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Abstract—It was conventionally regarded that the approximate
Bayesian theorem based existing probabilistic data association
(PDA) algorithms output the estimated symbol-wise a posteriori
probabilities (APPs) as soft information. In our recent work,
however, we demonstrated that these probabilities are not the
true APPs in the rigorous mathematical sense, but a type of
nominal APPs, which are unsuitable for the classic architecture
of iterative detection and decoding (IDD) aided receivers. To
circumvent this predicament, in this paper we propose an exact
Bayesian theorem based logarithmic domain PDA (EB-Log-PDA)
method, whose output has similar characteristics to the true
APPs, and hence it is readily applicable to the classic IDD
architecture of multiple-input–multiple-output (MIMO) systems
using the general M -ary modulation. Furthermore, we investigate
the impact of the EB-Log-PDA algorithm’s inner iteration on the
design of EB-Log-PDA aided IDD receiver. We demonstrate that
introducing inner iterations into EB-Log-PDA, which is common
practice in conventional-PDA aided uncoded MIMO systems,
would actually degrade the IDD receiver’s performance, despite
significantly increasing the overall computational complexity
of the IDD receiver. Finally, we investigate the relationship
between the extrinsic log-likelihood ratios (LLRs) of the proposed
EB-Log-PDA and of the approximate Bayesian theorem based
logarithmic domain PDA (AB-Log-PDA) reported in our previous
work. Despite their difference in extrinsic LLRs, we also show
that the IDD schemes employing the EB-Log-PDA and the AB-
Log-PDA without incorporating any inner PDA iterations have
a similar achievable performance close to that of the optimal
maximum a posteriori (MAP) detector based IDD receiver, while
imposing a significantly lower computational complexity in the
scenarios considered.
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I. INTRODUCTION

THE probabilistic data association (PDA) filter tech-
nique constitutes a successful statistical approach to

the plot-to-track association problem of radar systems [1],
[2] and to the visual target tracking problem in the
field of computer vision [3]. Recently, it has also been
invoked for low-complexity, high-performance soft-input–
soft-output (SISO) detection/equalization in multiple-input–
multiple-output (MIMO) fading channels [4]–[10]. In this
scenario, the probabilities of the potential candidate symbols
serve as the soft input/output information and are typically
estimated using an approximate version of the Bayesian for-
mula relying on a self-iterative process. The key operation in
this process is the iterative approximation of the interference-
plus-noise term obeying a Gaussian mixture distribution as an
ever-updated multivariate Gaussian distribution [4]–[10].

Other alternative SISO MIMO detection algorithms include
(but are not limited to) the high-complexity maximum a
posteriori (MAP) algorithm, the family of soft interference
cancellation algorithms [11], [12], and the list sphere decoding
(LSD) algorithm [13]. More explicitly, the MAP algorithm
achieves the best performance, but its computational com-
plexity increases exponentially with the number of transmit
antennas. Compared with the MAP algorithm, the LSD has a
suboptimal performance with reduced complexity. However,
the size of the LSD’s candidate list is determined by the
SNR-dependent sphere radius, which still results in an ex-
cessive complexity for the scenario of low-SNR and/or high-
throughput MIMO systems [14], especially in the vicinity of
the “turbo-cliff”. The soft interference cancellation algorithm
has a substantially lower computational complexity than the
MAP and the LSD algorithms, but its achievable performance
is also less attractive. Since the PDA algorithm was shown
to achieve a near-optimal performance at a low computational
complexity in uncoded systems [4], it is interesting to inves-
tigate its potential in coded MIMO systems.

The output symbol probabilities of the conventional PDA
detectors/equalizers were widely regarded as a posteriori
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probabilities (APPs) without causing any notable problems
[4]–[10]. This is because i) they qualify as some form of a pos-
teriori estimates based on the a priori known received signal
and the channel matrix, and hence are typically treated as the
true APPs; ii) they are eminently applicable to numerous appli-
cations, including the multiuser detection (MUD) of uncoded
code-division multiple-access (CDMA) systems [4], the multi-
stream symbol detection of uncoded MIMO systems [5], [9],
the soft decision equalization of frequency-selective MIMO
channels [6]–[8], as well as the distributed soft reception in
base station cooperation [10]; iii) additionally, the equivalent
bit-wise log-likelihood ratios (LLRs) generated from these
probabilities are also applicable to forward error correction
(FEC)-coded MIMO systems employing the traditional open
loop receiver architecture, in which the PDA detector is not
required to generate bit-wise extrinsic LLRs [15].

