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Abstract— The spectral efficiency of a representative uplink
of a given length, in interference-limited, spatially-distributed
wireless networks with hexagonal cells, simple power control,
and multiantenna linear Minimum-Mean-Square-Error recei vers
is found to approach an asymptote as the numbers of base-station
antennas N and wireless nodes go to infinity. An approximation
for the area-averaged spectral efficiency of a representative link
(averaged over the spatial base-station and mobile distributions),
for Poisson distributed base stations, is also provided. For large
N, in the interference-limited regime, the area-averaged spectral
efficiency is primarily a function of the ratio of the product of N
and the ratio of base-station to wireless-node densities, indicating
that it is possible to scale such networks by linearly increasing
the product of the number of base-station antennas and the
relative density of base stations to wireless nodes, with wireless-
node density. The results are useful for designers of wireless
systems with high inter-cell interference because it provides
simple expressions for spectral efficiency as a function of tangible
system parameters like base-station and wireless-node densities,
and number of antennas. These results were derived combining
infinite random matrix theory and stochastic geometry.

Index Terms— Cellular Networks, MIMO, Antenna Arrays,
Stochastic Geometry, Hexagonal Cells.

I. I NTRODUCTION

It is increasingly common for multiple wireless networks to
be within interfering distance of each other in urban environ-
ments today due to proliferation of systems such as city-wide
wireless internet access, pico cells for mobile telephony,and
wireless local-area networks. Antenna arrays at base stations
that employ spatial interference mitigation can significantly
increase data rates in such systems. It is thus important to
study the spectral efficiencies (b/s/Hz) of wireless links with
multiple antennas in environments that have high base station
or access point and wireless-node densities. In such systems
the densities of nodes (both in-and out-of-cell) and their distri-
bution in space are important factors as they influence inter-
node distances and hence signal and interference strengths,
which directly impact the Signal-to-Interference-Plus-Noise-
Ratio (SINR), spectral efficiency and ultimately data rates.
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Most works on wireless networks with multi-antenna base-
stations do not explicitly model out-of-cell interferencefrom
spatially distributed in-band interferers which is known to
be very challenging. Andrews et al. [1] remark that “despite
decades of research, tractable models that accurately model
other-cell interference (OCI) are still unavailable, which is
fairly remarkable given the size of the industry”.

Several authors have used infinite random matrix theory
techniques similar to ours to analyze multiantenna cellular net-
works such as Dai and Poor [2] and Couillet et al. [3]. Neither
of these works models the spatial distribution of nodes and
thus do not to capture the effects of interference from usersthat
are spatially distributed. Monte-carlo simulations were used in
[4] and [5] to analyze small, spatially-distributed multi-antenna
cellular networks. Cellular networks withsingle-antenna base-
stations and spatially distributed nodes have been analyzed in
works such as [1], [6], and [7] using stochastic geometry to
model the spatial distribution of nodes. Further discussion of
[1] and [7] which are related to this work are given at the
end of this section. Stochastic geometry has also been used
to studyad hocwireless networks with both multi and single
antenna nodes using both finite and asymptotic techniques in
works such as [8], [9] [10], [11], [12] and [13]. Please see
[14] for a survey of works utilizing stochastic geometry in
both cellular and ad hoc wireless networks and [15] and [16]
which present an extensive set of useful stochastic geometry
techniques.

In this work, we show that with appropriate normalization,
the spectral efficiency of a representative uplink in a network
with hexagonal cells, and base-stations withN antennas
using the linear MMSE receiver converges in probability and
derive an asymptotic expression for the area-averaged spectral
efficiency. We use the term area-averaged spectral efficiency
to refer to the average spectral efficiency of a link where the
averaging is taken over the locations of all the nodes in the
network and fading, to distinguish it from the ergodic spectral
efficiency in the Shannon sense. Note that the hexagonal-cell
model is an idealized model for base-station placement thatis
commonly used in the literature as it offers the best coverage
of the plane if we assume that the coverage associated with
each cell is a disk. Furthermore, with a few modifications, we
apply the techniques developed for hexagonal cells to derive
an approximation to the area-averaged spectral efficiency of a
link in a network where base stations are distributed according
to a Poisson Point Process (PPP).

We consider interference from spatially distributed in-cell
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and out-of-cell wireless nodes that have single antennas and
transmit simultaneously in the same channel using distance-
dependent power control. We assume that signal power de-
cays with distance according to the standard inverse power-
law model. The area-averaged per-link spectral efficiency is
expressed as a function of the number of receiver antennas
N , wireless-node and base-station densities, and path-loss
exponent. While the exact CDF of the spectral efficiency for
finite systems would be ideal, computation of this quantity is
difficult for the uplink in cellular systems with power-control
as the transmit powers of nodes depend on their location
on the plane. Moreover for Poisson distributed base stations,
the transmit powers of mobile users are dependent, further
complicating analysis. We use an asymptotic analysis to handle
complexities of the uplink, in particular the dependence of
transmit powers of the mobile nodes as described in more
detail at the end of this section. The asymptotic techniques
also help handle the difficulties in analytically characterizing
the hexagonal cell model which is typically viewed as being
intractable (as noted in [1], [7]) and are usually analyzed by
Monte-carlo simulation such as in [17].

The asymptotic expressions we provide are useful in un-
derstanding the behavior of large networks, such as the rate
of spectral efficiency growth with the number of antennas
and base-station density, and to understand the performance
differences between a network with regularly-spaced, and
completely random base-station placements.

Of the recent works that apply stochastic geometry to
analyze cellular networks, [1] is of particular note as they
introduce a framework to analyze cellular networks with
Poisson base-station placements. Their work assumes single
antenna nodes, exactly one active wireless node per cell,
and exclusively focuses on the downlink. In their model, the
transmit powers of the base stations are constant allowing them
to use a Poisson shot-noise model for the interference which
is at the heart of the derivation of their main results. Such an
approach is not applicable for the uplink, which is the focus
of this work, due to the correlation between transmit powers
of wireless nodes that result from power control which is an
essential feature of the uplink. The correlation arises because
the transmit powers of the wireless nodes are dependent on
their positions relative to the base-stations in their respective
cells. The size and shape of the cells are of course dependent.
This correlation between transmit powers precludes applying
standard Poisson techniques which typically require the trans-
mit powers of nodes to be independent of one another.

As noted in a very recent work by Novlan, et al. [7] “the
analysis of the uplink requires several fundamental changes
as compared to the downlink, nearly all of which make
it more challenging.” In [7] which considers single-antenna
uplinks in random-cell networks, this complexity is handled
by applying certain approximations to the network topology
such as approximating the transmit powers of the wireless
nodes as independent. They make a further approximation
on the base-station distribution by first generating Voronoi
cells about the mobile nodes and then placing a base station
with uniform probability inside each Voronoi cell. Thus, the
base-stations in their model are spatially correlated and not

Poisson. In contrast, in the extension of our results to Poisson-
distributed multi-anntenna base stations, we assume that cells
are formed with the base stations as the generator points
as is typically done (e.g. for the downlink in [1]), and that
the mobile nodes perform distance-dependent power control
which introduces dependence between the transmit powers.
The associated complexities are handled by the asymptotic
analysis which combines stochastic geometry and infinite
random matrix theory. We validated the results for finite
systems using Monte Carlo simulations that were also used
to characterize the spectral efficiency for a given outage
probability.

