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Abstract— Digital video broadcasting (DVB-C2) and other
modern communication standards increase diversity by means of
a symbol-level interleaver that spans over several codewords. De-
interleaving at the receiver requires a large memory, whichhas a
significant impact on the implementation cost. In this paper, we
propose a technique that reduces the de-interleaver memorysize.
By quantizing log-likelihood ratios with bit-specific quantizers
and compressing the quantized output, we can significantly re-
duce the memory size with a negligible increase in computational
complexity. Both the quantizer and compressor are designed
via a GMI-based maximization procedure. For a typical DVB-
C2 scenario, numerical results show that the proposed solution
enables a memory saving up to 30%.

I. I NTRODUCTION

Bit-interleaved coded modulation (BICM) is an effective
technique for achieving high communication rates by encoding
data bits, interleaving the encoded bits, and then mapping bits
into symbols [1], [2], [3]. To provide diversity, symbols be-
longing to different encoded blocks can be interleaved before
transmission over correlated fading channels. This is the case,
for example, of orthogonal frequency division multiplexing
(OFDM) systems when adjacent cells in the frequency domain,
or symbols in the time domain, see correlated channels.
In this case it is useful to do symbol-level frequency and
time interleaving [4], [5]. In order to increase the spectral
efficiency, large symbol constellations can be used. For ex-
ample, for the second generation digital video broadcasting
standard of cable transmission (DVB-C2) [4], the constellation
size is up to 4,096 points and the symbol interleaver is up
to 51,776 symbols long; its wireless counterpart, DVB-T2
[5] uses constellations of a size up to 256 points, with a
symbol interleaver that can contain up to 1,023 forward error
correction (FEC) codewords; and the Homeplug-AV2 standard
[6] for communication over powerline uses a constellation of
a size up to 4,096 points. At the receiver, a natural choice
would be to revert the operation of the transmitter, thus first
perform symbol de-interleaving on the demodulated samples,
followed by demapping that provides the log-likelihood ratio
(LLR) for each encoded bit and then bit de-interleaving before
FEC decoding. With long symbol interleavers, these operations
require a large amount of memory that has an impact on the
cost and on the area of a single-chip receiver. One solution
consists of a compact representation of the LLR, which can be
obtained by quantization and compression of this information.

Note that both the quantization and the compression of an LLR
have been investigated to reduce the memory occupation of
systems employing hybrid automatic repeat request (HARQ)
[7], where multiple versions of the same packets must be
stored. LLR quantization has been investigated for multiple-
input multiple-output (MIMO) systems, and a bound on the
asymptotic bit error rate (BER) achieved with linear binary
codes over a flat Rayleigh fading channel has been derived in
[8]. Moreover, LLR compression is used also in compress
and forward systems [9] and their application to multicell
processing [10], [11].

The mutual information (MI) between the transmitted data
bits and the compressed words provides a good approximation
of what rate can be achieved with practical FEC schemes,
and its maximization can be considered as a design criterion
for LLR quantization and compression. Since LLRs associated
with bits that have been mapped to the same symbol are corre-
lated (as affected by the same noise sample), joint quantization
and compression of groups of bits can yield a higher MI. For
example, Danieli et al. proposed applying vector quantization
to the LLR [7], however, this solution becomes infeasible as
the constellation size gets larger, and other approaches have
been proposed. For a BPSK transmission over the additive
white Gaussian Noise (AWGN) channel, the non-uniform LLR
quantizer that maximizes the MI is derived by Rave in [12].
By observing that the quantized values are not uniformly dis-
tributed, Rave suggested applying entropy coding in order to
further reduce storage requirements. A suboptimal approach,
where MI is maximized under the constraint that all quantized
values have the same probability, has been considered in [13],
where the analysis is carried out for BPSK transmissions over
a Rayleigh fading channel. Indeed, LLR compression is a
crucial task in modern communication chips, especially when
large blocks of soft bits must be handled, as for low-density
parity-check (LDPC) codes.

In this paper, we propose a quantization and compression
technique for LLR in systems that uses large constellations
and long symbol interleavers. We focus, in particular, on the
DVB-C2 system, where the transmitter symbols are interleaved
before being mapped on different carriers of multiple OFDM
blocks. At the receiver, the samples must be de-interleaved
and demapped. In order to reduce the memory occupation, we
propose first to demap the received signal and then to perform
de-interleaving on groups of LLRs (corresponding to data
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symbols). In order to ease de-interleaving, the total number
of bits representing all the LLRs associated with a single
symbol is fixed. In this manner, the symbol de-interleaver
moves memory blocks of the same size.

To design both quantization and compression, we use the
generalized mutual information (GMI) [14], [15], [16], that
provides the achievable throughput, taking into account the
approximation occurred in computing the quantized LLRs. Our
first contribution is the LLR quantizer design that maximizes
the GMI for a given total number of quantization bits among
all LLRs. We not only adapt the quantization levels, but
also optimize the number of bits used for the representation
of the LLR of each bit of the constellation. Our second
contribution stems from the observation that quantized LLRs
are not uniformly distributed. Therefore, we propose a lossy
compression procedure of the quantized LLRs. We begin from
an Huffman representation of the quantized LLR. We gather
in a word the quantized LLRs associated with a symbol. If this
word is longer than a given number of bits, the compressor
replaces some quantized values with others that have a shorter
representation. We optimize the compressor in terms of maxi-
mum GMI under the constraint on the total number of bits used
to represent a symbol. This is a multidimensional multiple-
choice knapsack (MMCK) problem [17], for which we derive
a suboptimal but practical solution. Finally we present the
numerical results for typical DVB-C2 scenarios.

The rest of the paper is organized as follows. In Section
II, we describe the system model and introduce the receiver
architecture. In Section III, we provide the details of the
design of the quantizer. We describe the lossy compression
technique in Section IV. In Section V, we present and discuss
numerical results, comparing the various options introduced
in the previous section. Lastly we draw some conclusions in
Section VI.

II. SYSTEM MODEL

We consider the transmission scheme of Fig. 1, where data
bits are encoded by FEC. Bit-interleaving (BIN) and Mapping
(MAP) of bits to M -QAM symbols follow. Encoded bits are
indicated asbk,j ∈ {0, 1}, where1 k = 1, 2, . . . , logM , andj
is the index of the QAM symbolsj . The generated symbols are
then interleaved (SIN) before transmission to provide diversity
over correlated fading channels. The symbol that has position
j within the block entering the symbol interleaver is moved to
positioni = M(j), whereM is a permutation over the index
set.