However, as pointed out in [16], [17] that upon considering
the more powerful iterative detection and decoding (IDD)
receiver architecture of high-throughput M -ary modulation
aided MIMO systems, the IDD receiver design using the PDA
based algorithms becomes challenging if the estimated output
symbol-wise probabilities are still treated as the true APPs.

First of all, it was not clear how to produce the correct
extrinsic LLRs required by the outer FEC decoder with respect
to the approximate Bayesian theorem based existing PDA de-
tectors until very recently [16], [17]. Although an IDD scheme
employing the existing PDA detector was proposed in [18],
it was essentially an MAP detector based IDD arrangement
using a hard PDA detector for generating the candidate-search
list, and the PDA did not generate the true APPs for channel-
decoding. In line with the conventional interpretation, namely
that the symbol-wise output probabilities of the existing PDA
detectors are APPs, one may assume that a plausible technique
of generating the bit-wise extrinsic LLRs at the output of PDA
detectors is to subtract the bit-wise a priori LLRs from the bit-
wise a posteriori LLRs generated from the estimated symbol-
wise probabilities of the existing PDAs. Unfortunately, this
classic relationship no longer holds for the existing PDAs,
because it was shown in [16], [17] and will be demonstrated
further in Section III that the symbol-wise probabilities –
which act as the output of the existing PDAs – are actually not
the true APPs, but some sort of nominal APPs. Surprisingly,
these nominal APPs had been regarded as the true APPs in the
open literature [4]–[10] for a long time, and the distinctions
between these nominal APPs and the true APPs were never
noticed until recently [16], [17], where it was shown that this
dilemma may be potentially misleading for designing IDD
receivers relying on the existing PDA based methods.

Secondly, the family of PDA based detectors have a self-
iterative structure in uncoded systems, where the estimated
symbol-wise nominal APPs are delivered to the next inner iter-
ation after the current inner iteration is completed. It has been
revealed that introducing inner iterations into our previously
proposed approximate Bayesian theorem based logarithmic
domain PDA (AB-Log-PDA) [16], [17] actually degrades
the achievable performance of the IDD receiver, which is
in contrast to the beneficial impact of PDA detector’s inner
iterations in uncoded systems. However, when an IDD scheme
based on other type of PDA algorithm, if any, is considered,

the question of how to configure the inner iterations of this
type of PDA remains an open problem.

Against this background, in this paper we aim for the in-
depth characterization of the existing PDAs’ output and then
for designing a novel PDA approach, whose output exhibits the
main properties of the true APPs. As a benefit, the proposed
PDA approach becomes immediately applicable to the classic
IDD architecture. The main contributions of this paper are as
follows.

1) We propose an exact Bayesian theorem based logarithmic
domain PDA (EB-Log-PDA) approach for the IDD scheme of
FEC-coded MIMO systems using arbitrary M -ary modulation
for transmission over fading MIMO channels. As opposed to
that of the existing PDAs based on an approximate version
of the Bayesian theorem [4]–[10], [16], [17], the estimated
symbol-wise output probabilities of the EB-Log-PDA exhibit
similar characteristics to the true APPs. Hence the bit-wise
extrinsic LLRs delivered by the proposed EB-Log-PDA to the
outer FEC decoder may be calculated simply by subtracting
the bit-wise a priori LLRs from the bit-wise a posteriori
LLRs, which are generated from the symbol-wise output APPs
of the EB-Log-PDA. Furthermore, in contrast to the existing
probabilistic-domain PDAs [4]–[10], the proposed EB-Log-
PDA based detector operates in the logarithmic domain, which
results in a better numerical stability and a higher numerical
accuracy in the context of IDD receivers.