II. SYSTEM MODEL

Consider a planar wireless network with base stations
distributed at hexagonal lattice sites with minimum base-
station separationd, with a base-station at the origin. While
in practical systems, base-station assignments are based on
strongest received signals rather than distance alone, to sim-
plify analysis, the wireless nodes are assumed to communicate
with their closest base station in Euclidian distance. In other
words we assume that the cells are formed by the Voronoi
tessellation of the plane (see e.g. [18]) with the base stations
as the generator points.

The base station at the origin is called therepresentative
receiver which is in a link with arepresentative transmitter
at a distancer1 away. We shall consider both constantr1 and
randomr1 resulting from the representative transmitter being
distributed with uniform probability in the cell associated with
the representative receiver. The later case will be called the
random link case. The link between the two is called the
representative link. The representative receiver is assumed
to haveN antennas and the representative transmitter and
interferers (to be defined in the next paragraph) have single
antennas.

Suppose that there is a circular network of radiusR centered
at the origin withn additional wireless nodes (in addition to
the representative transmitter) distributed in an independent,
identically distributed (i.i.d.) fashion in the network with
uniform probability such that

n = ρwπR
2 , (1)

whereρw is the effective area density of the wireless nodes
which are co-channel interferers to the representative link.
Note that these are nodes that areactively transmitting in
our model so the true density of nodes may be much higher.
An example of this network is illustrated in Figure 1. The
representative transmitter and interferers are labeled asfol-
lows. Node 1 is the representative transmitter, and nodes
2, 3, · · · , n+1 are the interferers in random order of distance
from the origin. The asymptotic regime we consider is the limit
asN , R andn are taken to infinity such thatc = n/N > 2,
ρw is constant and (1) holds. In the following we assume that
wheneverN → ∞, n andR → ∞ in this manner as well.
The resulting network has wireless nodes distributed uniformly
randomly on the entire plane with densityρw. Note that since
we are interested in large wireless networks with moderately
large numbers of base-station antennas,2 ≪ c.
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Fig. 1. Illustration of wireless network with representative link and base-
stations at hexagonal lattice sites. The representative receiver is at the
origin and the representative transmitter is denoted by thefilled square. The
remaining base stations are represented by the dots and the interfering wireless
nodes are represented with the crosses.

The i-th wireless node is at distanceri from the representa-
tive receiver at the origin and is assumed to transmit with
power Pi. The average received signal power per antenna
(averaged over the fading distribution defined in the next
paragraph) due to thei-th wireless node is

pi = PiGt r
−α
i (2)

with the path-loss exponentα > 2, andGt is a proportionality
constant. The wireless nodes control their transmit power in
order to achieve a target received power relative to path loss
at their closest base station, subject to a maximum power
constraint,PM as follows

Pi = min

(

pt
Gt
rαti, PM

)

, (3)

whererti is the distance between thei-th wireless node and
its closest base station. Let the limiting probability density
function (PDF) ofPi be denoted byfP (p) andE[P

2

α ] be its
expected value raised to the power2

α .
We assume frequency-flat fading with independent, circu-

larly symmetric complex Gaussian channel coefficients be-
tween all pairs of antennas. Lety ∈ CN×1 be the vector of
sampled received signals at theN antennas of the representa-
tive receiver at a given sampling time, andw ∈ CN×1 contain
zero-mean, i.i.d. complex Gaussian noise terms of varianceσ2

denoted byCN (0, σ2) . This system can be represented by the
following equation:

y =
√
p1 g1 x1 +

n+1
∑

i=2

√
pi gi xi +w (4)

wheregi ∈ C
N×1 has i.i.d.CN (0, 1) entries andxi is the

transmitted symbol of thei-th wireless node withE[|xi|2] = 1.

Thus, gi captures the Rayleigh fading andpi captures the
combined transmit power and path loss associated with node-
i. To focus on the interference-limited regime, we set the noise
powerσ2 = 0.

We assume that the base stations use spatial linear MMSE
estimators to mitigate interference. Note that the linear MMSE
receiver is the linear receiver that maximizes the SINR (e.g.
see [19]) which maximizes the spectral efficiency for Gaussian
signals. We assume that all nodes use Gaussian codebooks
which results in Gaussian distributed residual interference at
the output of the linear MMSE receiver. Thus, the spectral
efficiency is given by the Shannon formula as is commonly
done in the literature (e.g. [1]). It is important to note here
that the rapid decay of signal power with distance associated
with the inverse power-law path-loss model means that the
central-limit theorem does not hold for a general distribution of
transmit signals (e.g. Quadrature-Amplitude-Modulation) [20].
Thus the aggregate interference at theinput to the MMSE
receiver will not be Gaussian distributed (e.g. see [20]) if
the transmitted signals themselves are not Gaussian to begin
with. If we do not make the assumption that the transmitted
signals are Gaussian distributed, the spectral efficiencies we
compute should be interpreted asachievablespectral efficien-
cies because the Gaussian distribution is entropy maximizing.
Thus from an information theoretic perspective, the spectral
efficiency obtained by assuming a Gaussian interference dis-
tribution is a lower bound to the spectral efficiency achievable
with any other interference distribution. Additionally, it is
common practice to design systems to operate in Gaussian
noise. One could apply a correction factor,η say, to the SIR
and compute the spectral efficiency aslog2(1 + ηSIR). This
has been suggested in [1] and other works. While we do not
use a scale factor ofη here, introducing it into our expressions
is straightforward.

The main results of this work will be given in terms of a
normalized version of the Signal-to-Interference-Ratio (SIR),

βN = N−α
2 g

†
1

(

n+1
∑

i=2

pi gi g
†
i

)−1

g1 for which (5)

SIR= p1N
α
2 βN . (6)

Note that up to the normalization byN−α/2, (5) is the
standard equation for the SINR associated with a linear MMSE
receiver with the noise variance assumed to equal zero, as
we have assumed here. This assumption is used in order to
utilize an asymptotic approach to characterize interference-
limited systems. We make the additional observation here that
although we assume zero noise, the resulting receiver does not
reduce to a zero-forcing receiver as the number of antennas
N is less than the number of interferers sincec = n/N > 2
by assumption. This means that the degrees of freedom at the
receiver are insufficient to force the interference to zero.

Note that the normalization of the SIR byN
α
2 keeps the SIR

finite asN → ∞ because the SIR grows asN
α
2 . This order

of growth of the SIR with the number of antennas in networks
with the inverse-power-law path-loss model is known and can
be interpreted intuitively as is done for ad hoc networks in
[10], or using a precise analysis as done in [11]. Based on



our description in [10], note that the representative receiver
can use a fraction of its degrees of freedom to null nearby
interferers who occupy a disk of radius on the order of

√
N

around the representative receiver. The aggregate interference
from the un-nulled interferers outside this disk is of order
Nα/2−1. The remaining fraction of the degrees of freedom
are used to add signals from the target transmitter coherently,
increasing signal power relative to interference by a factor on
the order ofN . The combined effect is that the SIR grows as
a factor ofNα/2.

III. M AIN RESULTS

The main results of this work are based on the following
theorem proved in Appendix A using Lemma 1 which follows.