The symbolsi is transmitted on a fading channel, i.e., it
is multiplied by the channel gainhi. Then complex white
Gaussian noise (AWGN)ni is added. The noise has zero mean
and powerσ2. With this model, we appropriately describe
the main features of many communication systems, including
those based on OFDM2. Single carrier transmissions with

1In this paperlog x denotes the base-2 logarithm ofx, and lnx denotes
the base-e logarithm.

2If the cyclic prefix is longer than the channel impulse response and assum-
ing perfect synchronization, the cascade of OFDM modulation, the channel,
and OFDM demodulation is equivalent to a set of parallel memoryless fading
channels, each with a different gainhi.

linear equalization, as well as MIMO systems with linear
receivers can be cast into this model. Hereafter, we assume
that the channel gainshi are known to the receiver.

A. Receiver Implementation

We consider the two receiver alternatives depicted in Fig.
2.

Conventional Receiver:In this receiver – depicted in Fig.
2 (a) – the received samplesri and the channel gainshi are
first de-interleaved (SDI) and then passed to the demapper
(DEM) to obtain the LLRλk,j associated with the encoded
bit bk,j . For an implementation of the receiver on a chip, the
received samples, channel gains and LLRs will be represented
as quantized values; in particular, quantization is explicitly
shown in the figure by block QUA. The quantized LLRs are
passed to a bit de-interleaver (BDI) and then to the FEC
decoder (DEC) for error correction. In this implementationtwo
blocks of memory, namedMa

SD andMBD, are needed.Ma
SD

is associated with SDI and stores both the received samples
and channel gains.MBD, which is associated with BDI, stores
LLRs.

Proposed Receiver:In this receiver – depicted in Fig.
2 (b) – in order to reduce both the complexity of the de-
interleaver and the total memory, demapping and symbol de-
interleaving are swapped. The sampleri is first quantized
and then demapped to obtain LLRsλk,i, associated with the
encoded bitbk,i, for k = 1, 2, . . . , logM . LLR λk,i is further
quantized into one of theLk possible quantization levels, and
then the indexvk,j of the quantized level associated with
the LLR is stored. We assume that the first quantization on
the received sample is very precise so that this quantization
error can be ignored in the system analysis. This is a rea-
sonable assumption because the quantized received samples
are not stored, hence a fine quantization has no drawback
on the memory size. In this implementation the symbol de-
interleaver operates onwordsof quantized LLRs instead of the
quantized received samples. Each word consists of LLRs of
bits mapped to the same symbol. We compress the quantized
LLR values, thus obtaining a smaller memory and at the
same time reducing memory swapping operations for the de-
interleaver. In particular, we consider two components that per-
form compression (COM) and decompression (UCOM) of the
quantized levelsvk,j . We observe that a simple implementation
of the de-interleaver requires that all compressed words are
represented by the same number of bitsN̄ . In this case, symbol
de-interleaving boils down to the permutation of blocks of
memory of the same size. In order to ensure that compression
generates at most̄N bits for each transmitted symbol, we allow
for losses, i.e., quantized indicesvk,j could be substituted by
other indiceŝvk,j represented by fewer bits. After symbol de-
interleaving, LLR words are uncompressed into fixed-length
quantization indicesvk,i to allow for bit-de-interleaving (BDI),
and they are finally mapped into quantized LLR valuesλ̂k,i

before being passed to the FEC decoder. Also in this case we
need two blocks of memory,M b

SD, and MBD, both storing
LLR quantized LLR levels. Note that interleavers are often
designed in order to operate in a pipelined fashion without
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FEC BIN MAP SIN

bk,j sisj

× +

hi ni

Fig. 1. Transmitter and channel models. FEC: Forward Error Correction; BIN: Bit Interleaver; MAP: Mapper; SIN: Symbol Interleaver.

Ma
SD

QUA SDI DEM BDI DEC

MBD

ri, hi λk,jrj , Hj

(a) Conventional Receiver.

MBDM b
SD

SDIDEM QUA UCOM

ri, hi λk,i vk,i

BDI DECCOM

v̂k,i v̂k,j v̂k,j

QUA

(b) Proposed Receiver.

Fig. 2. Receiver architectures. QUA: Quantizer; SDI: Symbol De-interleaver; DEM: Demodulator; BDI: Bit De-interleaver; DEC: Decoder; COM:
Compression; UCOM: Uncompression.

the need to double the memory size. This is a common feature
in today’s communication systems, as is the case of DVB-C2
[18]. Combining SDI and BDI in a single de-interleaver would
break this feature and then would require a larger memory,
thus it is convenient to keep SDI and BDI as two separate
operations, even when compression is not employed.

The two architectures of Fig. 2 can be compared in two
respects: from a complexity and from a memory point of view.
The proposed implementation requires additional complexity
for compression/decompression, and less memory for de-
interleaving. This complexity increase can be kept negligible
with respect to the decoding complexity. So it has a negligible
effect on the receiver cost. But, the de-interleaving part has
a significant impact on the total memory size, due to the
large size of the interleavers used in DVB-C2 [4]. As shown
in Section V-D, the proposed scheme results in a memory
reduction of about 30% with respect to that of the conventional
receiver.

B. LLR Statistics

Assume equal probability for all constellation points. The
minimum distance approximation of the LLR is given by [19]

λk,i =− 1

σ2

(

min
s∈Sk(1)

{

||ri − his||2
}

−

min
s∈Sk(0)

{

||ri − his||2
}

)

,

(1)

whereSk(u) is the set of constellation points with thek-th
bit equal tou ∈ {0, 1}. As both LLR computation and com-
pression operate at a symbol level, unless explicitly required
in the following, we drop the symbol indexi or j. In this
paper, we consider the minimum distance approximation of

the LLR, although the proposed solution applies also to other
approximations of the LLR (including its exact definition).As
the same value ofλk can be achieved with various values of
r, the LLRs conditioned on thebk andh are distributed as a
piecewise Gaussian mixture [20]. The real axis is partitioned
into U intervals[haLu , ha

U
u ] for u = 1, 2, . . . , U . We have

pΛk|Bk,H(λk|bk, h) =
Gu
∑

µ=1

1

Gu

σ√
2πhγµ,u,k

×

exp

[

−1

2

(

λkσ
2 − h2mµ,u,k

σhγµ,u,k

)2
]