2) We investigate the relationship between the EB-Log-
PDA based IDD scheme and our previously proposed AB-
Log-PDA aided IDD scheme [16], [17]. We demonstrate
that the two schemes achieve a similar performance when
dispensing with inner iterations within the PDAs. However,
this does not mean that the extrinsic LLRs output by the
two PDAs are identical. Actually, the EB-Log-PDA may be
viewed as a scheme using the same a priori information
twice in different processing blocks, whereas the AB-Log-
PDA utilizes the corresponding a priori information once.
Our analysis of the cumulative distribution functions (CDFs)
and the probability density functions (PDFs) concerning the
differences between the two types of extrinsic LLRs reveal that
these two types of extrinsic LLRs are different, even though
they might be similar in certain scenarios.

3) We investigate the impact of the inner iterations within
the EB-Log-PDA on the achievable performance of the cor-
responding IDD scheme. We will demonstrate that, similar
to the scenario of the AB-Log-PDA, the performance of the
EB-Log-PDA-based IDD scheme is also degraded when inner
iterations of the EB-Log-PDA are invoked. More specifically,
the performance of the EB-Log-PDA based IDD scheme is
consistently degraded as the number of inner iterations within
the EB-Log-PDA is increased. By contrast, the performance
degradation profile of the AB-Log-PDA based IDD scheme
exhibits fluctuations upon increasing the number of inner
iterations within the AB-Log-PDA. The reasons accounting
for these phenomena are discussed as well.

4) When dispensing with inner iterations within both the
EB-Log-PDA and the AB-Log-PDA in the context of our IDD
architecture, the resultant IDD receiver exhibits a performance
close to that of the optimal MAP-based IDD scheme, while
imposing a significantly lower computational complexity in
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the scenarios considered.
The remainder of the paper is organized as follows. In

Section II, our FEC-coded MIMO system model is detailed. In
Section III, the proposed EB-Log-PDA relying on an external
source of a priori soft information is presented. Then, in
Section IV, the method of calculating the extrinsic LLRs for
the EB-Log-PDA is derived, and the relationship between
the extrinsic LLRs of the EB-Log-PDA and that of the AB-
Log-PDA is elucidated as well. Our simulation results and
discussions are provided in Section V, while our conclusions
are offered in Section VI.

II. SYSTEM MODEL

Similar to [16], [17], we consider the FEC-coded spatial
multiplexing MIMO system of Fig. 1. At the transmitter end,
the (Lf × 1)-bit source frame x1 is first encoded by a rate
R < 1 FEC encoder (typically a convolutional code, a turbo
code or an LDPC code) into the (

Lf

R × 1)-bit coded frame
c1. In order to guard against bursty fading, c1 is then passed
through a bit-interleaver. Then, the (

Lf

R × 1)-bit interleaver’s
output frame d2 is mapped into the (

Lf

RMb
× 1)-element

symbol frame s2, with each symbol taken from a modulation
constellation A = {a1, a2, · · · , aM}, where Mb = log2 M
is the number of bits per symbol. Finally, s2 is transmitted
in the form of the (Nt × 1)-element symbol vector s using
Nt ≥ 1 transmit antennas per channel use,1 and s does not
contain any additional space-time coding. At the output of the
fading channel H, the received (Nr × 1)-element complex-
valued baseband signal vector per channel use is represented
by

y = Hs+ n, (1)

where s = [s1, s2, · · · , sNt ]
T is normalized by the component-

wise energy constraint E(|si|2) = Es/Nt in order to ensure
a total transmit energy of Es per channel use; n is the
(Nr × 1)-element zero-mean complex-valued circularly sym-
metric Gaussian noise vector having a covariance matrix of
2σ2INr , where INr represents an (Nr ×Nr)-element identity
matrix; and H is an (Nr×Nt)-element complex-valued matrix
with entries of hji, which are perfectly known to the receiver,
j = 1, · · · , Nr, i = 1, · · · , Nt, Nr ≥ Nt. In this paper, we
assume that

hji = r exp(jθ) (2)

is independent and identically distributed (i.i.d), where the
phase θ is uniformly distributed and independent of the
envelope r, while r obeys the Nakagami-m distribution with
the probability density function (PDF) of [19]

p(r) =
2

Γ(m)