Theorem 1:Consider the network model from Section II.
As N,n,R → ∞, the normalized SIR,βN converges in
probability to a limit β which is the unique non-negative
solution to the following equation

E[P
2

α ]β
2

α

[

π

α
csc

(

2π

α

)]

− 2πρwβ

α
×

∫ ∞

0

τ−
2

α

1 + τβ

∫ ∞

τ/b

fP (x)x
2

α dx dτ =
1

2ρwπ
(7)

whereb =
(

πρw

c

)
α
2 .

Lemma 1:Consider the quantity

γN =
1

N
s†
(

1

N
SΨS†

)−1

s (8)

wheres ∈ CN×1 andS ∈ CN×n comprise i.i.d., zero-mean,
unit-variance entries from a continuous distribution,n/N = c,
andΨ = diag(ψ2, ψ3, · · ·ψn+1). Note thatR = 1

N SΨS† is
invertible with probability 1 (w.p.1) sinceN < n. Suppose
that asn,N → ∞, the empirical distribution function (e.d.f.)
of the diagonal entries ofΨ convergesw.p.1 to a function
H(x). Additionally, assume that there exists anN0 such that
∀n > N0 , the minimum eigenvalue ofR is bounded from
below byλℓb > 0, w.p.1. Then,γN → γ in probability where
γ is given by the non-negative real solution form in

1 = mc

∫ ∞

0

τdH(τ)

1 + τm
. (9)

Proof: Please see Appendix B.
Note that Lemma 1 is closely related to several results in the

literature concerning the convergence of the SINR of random
Direct/Sequence Code-Division-Multiple-Access (DS/CDMA)
systems such as [19] and [21]. The existing results however
assume that the noise power is strictly positive and are
thus not directly applicable to systems with negligible noise
power. Lemma 1 is proved by modifying the proof in [19],
replacing the requirement of the strictly positive noise bythe
requirement on the minimum eigenvalue of the matrixR.

Since we assume that all nodes use Gaussian codebooks
which results in Gaussian residual interference at the output of
the MMSE receiver, we can approximate the per-link spectral

efficiency using the Shannon formula assuming that the noise
is negligible as follows.

C(r1) = log2(1 + SIR) = log2(1 +N
α
2 P1 r

−α
1 βN ) ,

where we emphasize that the spectral efficiency is a function
of the length of the representative link,r1. Note that if the
transmit signals are not Gaussian, as we noted in the system
model, the spectral efficiency above and in subsequent expres-
sions should be interpreted as achievable spectral efficiencies.

Since the log function is continuous, asN → ∞ βN → β
and,

C(r1)− log2(N
α
2 ) → log2(P1 r

−α
1 β) , (10)

in probability (e.g. see [22]). Hence, with appropriate nor-
malization, the spectral efficiency approaches an asymptote
asN → ∞. We define this asymptotic spectral efficiency as
C∗(r1) = log2(1 +N

α
2 P1 r

−α
1 β).

While β is given implicitly by Theorem 11 and has to be
solved numerically, we can approximate the spectral efficiency
of a system where the number of interferersn greatly exceeds
the number of base-station antennasN , i.e. smallb because
the second term on the LHS of (7) is small in this case. In fact
this term can be shown to go to zero asb→ 0 (after the limits
onn,N andR are taken) [10]. WritingGα =

[

α
2π sin

(

2π
α

)]
α
2 ,

this yields the following approximation

C∗(r1) ≈ log2



1 +N
α
2 P1Gα

(

1

E[P
2

α ]πρwr21

)
α
2



 .

(11)

Applying the dominated convergence theorem with steps simi-
lar to that in Appendix E of [23] with the noise power replaced
by λℓ b we can show that

E[C|r1]− C∗(r1) → 0 . (12)

Hence the asymptotic spectral efficiencyC∗ is a good approx-
imation for the conditional area-averaged spectral efficiency
E[C|r1] (averaging is over wireless-node locations and fading
distributions here) for largeN . Finally, we can find the
unconditioned area-averaged spectral efficiency of a random
link by averaging with respect to the distribution ofr1 so that

E[C] ≈
∫

C(r1)fr1(r) dr , (13)

wherefr1(r) is the PDF ofr1 which equalsfX(x) given in
Lemma 2.

If the minimum distance between base stationsd ≤
3√
3

(

GtPM

pt

)
1

α

, the cells are small enough that all wireless
nodes have sufficient transmit power to meet the target
received powerpt at their base-stations. We call this the
sufficient-power case in which the asymptotic spectral effi-
ciency takes a simple form which is independent of whether

1To the best of our knowledge, the only scenario in which similar techniques
have resulted in closed form solutions are when the receivedinterference
powers from all users are equal [19]



r1 is fixed or random due to the power control. Substituting
the power control equation (3) into (11)

E[C] ≈ C∗(r1)

≈ log2









1 +
pt
Gt
rα1Gα









N

E

[

(

pt

Gt
rαti

)
2

α

]

πρwr21









α
2









(14)

= log2

(

1 +Gα

(

N

E [r2ti]πρw

)
α
2

)

, (15)

which is a function of the second moment of the distance
between a random wireless node and its closest base station
E[r2ti], wireless-node densityρw, number of antennasN and
path-loss exponent.E[r2ti] can be found using the following
lemma that statistically characterizes the distance between a
random wireless node and its closest base station.

Lemma 2:The PDFfX(x), CDFFX(x), andk-th moment
of the link lengthx between a randomly located wireless node
and its closest base station in a hexagonal-cellular systemwith
minimum base-station separationd are the following:

fX(x) =











4π√
3d2

x, if 0 < x < d
2

4π√
3d2

x− 8
√
3x

d2 cos−1
(

d
2x

)

, if d
2
< x <

√
3d
3

0, otherwise.

(16)

FX(x) =



































0, if x < 0,
2
√
3πx2

3d2 , if 0 ≤ x < d
2

2
√
3πx2

3d2 − 4
√
3x2

d2 cos−1
(

d
2x

)

+2
√
3
(

x2

d2 − 1

4

)
1

2

, if d
2
≤ x <

√
3d
3

1, if x ≥
√
3d
3

.
(17)

E(xk) =
2
√
3

k + 2

(

d

2

)k ∫ π
6

0

1

(cos τ)k+2
dτ . (18)

Proof: Consider Figure 2 which illustrates a portion of
a wireless network with hexagonal cells. Each wireless node
in the network falls on some random point in an equilateral
triangle formed by the three base stations closest to it, and
forms a link with the base station at the closest vertex of
that triangle as illustrated in Figure 2. Thus, the link-lengths
are statistically equivalent to the distance between a randomly
selected point in an equilateral triangle to the closest vertex of
that triangle. The CDF, PDF and k-th moments of the distance
between a random point in an equilateral triangle to the closest
vertex are known [24], and are precisely the formulae in
Lemma 2. Note that the PDF of link-lengths associated with
a hexagonal cell which equals (16), has been given without
proof before in [25].

From (15), the spectral efficiency depends on the second
moment of link-lengths given by (18) withk = 2.

E[t2ti] =
5

36
d2 ≈ 0.14d2.

Representative transmitter
Base station

d

Fig. 1. Illustration of base stations at hexagonal lattice sites.
Fig. 2. Illustration of base stations at hexagonal lattice sites.