,

λk ∈ [haLu , ha
U
u ] ,

(2)

where Λk, Bk, and, H are the random variables corre-
sponding to LLRs, bits, and channel gains respectively, and
with λk, bk, and h we denote their realizations. Note that
γ1,u,k, . . . , γGu,u,k, and m1,u,k, . . . ,mGu,u,k, are the Gaus-
sian mixture parameters of theu-th interval, which are also
functions ofbk. In [20] explicit expressions ofpΛk|Bk

(λk|bk)
are derived for squared QAM constellations. In the following,
we will also needpΛk|Bk,H(λk|bk, h), that can be obtained by
averaging (2) over the channel PDF, i.e.,

pΛk|Bk
(λk|bk) = E[pΛk|Bk,H(λk|bk, H)] , (3)

whereE[·] denotes expected value. In this paper, we consider
two channels: the AWGN channel, wherepΛk|Bk

(λk|bk) =
pΛk|Bk,H(λk|bk, 1), and the Rayleigh fading channel, for
which a closed form expression of (3) has been derived in
[21]. 3

3Note that by assuming large symbol interleaving, uncorrelated channel
realizations of symbols belonging to FEC block can be achieved.
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III. LLR Q UANTIZATION

The LLRs associated with the same transmitted symbol
are correlated random variables as they are affected by the
same noise sample. Therefore, vector quantization [22] of the
LLR vectorλ1, λ2, . . . , λlogM , can be applied. However, this
technique is exceedingly complex for largeM .

Here, we propose instead that the LLR of each bit is
quantized by a tailored quantizer. In fact, each of thelogM
LLRs has a different statistic, as shown in (2), and a great
performance benefit can be achieved by consideringlogM
quantizers, each with its own quantization intervals. As noted
above, the statistics of the LLR depend on the channelh,
therefore adapting the quantizer to the channel associatedwith
the LLR would also increase the accuracy of the quantized
representation. However, the decoder should then know also
the channel gain, and additional memory should be reserved to
store this information. In order to reduce memory occupation,
we consider here a scenario where channel gains are discarded
after the LLR computation, and the quantizers are not adapted
to the channel levels.

Note that we store the indices that describe the quantized
values. The decoder uses a look-up table to determine the
quantized values and performs arithmetic operations on these
quantities, represented by fixed-point numbers with the same
precision for all LLRs. We assume this fixed-point represen-
tation to be sufficiently accurate to have a negligible effect on
the performance. This is realistic because the number of bits
used for this representation (internal to the decoder) doesnot
affect the overall memory size. Thus, we ignore this step and,
in the following, focus on quantization only.

A. Quantization Procedure

We focus on the uniform quantization of the LLRs, although
the derivations are easily extended to non-uniform quantiza-
tion. In particular, the LLR of thek-th bit is quantized by a
uniform quantizer, having quantization stepqk andLk = 2wk

levels, wherewk is the number of bits used to describe a level.
TheLk quantization intervals are

Dℓ = [dk,ℓ−1, dk,ℓ) , (4)

with ℓ = 1, 2, . . . , Lk, wheredk,0 = −∞, dk,Lk
= ∞, and

dk,ℓ =

(

ℓ− Lk

2

)

qk , ℓ = 1, 2, . . . , Lk − 1 . (5)

Note thatwk and qk fully specify the quantizer forλk. The
quantization process is described as follows:

λk is mapped to indexvk = ℓ if λk ∈ Dℓ . (6)

For each indexvk, we have a corresponding quantized LLR
valueλ(Q)

vk,k
. Let the discrete random variableVk be the quan-

tization level index ofΛk and pVk|Bk
(vk|bk) the conditional

probability mass function (PMF) ofVk, givenBk, which can
be written as

pVk|Bk
(vk|bk) =

∫ dk,vk

dk,vk−1

pΛk|Bk
(λk|bk) dλk . (7)

The unconditional PMF is given by

pVk
(vk) = E

[

pVk|Bk
(vk|Bk)

]

. (8)

In general, numerical methods must be used to compute (7).
For AWGN channels with a fixed channel gainh and given
noise powerσ2, from (2) we have a closed form expression
of the conditional PMF, i.e.,

pVk|Bk
(vk|bk) =

U
∑

u=1

Gu
∑

µ=1

1

Gu

(

Q

(

αuσ
2 −mµ,u,kh

2

γµ,u,kσh

)

−Q

(

βuσ
2 −mµ,u,kh

2

γµ,u,kσh

))

,

(9)

whereQ(·) is the Q-function and

αu = min{max{dk,vk , haLu}, haUu } (10)

βu = min{max{dk,vk−1, ha
L
u}, haUu } . (11)

B. Quantization Design

As performance measure for the design of the quantizer we
consider the GMI, defined, for a specific decoder metric, as
the supremum among all rates for which the random coding
exponent is strictly positive.

In [23] it has been proved that the GMI can be upper
bounded by

GMI ≤ max
x>0

logM
∑

k=1

BGMIk(x) , (12)

where the binary GMI (BGMI) is

BGMIk(x) =− E

[

1
∑

b=0

pBk
(b)×

log
(

pBk
(b) + pBk

(1− b)e−(2b−1)Λ̂kx
)]

.

(13)

Also, note that a suitable mapping can be applied onλ̂k such
that (12) holds with equality, which also occurs when exact
LLR is used instead of the approximated LLR. In this case, any
rate below the GMI is achievable without the ideal interleaver
assumption [15]. Considering the quantization rule in (6) and
equiprobable bits, we can rewrite (13) as

BGMIk(x) =1−
Lk
∑

vk=1

1

2

[

pVk|Bk
(vk|0) log

(

1 + e
λ
(Q)
vk,k

x

)

+

+pVk|Bk
(vk|1) log

(

1 + e
−λ

(Q)
vk,k

x

)]

.

(14)

We first note that the quantized LLR value that maximizes the
GMI can be obtained by setting to zero the derivative of the
BGMI with respect toλ̂k(vk). Doing so yields

λ
(Q)
vk,k

=
1

x
ln

(

pVk|Bk
(vk|1)

pVk|Bk
(vk|0)

)

. (15)
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Inserting (15) into (13) we obtain

BGMIk = I(Bk;Vk)

=
1

2

Lk
∑

vk=1

1
∑

bk=0

pVk|Bk
(vk|bk) log

pVk|Bk
(vk|bk)

pVk
(vk)

,

(16)

which coincides with the MI betweenbk andvk, and does not
depend onx. Substituting (16) in (12) yields

GMI =

logM
∑

k=1

I(Bk;Vk)

=
1

2

logM
∑

k=1

Lk
∑

vk=1

1
∑

bk=0

pVk|Bk
(vk|bk) log

pVk|Bk
(vk|bk)

pVk
(vk)

.