(m
Ω

)m
r2m−1 exp(−mr2/Ω), r ≥ 0 (3)

where Γ(·) represents the Gamma function, Ω � E(r2), and
the fading parameter is defined as m � Ω2/E[(r2 − Ω)2],
m ≥ 0.5. Note that the Nakagami-m fading model captures a
wide range of realistic fading environments, encompassing the
most frequently used Rayleigh fading model as a special case
and often serving as a good approximation to the Rician fading

1This indicates that a single coded bit frame c1 is transmitted by
Lf

RMbNt
channel uses.
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Fig. 1. FEC-coded MIMO system with PDA methods based iterative
detection and decoding receiver. The subscript “1” denotes the processing
modules associated with the “outer” FEC encoder/decoder, and the subscript
“2” denotes the processing modules that are connected with the “inner” space-
time mapper/detector. The arrow with dashed line indicates that s and LD
are the subvectors of s2 and LD2

, respectively. The closed loop of LE2
→

LA1
→ LE1

→ LA2
→ LE2

represents an outer iteration compared to the
inner iteration inside the soft FEC decoder or the soft MIMO detector.

model.2 More specifically, as m becomes smaller, the fading
effect becomes more severe. For example, when m decreases
to 0.5, Eq. (3) approaches the one-sided Gaussian distribution;
when m = 1, Eq. (3) reduces to a Rayleigh PDF, and as
m → ∞, Eq. (3) reduces to a δ-distribution located at r = 1,
which corresponds to no fading of the amplitude, but imposing
a “pure random phase” obeying a uniform distribution on the
circle of radius

√
Ω.

III. THE EB-LOG-PDA WITH A PRIORI SOFT FEEDBACK

FROM THE FEC DECODER

In contrast to the AB-Log-PDA proposed in [16], [17],
where the so-called non-decoupled signal model was used,
below we use the decoupled signal model in order to further
reduce the computational complexity.3 When relying on the
zero-forcing principle based preprocessing, the received signal
model of (1) may be rewritten as

ỹ = s+ ñ = siei +
∑
k �=i

skek

︸ ︷︷ ︸
ui

+ñ
Δ
= siei + ui + ñ︸ ︷︷ ︸

vi

, (4)

2The Rician and the Nakagami-m models may be deemed to behave sim-
ilarly near their mean value. Hence, for the sake of analytical simplicity, the
Nakagami-m model is often advocated in the literature as an approximation
of the Rician model. This approximation is more accurate if the main lobe of
the Rician model’s PDF is concerned, but it becomes inaccurate for the tail of
the Rician model’s PDF. Since bit errors or outages mainly occur during deep
fades, these performance measures are typically governed by the tail of the
PDF, which represents the probability of receiving a low power. As a result,
for deep fades, modeling a Rician fading signal by a Nakagami distribution
of the amplitude leads to overly optimistic results.

3In the non-decoupled signal model, (1) is directly expanded as y = sihi+∑

k �=i
skhk + n, where hi is the ith column of H, i, k = 1, 2, · · · , Nt. As

will be demonstrated in Section V-D, the computational complexity of the
non-decoupled signal model based PDA method is related to the modulation
order M , to the number of transmit antennas Nt as well as to the number
of receive antennas Nr . By contrast, the computational complexity of the
decoupled signal model based PDA is related only to the modulation order M
and the number of the transmit antennas Nt. This is particularly important for
spatial multiplexing MIMO systems, where Nr ≥ Nt is typically required.
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where we have ỹ = (HHH)−1HHy, ñ = (HHH)−1HHn,
si is the ith element of s, and ei denotes an (Nt × 1)-
element vector, whose ith element is equal to one and the
other elements are equal to zero, i, k = 1, 2, · · · , Nt. Note
that although the term ui in (4) appears as the sum of
(Nt − 1) inter-antenna interference (IAI) components, it is in
fact orthogonal to the term siei, which implies that ui does not
impose interference on si. However, it is the interference-plus-
noise term vi that contaminates the detection of the symbol
si.