Substituting into (15) yields the following approximationfor
the area-averaged and asymptotic uplink spectral efficiency
of a random link (as defined in Section II), in interference-
limited, hexagonal-cell systems with a large number of base-
station antennas and high transmit power budgets:

E[C] ≈ C∗(r1) ≈ log2

(

1 +Gα

(

36N

5 d2πρw

)
α
2

)

. (19)

In terms of the effective density of base stations from the
hexagonal-cell modelρh we can write,

E[C] ≈ C∗(r1) ≈ log2

(

1 +Gα

(

1.98Nρh
ρw

)
α
2

)

. (20)

If d > 3√
3

(

GtPM

pt

)
1

α

, the transmit power budget is in-
sufficient for all nodes to meet the target received power
at their base stations which results in some wireless nodes
transmitting at full power. In this case,E[P

2

α ] is given by the
following lemma which can be proved by direct computation
using Lemma 2:

Lemma 3: If PM < pt

Gt

(

d
2

)α
,

E[P
2

α ] = P
2

α

M −
√
3π

3d2

(

Gt

pt

)
2

α

P
4

α

M . (21)

If pt

Gt

(

d
2

)α ≤ PM < pt

Gt

(√
3

3
d
)α

,

E[P
2

α ] = P
2

α

M − π
√
3

3d2

(

pt
Gt

)− 2

α

P
4

α

M

+
2
√
3

d2

(

pt
Gt

)− 2

α

P
4

α

M cos−1

(

d

2

(

pt
GtPM

)
1

α

)

+

(√
3d

12

(

pt
Gt

)
2

α

− 5
√
3

6d
P

2

α

M

)

√

4

(

GtPM

pt

)
2

α

− d2.

(22)
Lemma 3 substituted into (11) yields the area-averaged spec-
tral efficiency for a lengthr1 link.

Averaged over the PDF of link-lengths arising from hexago-
nal cells (i.e., the representative transmitter is distributed with



E[C] ≈
∫ rt

0

log2

(

1 +Gα
pt
Gt
xα
(

N

E[P
2

α ]πρwx2

)
α
2

)

fX(x)dx +

∫

√

3d
3

rt

log2

(

1 +GαPM

(

N

E[P
2

α ]πρwx2

)
α
2

)

fX(x)dx

= FX (rt) log2

(

1 +Gα
pt
Gt

(

N

E[P
2

α ]πρw

)
α
2

)

+

∫

√

3d
3

rt

log2

(

1 +GαPM

(

N

E[P
2

α ]πρwx2

)
α
2

)

fX(x)dx (24)

uniform probability in the cell containing the origin), thearea-
averaged spectral efficiency of a random link is given by (24)

at the top of this page, where we have usedrt =
(

pt

PMGt

)− 1

α

,

FX(x) andfX(x) from Lemma 1, andE[P
2

α ] is from Lemma
3. We were not able to integrate the second term on the RHS
of (24) in closed form and thus use numerical integration to
compute it.

IV. EXTENSION TO POISSONDISTRIBUTED BASE

STATIONS

A. Area-averaged Spectral Efficiency

The results for the hexagonal-cell model can be extended
to a Poisson-cellmodel where base stations are distributed
according to a homogenous PPP with densityρt, conditioned
on there being a point of the PPP at the origin. We denote
the conditioned PPP by PPPo. Conditioned on a realization of
the base-station locationsΠt, Theorem 1 still holds ifE[P

2

α ]
and fP (p) are replaced withE[P

2

α |Πt] and fP |Πt
(p|Πt)

respectively.
The ergodicity of the PPP however implies thatE[P

2

α |Πt]
is equal for almost all realizations ofΠt (i.e. any deviations
occur with probability zero). Similarly,fP |Πt

(p|Πt) is equal
for almost all realizations ofΠt. These properties and the ex-
pressions forE[P

2

α |Πt] andfP |Πt
(p|Πt) are given explicitly

in the following lemma.
Lemma 4:With probability 1,

E[P
2

α |Πt] =

(

pt
Gt

)
2

α 1− e−πρt(Gt
pt

PM )
2

α

πρt

= E[P
2

α ] = E[P
2

α |Πt, r1]. (25)

and

fP |Πt
(p|Πt) = fP |Πt,r1(p|Πt, r1) =

fP (p) =







2ρt π
αp

(

pGt

pt

)
2

α

e−ρt π( pGt
pt

)
2

α

, if p ≤ PM

0, otherwise.
(26)

Proof: In Appendix C.
Thus, the solution forβ in Theorem 1 takes a fixed value

for almost all realizations ofΠt. From (12) the area-averaged
spectral efficiency conditioned onΠt andr1, E[C|Πt, r1], has
the following propertyw.p.1 asn,N,R → ∞.

E[C|Πt, r1]− log2(1 + P1r
−α
1 Nα/2β) → 0, (27)

whereβ is the non-negative solution to (7) withE[P
2

α ] and
fP (p) from Lemma 4. Removing the conditioning with respect
to r1 andΠt yields the following property of the area-averaged
spectral efficiencyE[C] (where the averaging is over the

fading and wireless-node locations, base-station locations and
representative link length), asn,N,R→ ∞

E[C]−
∫

log2(1 + P1r
−α
1 Nα/2β)fr1(r1) dr1 → 0, (28)

where we have used the fact thatβ equals the same value over
almost all realizations ofΠt, and the monotone convergence
theorem (see e.g. [22]) to exchange the limit and expectation.

Although β has to be found numerically in general, by
assuming thatc = n/N is large, as done in Section III,
the area-averaged spectral efficiency conditioned onr1 is
approximated from (27) as follows

E[C|Πt, r1] ≈ log2






1 +GαP1





N

E
[

P
2

α

]

πρwr21





α
2







(29)

which holds with probability 1. Furthermore, ifpt

Gt
rα1 < PM ,

i.e., the transmit power budget is sufficient for the represen-
tative transmitter to achieve the target received powerpt at
the representative base station, substituting (3) and (25)into
(29) yields the following approximation which holds with
probability 1.

E[C|Πt, r1] ≈

log2









1 +Gα









ρtN
(

1− e−πρt(Gt
pt

PM)
2

α

)

ρw









α
2









(30)

With probability 1, the above expression approximates the
area-averaged spectral efficiency of a wireless link that has
a sufficient power budget to meet its target received power
where the average is taken over the fading and wireless-node
distributions. If we further assume that the transmit power
budgetPM is large, the exponential term in the expression
above is small, resulting in the following simple expression
for the area-averaged spectral efficiency which holds with
probability 1.

