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Abstract— The spectral efficiency of a representative uplink Most works on wireless networks with multi-antenna base-
of a given length, in interference-limited, spatially-disributed  stations do not explicitly model out-of-cell interferenttem
wireless networks with hexagonal cells, simple power comdl, g atially distributed in-band interferers which is knowm t
and multiantenna linear Minimum-Mean-Square-Error receivers . W .
is found to approach an asymptote as the numbers of base-stah be very challenging. Andrews et al. [1] remark that “despite
antennas N and wireless nodes go to infinity. An approximatio decades of research, tractable models that accuratelylmode
for the area-averaged spectral efficiency of a representate link  other-cell interference (OCI) are still unavailable, whics
(averaged over the spatial base-station and mobile distrilitions),  fairly remarkable given the size of the industry”.
for Poisson distributed base stations, is also provided. Fdarge Several authors have used infinite random matrix theory

N, in the interference-limited regime, the area-averaged psectral techni imilar t ¢ | ltiant it
efficiency is primarily a function of the ratio of the product of N echniques similar to ours to analyze multiantenna cefiueg-

and the ratio of base-station to wireless-node densitiesydicating WOrks such as Dai and Poor [2] and Couillet et al. [3]. Neither
that it is possible to scale such networks by linearly incresing of these works models the spatial distribution of nodes and
the product of the number of base-station antennas and the thus do not to capture the effects of interference from ubets
relative density of base stations to wireless nodes, with valess- are spatially distributed. Monte-carlo simulations wesediin
node density. The results are useful for designers of wiress 41and [51t I ) I tiallv-distributed mudit
systems with high inter-cell intgrfgrence becausg it pro‘gjes [4] and [] to analyze small, spatially- !S_r' utedm enna
simple expressions for spectral efficiency as a function ofihgible ~ Cellular networks. Cellular networks wiingle-antenna base-
system parameters like base-station and wireless-node dsties, stations and spatially distributed nodes have been ardhiyze
and number of antennas. These results were derived combinin works such as [1], [6], and [7] using stochastic geometry to
infinite random matrix theory and stochastic geometry. model the spatial distribution of nodes. Further discussib

Index Terms—Cellular Networks, MIMO, Antenna Arrays, [1] and [7] which are related to this work are given at the

Stochastic Geometry, Hexagonal Cells. end of this section. Stochastic geometry has also been used
to studyad hocwireless networks with both multi and single
|. INTRODUCTION antenna nodes using both finite and asymptotic techniques in

It is increasingly common for multiple wireless networks tavorks such as [8], [9] [10], [11], [12] and [13]. Please see
be within interfering distance of each other in urban enviro[14] for a survey of works utilizing stochastic geometry in
ments today due to proliferation of systems such as cityewithoth cellular and ad hoc wireless networks and [15] and [16]
wireless internet access, pico cells for mobile telephanyl which present an extensive set of useful stochastic gegmetr
wireless local-area networks. Antenna arrays at baseostatitechniques.
that employ spatial interference mitigation can signiftgan  In this work, we show that with appropriate normalization,
increase data rates in such systems. It is thus importanttie spectral efficiency of a representative uplink in a nekwo
study the spectral efficiencies (b/s/Hz) of wireless linkthw with hexagonal cells, and base-stations with antennas
multiple antennas in environments that have high baseostatusing the linear MMSE receiver converges in probability and
or access point and wireless-node densities. In such sgstatarive an asymptotic expression for the area-averagedrapec
the densities of nodes (both in-and out-of-cell) and thisitrd  efficiency. We use the term area-averaged spectral efficienc
bution in space are important factors as they influence-int¢o refer to the average spectral efficiency of a link where the
node distances and hence signal and interference strengélvsraging is taken over the locations of all the nodes in the
which directly impact the Signal-to-Interference-Plusid¢- network and fading, to distinguish it from the ergodic spalct
Ratio (SINR), spectral efficiency and ultimately data rates efficiency in the Shannon sense. Note that the hexagonal-cel

_ o _ _ model is an idealized model for base-station placementishat
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and out-of-cell wireless nodes that have single antennds disson. In contrast, in the extension of our results todeois
transmit simultaneously in the same channel using distandlistributed multi-anntenna base stations, we assume étiat ¢
dependent power control. We assume that signal power @dee formed with the base stations as the generator points
cays with distance according to the standard inverse powes is typically done (e.g. for the downlink in [1]), and that
law model. The area-averaged per-link spectral efficiescy the mobile nodes perform distance-dependent power control
expressed as a function of the number of receiver antenmdsich introduces dependence between the transmit powers.
N, wireless-node and base-station densities, and path-ld$® associated complexities are handled by the asymptotic
exponent. While the exact CDF of the spectral efficiency f@analysis which combines stochastic geometry and infinite
finite systems would be ideal, computation of this quansty random matrix theory. We validated the results for finite
difficult for the uplink in cellular systems with power-coat systems using Monte Carlo simulations that were also used
as the transmit powers of nodes depend on their locatitm characterize the spectral efficiency for a given outage
on the plane. Moreover for Poisson distributed base sttioprobability.
the transmit powers of mobile users are dependent, further
complicating analysis. We use an asymptotic analysis tdlean Il. SYSTEM MODEL
complexities of the uplink, in particular the dependence of Consider a planar wireless network with base stations
transmit powers of the mobile nodes as described in matistributed at hexagonal lattice sites with minimum base-
detail at the end of this section. The asymptotic techniqusgtion separationd, with a base-station at the origin. While
also help handle the difficulties in analytically charaiiélg in practical systems, base-station assignments are based o
the hexagonal cell model which is typically viewed as beingtrongest received signals rather than distance alonemto s
intractable (as noted in [1], [7]) and are usually analyzgd Iplify analysis, the wireless nodes are assumed to commignica
Monte-carlo simulation such as in [17]. with their closest base station in Euclidian distance. Imeot
The asymptotic expressions we provide are useful in uwords we assume that the cells are formed by the Voronoi
derstanding the behavior of large networks, such as the rassellation of the plane (see e.g. [18]) with the basecstati
of spectral efficiency growth with the number of antennass the generator points.
and base-station density, and to understand the perfoenancThe base station at the origin is called tepresentative
differences between a network with regularly-spaced, ameceiverwhich is in a link with arepresentative transmitter
completely random base-station placements. at a distance; away. We shall consider both constantand
Of the recent works that apply stochastic geometry t@andomr; resulting from the representative transmitter being
analyze cellular networks, [1] is of particular note as thegistributed with uniform probability in the cell associdteith
introduce a framework to analyze cellular networks witthe representative receiver. The later case will be cahed t
Poisson base-station placements. Their work assumesesinghdom link case. The link between the two is called the
antenna nodes, exactly one active wireless node per cedpresentative link The representative receiver is assumed
and exclusively focuses on the downlink. In their model, th® have N antennas and the representative transmitter and
transmit powers of the base stations are constant allowiemt interferers (to be defined in the next paragraph) have single
to use a Poisson shot-noise model for the interference whightennas.
is at the heart of the derivation of their main results. Such a Suppose that there is a circular network of radiisentered
approach is not applicable for the uplink, which is the focust the origin withn additional wireless nodes (in addition to
of this work, due to the correlation between transmit powetse representative transmitter) distributed in an inddpan
of wireless nodes that result from power control which is adentically distributed (i.i.d.) fashion in the network twi
essential feature of the uplink. The correlation arisesabse uniform probability such that
the transmit powers of the wireless nodes are dependent on 9
. - ) X . . . n = p,TR", (1)
their positions relative to the base-stations in their eetipe
cells. The size and shape of the cells are of course dependetere p,, is the effective area density of the wireless nodes
This correlation between transmit powers precludes apglyiwhich are co-channel interferers to the representativie. lin
standard Poisson techniques which typically require thestr Note that these are nodes that aetively transmitting in
mit powers of nodes to be independent of one another.  our model so the true density of nhodes may be much higher.
As noted in a very recent work by Novlan, et al. [7] “theAn example of this network is illustrated in Figuké 1. The
analysis of the uplink requires several fundamental cheingepresentative transmitter and interferers are labeletblas
as compared to the downlink, nearly all of which makéows. Node 1 is the representative transmitter, and nodes
it more challenging.” In [7] which considers single-antann2,3,--- ,n+ 1 are the interferers in random order of distance
uplinks in random-cell networks, this complexity is harmtllefrom the origin. The asymptotic regime we consider is thatlim
by applying certain approximations to the network topologgs N, R andn are taken to infinity such that=n/N > 2,
such as approximating the transmit powers of the wirelegg is constant and {1) holds. In the following we assume that
nodes as independent. They make a further approximatiwheneverN — oo, n and R — oo in this manner as well.
on the base-station distribution by first generating Voron@he resulting network has wireless nodes distributed umifp
cells about the mobile nodes and then placing a base statiandomly on the entire plane with densjty,. Note that since
with uniform probability inside each Voronoi cell. Thuseth we are interested in large wireless networks with modeyatel
base-stations in their model are spatially correlated astd arge numbers of base-station antenag; c.
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Thus, g; captures the Rayleigh fading and captures the
combined transmit power and path loss associated with node-
i. To focus on the interference-limited regime, we set tha@oi