For uncoded MIMO systems, where no outer source of
a priori soft information about the transmitted symbols is
available, the existing PDA methods typically use the received
signal y and the channel matrix H as input quantities, and
then generate the estimated symbol-wise nominal APPs of the
transmitted symbols {si}i=1,··· ,Nt

as its output. By contrast,
for FEC-coded MIMO systems, we have an extra input quan-
tity, which is the soft information feedback gleaned from the
outer FEC decoder. In this scenario, because the reliability of
the FEC decoder’s output is typically higher than that of the
soft MIMO detector at the previous stage, some of the key
operations of the proposed EB-Log-PDA are implemented in
the logarithmic domain in order to improve the achievable
numerical stability and accuracy.

Although the interference-plus-noise term v i obeys a mul-
timodal Gaussian mixture distribution [15]–[17], initially it is
plausible to obtain a coarse estimate of si by assuming that
vi obeys a single Nt-variate Gaussian distribution. It is worth
noting that in the circumstances considered each element of
vi is the sum of only two scalar random variables for any
Nt ≥ 2, hence, according to the central limit theorem, the
Gaussian approximation of vi does not become more accurate
when Nt is increased.4 This trend is different from that of the
non-decoupled signal model based PDA [16], [17]. In order
to fully characterize the complex random vector v i which is
not necessarily proper5 [20], [21], we specify the mean of

µi � E(vi) =
∑
k �=i

E(sk)ek, (5)

the covariance of

Υi � C(vi) =
∑
k �=i

C(sk)eke
T
k + 2σ2(HHH)

−1
, (6)

and the pseudo-covariance of

Υi � Cp(vi) =
∑
k �=i

Cp(sk)eke
T
k . (7)

Note that (7) holds, because ñ is a circularly symmetric

4From another point of view, for a given data symbol sk , the corresponding
element of vi has a Gaussian PDF centered around sk. However, sk itself
is a non-Gaussian random variable, which leads to a random displacement of
the Gaussian PDF. As such, the accuracy of the Gaussian assumption for vi
does not improve, when Nt or Nr is increased.

5A proper complex random variable’s pseudo-covariance vanishes [20],
[21], and it is sufficient to characterize a proper complex Gaussian distribution
using the mean and the covariance only. However, for a coded system using
M -ary modulation, the in-phase and quadrature components of the complex
modulated signal si might be correlated and/or have different variances.
In this case, it is necessary to take into account an additional second-
order statistics, i.e. the pseudo-covariance [20], to fully specify the improper
complex Gaussian distribution in a generalized manner.

complex-valued Gaussian noise vector and hence it is proper
[20], [21].

Considering the IDD architecture, we define an (N t×M)-
element probability matrix P(z,z′), whose element P

(z,z′)
n,m

represents the estimate of the APP that we have sn = am at the
z-th/z′-th outer/inner iteration of the EB-Log-PDA approach.
More precisely, we have

P (z,z′)
n,m = P (z,z′)

m (sn|ỹ) � P (z,z′)(sn = am|ỹ), (8)

where z and z ′ are nonnegative integers, n = 1, · · · , Nt and
m = 1, · · · ,M . Then we have

E(sk) =

M∑
m=1

amP (z,z′)
m (sk|ỹ), (9)

C(sk) =

M∑
m=1

(am − E(sk))(am − E(sk))
∗P (z,z′)

m (sk|ỹ),

(10)
and

Cp(sk) =
M∑
m=1

(am − E(sk))
2P (z,z′)

m (sk|ỹ), (11)

for (5), (6) and (7), respectively, where the pseudo-covariance
of a complex random vector x is defined as [20], [21]

Cp(x) � E

[
(x− E(x)) (x− E(x))T

]
. (12)