E[C|Πt] ≈ log2

(

1 +Gα

(

Nρt
ρw

)
α
2

)

≈ E[C]. (31)

Note that the approximation above holds with probability 1
and is essentially not dependent on the specific realizationof
Πt as a consequence of the ergodicity of the PPP and the large
number of degrees of freedom at the MMSE receiver, which
makes the system less sensitive to variations in the base-station
positions. Additionally, note that the area-averaged spectral
efficiency from (31) primarily depends onρt/ρw,implying



E[C] ≈
∫ ∞

0

log2

(

1 + min
( pt
Gt
rα1 , PM

)

r−α
1 Gα

(

N

E[P
2

α ]πρw

)
α
2

)

2πρtr1e
−πρtr

2

1dr1 =

(

1− e−πρt(Gt
pt

PM)
2

α

)

× log2

(

1 +
pt
Gt
Gα

(

N

E[P
2

α ]πρw

)
α
2

)

+

∫ ∞

rt

log2

(

1 + PMr
−α
1 Gα

(

N

E[P
2

α ]πρw

)
α
2

)

2πρtr1e
−πρtr

2

1dr1. (32)
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Fig. 3. Area-averaged spectral efficiency of the uplink withrandom cells
and hexagonal cells and transmit power limited to 200 mW. Solid and dashed
lines represent hexagonal and random cell asymptotic spectral efficiencies
respectively.ρt and ρw are the base station and wireless node density
respectively.

approximate scale invariance in networks where the power
budgetPM is not a significant limitation. The scale invariance
indicates that as with hexagonal cells (from equation (20)),
approximately constant area-averaged spectral efficiencycan
be maintained by fixing the relative density of base stations
to interferers. If the transmit power budgetsPM are not
sufficiently large to permit the approximations in (31), we can
use (28) with the approximation forβ and by observing that
r1 follows the nearest neighbor distribution for Poisson point
processes [18] as follows

fr1(r1) = 2πρtr1e
−π ρt r

2

1 for r1 > 0 . (33)

The area-averaged spectral efficiency of a random link aver-
aged over realizations ofΠt can then be found by removing
the conditioning onr1 andΠt by substituting (3) into (29) and
integrating with respect to the density in (33) which yields(32)
at the top of this page. We were unable to find a closed form
expression for the second term on the RHS of (32) and thus
use numerical integration to evaluate it.

B. Comparison Between Random and Hexagonal Cells

For systems with limited transmit powers, we numerically
evaluated and plotted equations for the spectral efficiencycor-
responding to random and hexagonal cells in Figure 3, where
the solid and dashed lines represent hexagonal and random
cells respectively. The transmit power budget was 200 mW and
wireless-node density was10−3 with different relative density

of base stations to active interferers as shown in the plot.
Note that the difference in area-averaged spectral efficiencies
diminishes with the number of antennas. However, for high
base-station densities the area-averaged spectral efficiency for
random cells is significantly lower. For instance, with 10
antennas at the base stations and 20% relative density of base
stations to wireless nodes, the area-averaged spectral efficiency
with hexagonal cells is twice that of random cells.

When compared to the area-averaged spectral efficiency
with random cells given by (31), (20) indicates that several-
fold (but not orders of magnitude) gains in area-averaged
spectral efficiency can be achieved by regularly distributing
base stations in planar networks compared to randomly dis-
tributing them, and furthermore, the difference diminishes with
the number of base-station antennas. In practical systems,
designers will of course not have the flexibility of placing
base stations and mobile user distributions are not uniformly
random (i.e. without spatial correlations). Nevertheless, this
result sheds some light into the performance differences be-
tween these two idealized models which are commonly used
in the research community.

V. M ONTE CARLO SIMULATIONS

A. Hexagonal Cells

To verify the asymptotic results of the previous section, we
simulated network topologies with base stations at hexagonal
lattice sites, and interferers distributed randomly on a large
circular network on the plane. We simulated each configuration
5000 times. The representative transmitter was placed with
uniform probability in the center-most cell.

For each trial, we placed 4000 interferers randomly in
circular networks with radii selected to meet target wireless-
node densities of10−2, 10−3, and 10−4 nodesm−2. The
circular network was overlayed on a hexagonal grid of base
stations which extends beyond the edge of the circular network
of interferers. The base stations were spaced such that their
densities were20%, 10%, 5% and2.5% of the wireless-node
density. We simulated systems with both unlimited transmit
powers (to simulate the sufficient-power case) and powers
limited to PM = 200mW .

The channel coefficient between the antenna of wireless
node i and antennaj of the representative base station was

modeled as
√

Gtr
−α
i gij , whereα = 4, Gt = 10−5m4, and

gij are i.i.d.CN (0, 1) random variables which represents the
narrow-band Rayleigh fading channel.

1) Sufficient Transmit Powers:Figure 4 illustrates the area-
averaged uplink spectral efficiency for wireless-node densities
of ρw = 10−3 and ρw = 10−2 nodesm−2, and unlimited



10
0

10
1

10
210

−3

10
−2

10
−1

10
0

10
1

Number of Base Station Antennas

M
ea

n 
S

pe
ct

ra
l E

ffc
ie

nc
y 

(b
/s

/H
z)

 

 

Simulation: ρ
w

 = 10−3 nodes/m2

Simulation: ρ
w

 = 10−2 nodes/m2

Asymptotic

ρ
t
/ρ

w
 = 0.2

ρ
t
/ρ

w
 = 0.1

ρ
t
/ρ

w
 = 0.05

Fig. 4. Area-averaged spectral efficiency vs. number of receive antennas for
wireless-node densities ofρw = 10−3 and ρw = 10−2 nodesm−2 with
unlimited transmit powers and hexagonal cells with base-station density of
ρt.

transmit powers per node versus the number of antennas at the
representative base station. The square and asterisk markers
represent wireless-node densities of10−2, and 10−3 nodes
m−2, respectively and the solid lines represent the asymptotic
area-averaged spectral efficiency from (19).

Note that the asterisk and square markers coincide indi-
cating that the absolute density of interferers does not effect
the area-averaged spectral efficiency appreciably, and it is the
relative density of interferers to base stations that matters. Fur-
thermore, note that the asymptotic approximation (24) holds
whenN is sufficiently large. When the base-station density is
20% of theactive wireless-node density, the asymptotic and
simulated area-averaged spectral efficiency differ by lessthan
10% whenN ≥ 10. For lower densities of base stations, the
convergence is slower, e.g. when the base-station density is
5% of the active wireless-node density, the difference between
the simulated and asymptotic area-averaged spectral efficiency
drops below 10% only whenN > 37.

We analyzed the outage spectral efficiencies from the sim-
ulated data, where spectral efficiency with outage probability
Po means that a fraction1−Po of the links in our simulations
achieved that spectral efficiency or greater. Figure 5 illustrates
the outage spectral efficiencies vs. number of receive antennas
on the representative link forρw = 10−2 nodesm−2 with 5%,
25% and50% outage probabilities. Note that the intersection
of the line with the circular markers and the 1bs−1Hz−1 mark
in Figure 5 occurs approximately atN = 14 indicating that
it is possible for95% of links to achieve 1bs−1Hz−1 with
N ≥ 14 when the base-station density is 10% of the density of
transmittinginterferers. In real systems, the number of nodes
transmitting at any time is far smaller than the total number
of nodes in the network. Suppose that at any one time,10%
of nodes are actively transmitting in the network. Figure 5
indicates that with a base-station density equaling1% of total
wireless-node density (including inactive ones), it is possible
for 95% of links to achieve 1bs−1Hz−1 with 14 antennas at
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Fig. 5. Outage spectral efficiency vs. number of receive antennas for wireless-
node densities ofρw = 10−2 nodesm−2 with unlimited transmit powers and
base-station density equaling10% of wireless-node density, with hexagonal
cells.
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Fig. 6. Area-averaged spectral efficiency forρw = 10−4 nodesm−2 with
different relative density of base station to interferers and hexagonal cells,
and 200mW transmit power limits per wireless node.

each base station.
2) Insufficient Transmit Power:Figures 6 and 7 illustrate

the area-averaged spectral efficiency vs. number of receive
antennas forρw = 10−4 and ρw = 10−2 respectively, with
PM = 200mW . The markers represent the simulated area-
averaged spectral efficiencies for different relative densities of
base stations to interferers. The solid lines are the predicted
asymptotic area-averaged spectral efficiencies obtained by
numerically evaluating equation (24).