. powero? = 0.
o o We assume that the base stations use spatial linear MMSE
estimators to mitigate interference. Note that the lineM3E
receiver is the linear receiver that maximizes the SINR.(e.g

© © see [19]) which maximizes the spectral efficiency for Gaarssi
. . signals. We assume that all nodes use Gaussian codebooks
o e o e which results in Gaussian distributed residual interfeecat

the output of the linear MMSE receiver. Thus, the spectral
efficiency is given by the Shannon formula as is commonly

¢ ¢ done in the literature (e.g. [1]). It is important to note éner
. . that the rapid decay of signal power with distance assatiate
o e o e with the inverse power-law path-loss model means that the

central-limit theorem does not hold for a general distifnubf
transmit signals (e.g. Quadrature-Amplitude-Modulati@0].
c s e e e e e e Thus the aggregate interference at ithput to the MMSE
receiver will not be Gaussian distributed (e.g. see [20]) if
Fig. 1. lllustration of wireless network with representetilink and base- ha transmitted signals themselves are not Gaussian tm begi
stations at hexagonal lattice sites. The representatieeiver is at the . . .
origin and the representative transmitter is denoted byfitleel square. The With. If we do not make the assumption that the transmitted
remaining base stations are represented by the dots anuéhieiing wireless signals are Gaussian distributed, the spectral efficisneie
nodes are represented with the crosses. compute should be interpreted ashievablespectral efficien-
cies because the Gaussian distribution is entropy maxigpizi
Thus from an information theoretic perspective, the spéctr
Thei-th wireless node is at distanegfrom the representa- efficiency obtained by assuming a Gaussian interference dis
tive receiver at the origin and is assumed to transmit withibution is a lower bound to the spectral efficiency achidea
power P;. The average received signal power per antenmath any other interference distribution. Additionallyt is
(averaged over the fading distribution defined in the negkpmmon practice to design systems to operate in Gaussian

paragraph) due to theth wireless node is noise. One could apply a correction factgrsay, to the SIR
Y and compute the spectral efficiency lag-(1 + nSIR). This
pi= PGy (2)  has been suggested in [1] and other works. While we do not

with the path-loss exponent> 2, andG; is a proportionality US€ @ scale factor of here, introducing it into our expressions

constant. The wireless nodes control their transmit power if Straightforward. _ _ o
order to achieve a target received power relative to path los 1he main results of this work will be given in terms of a
at their closest base station, subject to a maximum pow¥'malized version of the Signal-to-Interference-RaBtR),

constraint,P; as follows n+l -1
Bv=N"%gl (> pigigl| g forwhich (5
P, = mi (ﬂ o p ) 3 —
i =min | &-ri;, Par ) ©)) i—2
¢ SIR=p; N% Bx. (6)

wherer;; is the distance between thieh wireless node and

its closest base station. Let the limiting probability dgns NOte that up to the normalization by /%, () is the
function (PDF) of P, be denoted byf»(p) and E[P3] be its Standard equation for the SINR associated with a linear MMSE

expected value raised to the power receiver with the noise variance assumed to equal zero, as
@

We assume frequency-flat fading with independent, circ€ have assumed here. This assumption is used in order to
larly symmetric complex Gaussian channel coefficients bdlilizé an asymptotic approach to characterize interfegzen
tween all pairs of antennas. Lgte CN*1 be the vector of limited systems. We make the additional observation het th

sampled received signals at theantennas of the representa@lthough we assume zero noise, the resulting receiver dies n
tive receiver at a given sampling time, ande CN*! contain reduce to a zero-forcing receiver as the number of antennas
zero-mean, i.i.d. complex Gaussian noise terms of variafice IV iS less than the number of interferers since n/N > 2

denoted byCA(0, o2) . This system can be represented by thy assumption. This means that the degrees of freedom at the
following equation: receiver are insufficient to force the interference to zero.

