fading channel model. The reader can identifySNR∗ for
different cellular setups by direct inspection of all the figures
shown in the paper. Figure 8 shows many cellular networks
deployments of interest.

By observing the asymptotic behavior of the average rate
for high–SNR, an interesting problem to investigate is whether
SNR∗ is lower or greater than the typical operating SNR of
current cellular networks deployments. This question is inter-
esting because many papers assume, for analytical tractability,
that the additive noise is always negligible and that, as a
consequence, cellular networks are interference–limited. All
the figures shown in our paper confirm that the interference–
limited assumption is accurate only if the operating SNR is
greater thanSNR∗. In order to assess whether the operating
condition SNR ≥ SNR∗ is usually verified, we investigate,
as an example, the same setup as in [43], which holds for
typical cellular networks. More specifically, we consider:i)
SNR = P

/

σ2
N ; ii) σ2

N = W/L0; iii) W = kBT0B0 =
−104dBm = 4 · 10−14Watt is the noise power, where
kB = 1.38 · 10−23Joule/Kelvin is the Boltzmann’s constant,
T0 = 290Kelvin is the noise temperature,B0 = 10MHz is the
receiver bandwidth; and iv)L0 = −38.5dB = 1.41 · 10−4 is
the path–loss at a reference distance of one meter. Accordingly,
we haveSNR = P

/

σ2
N = (L0/W )P = 3.52 · 109P . By

assuming typical transmit powers equal toPMacro = 40Watt,
PMicro = 6.3Watt, PPico = 0.13Watt, and PFemto =
0.05Watt for macro, micro, pico, and femto BSs [42], [101],

we obtainSNRMacro = 111.50dB, SNRMicro = 103.45dB,
SNRPico = 86.60dB, and SNRFemto = 82.45dB, respec-
tively. By comparing these typical operating SNRs with the
SNR∗ shown in our figures, we conclude that the condition
SNR ≥ SNR∗ is well satisfied for many system setups
analyzed in the paper. For example, let us consider the setups
shown in Fig. 8. We observe thatSNR ≥ SNR∗ is always
verified in dense (λ = 10−2) cellular networks for every path–
loss exponents, and in medium/sparse (λ = 10−4) cellular
networks for low path–loss exponents (α < 4 in the figure).
On the other hand, for larger path–loss exponents the condition
may not be verified for some types of BSs. This confirms that
typical cellular networks deployments can be approximated,
in most cases, to be interference–limited, and that the simple
frameworks inCorollary 3 andCorollary 8 can be used for
first–order performance analysis, design, and optimization.

VI. CONCLUSION

In this paper, we have introduced a comprehensive math-
ematical framework for the analysis of the average rate of
multi–tier cellular networks whose BSs are assumed to be
randomly distributed according to a PPP spatial distribution.
The framework is applicable to general fading channel models
with arbitrary fading parameters. Numerically efficient and
stable algorithms to compute some transcendental functions,
such as the Meijer G–function, have been proposed. The
framework needs the computation of either single– or two–fold
integrals for general fading distributions and arbitrary path–
loss exponents. Furthermore, shadowing correlation can be
taken into account with another extra numerical integral. The
framework can handle random frequency reuse, and it simpli-
fies significantly for interference–limited cellular networks and
for high–SNR setups. Extensive Monte Carlo simulations have
confirmed the accuracy of the proposed analytical methodol-
ogy for various fading distributions and cellular deployments.

APPENDIX I
PROOF OFTheorem1

By using [66, Lemma 1] withN = M = 1, we have:

E

{

ln

(

1 +
X

Y + 1

)}

=

∫ +∞

0

MY (z)−MX,Y (z)

z
exp {−z} dz

(a)
=

∫ +∞

0

MY (z) [1−MX (z)]

z
exp {−z} dz

(32)

where: i) X and Y are arbitrary non–negative random vari-
ables; ii)MX,Y (z) = E

{

e−z(X+Y )
}

is the MGF of random
variableX+Y ; and iii) (a) holds ifX andY are independent.