Note that from Eq. (5) to Eq. (11) we effectively use (N t−
1) probability vectors of {P(z,z′)(k, :)}k �=i associated with the
interference signal {sk}k �=i to model vi, where P(z,z′)(k, :)
represents the kth row of the matrix P(z,z′). Since we do not
have any outer a priori knowledge about the distribution of
sn|ỹ at the beginning, P (z,z′)

m (sn|ỹ) is initialized using the
uniform distribution of

P (0,0)
m (sn|ỹ) =

1

M
, (13)

for ∀n = 1, · · · , Nt and ∀m = 1, · · · ,M .
Based on the assumption that vi obeys the Gaussian distri-

bution, ỹ|si is also Gaussian distributed. We define

w � ỹ − siei −
∑
k �=i

E(sk)ek (14)

and

α
(z,z′+1)
i,m � −

[
�(w)

�(w)

]T
Λ−1
i

[
�(w)

�(w)

]
, (15)

where the composite covariance matrix Λi is defined as

Λi
Δ
=

[
� (Υi +Υi) −� (Υi −Υi)

� (Υi +Υi) � (Υi −Υi)

]
, (16)

where �(·) and �(·) represent the real and imaginary part of
a complex variable, respectively. Then the likelihood function
of ỹ|si = am at the (z, z′ + 1)-st iteration satisfies

p(z,z
′+1)

m (ỹ|si) ∝ exp
(
α
(z,z′+1)
i,m

)
. (17)

In the next step, the existing PDA methods employed in
uncoded MIMO systems typically invoked an approximate
form of the Bayesian theorem to estimate the symbol-wise
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APPs [4]–[6], [9], [10], which is

P(z,z′+1)
m (si|ỹ) ≈ p

(z,z′+1)
m (ỹ|si)

M∑
m=1

p
(z,z′+1)
m (ỹ|si)

. (18)

However, we argue that (18) does not conform to the formal
mathematical definition of the APP in Bayesian statistics,6

which is [22]
P (θ|X) ∝ P (θ)P (X |θ), (19)

where the probability P (θ) is an a priori belief of the random
variable θ, and P (X |θ) is the likelihood of the observation
X . Therefore, P (z,z′+1)

m (si|ỹ) calculated with the aid of (18)
does not represent the true APPs, but instead the normalized
likelihoods, which may be regarded as a type of nominal
APPs.7

To obtain the true APP of symbol si at the (z, z′ + 1)-st
iteration of the PDA-aided IDD receiver, we advocate to use
the exact form of the Bayesian theorem. Hence the true APP
estimated at the output of the PDA method is given as

P (z,z′+1)
m (si|ỹ)

=
p
(z,z′+1)
m (ỹ|si)P (z,z′)

m (si)
M∑
m=1

p
(z,z′+1)
m (ỹ|si)P (z,z′)

m (si)

=
exp

(
β
(z,z′+1)
i,m − γ

)
M∑
m=1

exp
(
β
(z,z′+1)
i,m − γ

) , (20)

where P
(z,z′)
m (si) is the a priori probability generated from

the extrinsic LLRs fed back by the soft FEC decoder, and
β
(z,z′+1)
i,m � α

(z,z′+1)
i,m + ln

(
P

(z,z′)
m (si)

)
. Note that γ �

max
m=1,··· ,M

β
(z,z′+1)
i,m is introduced for further improving the

numerical stability and accuracy. For the same reason, (20)
is reformulated in the logarithmic domain as

ψ
(z,z′+1)
i,m

� ln
(
P (z,z′+1)
m (si|ỹ)

)
= β̃

(z,z′+1)
i,m − ln

(
M∑
m=1

exp
(
β̃
(z,z′+1)
i,m

))
, (21)

where we have β̃
(z,z′+1)
i,m � β

(z,z′+1)
i,m − γ, and the second

term of the right-hand-side expression may be computed by
invoking the “Jacobian logarithm’ of [13]. When invoking the
Max-log approximation, (21) may be further simplified as

ψ
(z,z′+1)
i,m ≈ β̃

(z,z′+1)
i,m − max

m=1,··· ,M
β̃
(z,z′+1)
i,m = β̃

(z,z′+1)
i,m . (22)

6For the sake of clarity, here we use P() to denote the symbol-wise
probabilities estimated using the approximate Bayesian formula given by (18),
while using P () to represent ordinary probabilities otherwise.