Note that the normalization of the SIR By2 keeps the SIR
finite asN — oo because the SIR grows a@6%. This order
y=vpigiot Z VPigiTi +w (4) " of growth of the SIR with the number of antennas in networks
=2 with the inverse-power-law path-loss model is known and can
whereg; € CV*! has i.i.d.CN(0,1) entries andz; is the be interpreted intuitively as is done for ad hoc networks in
transmitted symbol of theth wireless node witt&[|z;|?] = 1. [10], or using a precise analysis as done in [11]. Based on

n+1



our description in [10], note that the representative remei efficiency using the Shannon formula assuming that the noise
can use a fraction of its degrees of freedom to null nearlyy negligible as follows.

interferers who occupy a disk of radius on the order/G¥ N

around the representative receiver. The aggregate irgerde C(r1) = logy(1 + SIR) = logy(1 + N2 Py Bn)

from the un-nulled interferers outside this disk is of order . - . .
where we emphasize that the spectral efficiency is a function

a/2—1 ini i
N - The remaining fraction of the degrees of freedomf the length of the representative link,. Note that if the

are used to add signals from the target transmitter conen? o . :
) . . . . ransmit signals are not Gaussian, as we noted in the system
increasing signal power relative to interference by a fiaoto

the order of N. The combined effect is that the SIR grows ag?odel, the spect_ral efficiency abovg and in subsequen_t sxpre
a2 Sions should be interpreted as achievable spectral effieien
a factor of N/<, . L .
Since the log function is continuous, & — co Sy —
and,

1. M AIN RESULTS N
— 2 o

The main results of this work are based on the following Olr) = logy(NV2) = logy (P ), (10)

theorem proved in AppendixIA using Lemia 1 which followsin probability (e.g. see [22]). Hence, with appropriate -nor
malization, the spectral efficiency approaches an asymptot

Theorem 1:Consider the network model from Sectibh Ilas N — oo. We define this asymptotic spectral efficiency as
As N,n,R — oo, the normalized SIRSy converges in C*(r1) = logy(1+ N2 Py r;“ ).
probability to a limit 8 which is the unique non-negative While 3 is given implicitly by Theorem [l and has to be

solution to the following equation solved numerically, we can approximate the spectral effijie
of a system where the number of interferergreatly exceeds
E[p%w% [f cse (2_”)] _ MX the number of base-station antenmdsi.e. smallb because
@ @ @ the second term on the LHS &fl (7) is small in this case. In fact
/OO T a o0 fp(d?)x%dx dr — 1 ) this term can be shown to go to zerotas: 0 (after the Iimgits
o 1+78 ) 20T onn, N andR are taken) [10]. Writing7, = [ sin (22)] 2,

. this yields the following approximation
whereb = (T2=) 2,

. . [e3 1 %
Lemma 1:Consider the quantity C*(r1)~logy | L+ N2P G, | ———
E[Pa]mpyr?
YN = Lo (Lswst - s (8) (11)
NN AN

Applying the dominated convergence theorem with steps-simi
wheres € CV>*! andS € CV*" comprise i.i.d., zero-mean, lar to that in Appendix E of [23] with the noise power replaced
unit-variance entries from a continuous distributioiN = ¢, by Ay, we can show that
and ¥ = diag(yz, ¥3, - - 1n+1). Note thatR = LSWST is
invertible with probability 1 {v.p.1) since N < n. Suppose E[C|r] = C*(r1) = 0. (12)
that asn, N — oo, the empirical distribution function (e.d.f.)
of the diagonal entries o convergesw.p.1 to a function
H(z). Additionally, assume that there exists Ay such that
Yn > Ny , the minimum eigenvalue aR is bounded from
below by Agp, > 0, w.p.1. Then,vy — ~ in probability where
~ is given by the non-negative real solution farin

1 > rdH (1) ©)
= m2c .

e BIC)~ [ o (r)dr. (13)
Proof: Please see Append& B.

Note that Lemmall is closely related to several results in thghere f,. (r) is the PDF ofr; which equalsfx (z) given in
literature concerning the convergence of the SINR of randaremma[2.
Direct/Sequence Code-Division-MuItipIe_—Agcess (DS/ICAM I the mi]nimum distance between base statiofis <
systems such as [19] and [21]. The existing results however (GtPM * the cells are small enough that all wireless
assume that the noise power is strictly positive and ar& \ »p: T )
thus not directly applicable to systems with negligiblegeoi "0des have sufficient transmit power to meet the target
power. Lemmd11 is proved by modifying the proof in [19],rec¢|\_/ed powerp, at t_helr t_Jase—stanns. We_ call this the_
replacing the requirement of the strictly positive noisethy s_ufﬁment-power case in Wh'Ch_ the_ a_symptotlc spectral effi-
requirement on the minimum eigenvalue of the maRix ciency takes a simple form which is independent of whether

Since we assume that all nodes use Gaussian codebooks .
hich lts in G . idual interf t theu To the best of our knowledge, the only scenario in which sintgéchniques
which results In Gaussian residual interrerence at the mtb have resulted in closed form solutions are when the receintatference

the MMSE receiver, we can approximate the per-link spectrawers from all users are equal [19]

Hence the asymptotic spectral efficiency is a good approx-
imation for the conditional area-averaged spectral effirye
E[C|r1] (averaging is over wireless-node locations and fading
distributions here) for largeN. Finally, we can find the
unconditioned area-averaged spectral efficiency of a rando
link by averaging with respect to the distributionsaf so that




r1 is fixed or random due to the power control. Substituting ® Base station
the power control equatiofn](3) intb (11) X Representative transmitter

E[C] = C"(r1)

w2

N
~logy | 1+ ﬁr?Ga > (24) a
Gt Dt .« @ 2
FE (G—Tti) TPy
N 2
=1lo 1+G, <7) , 15
gz< AT ) (15)

which is a function of the second moment of the distance
between a random wireless node and its closest base station
E[r?], wireless-node density,,, number of antenna®d’ and
path-loss exponentZ[rZ] can be found using the following Fig. 2.
lemma that statistically characterizes the distance bmtwae
random wireless node and its closest base station.

Lemma 2:The PDFfx (z), CDF Fx (x), andk-th moment Substituting into[(I5) yields the following approximatifor
of the link lengthz between a randomly located wireless nodthe area-averaged and asymptotic uplink spectral effigienc
and its closest base station in a hexagonal-cellular sysi#fm of a random link (as defined in Secti@gd Il), in interference-
minimum base-station separatidrare the following: limited, hexagonal-cell systems with a large number of base
station antennas and high transmit power budgets:

lllustration of base stations at hexagonal lattitess

\;‘5’;2:6, ifo<z<$
_ o svEe . c1(dy 4 V3d 36N \?

Ix(x) = TaEd — S cos (L), ifé<a<¥ E[C] ~ C*(r1) ~ log, <1+Ga (T) ) . (19)

0, otherwise. b d*mpu

In terms of the effective density of base stations from the
(16) hexagonal-cell modes, we can write,

0 if 2 <0, <1.98Nph)%

’ E[C)~C*(r1) = 1o 14+4Go | ——— . (20

2 ins? fo<r<d [C] ~ C*(r1) &< . (20)

7TI2 12 —
Fy(z) = { 255 — 243 cos™! (££) s fopd . .
2 L If d > = (=) | the transmit power budget is in-
+2\/§(1__l) |f§<x<@ .. V3 Pt .
@< 1) > 2 = 3 sufficient for all nodes to meet the target received power
1, if x> @. at their base stations which results in some wireless nodes
(17) transmitting at full power. In this casE[P%] is given by the
E oz following lemma which can be proved by direct computation
e 2V3 [(d © 1 : )

E(2F) = — 3 s AT (18) using LemmdR: .