It is clear from Figures 6 and 7 that the asymptotic approxi-
mation (24) holds whenN is sufficiently large. In Figure 6, the
simulated and asymptotic area-averaged spectral efficiencies
agree to within 5% forN ≥ 2 for all the base-station densities
considered. In Figure 7 however, for base-station densities that
are 5% of the wireless-node density of10−2 nodesm−2, the
simulated and asymptotic spectral efficiencies differ by less
than 13% only when there are 13 or more antenna elements
at the receiver. For base-station densities that are 20% of the
wireless-node density, the simulated and asymptotic spectral
efficiencies agree to within 13% whenN ≥ 3.
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Fig. 7. Area-averaged spectral efficiency vs. number of receive antennas for
ρw = 10−2 nodesm−2 with different relative density of base stations to
interferers and hexagonal cells, and 200mW transmit power limits per wireless
node.
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Fig. 8. Outage spectral efficiency vs. number of receive antennas for
wireless-node densityρw = 10−4 and 10−2 nodesm−2 and base-station
density equal to 10% of wireless-node density, hexagonal cells and 200mW
transmit power budget. The solid lines representρw = 10−2 and dashed
lines representρw = 10−4. The markers represent the different outage
probabilities,Po shown in the legend.

At low wireless-node densities, the simulated spectral effi-
ciencies converge more rapidly (compared to high densities)
to the asymptote because a larger fraction of nodes trans-
mit at the power limit. The e.d.f. of interference powers at
the representative receiver thus converges more rapidly to
its asymptotic value. The rate of convergence of the e.d.f.
of interference powers controls the rate of convergence of
the eigenvalues of the spatial interference covariance matrix
∑n+1

i=2
pi gi g

†
i (see Appendix A and Section 3 of [26]) which

affects the convergence rates of the normalized SIR and
spectral efficiency.

Figure 8 shows the outage and area-averaged spectral ef-
ficiencies for ρw = 10−4 (solid lines) andρw = 10−3

(dashed lines) nodesm−2, 10% relative density of base-
stations to interferers andPM = 200mW . Note that with 10
antennas at the receiver, area-averaged spectral efficiencies of
approximately 0.2 and 0.3 b/s/Hz are possible forρw = 10−4
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Fig. 9. Area-averaged spectral efficiency of uplink communications with
random cells and unlimited transmit powers. Wireless-nodedensity ρw =

10−3 nodes /m2, pt = 10−14 andGt = 10−5 .

andρw = 10−3 respectively. The discrepancy in the spectral
efficiency is a result of the maximum transmit power. Forρw =
10−4, a larger fraction of nodes transmit atPM compared to
ρw = 10−3, resulting in higher SIRs forρw = 10−4. The
higher total interference power forρw = 10−3 is offset by
increased signal powers due to shorter links since the relative
base-station to wireless-node density is fixed.

B. Poisson Cell Model

We verified (32) and (31) by Monte Carlo simulations of
the network topology. We placed base stations in a circular
network of radius 4R. The numbers of base stations were
selected to achieve relative densities of base stations to in-
terferers of 20%, 10% and 5%. The network of base stations
was then re-centered such that a base-station is at the origin.
4000 interferers were then placed in a circular network of
radiusR, centered on the base station at the origin withR
selected to achieve a wireless-node density of10−3 nodes
m−2. This experiment was repeated 1000 times. For each
trial, the spectral efficiency of a link placed in the center-
most cell was collected and averaged. The transmit power of
each wireless node was set according to (3) withPM = ∞
(to simulate the sufficient power case) orPM = 200mW .
Gt = 10−5mα, andα = 4, were assumed.

Figure 9 shows results of Monte Carlo simulations and
the asymptotic expression given by (31) for systems with
unlimited transmit powers per node. Note that the simulations
match the asymptotic results to within 10% whenN ≥ 9
for a relative base-station to wireless-node density of 20%.
For lower relative densities, the convergence is slower. For
10% relative density, the simulations match the asymptotic
expression to within 10% only whenN ≥ 20 and only when
N ≥ 37 for 5% relative density. The rate of convergence for
random cells is slower than that for hexagonal cells because
the range of transmit powers is much larger for random
cells compared to hexagonal cells which results in slower
convergence, as explained in Section V-A. Figure 10 shows
simulations of systems with a 200 mW transmit power limit.
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Fig. 10. Area-averaged spectral efficiency of uplink communications with
random cells and 200mW transmit power limit per node. Wireless-node
densityρw = 10−3 nodes /m2, pt = 10−14 andGt = 10−5.

The target received powerpt = 10−12. For relative base-
station to wireless-node densities of 20%, 10%, and 5%, the
simulated area-averaged spectral efficiencies are within 10%
of the asymptotic prediction whenN ≥ 6, N ≥ 9 andN ≥ 9
respectively. The convergence of the simulated area-averaged
spectral efficiencies to the asymptotic values is faster for
systems with limited transmit power as the range of transmit
powers in the network is smaller when there is a bound on the
transmit power.

VI. SUMMARY AND CONCLUSIONS

We have derived an asymptotic expression for the area-
averaged spectral efficiency of the uplink in wireless networks
with multi-antenna base-stations in networks with hexagonal
cells, a model which is known to be difficult to analyze and
is typically handled in simulation. We extended the results
to networks where base stations are distributed according to a
Poisson point process on the plane and derive an expression for
the area-averaged spectral efficiency of a random link where
the averaging is over the fading, and spatial distributionsof the
wireless nodes and base stations. We assumed a power control
algorithm for which interferers try to achieve a target received
power at the base stations to which they are connected. This
power control algorithm which has also been used in [8] and
related works ensures that uplink spectral efficiencies areclose
to the average value with high probability when the number of
antennas per link is large and the interferers have high power
budgets.

It is found that if the cell sizes are small enough that all
interferers are able to achieve the target received signal power
at their base stations (which we call the sufficient-power case),
the area-averaged spectral efficiency takes a simple form given
by (19). Note that for a fixed ratio of base-station to wireless-
node densitiesρt/ρw, asρw increases, the system eventually
moves to the sufficient-power case so this is an effective way
of scaling the density of such networks.

From (19), note that with 7 antenna elements per base
station andρt/ρw ≈ 0.1, the area-averaged spectral efficiency

is approximately 1bs−1Hz−1. If we assume that 10% of all
interferers are actively transmitting at any one time, the ratio
of base station to total wireless-node density has to be just1%
to achieve a area-averaged spectral efficiency of 1bs−1Hz−1,
as given by (19). For systems with insufficient power, i.e., the
cells are so large that not all of the interferers will achieve the
target received power at their base stations, the expression for
the area-averaged spectral efficiency is more complicated and
has to be evaluated by numerically. We verified the accuracy
of the derived expressions by Monte Carlo simulations which
were also used to study the outage spectral efficiency, i.e.,the
spectral efficiency that is achievable with a given probability.
We found that in the sufficient power case, with 14 antennas
per base station and single antennas at each wireless-node,and
with 10% of interfererstransmitting simultaneouslyat any one
time, over 1bs−1Hz−1 is achievable by 95% of interferers
when the ratio of base-station to active wireless-node densities
is 1%.