(17)

Hence, the GMI is given by the sum overk of the MI between
Bk andVk.

Note that in the literature the GMI is proposed as an accurate
performance measure for BICM systems with mismatched
decoders [14], [15], [16]. In the context of this paper, when
quantization is performed, the decoder is mismatched for two
reasons: (i) the LLRs coming from a given symbol are not
independent as inherently assumed by the decoder; and (ii)
the decoder assumes unquantized LLRs.

In order to maximize the GMI, for the design of both the
quantizer and the compressor, we choose the quantized value
according to (15) withx = 1 (from the above discussion, any
value x 6= 0 yields the same GMI). As mentioned, we are
using a specific quantizer for each of thelogM bits mapped to
a symbol. Therefore the objective of the quantization design
is to optimize both vectorsw = (w1, w2, . . . , wlogM ) and
q = (q1, q2, . . . , qlogM ), wherewk and qk are the bit-length
and quantization steps of the quantizer that operates on the
LLR of the k-th bit. The quantizer design aims at maximizing
the GMI in (17) with the constraint of usingW bits for the
quantization of all LLRs of a word. Mathematically, we aim
at solving

max
q,w

logM
∑

k=1

I(Bk;Vk) , (18a)

s.t.
logM
∑

k=1

wk = W . (18b)

Unfortunately, the constrained maximization (18) is a mixed
integer programming (MIP) problem and cannot be solved in
closed form. We must resort to numerical methods to optimize
both q andw.

Optimization of the quantization stepsqk: For eachk =
1, 2, . . . , logM , andwk = 1, 2, . . . ,W , we first find the best
qk that maximizes the BGMI, i.e.,

qk(wk) = argmax
qk

I(Bk;Vk) . (19)

The above optimization can be performed numerically sub-
stituting (8) and (9) in (16). LetIk,wk

= I(Bk;Vk(qk(wk)))
be the mutual information betweenBk andVk usingwk bits

TABLE I
BESTqk WHICH MAXIMIZES THE MI FOR EACHk AND wk CONSIDERING

A 4,096-QAMAND AWGN WITH C/N = 32.2dB

k
1, 2 3, 4 5, 6 7, 8 9, 10 11, 12

wk

2 3.73 3.40 3.13 2.93 2.53 1.80
3 2.23 2.00 1.83 1.77 1.46 1.03
4 1.21 1.12 1.05 0.97 0.84 0.55
5 0.75 0.66 0.61 0.52 0.47 0.28
6 0.38 0.36 0.34 0.32 0.26 0.14

TABLE II
BESTqk WHICH MAXIMIZES THE MI FOR EACHk AND wk CONSIDERING

A 4,096-QAMAND BLOCK RAYLEIGH FADING WITH C/N = 34dB

k
1, 2 3, 4 5, 6 7, 8 9, 10 11, 12

wk

2 2.60 2.40 2.27 2.07 1.73 1.53
3 1.29 1.26 1.20 1.11 1.00 0.86
4 0.79 0.72 0.65 0.64 0.59 0.52
5 0.39 0.43 0.36 0.34 0.34 0.33
6 0.21 0.25 0.23 0.21 0.21 0.19

and the quantization stepqk(wk) obtained in (19). Considering
the Gray mapping of DVB-C2 [4], we can treat independently
the real and the imaginary parts of the constellation points
[24]. We map the bitsbk on the imaginary axis whenk is
odd. Similarly, we map the bitsbk on the real axis whenk is
even. The symmetry introduced by the Gray mapping implies
q2u−1 = q2u, with u = 1, 2, . . . , logM

2 .
In Tables I and II, we report the results of (19), for 4,096-

QAM and both AWGN and Rayleigh fading channels. Note
that whenwk = 1 we are considering a hard decision on the
LLR, and the BGMI does not depend onqk. For non-Gray
mappings, we cannot exploit the above symmetry, andqk must
be optimized for even and odd values ofk.

Optimization of the bit lengthswk: After having optimized
the quantization stepqk for eachk and eachwk, our focus is
to find the bestw subject to (18b). Therefore, the optimization
objective (18) becomes

max
w

logM
∑

k=1

I(Bk;Vk) , s.t. (18b). (20)

Our approach to solving (20) is to assign one bit at a
time to the k∗-th quantizer that yields the highest gain in
terms of MI, so thatk∗ = argmaxk{Ik,wk+1 − Ik,wk

}.
Therefore, after having computedqk(wk) and Ik,wk

for each
k = 1, 2, . . . , logM , andwk = 1, 2, . . . ,W , the optimization
(18) is solved using Algorithm 1.

Algorithm 1: Optimization of the bit lengthswk.

1 Initialize w = (0, . . . , 0);
2 for u = 1:W do
3 k∗ = argmax

k

{Ik,wk+1 − Ik,wk
};

4 wk∗ = wk∗ + 1.
5 end

We find it interesting that, ifIk,wk
is an upper convex

sequence ofwk, this greedy procedure is optimal, in the sense
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TABLE III
OPTIMAL BIT DISTRIBUTION SETS FOR4096-QAM,CONSIDERINGAWGN AND C/N = 32.2dB

w1, w2

w3, w4

w5, w6

w7, w8

w9, w10

w11, w12

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3
1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4
1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4
1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4
1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5
1 1 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5

W 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

that it returns the same results as an exhaustive search. A
proof of this statement is reported in the Appendix. Although
we could not prove the upper convexity ofIk,wk

under general
conditions, as remarked in Section V, we find that this property
holds true in all the cases considered in this paper, for both
AWGN and fading channels.

Tables III and IV show the results of this optimization for
our study case with 4,096-QAM, respectively, for AWGN and
Rayleigh fading channels. Also in this case, the symmetry
introduced by Gray mapping impliesw2u−1 = w2u, with
u = 1, 2, . . . , logM

2 . For non-Gray mappings, we have dif-
ferent values ofwk for eachk.

IV. LLR C OMPRESSION

The second part of this paper is based on the observation
that the quantized LLR levels are not uniformly distributed,
therefore compression can reduce the memory needed to store
the LLRs. Letv = (v1, v2, . . . , vlogM ) be the vector of the
LLR quantized levels coming from the same received symbol.
In order to allow the symbol de-interleaver to move blocks of
the same size, the compression procedure must represent each
v with the same number of bits. Then, our task is to design a
procedure that maps theW bits representingv into N̄ bits.