+2\2/ Jo (cosT) Lemma 3:1f Py < & (%)°,

Proof: Consider Figurél2 which illustrates a portion of 5

a wireless network with hexagonal cells. Each wireless node E[P§] _ pa _ 3T <ﬁ) ° Pé. (21)
in the network falls on some random point in an equilateral Mo3d2 \ py M

triangle formed by the three base stations closest to it, andpt o v (V3
forms a link with the base station at the closest vertex &f G (5) <Pu< G, (Td) '
that triangle as illustrated in Figuké 2. Thus, the linkgtrs _2

are statistically equivalent to the distance between aamig  p[p2] = p3 — ™3 (pt ) " Pp

selected point in an equilateral triangle to the closedexenf 3d?

that triangle. The CDF, PDF and k-th moments of the distance  2,/3 < )% s < < D >é>

Do i ) Dt
between a random point in an equilateral triangle to theesibs ~ + = \q,
vertex are known [24], and are precisely the formulae in

Lemmal2. Note that the PDF of link-lengths associated with <\/§d (pt )i 5(3 3> \/ (thM)i ,
Dyt _2¥epa )y -3

a hexagonal cell which equals{16), has been given without + 12 \ G, 6d M D
proof before in [25]. ]

From [I5), the spectral efficiency depends on the seco
moment of link-lengths given by (18) with = 2.

(22)
EgmmaB substituted int@_(IL1) yields the area-averaged- spec
tral efficiency for a lengthr; link.
B[] = idg ~ 0.14d2 Averaged over the PDF of link-lengths arising from hexago-
o . . - ) R
36 nal cells (i.e., the representative transmitter is digteld with
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Tt N 2 3 N
EC’%/ log, [ 1+ Ga a<7> a:da:—l—/ log, [ 1+ GaPy <7
Sy g2< Gt E[PZ|rpor? )fX() ., e M\ EP

= Fx () log, <1 +Ga at (ﬁ) ) /7 log, <1 + Go Py (m) %> fx (z)da (24)

Qv
3
i)
g€
8
¥
N———

uniform probability in the cell containing the origin), tiaeea- fading and wireless-node locations, base-station logatand
averaged spectral efficiency of a random link is given[b? (24¢presentative link length), as N, R — oo

at the top of this page, where we have usee- (ng,) o E[C] — /logz(l + Py N°2B) f, (r1) dry — 0, (28)

Fx(x) and fx (z) from Lemma 1, andZ[P=] is from Lemma
[B. We were not able to integrate the second term on the RM&ere we have used the fact thfaequals the same value over
of (24) in closed form and thus use numerical integration ®imost all realizations ofI;, and the monotone convergence

compute it. theorem (see e.g. [22]) to exchange the limit and expectatio

Although 8 has to be found numerically in general, by

IV. EXTENSION TOPOISSONDISTRIBUTED BASE assuming thaic = n/N is large, as done in Section Ill,
STATIONS the area-averaged spectral efficiency conditionedronis

A. Area-averaged Spectral Efficiency approximated from((27) as follows

The results for the hexagonal-cell model can be extended
to a Poisson-cellmodel where base stations are distributed E[C|I1;, 7] ~ log, |1 + G, P,
according to a homogenous PPP with dengityconditioned E[Pg} TPwr?
on there being a point of the PPP at the origin. We denote (29)
the conditioned PPP by PPRConditioned on a realization of
the base-station locatiofi§;, Theorem 1 still holds if£[P=] Which holds with probability 1. Furthermore, #-r¢ < Py,
and fp(p) are replaced withE[P= |II,] and fpim, (/L) i.e., the transmit power budget is sufficient for the repmese
respectively. tative transmitter to achieve the target received poweat

The ergodicity of the PPP however implies thafP= |11,] the representative base station, substitutiig (3) i(26)
is equal for almost all realizations df; (i.e. any deviations (29) vyields the following approximation which holds with
occur with probability zero). Similarlyfp|m, (p|IL;) is equal Probability 1.
for almost all realizations ofl,. These properties and the ex-

[N

pressions fot [P |II,] and fpim, (p|I;) are given explicitly E[CIH:, ] ~ o
in the following lemma. 2
Lemma 4:With probability 1, log, |1+ G pt N i (30)
2 e % 1—¢e" 71'Pt( 'PM)% (1_6 Wpt( PM)a>pw
plP#im] = (2 )
t2 , TPt With probability 1, the above expression approximates the
= E[P~] = E[P= I}, r]. (25) area-averaged spectral efficiency of a wireless link that ha

a sufficient power budget to meet its target received power
where the average is taken over the fading and wireless-node
fpim, (pl1t) = fpim,r (PITL;, 71) = distributions. If we further assume that the transmit power
2z pGNE budget P, is large, the exponential term in the expression
2o 7 (pp_ctit) P (5t) , ifp<Puy (26) above is small, resulting in the following simple expressio

= ap
Te(®) 0 otherwise. for the area-averaged spectral efficiency which holds with

Proof: In Appéndix[ﬂ. probability 1.
Thus, the solution fog in Theorem 1 takes a fixed value N

for almost all realizations ofl;. From [12) the area-averaged  E[C|II;] ~ log, (1 + G ( pt) ) ~ E[C]. (31)

spectral efficiency conditioned di; andr;, E[C|II;, ], has Pw

the following propertyw.p.1 asn, N, R — oc. Note that the approximation above holds with probability 1
E[C|I,, 1] — logy(1 + Pl,,,l—aNa/Qﬂ) =0, 27) and is essentially not dependent on the specific realization

II, as a consequence of the ergodicity of the PPP and the large

where 3 is the non-negative solution t0](7) WitE[P%] and number of degrees of freedom at the MMSE receiver, which

fp(p) from Lemmd#. Removing the conditioning with respeainakes the system less sensitive to variations in the batierst

to r; andIl; yields the following property of the area-averagegositions. Additionally, note that the area-averaged spkc

spectral efficiencyE[C] (where the averaging is over theefficiency from [31) primarily depends op;/p.,implying

and
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e N % >0 _ N 2 I
x lo 1+ =G, <7> +/ lo 1+ Pyri“Gq <7> 2mwpyrie” TP dry . 32
&2 < G: “\E[P3]rpa ) 2 M E[P3]rpu P ' (32)
10 of base stations to active interferers as shown in the plot.