Comparing the area-averaged spectral efficiencies for hexag-
onal and Poisson cells, we find that the difference in area-
averaged spectral efficiency between the two models dimin-
ishes with increasingN . At modestN we found that hexag-
onal cells can increase the area-averaged spectral efficiency
over random cells several-fold as illustrated in Figure 3.

The findings of this work are useful for designers of
cellular wireless systems such as pico-cells and city-widewi-
fi access as they provide simple expressions for the spectral
efficiency and hence data rates as a function of tangible system
parameters such as user and base-station densities, numberof
base-station antennas and random versus regular distribution
of base stations.
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APPENDIX

A. Proof of Theorem 1

To derive the normalized SIRβN , we first modify the sys-
tem model from Section II. We assume that thei-th wireless-
node transmits with power̃Pi = N

α
2 Pi for i = 2, 3, · · · , n+1,

wherePi is as defined in Section II, whereas the representative
transmitter transmits with powerP1. Thus, the SIR of this
system , is equivalent toN−α

2 times the SIR of the original
system in Section II where the interferers transmit with power
Pi. Let the matrixP = diag(P̃2r

−α
2 , P̃3r

−α
3 , · · · , P̃n+1r

−α
n+1).

The SIR of this system normalized byp1 is

βN =
1

N
g
†
1

(

1

N
GPG†

)−1

g1 (34)

whereG is a matrix whosei-th column isgi+1. Note that (5)
and (34) are equal.

Observe that (34) and (8) in Lemma 1 take the same form
if the e.d.f. of the diagonal entries ofP convergesw.p.1 to
a limiting functionH(x) asN andn → ∞, and there exists
anN0 such that for allN > N0, the eigenvalues of1NGPG†



are bounded from below. The latter requirement is satisfied as
shown in the following lemma.

Lemma 5:Let λmin(A) denote the minimum eigenvalue of
the matrixA. Consider the matrix

K =
1

N
GPG† = N

α
2
−1

n+1
∑

i=2

pigig
†
i . (35)

Then0 < λℓb < λmin(K), w.p.1 for someλℓb and∀n > N0

whereN0 is a positive integer.
Proof: Please see Appendix D

Hence, what remains is to show the convergence of the e.d.f.
of the received interference powers. Recall thatn interferers
are distributed in a disk of radiusR centered at the origin.
SettingGt = 1 for notational convenience (it will be reintro-
duced in the final expressions) andp̃i = P̃ir

−α
i , the CDF of

the received power from wireless-nodei is

Pr{p̃i ≤ x} = Pr{PiN
α
2 r−α

i ≤ x}

=

∫

Pr

{

ri√
N

≥
(

Pi

x

)
1

α

∣

∣

∣

∣

∣

Pi

}

fN
P (Pi)dPi , (36)

wherefN
P (Pi) is the PDF ofPi for a finiteN .

Next, we use the following lemma which is proved in
Appendix E

Lemma 6:For both the hexagonal-cell and Poisson-cell
models, asn,N,R→ ∞ ,

Pr

{

ri√
N

≥
(

Pi

x

)
1

α

, Pi

}

→
[(

1− πρw
c

(

Pi

x

)
2

α

)

I{
Pi(πρw

c )
α
2 <x

}

]

fP (Pi) . (37)

(37) indicates that the transmit power of a node randomly
distributed with uniform probability in the circular network to
be asymptotically independent of its normalized distance from
the origin as the quantity in the brackets in (37) equals the
probability thatri/

√
N exceeds(Pi/x)

1

α . From (36), Lemma
6, and the bounded convergence theorem, asn,N,R → ∞ in
the manner of Lemma 6,

Pr{p̃i ≤ x} →
∫

fP (P )

(

1− πρw
c

(

P

x

)
2

α

)

I{P< x
b } dP

(38)

= FP

(x

b

)

− πρw
c
x−

2

αE
[

P
2

α

]

+
πρw
c
x−

2

α

∫ ∞

x
b

fP (P )P
2

α dP . (39)

(36) to (38) follows from (37), and from substitutingb =
(

πρw

c

)
α
2 .

By the Glivenko-Cantelli theorem, the e.d.f. of a set of
i.i.d. random variables converges uniformly,w.p.1, to its CDF.
The deviation of this e.d.f. from the CDF can be bounded
by an exponentially decreasing function ofn, independent
of the CDF [27]. Hence, by the Borel Cantelli Lemma, the
e.d.f. of the p̃is convergesw.p.1 to the RHS of (39), i.e.
H(x) = Pr{p̃i < x}, even though the CDF is dependent on

n. Taking the derivative of the RHS of (39) and simplifying
yields:

dH(x)

dx
=

2πρw
cα

E
[

P
2

α

]

x−
2

α
−1

− 2πρw
cα

x−
2

α
−1

∫ ∞

x/b

fP (τ)τ
2

α dτ. (40)

Substituting (40) and integrating, the RHS of (9) becomes

mc

∫ ∞

b

τdH(τ)

1 + τm
= mc

∫ ∞

0

2πρw
cα

E
[

P
2

α

] τ−
2

α

1 +mτ
dτ

− 2πρwm

α

∫ ∞

0

τ−
2

α

1 +mτ
dτ

∫ ∞

τ/b

fP (x)x
2

α dx

=
2πρw
α

E
[

P
2

α

]

m
2

απ csc

(

2π

α

)

− 2πρwm

α

∫ ∞

0

τ−
2

α

1 +mτ
dτ

∫ ∞

τ/b

fP (x)x
2

α dx . (41)

Substituting (41) into (9) completes the proof.

B. Proof of Lemma 1

The proof mirrors that of the proof of Lemma 4.3 in [19]
but since the noise power is neglected in our model, a modified
version of the proof is required. Letλ1, λ2, · · · , λN denote the
eigenvalues ofR, and perform an eigen decomposition ofR

such thatR = U†ΛU. Denoting thei-th entry of the vector
Us by ui, we have

γN =
1

N

N
∑

i=1

|ui|2
λi

, (42)

which is finite w.p.1 for N > N0 since λℓ b < λi. Note
that as n,N → ∞, the e.d.f. of the eigenvalues ofR,
ΨN(λ), converges with probability 1 to a limiting probability
distributionΨ(λ) [28].

For anyN > N0, set aδ1 > 0 and pick a finite partition of
the range(λℓ b,∞) into M intervals(I1, I2, · · · IM ) such that

M
∑

k=1

Ψ(Ik)

I lk
−
∫ ∞

0

1

λ
dΨ(λ) < δ1 , and (43)

∫ ∞

0

1

λ
dΨ(λ)−

M
∑

k=1

Ψ(Ik)

Irk
< δ1 , (44)

whereΨ(Ik) is the probability that a random variable with
CDF Ψ(·) is in the intervalIk, andI lk andIrk are the left and
right edge of the intervalIk. Consider the events

E1 =

{∣

∣

∣

∣

∣

∑

i:λi∈Ik

u2i −ΨN(Ik)

∣

∣

∣

∣

∣

<
δ2
M
, ∀ k = 1, · · · ,M

}

and

(45)

E2 =

{

|ΨN(Ik)−Ψ(Ik)| <
δ2
M
, ∀ k = 1, · · · ,M

}

(46)

whereΨN (Ik) denotes the probability that a random variable
with CDFΨN (·) is in the intervalIk. If bothE1 andE2 hold,
andσ2 = 0, following [19], we have the followingw.p.1.