With this purpose, we propose a lossy compression is
performed in two steps: first we do a lossless entropy coding
applied separately on eachvk; then, if the number of bits
exceedN̄ we perform a further LLR compression as described
in the following.

For the lossless compression, we apply Huffman coding [25]
at the output of each LLR quantizer. Letmk,vk be the length
of the Huffman codeword that represents the levelvk. Then
the number of bits required to representv is

N =

logM
∑

k=1

mk,vk . (21)

If N ≤ N̄ , no further compression is needed. The vectorv

can be either stored as it is or potentially padded with zeros
to make it of lengthN̄ . Otherwise, we modify one or more
quantizer outputs so that the newN is smaller or equal to the
targetN̄ . Clearly this operation will cause a performance loss
that we can quantify in terms of GMI. Our aim is to minimize
this loss while reaching the target length̄N .

Let δk,a,c be the average GMI loss incurred when we replace
the LLR quantized levelvk = a with another level,̂vk = c.
Note that, by replacingvk = a with v̂k = c, we obtain the

new PMFs

p
V̂k|Bk

(vk|bk) =



















pVk|Bk
(vk|bk) v̂k 6= a, c ,

0 v̂k = a ,

pVk|Bk
(a|bk)+

pVk|Bk
(c|bk) v̂k = c ,

(22)

p
V̂k
(vk) =



















pVk
(vk) v̂k 6= a, c ,

0 v̂k = a ,

pVk
(a)+

pVk
(c) v̂k = c .

(23)

Therefore, considering (22), (23) and (16), the average GMI
loss,δk,a,b is given by

δk,a,b =pVk|Bk
(a|bk) log

pVk|Bk
(a|bk)

pVk
(a)

+ pVk|Bk
(b|bk) log

pVk|Bk
(b|bk)

pVk
(b)

−
1

∑

bk=0

(

pVk|Bk
(a|bk) + pVk|Bk

(b|bk)
)

×

log
pVk|Bk

(a|bk) + pVk|Bk
(b|bk)

pVk
(a) + pVk

(b)
.

(24)

Note thatδk,a,b is zero if a = b, otherwise is non-negative.
In order to reach the compression targetN̄ , one or more

LLR quantized levelsvk will be replaced with a new level
v̂k, having a shorter representation. The problem is to find
the vectorv̂ = (v̂1, v̂2, . . . , v̂logM ) that minimizes the average
GMI loss, while keepingN ≤ N̄ . Mathematically we aim at
solving

min
v̂1,...,v̂log M

logM
∑

k=1

δk,vk,v̂k , (25a)

s.t.
logM
∑

k=1

mk,v̂k ≤ N̄ . (25b)

This problem can then be seen as a multidimensional multiple-
choice knapsack (MMCK) problem [17]. Unfortunately, the
MMCK problem is NP hard [17], thus we resort to the
following greedy iterative approach.

Greedy LLR compression:Starting fromv, at each iteration,
the algorithm selects the substitutionvk → v̂k yielding the
smallest average GMI loss, considering only thev̂k such that
mk,v̂k < mk,vk . The lengthN is decreased at least by 1 at
each iteration. We stop the procedure whenN ≤ N̄ . The
iterative procedure works as described in Algorithm 2.
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TABLE IV
OPTIMAL BIT DISTRIBUTION SETS FOR4096-QAM,CONSIDERINGRAYLEIGH FADING AND C/N = 34dB

w1, w2

w3, w4

w5, w6

w7, w8

w9, w10

w11, w12

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3
1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4
1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4
1 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5
1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5

W 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Algorithm 2: Greedy LLR compression

1 Initialize v̂1 = v1, v̂2 = v2, . . . , v̂logM = vlogM ;
2 while (25b) is not satisfieddo
3 for k = 1, . . . , logM do
4 for v̂′k = 1, . . . , Lk do
5 if mk,v̂′

k
≥ mk,v̂k then

6 δk,vk,v̂′

k
= ∞

7 end
8 end
9 end

10 (k∗, v̂′∗k∗) = argmin
k=1,...,logM

v̂′

k=1,...,Lk

δk,vk,v̂′

k
;

11 v̂k∗ = v̂′∗k∗ ;
12 end

We have two bounds on the number of iterations required
for the convergence. On one hand, as at each iteration we set
at least one value ofδk,vk,v̂k to ∞ we have

# iterations≤
logM
∑

k=1

Lk . (26)

On the other hand, asN is decreased by at least one bit at
each iteration, we have

# iterations≤ N̄ −N , (27)

and usually this second condition provides the tightest bound.
Joint Optimization ofW andN̄ : In the previous section we

have provided a detailed design of both LLR quantization and
compression. Following the proposed scheme, the only two
parameters we need to set in order to specify the quantization
and compression procedure areW and N̄ , which represent
the number of bits at the output of the quantizer and of the
compressor, respectively. OnlȳN determines the final size
of the memory, but both of them have an impact on the
performance. In fact, ifW is much higher thanN̄ , we will
have a higher GMI at the output of the quantizer, but the lossy
compression will be aggressive and will introduce significant
loss. We do not know an easy way to determine the bestW

for a givenN̄ . In the numerical results reported in Fig.s 9 and
10, we tested several values ofW for eachN̄ and chose the
one that gives the best performance.

V. NUMERICAL RESULTS

We evaluate the performance of the proposed solutions
on the DVB-C2 standard for cable television. This standard
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Fig. 3. BGMI of the quantized LLR of the MSB for a 64-QAM constellation
over AWGN channel withC/N = 10 dB, as a function of the quantization
stepq1, for several values ofw1. Lines show analytical results and markers
are obtained by Monte Carlo simulations.

provides OFDM with 4,096 subcarriers, BICM with LDPC
codes and symbol interleaver (a combination of frequency
and time interleaving), which fits the scheme of Fig. 1.
In particular, the symbol interleaver is a row-column block
interleaver, with a number of rows up to 16 OFDM blocks and
with a number of columns up to 3,236 (corresponding to the
maximum number of data symbols in a OFDM block). Various
constellation sizes are provided, from 16-QAM up to 4,096-
QAM with Gray mapping. Hence, in the worst case scenario,
the interleaving block contains 51,776 data cells or 621,312
LLR values. In the following, we will refer to the carrier to
noise (C/N) ratio as the SNR on each subcarrier after OFDM
demodulation.