Note that the difference in area-averaged spectral effizgen
diminishes with the number of antennas. However, for high
base-station densities the area-averaged spectral edfjcfor

1 random cells is significantly lower. For instance, with 10
antennas at the base stations and 20% relative density ef bas
stations to wireless nodes, the area-averaged spectci¢péfy

with hexagonal cells is twice that of random cells.

il When compared to the area-averaged spectral efficiency

pt/pW =20%

10°

Mean Spectral Efficiency (b/s/Hz/Link)

plp,=5% with random cells given by[(31)[(20) indicates that several
fold (but not orders of magnitude) gains in area-averaged
| p/p,, = 10% spectral e_szicie_ncy can be achieved by regularly distriigti _
102 - , bgse.stanons in planar networks compared to_ ra_m.dor.nly dis-
10 10 10°  tributing them, and furthermore, the difference diminshéth
Number of Antennas at Base Stations the number of base-station antennas. In practical systems,

Fo 3 A § al effici  the unlink withd i designers will of course not have the flexibility of placing
ig. 3. rea-averaged spectral efficiency of the uplink wiindom cells . . S
and hexagonal cells and transmit power limited to 200 mWdSuoid dashed base stations and mobile user distributions are not unljorm

lines represent hexagonal and random cell asymptotic repeefficiencies random (i.e. without spatial correlations). Nevertheldbss

respectively. p; and p,, are the base station and wireless node densipesult sheds some light into the performance differences be

respectively. tween these two idealized models which are commonly used
in the research community.

approximate scale invariance in networks where the power
budgetP,, is not a significant limitation. The scale invariance
indicates that as with hexagonal cells (from equatiod (20Y). Hexagonal Cells

approximately constant area-averaged spectral efficieaty 1o verify the asymptotic results of the previous section, we
be maintained by fixing the relative density of base statioRgnulated network topologies with base stations at hexalgon
to interferers. If the transmit power budgety, are not |attice sites, and interferers distributed randomly on rgda
sufficiently large to permit the approximations in(31), ¢ circular network on the plane. We simulated each configomati
use [28) with the approximation fgf and by observing that 5000 times. The representative transmitter was placed with
r1 follows the nearest neighbor distribution for Poisson poigniform probability in the center-most cell.
processes [18] as follows For each trial, we placed 4000 interferers randomly in
(33) circular networks with radii selected to meet target wisste
node densities ofl0—2,10-3, and 10~* nodesm~2. The

The area-averaged spectral efficiency of a random link avefrcular network was overlayed on a hexagonal grid of base
aged over realizations di; can then be found by removingstations which extends beyond the edge of the circular métwo
the conditioning on; andIl; by substituting[(B) into[(29) and of interferers. The base stations were spaced such that thei
integrating with respect to the density in{33) which yie{@8) densities wer0%, 10%, 5% and2.5% of the wireless-node
at the top of this page. We were unable to find a closed forgiensity. We simulated systems with both unlimited transmit
expression for the second term on the RHS[ol (32) and thgéwers (to simulate the sufficient-power case) and powers
use numerical integration to evaluate it. limited to Py; = 200mW.

The channel coefficient between the antenna of wireless

B. Comparison Between Random and Hexagonal Cells nodei and antenng of the representative base station was

For systems with limited transmit powers, we numericalljnodeled as,/G,r; “g;;, wherea = 4, G, = 10~°m*, and
evaluated and plotted equations for the spectral efficieocy g¢;; are i.i.d.CN(0,1) random variables which represents the
responding to random and hexagonal cells in Figlre 3, whararrow-band Rayleigh fading channel.
the solid and dashed lines represent hexagonal and randorh) Sufficient Transmit PowersEigurel4 illustrates the area-
cells respectively. The transmit power budget was 200 m\W aaderaged uplink spectral efficiency for wireless-node iiexss
wireless-node density wa®—3 with different relative density of p,, = 1073 and p,, = 10~2 nodesm~2, and unlimited

V. MONTE CARLO SIMULATIONS

Jri(r1) = 2mpgrie” " i forr > 0.



N 10 - 10"

< N

& s

s 2

5\ 10 4 = 10 E|

S 2}

.g | p/p, = 0.05 e

= =1 Q0 10’1 ! .

W 10 E é :

C_E 4 T 7P0 =05

= _ _

g S o ~P, =025 |

o 107° * Simulation: p = 1072 nodes/m?| | 5 P, =0.05 1

[9p] . . -2 2 @ P =0.01

c o Simulation: p_ =10 “ nodes/m =8 Py T Y

© w N °

() — Asymptotic 10

= 100 i 10° 105, .. :
10° 1 2 Number of Base Station Antennas

10 . 10
Number of Base Station Antennas
Fig. 5. Outage spectral efficiency vs. number of receiverarae for wireless-

Fig. 4. Area-averaged spectral efficiency vs. number ofivecantennas for node densities gf,, = 10~2 nodesm 2 with unlimited transmit powers and
wireless-node densities gf, = 10~3 and py, = 10~2 nodesm—2 with base-station density equaling% of wireless-node density, with hexagonal

unlimited transmit powers and hexagonal cells with baatiest density of Cells.
pt.

-
o

transmit powers per node versus the number of antennas at
representative base station. The square and asterisk mmar
represent wireless-node densities 16f2, and 10~3 nodes

m~2, respectively and the solid lines represent the asympto

area-averaged spectral efficiency frdm](19). - p/p,=02
Note that the asterisk and square markers coincide in 10" o PP, =01 3
cating that the absolute density of interferers does naceff . p/p. =005
the area-averaged spectral efficiency appreciably, arsdtite tw _
relative density of interferers to base stations that msatteur- 102 . — Asymptotic ,

Mean Spectral Efficiency (b/s/Hz)

thermore, note that the asymptotic approximatiod (24) $ol

when N is sufficiently large. When the base-station density 1s

20% of theactive wireless-node density, the asymptotic anglig. 6. Area-averaged spectral efficiency far = 10—+ nodesm 2 with

simulated area-averaged spectral efficiency differ by fleaa different relative density of base station to interfereral diexagonal cells,

10% whenN > 10. For lower densities of base stations, th&"d 200mW transmit power limits per wireless node.

convergence is slower, e.g. when the base-station derssity i

5% of the active wireless-node density, the difference betw

the simulated and asymptotic area-averaged spectrakeifizi each base station.

drops below 10% only whetV' > 37. 2) Insufficient Transmit PowerFigures 6 and]7 illustrate
We analyzed the outage spectral efficiencies from the sitite area-averaged spectral efficiency vs. number of receive

ulated data, where spectral efficiency with outage proligbilantennas fop,, = 10=* and p,, = 1072 respectively, with

P, means that a fractioh— P, of the links in our simulations Py; = 200mW. The markers represent the simulated area-

achieved that spectral efficiency or greater. Fiddre 5tilites averaged spectral efficiencies for different relative derssof

the outage spectral efficiencies vs. number of receive angenbase stations to interferers. The solid lines are the piexdlic

on the representative link fgr,, = 10~2 nodesm 2 with 5%, asymptotic area-averaged spectral efficiencies obtained b