From (32) withX = (Pg0ξ
−α)
/

σ2
N , Y = Iagg (ξ)

/

σ2
N ,

and by taking into account that, conditioning uponξ, X and
Y are independent, the expectation in (7) can be re–written as
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R̄ (z;λ) =
1

SNR

∫ +∞

0

ξ
α
2 −1 exp {−πλZI (z) ξ} exp

{

− z

SNR
ξ

α
2

}

dξ

(a)

≤ 1

SNR

∫ +∞

0

ξ
α
2 −1 exp {−πλZI (z) ξ} dξ

(b)
=

1

SNR
Γ
(α

2

)

[πλZI (z)]
−α

2

(38)

follows:

E

{

ln

(

1 +
Pg0ξ

−α

σ2
N + Iagg (ξ)

)}

=

∫ +∞

0

exp {−z}
z

MIagg (z; ξ)
[

1−M0

(

SNRξ−αz
)]

dz

(33)

We note that the identity in (33) avoids the need of
computing Pcov and makes our analytical development totally
different from current practice [20], [22], and [43].

From (33), it is apparent that a closed–form expression
of MIagg (·; ξ) is needed. This is the MGF of the aggregate
interference, which is generated by all the interferers that lie
outside a disk of radiusξ. In other words, due to the tier and
BS association policy,MT0 has an exclusion zone around
it where no interfering BSs are located and are allowed to
transmit. This is called exclusion region [5]. The MGF of
Iagg (·) has been studied in [91] for a generic annular region
with radii A andB. In particular,MIagg (·; ξ) can be obtained
from [91, Eq. (6)] by lettingA → ξ andB → +∞, as follows:

MIagg (s; ξ) = exp
{

πλξ2
}

exp
{

−πλξ2MI

(

sξ−α
)}

× exp

{

−πλs2/αΓ

(

1− 2

α

)

E

{

g
2/α
b

}

}

× exp

{

πλs2/αE

{

g
2/α
b Γ

(

1− 2

α
, sgbξ

−α

)}}

(34)

In [91], the expectation over the fading distribution of the
interference channels is not computed in closed–form and only
bounds for Rayleigh fading are provided. To the best of our
knowledge, there is no analytical framework that provides an
exact and closed–form expression of the MGF in (34) for
general fading channels. In what follows, we provide a general
methodology to this end. This is a contribution of this paper.

By using [69, Eq. (6.5.3)], [69, Eq. (6.5.4)], and [69, Eq.
(6.5.29)], we have:

Γ (z, x) = Γ (z)− γ (z, x)

= Γ (z)− Γ (z)xz exp {−x}
+∞
∑

k=0

xk

Γ (z + k + 1)

(35)

By substituting (35) in (34),MIagg (·; ξ) simplifies to:

MIagg (s; ξ) = exp
{

πλξ2
}

exp
{

−πλξ2MI

(

sξ−α
)}

× exp
{

−πλξ2TI
(

sξ−α
)} (36)

whereTI (·) is given in (9). Closed–form expressions ofTI (·)
are available inPropositions1–4.

Finally, by substituting (36) in (33), the average rate in (7)
simplifies to (8) by using the change of variabley = zξ−α

and by applying the integration by parts to the integral inξ.
This concludes the proof. �

APPENDIX II
PROOF OFRemark1

From (8), by using the change of variableSNRy = z, we
have:

R =

∫ +∞

0

1−M0 (z)

ZI (z)

dz

z
−α

2

∫ +∞

0

1−M0 (z)

ZI (z)
R̄ (z;λ)dz

(37)
where R̄ (·; ·) is given in (38) at the top of this
page, and (a) follows by taking into account that0 ≤
exp

{

− (z/SNR) ξα/2
}

≤ 1 for every choice of the param-
eters, while (b) follows from [73, Eq. (2.1.1.1)].