γN ≤
M
∑

k=1

Ψ(Ik) + 2 δ2
M

I lk
≤
∫ ∞

0

1

λ
dΨ(λ) + δ1 + 2

δ2
λℓ b

, (47)



where recall that the left-edge of the first partitionI l1 = λℓ b.
Similarly we can show thatw.p.1,

γN ≥
∫ ∞

0

1

λ
dΨ(λ)− δ1 − 2

δ2
λℓ b

. (48)

Note that (47) and (48) are similar in form to corresponding
expressions in [19] except that the noise powerσ2 in [19] is
replaced withλℓ b. The remainder of the proof is identical to
the proof of Lemma 4.3 in [19] withσ2 replaced byλℓ b.

C. Proof of Lemma 4

To find fP |Πt
(P |Πt), let Ξv be the union of the set of

disks of radiusv centered at each of the base stations. Thus,
for x ≤ PM , we have

Pr(Pi ≤ x|Πt) = Pr(i-th wireless-node∈ Ξv|Πt) (49)

with v =
(

xGt

pt

)1/α

. The setΞv\B(0, v) forms a Boolean
model with radiusv disks as the primary grains (see Chap-
ter 3 of [18]). The fractional area of the plane occu-
pied by Ξv\B(0, v) equals1 − e−ρtπv

2

w.p.1. [18]. Since
Pr(i-th wireless-node∈ B(0, v) = 0), we have forx ≤ PM ,

Pr(Pi ≤ x|Πt) = 1− e−ρtπ(xGt
pt

)
2

α

(50)

and Pr(Pi ≤ x|Πt) = 1 if x > PM . Taking the
derivative with respect tox yields (26). Taking the integral
∫∞
0
p

2

α fP |Πt
(p|Πt) dp using (26) yields (25). When condi-

tioned onr1, the result still holds by the mixing property of
the Poisson Voronoi tessallation (e.g. see [?]).

D. Proof of Lemma 5

Recall that pi = PiGt r
−α
i , and for rc > 0 defined

subsequently, write the matrix

K = N
α
2
−1

n+1
∑

i=2

pigig
†
i

=
1

N

∑

i∈I
N

α
2 PiGtr

−α
i gig

†
i +

1

N

∑

i∈Ic

N
α
2 PiGtr

−α
i gig

†
i

=
1

N

∑

i∈I
N

α
2 min

(

ptr
α
c

Gt
, PM

)

R−αGtgig
†
i

+
1

N

∑

i∈I
N

α
2

(

Pir
−α
i −min

(

ptr
α
c

Gt
, PM

)

R−α

)

Gtgig
†
i

+
1

N

∑

i∈Ic

N
α
2 PiGtr

−α
i gig

†
i (51)

=
1

N

∑

i∈I

(πρt
c

)α

min

(

ptr
α
c

Gt
, PM

)

Gtgig
†
i

+
1

N

∑

i∈I
N

α
2

(

Pir
−α
i −min

(

ptr
α
c

Gt
, PM

)

R−α

)

Gtgig
†
i

+
1

N

∑

i∈Ic

N
α
2 PiGtr

−α
i gig

†
i . (52)

where I = {i : rti < rc, 1 < i ≤ n + 1} is the set of
interferers that are closer thanrc to their closest base-stations.

Ic = {i : rti ≥ rc, 1 < i ≤ n + 1} is the set of remaining
interferers. The step from (51) to (52) is from substituting
c = n/N and (1).

For the hexagonal-cell model, withAH denoting the area
of each hexagonal cell,rc =

√

AH/(2π) . For the Poisson-
cell model, rc =

√

ln 2(ρt π). These values are selected
such that if we place disks of radiusrc around each base-
station, the fractional area occupied by the union of these
disks is 1

2
, exactly for the hexagonal-cell model, andw.p.1

for the Poisson-cell model (see Chapter 3 of [18]). Thus, as
n,N,R,→ ∞, with probability approaching 1,1N |I| → c/2
and 1

N |Ic| → c/2. Let the first term on the RHS of (52) be
denoted byT1 ∈ CN×N . Note from the system model that
ri ≤ R and Pir

−α
i − min

(

ptr
α
c

Gt
, PM

)

R−α > 0 for i ∈ I
andR sufficiently large. From (52) and Weyl’s inequality (see
e.g., [29]),λmin(K) ≥ λmin(T1). Additionally, from [30], as
n,N → ∞ such thatn/N → c/2,

λmin(T1) → λ̄min(T1)

=
(π ρt

c

)α

Gt min

(

pt r
α
c

Gt
, PM

)

(1−
√

2/c)2 w.p.1.

Hence, asn,N,R → ∞, w.p.1, the limiting e.d.f. of the
eigenvalues ofK has support that is bounded from below
by a non-negative numberλℓb. Note thatλℓb could equal
1

2
λ̄min(T1) for example. Additionally, from [26] for suffi-

ciently largeN , w.p.1, no eigenvalues of the matrixK occur
outside the support of the limiting e.d.f. of the eigenvalues of
K. Hence, forN sufficiently large, there are no eigenvalues
of K that are less thanλℓ b > 0 w.p.1.

E. Proof of Lemma 6

Here, we show thatri/
√
N and Pi are asymptotically

independent for both hexagonal and Poisson cells. Recall that
node i is distributed with uniform probability in the radius
R circular network andri, rti andPi are its distance to the
origin, distance to its closest base station and transmit power
respectively, andΞv is the union of the set of disks of radius
v centered at the base stations. Conditioned onri ≤ y

√
N ,

node-i is uniformly distributed inB(0, y
√
N). Hence,

Pr

{

rti ≤ v| ri√
N

≤ y

}

= Pr
{

rti ≤ v| ri ≤ y
√
N
}

=
Area

(

Ξv ∩B(0, y
√
N)
)

πy2N
(53)

For hexagonal cells, asN andR → ∞, the RHS approaches
FX(v) from (17) as the edge effects diminish. For Poisson
cells, the setΞv\B(0, v) forms a Boolean model and as
N → ∞, the RHS of (53) converges to1 − e−ρtπv

2

w.p.1
(see Chapter 3 of [18]). Hence,rti and ri/

√
N are asymp-

totically independent and sincePi is a function ofrti, Pi is
asymptotically independent ofri/

√
N . Thus, asN → ∞, with



probability approaching unity,

Pr

{

ri√
N

≥
(

Pi

x

)
1

α

∣

∣

∣

∣

∣

Pi

}

→ Pr

{

ri√
N

≥
(

Pi

x

)
1

α

}

=
R2 −N

(

Pi

x

)
2

α

R2
I{

0<(Pi
x )

−
1

α
√
N<R

}.

Note that the RHS is simply the CDF ofri evaluated at√
N
(

Pi

x

)
1

α . Substitutingc = n/N , (1), Bayes’ rule, and
rearranging terms in the RHS of the last equation yields (37).
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