25% and50% outage probabilities. Note that the intersectionumerically evaluating equation (24).

of the line with the circular markers and théd—' Hz~! mark It is clear from FigureEl6 arld 7 that the asymptotic approxi-

in Figure[® occurs approximately & = 14 indicating that mation [24) holds wheV is sufficiently large. In Figurgl6, the

it is possible for95% of links to achieve 1bs—'Hz~! with simulated and asymptotic area-averaged spectral effieienc

N > 14 when the base-station density is 10% of the density afjree to within 5% fortV > 2 for all the base-station densities

transmittinginterferers. In real systems, the number of node®nsidered. In Figurlgl 7 however, for base-station desstiat

transmitting at any time is far smaller than the total numbeare 5% of the wireless-node density iif~2 nodesm 2, the

of nodes in the network. Suppose that at any one tit0& simulated and asymptotic spectral efficiencies differ bgsle

of nodes are actively transmitting in the network. Figlite than 13% only when there are 13 or more antenna elements

indicates that with a base-station density equalifigof total at the receiver. For base-station densities that are 20%eof t

wireless-node density (including inactive ones), it isglole  wireless-node density, the simulated and asymptotic sgdect

for 95% of links to achieve Ibs~!Hz~! with 14 antennas at efficiencies agree to within 13% whe¥ > 3.

10 . 10
Number of base station antennas
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Fig. 7. Area-averaged spectral efficiency vs. number ofivecantennas for Fig. 9.  Area-averaged spectral efficiency of uplink commations with
pw = 1072 nodesm =2 with different relative density of base stations torandom cells and unlimited transmit powers. Wireless-nddasity p,, =
interferers and hexagonal cells, and 200mW transmit pawetsl per wireless  10~3 nodes /m?2, p; = 10714 and Gy = 1072.

node.

. and p,, = 1073 respectively. The discrepancy in the spectral

‘ ‘ 5 efficiency is a result of the maximum transmit power. por=
10~4, a larger fraction of nodes transmit BRi; compared to
pw = 1073, resulting in higher SIRs fop,, = 10~*. The
higher total interference power fqr, = 10~3 is offset by
increased signal powers due to shorter links since thelvelat
base-station to wireless-node density is fixed.

—_ 102 -
—p, =102 P =05
— 102 -
—~—p, =102, P =025
—=-p, =107, P =005

Spectral Efficiency (b/s/Hz)

10 —-p, =107, P_=001] |
¢ ---p, =10 P =05
o “xop, =107, P =025| | B. Poisson Cell Model
‘ -a-p, =10 P =005 We verified [32) and[{31) by Monte Carlo simulations of
10,4;// R Tefpwv=10"“, Py =001] ] the network topology. We placed base stations in a circular
10° 10' 10 network of radius . The numbers of base stations were
Number of Base Station Antennas selected to achieve relative densities of base stations-to i

i - _ terferers of 20%, 10% and 5%. The network of base stations
Fig. 8. Outage spectral efficiency vs. number of receive ranate for . . .
wireless-node density,, — 10—+ and 10-2 nodesm—2 and base-station Was then re-centered such that a base-station is at then.origi
density equal to 10% of wireless-node density, hexagoni&d ead 200mW 4000 interferers were then placed in a circular network of
transmit power budget. The solid lines represpat = 10~2 and dashed radius R, centered on the base station at the Orlgln with
lines representp,, = 10~%. The markers represent the different outage 3
probabilities, P, shown in the legend. Selected to achieve a wireless-node densityl@f® nodes

m~2. This experiment was repeated 1000 times. For each
trial, the spectral efficiency of a link placed in the center-
most cell was collected and averaged. The transmit power of
At low wireless-node densities, the simulated spectrat eféach wireless node was set according[fo (3) wihh = co
ciencies converge more rapidly (compared to high denyitigso simulate the sufficient power case) By = 200 mWV.
to the asymptote because a larger fraction of nodes trags-= 10-°m®, anda = 4, were assumed.
mit at the powgr limit. The e.d.f. of interference powe_rs at Figure[® shows results of Monte Carlo simulations and
Fhe representative receiver thus converges more rapidly th@ asymptotic expression given by {31) for systems with
its asymptotic value. The rate of convergence of the e.ddnlimited transmit powers per node. Note that the simutatio
of interference powers controls the rate of convergence @fatch the asymptotic results to within 10% whéh > 9
the Jrellgenvalues of the spatial interference covarianceixnator a relative base-station to wireless-node density of 20%
n
S pigig! (see AppendikA and Section 3 of [26]) whichFor lower relative densities, the convergence is slower. Fo
affects the convergence rates of the normalized SIR amg relative density, the simulations match the asymptotic

spectral efficiency. expression to within 10% only whelN > 20 and only when
Figure[8 shows the outage and area-averaged spectral éf> 37 for 5% relative density. The rate of convergence for
ficiencies forp, = 10~ (solid lines) andp, = 10~3 random cells is slower than that for hexagonal cells because

(dashed lines) nodes~2, 10% relative density of base-the range of transmit powers is much larger for random
stations to interferers anft,; = 200mWW. Note that with 10 cells compared to hexagonal cells which results in slower
antennas at the receiver, area-averaged spectral effeseofc convergence, as explained in Section M-A. Figuré 10 shows
approximately 0.2 and 0.3 b/s/Hz are possiblefgr= 10"* simulations of systems with a 200 mW transmit power limit.
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is approximately 1bs—'Hz~!. If we assume that 10% of all
interferers are actively transmitting at any one time, thigor

of base station to total wireless-node density has to bel jiist

to achieve a area-averaged spectral efficiencylof 1 Hz1,

as given by[(IB). For systems with insufficient power, ilee, t
cells are so large that not all of the interferers will ackigve
target received power at their base stations, the expreésio

* p/p, =02 the area-averaged spectral efficiency is more complicatdd a
o plp,=0.1 has to be evaluated by numerically. We verified the accuracy

=
o

=
(=]
)
T

=

o
P
=2

Mean Spectral Efficiency (b/s/Hz)

a p/p, =0.05 of the derived expressions by Monte Carlo simulations which
— Asymptotic were also used to study the outage spectral efficiencythe.,
10 ‘ spectral efficiency that is achievable with a given probghil