As a consequence, the average rate in (37) is upper– and
lower–bound as follows:
∫ +∞

0

1−M0 (z)

ZI (z)

dz

z
− R̄ (λ) ≤ R ≤

∫ +∞

0

1−M0 (z)

ZI (z)

dz

z
(39)

where:

R̄ (λ) =
1

SNR

α

2
Γ
(α

2

)

(πλ)
−α

2

×
∫ +∞

0

[1−M0 (z)]Z
−(α

2 +1)
I (z) dz

(40)

Equation (10) immediately follows from (40) by observing
that limλ→+∞ R̄ (λ) = 0 for everyα > 2. This concludes the
proof. �

APPENDIX III
PROOF OFProposition1

By using [75, Eq. (2.21)] and [73, Eq. (2.2.1.2)],M(k)
I (·)

in (9) can be computed as follows:

M(k)
I (s) =

1

Γ (m)

(m

Ω

)m (

s+
m

Ω

)−(m+k+1)

Γ (m+ k + 1)

(41)
By substituting (41) inTI (·) in (9) and by using the identity

[69, Eq. (15.1.1)]:

+∞
∑

k=0

Γ (k +A) sx+k

Γ (k +B) (s+ C)
z+k

=
sx

(s+ C)
z

Γ (A)

Γ (B)
2F1

(

A, 1, B,
s

s+ C

)

(42)

with A, B, C, x, ands being positive constants, we eventually
obtain (14) with some algebraic manipulations and using the
identity Γ (z + 1) = zΓ (z). This concludes the proof. �
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

























fgb (x) ≈ (1 +K) exp {−K} 1√
π

NGHQ
∑

n=1

w̃nω̃n exp {− (1 +K) ω̃nx} I0
(

2
√

K (1 +K) ω̃nx
)

Mgb (s)
(a)
≈ 1√

π

NGHQ
∑

n=1

w̃n

1 +K

1 +K + (s/ω̃n)
exp

{

−s
K/ω̃n

1 +K + (s/ω̃n)

}

(46)

M(k)
I (s) ≈ (1 +K) exp {−K} 1√

π

NGHQ
∑

n=1

[

w̃nω̃n

∫ +∞

0

xk+1 exp {− [s+ (1 +K) ω̃n]x} I0
(

2
√

K (1 +K) ω̃nx
)

dx

]

(a)
= (1 +K) exp {−K} 1√

π

NGHQ
∑

n=1

w̃nω̃nΓ (k + 2) [s+ (1 +K) ω̃n]
−(k+2)

1F1

(

k + 2, 1,
K (1 +K)

1 +K + (s/ω̃n)

)

(47)

TI (s) ≈ (1 +K) exp {−K}Γ
(

1− 2

α

)

1√
π

×
NGHQ
∑

n=1

[

w̃nω̃n

+∞
∑

k=0

Γ (2 + k)

Γ
(

2− 2
α
+ k
)

sk+1

[s+ (1 +K) ω̃n]
2+k 1F1

(

k + 2, 1,
K (1 +K)

1 +K + (s/ω̃n)

)

] (48)

APPENDIX IV
PROOF OFProposition2

By using the approximate expression of the PDF of Log–
Normal random variables in [77, Table IV],i.e., fgb (x) ≈
(1/

√
π)
∑NGHQ

n=1 w̃nδ
(

x− 10(
√
2σs̃n+µ)/10

)

, M(k)
I (·) in (9)

can be computed as follows:

M(k)
I (s) ≈ 1√

π

NGHQ
∑

n=1

w̃n10
(k+1)(

√
2σs̃n+µ)/10

× exp
{

−10(
√
2σs̃n+µ)/10s

}

(43)

By substituting (43) inTI (·) in (9) and by using the identity
[69, Eq. (13.1.2)]:

+∞
∑

k=0

sx+k

Γ (k +B)
=

sx

Γ (B)
1F1 (1, B, s) (44)

with B and z being positive constants, we obtain (15) after
some algebra. This concludes the proof. �

APPENDIX V
PROOF OFProposition3

Similar to Appendix IV, in order to have an analyti-
cally tractable expression of PDF and MGF of composite
Nakagami–m and Log–Normal fading, we use the approxi-
mation of the Log–Normal distribution that is based on the
Gauss–Hermite quadrature in [75, Eq. (2.58)] and [76, Table
V]. Accordingly,M(k)

I (·) in (9) can be computed as follows:

M(k)
I (s) ≈ 1√

π

mm

Γ (m)

×
NGHQ
∑

n=1

w̃nω̃
m
n (s+mω̃n)

−(m+k+1) Γ (m+ k + 1)

(45)

By substituting (45) inTI (·) in (9), from (42) we eventually
get (16). This concludes the proof. �

APPENDIX VI
PROOF OFProposition4

Similar to Appendix IV, in order to have an analytically
tractable expression of PDF and MGF of composite Rice
and Log–Normal fading, we use the approximation of the
Log–Normal distribution that is based on the Gauss–Hermite
quadrature in [77, Table IV]. In particular, from [78, Eq. (6)]
we obtain (46) shown at the top of this page, where (a) is
obtained by using [75, Eq. (2.17)]. Thus,M(k)

I (·) in (9) can
be computed as shown in (47) at the top of this page, where
(a) is obtained by using [69, Eq. (6.631)]. By substituting (47)
in TI (·) in (9), we obtain (48) shown at the top of this page.

Since the infinite series in (48) is not fast converging, we
elaborate furtherTI (·) in order to obtain a better expression
for simple numerical computation. ForK 6= 0, this can be
obtained by first replacing1F1 (·, ·, ·) with its series expansion
in [69, Eq. (13.1.2)], and then computing the infinite seriesin k
by using (42). Eventually, we obtain (17) with some algebraic
manipulations and using the identityΓ (z + 1) = zΓ (z). The
caseK = 0 can be obtained by noting that1F1 (A, 1, 0) = 1
for every A, and by applying the same procedure as in
Appendix V withm = 1. This concludes the proof. �

APPENDIX VII
PROOF OFCorollary 2

Let U (asymptote) (z) = limz→0+ U (z) in (18). This limit
can be computed as follows:

U (asymptote) (z) = lim
z→0+

GαD ,αN

αN ,αD

(

z

∣

∣

∣

∣

∆(αN ,−να)
∆ (αD, 0)

)

(a)
= lim

ζ→+∞
GαN ,αD

αD ,αN

(

ζ

∣

∣

∣

∣

1−∆(αD, 0)
1−∆(αN ,−να)

)

(49)
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where ζ = 1/z and (a) is obtained by using [68, Eq.
(8.2.2.14)].

From (49), (18) can be obtained by using [92, Theorem
1.8.3], and more explicitly by using [92, Eq. 1.8.8] whose
parameters are defined in [92, Eq. 1.4.2] and [92, Eq. 1.4.7],as
well as by taking into account thatlimz→0+ pFq (a, b, z) = 1,
and, thus, the generalized hypergeometric functionpFq (·, ·, ·)
can be neglected. This concludes the proof. �
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for performance evaluation of maximal ratio combining diversity over
Weibull fading channels”,EURASIP J. Wireless Commun. Netw., vol.
2006, Article ID 58501, 7 pages, 2006.

[89] T. Jin and L. Gonigunta, “Exponential approximation toWeibull renewal
with decreasing failure rate”,Commun. Statist. Simul. Computat., vol.
80, no. 3, pp. pp. 273–285, Mar. 2010.

[90] R. S. Anderssen, M. P. Edwards, S. A. Husain, and R. J. Loyd, “Sums of
exponentials approximations for the Kohlrausch function”, Int. Congress
on Modelling and Simulation, pp. 263–269, Dec. 2011.