A. Quantization Performance

Fig.s 3 and 4 show the BGMI obtained from the quantized
LLRs as a function of bothqk andwk, for a C/N ratio of 10
dB, which represents the working point for 64-QAM. Results
are reported for both the least significant bit (LSB) and the
most significant bit (MSB) along the real axis of 64-QAM
symbols, i.e., fork = 1 and k = 5, respectively. Lines are
obtained using the closed form expression of the PDF of the
quantized LLRs, and markers show results obtained by Monte
Carlo simulations. We see perfect overlap between analytical
and simulation results.

First, we note that for each value ofwk we have only one
optimum value of the quantization stepqk, which maximizes
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Fig. 4. BGMI of the quantized LLR of the LSB of a 64-QAM constellation
over AWGN channel withC/N = 10 dB, as a function of the quantization
stepq5, for several values ofw5. Lines show analytical results and markers
are obtained by Monte Carlo simulations.

the BGMI. Then, we observe that both the maximum BGMI
and the corresponding values ofqk are different for the LSB
and MSB. The same holds also for the other data bits (results
are not reported here), with a behaviour similar to that of Fig.s
3 and 4. This justifies the use of different quantization steps
for each bit of the constellation. We note also that, as the
number of bitswk increases, the maximum BGMI gets closer
to the BGMI obtained with unquantized LLR, and the gain
obtained usingwk + 1 bit instead ofwk gets smaller. Also,
for large quantization steps, the number of bitswk does not
affect the BGMI performance, because adding bits provides
quantization intervals for large values of LLR that do not
contribute significantly to the BGMI. From Fig.s 3 and 4, we
also observe that it is important to characterize the LLRs close
to zero: indeed, the distribution of LLR values around zero is
also dominating the BER performance of uncoded systems
[26], [20].

Fig. 5 plots BGMI values for the MSB of 64 QAM
quantized with 4 bits, as a function of bothq1 and C/N. We
note that the higher the C/N is, the larger the quantization
step q∗1 that maximizes the BGMI is. In fact, as the PDFs
of the LLRs shift towards higher absolute values as the C/N
increases, for larger C/N, it pays off to enlarge the quantization
range at the expense of a coarser quantization near zero.

We then consider larger constellations, in particular the
4,096-QAM constellation used in DVB-C2, which represents
the worst-case scenario for the symbol interleaver memory
size. The following results were obtained by considering C/N
= 32.2 dB for AWGN and C/N = 34 dB for Rayleigh fading,
because, according to [4, Table 20, p. 128], it represents the
lowest working points for the 4,096-QAM. In Tables I and II,
we report the optimalqk solving (19), forwk = 2, 3, . . . , 6,
and for each LLR position of the 4,096-QAM constellation,
k, respectively in AWGN, and Rayleigh fading conditions.

As the LLR statistics depend on the C/N, it is possible
to adapt quantization according to (18). However, to avoid
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Fig. 5. BGMI of the quantized LLR of the MBS of a 64-QAM constellation
using w1=4 bits, as a function of the quantization stepq1 for several C/N
values over AWGN channel.
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3-bit UNOPT

Fig. 6. GMI as a function of the C/N usinḡN = 34 and different values of
W , considering 4,096-QAM over AWGN channel. 3-bit UNOPT: unoptimized
system.

re-computing (18), we propose to use tables forqk andwk,
computed considering the lowest working point. Fig. 6 shows
that GMI increases as the C/N increases, even ifqk andwk

are computed considering the lowest working point (which
in this case is 32.2 dB) rather than the actual C/N. Therefore
when C/N is higher than the lowest working point, the required
performance is certainly reached at any rate.

In Fig. 7 the maximized BGMI for each bit and for each
value of wk are shown. Again, we observe that the BGMI
is significantly different for each bit of the constellationand
also that the gain achieved by adding quantization levels is
different for each bit. For example, going fromwk = 1 to
wk = 6 for the MSB provides an increase of BGMI of about
0.025 bit/s/Hz, while for the LSB we have a BGMI gain of
0.12 bit/s/Hz. Therefore, for a given number of total available
bitsW , the maximum GMI is obtained by assigning a different
number of bitswk to each constellation bitk, as discussed in
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Fig. 7. BGMI of the quantized LLR for different valueswk and using
optimal quantization stepqk, considering 4,096-QAM over AWGN channel
with C/N = 32.2 dB.
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Fig. 8. CCDF of the word encoded lengthN .

Section III.b. Furthermore, as also noted in Fig.s 3 and 4,
the BGMI is an upper convex sequence ofwk, therefore the
proposed algorithm for solving (20) returns the same results
of an exhaustive search. Lastly, in Tables III and IV, we
report the results of thew optimization, showing the optimal
distribution of bitswk by solving (18), for both AWGN and
Rayleigh fading channels. As expected, we observe that a finer
quantization (i.e., higherwk) of the LLR associated with LSB
bits, which are less protected by the Gray mapping, pays off.

B. Quantization and Compression Performance

We now evaluate the effect of the LLR quantization and
compression in terms of SNR gap, i.e., the amount of ad-
ditional transmit power (or noise power reduction) required
when quantization is used in order to achieve the same GMI
of a receiver operating without quantization.

Fig. 8 shows the complementary cumulative distribution
function (CCDF) of the encoded word lengthN for different
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Fig. 9. SNR gap for quantized and quantized and compressed LLR as a
function of N̄ , for 4,096-QAM atC/N = 32.2 dB over AWGN channel.
UNOPT: unoptimized system; QUANT: system with quantized LLR; QUANT
+ COM: system with quantized and compressed LLR.

values ofW . We observe that the Huffman coding provides a
significant reduction of the number of required bits to describe
the quantized LLR. For example, forW = 72, in 90% of the
realizationsN ≤ 47, with a compression of about 50%. For
W = 60 the probability of havingN > 50 is less than 0.001.

Hereafter, we show the GMI performance of the optimized
quantization as a function of the C/N. First we note that the
optimal quantization step depends on both the C/N itself and
the channel conditions. Usually, the performance of DVB-C2
is assessed by providing the minimum C/N at which a given
BER is achieved. In terms of GMI, we can compare different
solutions by considering the minimum C/N at which a given
GMI is achieved. In practice, we can optimize bothq andw
considering the lowest C/N at which a target GMI is achieved
as higher C/N values will not decrease the GMI.