1

10" \We found that in the sufficient power case, with 14 antennas
per base station and single antennas at each wirelessarutie,
Fig. 10. Area-averaged spectral efficiency of uplink comivations with  With 10% of interfererdransmitting simultaneousigt any one
random cells and 200mW transmit power limit per node. Waglrode time, over 1bs—1H 2" is achievable by 95% of interferers
densityp., = 1077 nodes /m?, p; = 107* and G, = 1077, when the ratio of base-station to active wireless-nodeitless
is 1%.
Comparing the area-averaged spectral efficiencies forgaexa
The target received powes;, = 10~'2. For relative base- onal and Poisson cells, we find that the difference in area-
station to wireless-node densities of 20%, 10%, and 5%, tAeeraged spectral efficiency between the two models dimin-
simulated area-averaged spectral efficiencies are wit 1ishes with increasingv. At modestN we found that hexag-
of the asymptotic prediction wheN > 6, N > 9 andN > 9 onal cells can increase the area-averaged spectral efficien
respectively. The convergence of the simulated area-gedraover random cells several-fold as illustrated in Figure 3.
spectral efficiencies to the asymptotic values is faster forThe findings of this work are useful for designers of
systems with limited transmit power as the range of transngigllular wireless systems such as pico-cells and city-wide
powers in the network is smaller when there is a bound on tfieaccess as they provide simple expressions for the spectral
transmit power. efficiency and hence data rates as a function of tangiblesyst
parameters such as user and base-station densities, namber
base-station antennas and random versus regular diginbut
of base stations.
We have derived an asymptotic expression for the area-
averaged spectral efficiency of the uplink in wireless nekso VIl. ACKNOWLEDGEMENT
with multi-antenna base-stations in networks with hexadon
cells, a model which is known to be difficult to analyze ang
is typically handled in simulation. We extended the resul
to networks where base stations are distributed accordirag t
Poisson point process on the plane and derive an expression f
the area-averaged spectral efficiency of a random link where
the averaging is over the fading, and spatial distributimfrtee A- Proof of Theorem 1
wireless nodes and base stations. We assumed a power contrdb derive the normalized SIRy, we first modify the sys-
algorithm for which interferers try to achieve a target ieed tem model from Sectiof]ll. We assume that thid wireless-
power at the base stations to which they are connected. Thigle transmits with powe?, = N5 P, fori = 2,3,--- ,n+1,
power control algorithm which has also been used in [8] awhereP; is as defined in Sectidn Il, whereas the representative
related works ensures that uplink spectral efficiencieskase transmitter transmits with poweP;. Thus, the SIR of this
to the average value with high probability when the number sf/stem , is equivalent t&V ~ % times the SIR of the original
antennas per link is large and the interferers have high povegstem in Sectiofilll where the interferers transmit with pow
budgets. P;. Let the matrixP = diag(Pory ®, P3ry @, -+, Puy1r, ).
It is found that if the cell sizes are small enough that allhe SIR of this system normalized by is
interferers are able to achieve the target received signaép 1 1 1
at their base stations (which we call the sufficient-powsega BN = NgI <NGPGT> g1 (34)
the area-averaged spectral efficiency takes a simple foremgi
by (19). Note that for a fixed ratio of base-station to wirsleswhereG is a matrix whoseé-th column isg; ;. Note that[(b)
node densitie®;/p., asp,, increases, the system eventualland [34) are equal.
moves to the sufficient-power case so this is an effective wayObserve that (34) and](8) in Lemrhh 1 take the same form
of scaling the density of such networks. if the e.d.f. of the diagonal entries & convergesw.p.1 to
From [19), note that with 7 antenna elements per baadimiting function H(z) as N andn — oo, and there exists
station andv;/p,, = 0.1, the area-averaged spectral efficiencgn N, such that for allv > N, the eigenvalues o}%GPGT

0
Number of Base Station Antennas

VI. SUMMARY AND CONCLUSIONS

We would like to thank the anonymous reviewers for their
omments which have greatly improved our exposition and the
Eositioning of our results with respect to existing litenat
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are bounded from below. The latter requirement is satisfied @ Taking the derivative of the RHS of {39) and simplifying

shown in the following lemma. yields:
Lemma 5:Let A (A) denote the minimum eigenvalue of - jrr(z)  27p, 271 2y
the matrixA. Consider the matrix = o © {P‘*} x
n+1 27pr _2_1 o 2
1 o —_— [e3 [e3
_ 1 b el ¥ T fp(r)T=dr. (40)
K = GPG = N7 ;ngzgi : (35) cal o/

Substituting [(4D) and integrating, the RHS [of (9) becomes
Then0 < Mgy < Apin (K), w.p.1 for somely, andVn > Ny < rdH(r) 00
where Ny is a positive integer. me / =mc /
Proof: Please see Appendix D b -~ ) o
Hence, what remains is to show the convergence of the e.d.f. _ 2mpum / 17’73 dr fr(z)as de
+mT

_2
T «
1+ mt

27y
Thw dr

Taz7) E [Pé}
1+m™m co

of the received interference powers. Recall thanterferers /b

are distributed in a disk of radiuR centered at the origin. 27 P 2 2m

SettingG; = 1 for notational convenience (it will be reintro- = —, © {PQ} miam ese ( )

duced in the final expressions) apgd= Pz-ri‘“, the CDF of 2 P _2 oo ,

the received power from wireless-nodlés - v / g dr fer(x)z=dx. (41)
Pr{p; <a} =Pr{PN%r;* <z} Substituting [(411) into[{9) completes the proof.

efie ()

Pz} fA(P,)dP;, (36) B. Proof of Lemm&ll
The proof mirrors that of the proof of Lemma 4.3 in [19]

where f5(P,) is the PDF ofP; for a finite N. but since the noise power is neglected in our model, a modified
Next, we use the following lemma which is proved inversion of the proofis required. L&t, A, - - - , Ay denote the
Appendix[E eigenvalues oR, and perform an eigen decomposmon]ﬁf
Lemma 6:For both the hexagonal-cell and Poisson- ce'ﬁUCh thatR = UTAU. Denoting thei-th entry of the vector
models, as, N, R — oo , Us by u;, we have
1 1 X Jug |2
Pr i o i ° Py VNZNZ SVE (42)
vN = \z/) 7" i=1 7

2 which is finite w.p.1 for N > Ny since Ay, < \;. Note
1 [Pw <§)a ]{P o) <) fp(P,). (37) that asn,N — oo, the e.d.f. of the eigenvalues dk,
¢ < ¥ n(N), converges with probability 1 to a limiting probability
(32) indicates that the transmit power of a node randonwstribution\p(/\) [28].
distributed with uniform probability in the circular netwoto For anyN > Ny, set ad; > 0 and pick a finite partition of
be asymptotically independent of its normalized distamosf the rangg\,;, 0o) into M intervals(Iy, I, - - - In;) such that
the origin as the quantity in the brackets [n](37) equals the

1 M oo
probability thatr; /+/N exceedgP;/x)=~. From [36), Lemma Z \I/({k) _/ ld\y()\) <6, and (43)
[, and the bounded convergence theorem;,d@$, R — oo in = I 0o A
the manner of Lemm@al 6, o M W (1)
o 2 FATO) =D =5 < b, (44)
e+ [ (1222 (2)) 1y ar = "
¢ z b where ¥ (I}) is the probability that a random variable with
(38) CDF () is in the intervall, and I} and I} are the left and
—Fp (%) _ w2 p [Pg} right edge of the interval,. Consider the events
C 62
2 & 2 — 2 _
—|—%I_E/ fp(P)PEdP. (39) El—{ Z ui—\I/N(Ik) <M,V/€—1,---,]\/f} and
% N EI