[91] J. Venkataraman, M. Haenggi, and O. Collins, “Shot noise models for
outage and throughput analyses in wireless ad hoc networks”, IEEE
Military Commun. Conf., pp. 1–7, Oct. 2006.

[92] A. M. Mathai and R. K. Saxena,Generalized Hypergeometric Functions
with Applications in Statistics and Physical Sciences, Lecture Notes in
Mathematics, vol. 348, Springer–Verlang, 1973.

[93] C. Newport, D. Kotz, Y. Yuan, R. S. Gray, J. Liu, and C. Elliott, “Ex-
perimental evaluation of wireless simulation assumptions”, Simulation,
vol. 83, no. 9, pp. 643–661, Sep. 2007.

http://arxiv.org/pdf/1211.4041.pdf
http://arxiv.org/pdf/1208.1977.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
http://www.vttoth.com/CMS/index.php/technical-notes/67
http://fredrik--j.blogspot.fr/2009/06/meijer--g--more--hypergeometric--functions.html


IEEE TRANSACTIONS ON COMMUNICATIONS 22

[94] M. Di Renzo, L. Imbriglio, F. Graziosi, F. Santucci, “Distributed data
fusion over correlated log–normal sensing and reporting channels: Ap-
plication to cognitive radio networks”,IEEE Trans. Wireless Commun.,
vol. 8, no. 12, pp. 5813–5821, Dec. 2009.

[95] M. Di Renzo, F. Graziosi, and F. Santucci, “A comprehensive framework
for performance analysis of cooperative multi–hop wireless systems over
log–normal fading channels”,IEEE Trans. Commun., vol. 58, no. 2, pp.
531–544, Feb. 2010.

[96] S. S. Szyszkowicz, H. Yanikomeroglu, and J. S. Thompson, “On the
feasibility of wireless shadowing correlation models”,IEEE Trans. Veh.
Technol., vol. 55, no. 9, pp. 4222–4236, Nov. 2010.

[97] B. Baszczyszyn and M. K. Karray, “Quality of service in wireless cellu-
lar networks subject to log–normal shadowing”,IEEE Trans. Commun.,
vol. 61, no. 2, pp. 781–791, Feb. 2013.

[98] D. B. Owen and G. P. Steck, “Moments of order statistics from the
equicorrelated multivariate normal distribution”,The Annals of Mathe-
matical Statistics, vol. 33, no. 4, pp. 1286–1291, Dec. 1962.

[99] A. Goldsmith, Wireless Communications, Cambridge University Press,
Aug. 2005.

[100] G. L. Stuber,Principles of Mobile Communication, Kluwer Academic
Publishers, 2nd ed., May 1996.

[101] G. Auer, V. Giannini, I. Godor, P. Skillermark, M. Olsson, M. Imran,
D. Sabella, M. Gonzalez, C. Desset, and O. Blume, ‘Cellular energy
efficiency evaluation framework”,IEEE Veh. Technol. Conf. – Spring,
pp. 1–6, May 2011.

PLACE
PHOTO
HERE

Marco Di Renzo (S’05–AM’07–M’09) was born
in L’Aquila, Italy, in 1978. He received the Laurea
(cum laude) and the Ph.D. degrees in Electrical and
Information Engineering from the Department of
Electrical and Information Engineering, University
of L’Aquila, Italy, in April 2003 and in January
2007, respectively.

From August 2002 to January 2008, he was with
the Center of Excellence for Research DEWS, Uni-
versity of L’Aquila, Italy. From February 2008 to
April 2009, he was a Research Associate with the

Telecommunications Technological Center of Catalonia (CTTC), Barcelona,
Spain. From May 2009 to December 2009, he was an EPSRC Research Fellow
with the Institute for Digital Communications (IDCOM), TheUniversity of
Edinburgh, Edinburgh, United Kingdom (UK).

Since January 2010, he has been a Tenured Researcher (“Chargé de
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