Fig. 6 shows the GMI as a function of the C/N for various
values of W , but with the same value of̄N = 36 bits,
hence for the same interleaver memory size. We also show
the performance of the unoptimized system (3-bit UNOPT)
where the same 3-bit quantizer is used for all data bits of
the constellation. Also for UNOPT, the total number of bit for
constellation point is 36. We observe that by using the iterative
compressing procedure of Section IV, we do not incur any
significant loss in terms of GMI. In our example, the outputs
of the optimized quantization usingW = 50, andW = 46
bits, respectively, have been compressed toN̄ = 36 bits, thus
outperforming the case of a sheer quantization usingW = 36
bits.

Another comparison between the system with quantization
(QUANT) and the system with quantization and compression
(QUANT + COMP) is provided in Fig. 9, where the SNR gap
is reported as a function of the total number of compressed
bits N̄ , thus as a function of the required memory. The dotted
lines represent the SNR gap in case of QUANT+COMP for
different values ofW . In other words, each line represents
the performance of the optimized quantizers usingW bits,
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Fig. 10. SNR gap for quantized and quantized and compressed LLR as a
function of N̄ , for 4,096-QAM atC/N = 34 dB, in block Rayleigh fading
channel. UNOPT: unoptimized system; QUANT: system with quantized LLR;
QUANT + COM: system with quantized and compressed LLR.

where the output is then compressed fromW to N̄ bits. We
note that for any of these curves the SNR gap decreases asN̄

increases, because the loss due to compression is reduced, until
N̄ = W , when compression has no effect and the SNR gap
flattens. The line with star markers shows the minimum SNR
gap achievable by QUANT+COMP approach. This result is
obtained by choosing theW that reaches the minimum SNR
gap, for each values of̄N . The QUANT case performance
is shown with gray circle markers, in this case, as there is
no compression we consider̄N = W . Finally, square black
markers show the performance on an unoptimized system
(UNOPT), where the same quantizer is used for LLRs of all
data bits. In this case, aswk is constant for allk, W can be
only a multiple oflogM .

We observe that the optimization of both quantization and
compression provides a significant reduction of the SNR gap
with respect to a traditional unoptimized system. As shown in
Fig. 9, the optimized quantization, QUANT, outperforms the
unoptimized quantization, UNOPT, with a gain of 0.8 dB and
0.4 dB, for N̄ = 24, andN̄ = 36 respectively. Interestingly,
the use of compression yields an advantage only for large
values ofN̄ . For example, if we target a SNR gap of 0.1 dB
we needN̄ = 32 bit with QUANT+COMP, whereas we need
N̄ = 38 bit with QUANT.

Note that the use of compression yields advantages only if
the loss target is small enough. For example, if we target a
SNR gap larger than 0.7 dB, the QUANT + COMP approach
does not bring any gain with respect to the QUANT approach.
In other words, it is not efficient to compress LLRs that are
already quantized optimally by using a limited number of bits.

Fig. 10 shows the comparison between QUANT, QUANT
+ COMP, and UNOPT in the case of a block Rayleigh fading
channel. Here, the SNR gap is computed at C/N = 34 dB
(different from AWGN), because the C/N working point in this
case is higher. Also in this case if the target SNR gap is 0.2
dB, we needN̄ = 29 bit with QUANT+COMP, andN̄ = 34
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Fig. 11. BER vs C/N. UNQUANT: unquantized QAM; QUANT: system
with quantized LLR; QUANT + COM: system with quantized and compressed
LLR; UNOPT: unoptimized quantization; All the quantized system use a total
of N̄ = 36 bits.

bit with QUANT. The performance gap between the optimized
and the unoptimized quantization is even more significant in
the case of a block Rayleigh fading channel. In fact, QUANT
shows a SNR gain of 1.1 dB and 0.6 dB in the case ofN̄ = 24
andN̄ = 36, respectively.

C. BER Comparison

In order to understand the effect of quantization on a system
that uses specific error correcting codes, we obtained the BER
of a DVB-C2 system by using LDPC codes with block length
64K, code rate 5/6, and 4,096 QAM constellation [4]. Fig. 11
shows the comparison in terms of BER between QUANT and
QUANT + COMP. Both use 36 bits in total. For comparison,
we also included the case of unquantized QAM (UNQUANT),
i.e., W = ∞, and the unoptimized case (3-bit UNOPT)
where the same 3-bit quantizer is used for all data bits of
the constellation, thus it uses in total 36 bits.

We observe that the losses due to quantization and compres-
sion agree with the SNR gap computed thought the GMI and
illustrated in Fig. 9. In particular, the UNOPT system has a 0.5
dB loss with respect the UNQUANT case. This loss decreases
to about 0.15 dB using QUANT, and becomes negligible when
using QUANT + COMP.

D. Memory Comparison

We now compare the conventional scheme (CONV) illus-
trated in Fig. 2 (a), and the proposed scheme QUANT +
COMP, illustrated in Fig. 2b, in terms of required memory.
We assume that all de-interleavers are designed such that they
can be written and read simultaneously.

In CONV, for each data cell, the received complex symbol,
ri and the channel estimate,hi, have to be stored in memory
Ma

SD. In order to save memory, the receiver can compensate
the phase rotation due to the channel after its estimation and
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TABLE V
MEMORY COMPARISON.

Loss Receiver
BS BH W N̄

Σ(MSD) Σ(MBD) Σ(MTot) Saved
Target Scheme [Mbit] [Mbit] [Mbit] Memory

0.1 dB
CONV 15 14 60 - 2.27 0.32 2.60 -
QUANT - - 38 - 1.97 0.2 2.17 16.5 %
QUANT + COMP - - 42 32 1.66 0.22 1.88 27.6 %

0.2 dB
CONV 14 13 60 - 2.12 0.32 2.44 -
QUANT - - 32 - 1.66 0.17 1.83 25.2 %
QUANT + COMP - - 36 29 1.50 0.19 1.69 30.6 %

then simply store the magnitude of the channel estimates.
Therefore the size of memoryMa

SD is

Σ(Ma
SD) = NS(2BS +BH) , (28)

whereNS is the number of data cells to be interleaved,BS

is the number of bits per axis to representri, and BH is
the number of bits to representhi. Whereas, in the proposed
scheme, the compressed LLRs associated with one data cell
occupies at most̄N bits, then the size of memoryM b

SD is

Σ(M b
SD) = NSN̄ . (29)