(36) to [38) follows from [(37), and from substituting = 5 43)
(77”“’)2 {|\I!N(Ik) U(I)] < ]\;,szl,---,JV[} (46)

By the Glivenko-Cantelli theorem, the e.d.f. of a set of
i.i.d. random variables converges uniformiyp.1, to its CDF. where U 5 (I;,) denotes the probability that a random variable
The deviation of this e.d.f. from the CDF can be boundédith CDF ¥y (-) is in the intervall,. If both £, and E; hold,
by an exponentially decreasing function of independent anda? =0, following [19], we have the followingu.p.1.
of the CDF[27]. Hence, by the Borel Cantelli Lemma, the Ik + 252
e.d.f. of thep;s convergesw.p.1 to the RHS of [[3D), i.e. v < Z
H(z) = Pr{p; < =}, even though the CDF is dependent on k=1

/—d\If +61+25 (47)

ey



where recall that the left-edge of the first partitiﬁ{n: Aep. I¢={i:ry > 1,1 <i<n+ 1} is the set of remaining

Similarly we can show that.p.1, interferers. The step froni_(b1) td (52) is from substituting
% q 5 c=n/N and [1).
YN = /O Xd‘I’()\) — 01— 2@- (48)  For the hexagonal-cell model, witd; denoting the area

of each hexagonal celt,, = /Ay /(27). For the Poisson-

Note that [47) and.(48) are similar in form to correspondingy| model, . = /In2(p; 7). These values are selected
expressions in [19] except that the noise pow_%np [19]is  syuch that if we place disks of radius around each base-
replaced with),,. The remainder of the proof is identical tOstation, the fractional area occupied by the union of these

the proof of Lemma 4.3 in [19] witly* replaced by, disks is 1, exactly for the hexagonal-cell model, amdp.1
for the Poisson-cell model (see Chapter 3 of [18]). Thus, as
C. Proof of Lemmé&l4 n, N, R,— oo, with probability approaching 13 |Z| — ¢/2

To find fpy, (P|IL,), let 2, be the union of the set of &N 12| = ¢/2. Let the first term on the RHS of(52) be

NxN
disks of radiusu centered at each of the base stations. Thyffenoted byT: € CT. Note from the system model that
for = S PI\{! we have T S R and Pﬂ“;a — min p&;: ,P]\{ R >0 for ¢ el
_ _ _ and R sufficiently large. From[{82) and Weyl's inequality (see
Pr(P; < 2[Il;) = Pr(i-th wireless-nodec Z,[I1;)  (49) e g., [29]), A\min(K) > Amin (T1). Additionally, from [30], as

n, N — oo such thatn/N — ¢/2,

1/«
with v = zp—Gf . The set=,\B(0,v) forms a Boolean

model with radiusy disks as the primary grains (see Chap- , (T1) = Amin(T4)
ter 3 of [18]). The fractional area of the plane occu- ~ " mn

pied by Z,\5(0,v) equaist — e~ wp.1. [18]. Since = (Z2)" G, min (&,PM) (1—+/2/0)? wpl.
c t

Pr(i-th wireless-nodee B(0,v) = 0), we have forr < Py, G
Pr(P; < z[TI,) = 1 _e—pm(%)% (50) Hence, asn, N,R — oo, w.p.1, the limiting e.d.f. of the
. . eigenvalues ofK has support that is bounded from below
and Pr(P; < «(ll;) = 1 if = > Py. Taking the py a non-negative numbek,,. Note that)\, could equal

derivative with respect ta yields (26). Taking the integral 1} . (T,) for example. Additionally, from [26] for suffi-

Jo~ p% fpm, (pTL;) dp using [26) yields [(25). When condi-ciently large N, w.p.1, no eigenvalues of the matri occur

tioned onry, the result still holds by the mixing property ofoutside the support of the limiting e.d.f. of the eigenvaloé

the Poisson Voronoi tessallation (e.g. sép. | K. Hence, forN sufficiently large, there are no eigenvalues
of K that are less than,, > 0 w.p.1.

D. Proof of Lemm&l5
Recall thatp;, = P,Gyr;“, and forr. > 0 defined

subsequently, write the matrix E. Proof of Lemm&l6
n+1
K— N5-1 Zpigigj Here, we show that-;/v/N and P, are asymptotically
=2 independent for both hexagonal and Poisson cells. Reall th

1 NEPCr— g ol 1 NEPGr—g gl nodei is distributed with uniform probability in the radius
—_ — 2 . . J— 2 . . . . .
=N Z Gty 8l Ty Z Gl 88y R circular network and;, r; and P; are its distance to the

i€l N i€ze origin, distance to its closest base station and transnvitepo
_ L Z N2 min (%7 pM) R_(’Gtgigj respectively, anc, is the union of the set of disks of radius
N &~ Gy v centered at the base stations. Conditionedrort yv/N,
1 . B . o nodes is uniformly distributed inB(0, y+/N). Hence,
+ ~ ZNS (Pﬂ"i % — min <pé;: ,PM> R°‘> Gtgigj
ieZ
r
1 N . < d < = ;< ;<
+ 5 D NERG “gig] (51) Pr{m =R _y} Pr{m = _y\/ﬁ}
1 i€zTe P pre Area(EU N B(0, y\/N))
= LS (TP i (P2 ol = (53)
N iEI( C ) m1n< Gt ’PM> Gtgzgl ﬂ-yQN

+ 1 ZN% (Piri_a _ min (PH“?’PM) R‘O‘) Gtgigg For hexagonal cells, a& and R — oo, the RHS approaches
Gy Fx(v) from (I1) as the edge effects diminish. For Poisson

1 o e i cells, the set=,\B(0,v) forms a Boolean model and as
TN Z N=PiGir; " gig,- (52) N oo, the RHS of [GB) converges to— ¢ 7™ w.p.1
ieze (see Chapter 3 of [18]). Hencey; andr;/v/N are asymp-

whereZ = {i : ry; < r.,1 < i < n+ 1} is the set of totically independent and sincg is a function ofry;, P; is
interferers that are closer thap to their closest base-stationsasymptotically independent of /+/N. Thus, asV — oo, with



probability approaching unity,

1 1
ri IS Ti P\~
Pr > — Py —Pr > —
2
R (5)}
=——*—7 P .
R? {o<(;¢) a\/N<R}

Note that1 the RHS is simply the CDF of; evaluated at
VN (£)=. Substitutinge = n/N, (), Bayes' rule, and
rearranging terms in the RHS of the last equation yidlds. (373°!
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