The memory size for the bit interleaverMBD in both schemes
is

Σ(MBD) =
NBW

logM
, (30)

whereNB is the depth of the bit interleaver. Note that here
the compressing procedure is not applicable because the LLRs
are moved one by one by the bit interleaver, therefore each
LLR v̂k will be represented bywk uncompressed bits. For
DVB-C2, the maximum value ofNB is 64,800, and for
the symbol interleaverNS is at most 51,776. Therefore in
DVB-C2 the size ofMSD overrides that ofMBD. In all
the following assessments, we will consider the worst case,
4,096-QAM, which maximizes the size ofM b

SD. DVB-C2
performance assessments show that in order to to have a SNR
gap smaller than0.1 dB, we have to use at leastBS = 15
and BH = 14 bit to representri and hi, respectively, and
wk = 5 bit for each LLR. Thus the total required memory
size,Σ(MTot) = Σ(MSD)+Σ(MBD), is around 2.6 Mbit. On
the contrary, in the proposed scheme we are able to reach the
same target using the compressing procedure with parameters
W = 42, andN̄ = 32. The total memory size becomes 1.88
Mbit, thus providing 27.6% of memory saving. Note that in the
proposed scheme we can representri andhi by using as much
precision as needed to have a negligible loss. The values ofBS

andBH will have no effect on the interleaver memory size.
If the target on the SNR gap is more relaxed, for instance0.2
dB, the saved memory becomes even larger. In fact, in CONV,
to obtain a SNR gap smaller than0.2 dB, we needBS = 14,
BH = 13, and wk = 5, thus the total required memory is
around 2.44 Mbit. Whereas, in QUANT + COMP, the target is
achieved usingW = 36, andN̄ = 29 compressed bit for data
cell, and then requiring about 1.69 Mbit, therefore achieving a
memory reduction of more than 30%. It is interesting to note
that, also in case of no compression (i.e. QUANT), the total
memory size is reduced by more than 25% with respect to
the conventional receiver. The required memory size and the
potential memory saving are summarized in Table V.

VI. CONCLUSIONS

In this paper we have proposed and analyzed a new tech-
nique for the quantization and compression of LLR in a com-
munication system that uses long interleavers. The proposed
quantization yields a memory size reduction of at least 16%
with negligible increase of the complexity. Quantization and
compression reduce the memory size by up to 30%.

APPENDIX

In the following, we report the proof of the optimality of
the greedy procedure, in case of upper convexity ofIk,wk

.
Proof: Let δi,j = Ii,j−Ii,j−1 be the elements of a matrix

∆ = {δi,j} having dimensionlogM ×W . Since,0 ≤ δi,j ≤
δi,j−1 ∀i each row of∆ is a non-increasingly sorted vector.
We can rewrite the optimization (20) as follows,

max
{w}

logM
∑

i=1

wi
∑

j=1

δi,j s.t. (18b). (31)

Clearly the optimization objective is maximized when the
largestW elements of matrix∆ are summed. Letδ[ℓ] be the
ℓ-th largest element of∆, then we can write the maximized
optimization objective as

W
∑

ℓ=1

δ[ℓ] . (32)

Assuming thatw̃ = (w̃1, . . . , w̃logM ) is the vector that
maximizes (20) usingW̃ bits, we can write the(W̃ + 1)-th
largest element of∆ as

δ[W̃+1] = max
i

{

max
j>w̃i

δi,j

}

. (33)

Sinceδi,j ≤ δi,j−1, it becomes

δ[W̃+1] = max
i

δi,w̃i+1 . (34)

That is precisely the rule used in our procedure. Therefore the
proposed procedure will distribute the remainingW bits in an
optimal way, i.e., returning the same result of an exhaustive
search.
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[3] A. Guillén i Fábregas, A. Martinez, and G. Caire, “Bit-interleaved
coded modulation”,Foundations and Trends in Communications and
Information Theory, vol. 5, no. 1-2, pp. 1–153, 2008.



12

[4] Frame structure channel coding and modulation for a second generation
digital transmission system for cable systems (DVB-C2), EN 302 769
V1.2.1, Apr. 2011.

[5] Frame structure channel coding and modulation for a second generation
digital terrestrial television broadcasting system(DVB-T2), ETSI EN 302
755 V1.1.1, Sep. 2009.

[6] Homeplug AV2 Technology White Paper,
Homeplug Alliance, [Online]. Available at
http://www.homeplug.org/tech/whitepapers/HomePlugAV2 White Paperv1.0.pdf

[7] M. Danieli, S. Forchhammer, and J. Dahl Andersen, “Maximum mutual
information vector quantization of log-likelihood ratiosfor memory effi-
cient HARQ implementations”, inProc. Data Compression Conference
(DCC), pp. 30-39, Mar. 2010.

[8] I.-W. Lai, C.-Y. Wang, T.-D. Chiueh, G. Ascheid, and H. Mayr, “Asymp-
totic coded BER analysis for MIMO BICM-ID with quantized extrinsic
LLR”, IEEE Trans. Commun., vol. 60, no. 10, pp. 2820–2828, Oct. 2012.

[9] J. Haghighat and W. Hamouda, “Decode-compress-and-forward with
selective-cooperation for relay networks”,IEEE Commun. Letters, vol.
16, no. 3, pp. 378-381, Mar. 2012.

[10] S. Khattak, W. Ravem, and G. Fettweiss, “Distributed iterative multiuser
detection through base station cooperation”,EURASIP J. on Wireless
Commun. and Networking, vol. 2008. Article ID 390489.

[11] Ruiyuan Hu and Jing Ti, “Practical compress-forward inuser cooper-
ation: Wyner-Ziv cooperation”, in Proc.IEEE Int. Symp. Info. Theory,
pp.489-493, 9-14 Jul. 2006.

[12] W. Rave, “Quantization of log-likelihood ratios to maximize mutual
information”, IEEE Signal Proc. Letters, vol. 16, no. 4, pp. 283-286,
Apr. 2009.

[13] C. Novak, P. Fertl, and G. Matz, “Quantization for soft-output demodu-
lators in bit-interleaved coded modulation systems”, inProc. Int. Symp.
on Information Theory (ISIT), pp. 1070-1074, Jun. 2009.

[14] G. Kaplan and S. Shamai, “Information rates and error exponents of
compound channels with application to antipodal signalingin a fading
environment”, Archiv für Elektronik undÜbertragungstechnik (AËU),
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