7Note that these nominal APPs were invoked in the uncoded systems of [4]–
[10] and in the coded system of [15] without imposing any notable problems.
This is because the calculation of extrinsic LLRs was not required in those
contexts.

As a result, the estimated symbol-wise APP of si is given by

P (z,z′+1)
m (si|ỹ) ≈ eψ

(z,z′+1)
i,m , (23)

which will be used for replacing the corresponding element
P

(z,z′)
m (si|ỹ) in the probability matrix P(z,z′). Based on these

updated symbol-wise APPs, the procedure presented above
may be repeated either in the next inner iteration within
the PDA or in the next outer iteration exchanging extrinsic
information between the FEC-decoder and the MIMO detector
to obtain new estimates of the symbol-wise APPs.

For the sake of clarity, the EB-Log-PDA algorithm relying
on the a priori soft information feedback gleaned from the
outer FEC decoder is summarized in Table I.

IV. EXTRINSIC LLR CALCULATION FOR EB-LOG-PDA

A. Method of Calculating the Extrinsic LLRs for EB-Log-PDA

For ease of exposition, in the following we will denote
the left-hand-side term of (18) and (20) as P(s i = am|y)
and P (si = am|y), respectively. As a beneficial result of
replacing (18) by (20), the extrinsic LLRs may be calculated
according to the classic relationship by subtracting the a priori
LLRs from the a posteriori LLRs that are generated from the
estimated symbol-wise APPs of the EB-Log-PDA detector,
hence we have

LEBE (bil|y) = LD(bil|y)− LA(bil)

= ln
P (bil = +1|y)
P (bil = −1|y) − LA(bil)

= ln

∑
∀am∈A+

l

P (si = am|y)
∑

∀am∈A−
l

P (si = am|y)

− ln
P (bil = +1)

P (bil = −1)︸ ︷︷ ︸
LA(bil)

, (24)

where A±
l denotes the set of M/2 constellation points whose

lth bit is +1 or −1, respectively. It is noteworthy that (24)
represents a simpler technique of generating the bit-wise
extrinsic LLRs LEBE (bil|y), as long as the true symbol-wise
APPs of P (si = am|y) may be obtained.

By contrast, this approach is not applicable to the con-
ventional approximate Bayesian theorem based PDA methods
[4]–[10]. Our study reveals that the estimated symbol-wise
nominal APPs obtained from (18) are unsuitable for gener-
ating the correct extrinsic bit-wise LLRs upon invoking the
classic formula (24). This hidden fact is corroborated by the
simulation results of Fig. 2. In the scenarios where the number
of outer iterations ito was set to be higher than zero, it was
observed in Fig. 2 that the BER results of the IDD scheme
using the AB-Log-PDA and (24) became abnormally poor,
when the nominal symbol-wise APPs produced by (18) were
misinterpreted as true symbol-wise APPs. More specifically,
we can observe from Fig. 2 that except for ito = 0, the
BER of the AB-Log-PDA based IDD scheme unexpectedly
degrades upon increasing Eb/N0, and it also deteriorates
when ito increases from 1 to 4. The BER curve of the
ito = 0 scenario characterized in Fig. 2 exhibits a trend
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TABLE I
SUMMARY OF THE EB-LOG-PDA ALGORITHM

Given the received signal y, the channel matrix H and the modulation constellation

A, make preprocessing on the received signal y to obtain ỹ = (HHH)−1HHy.

Step 1. Set the initial value of the inner iteration index to z′ = 0. If the outer

iteration index z = 0, initialize the values of the symbol-wise APPs as

P (z,z′)
m (sn|ỹ) = 1/M , for ∀n = 1, 2, · · · , Nt and ∀m = 1, 2, · · · ,M .

Otherwise, initialize the values of P (z,z′)
m (sn|ỹ) using the a priori probabilities

generated from the feedback extrinsic LLRs of the soft FEC decoder.

Step 2. Based on the values of
{
P(z,z′)(k, :)

}
k �=i

, calculate P (z,z′+1)
m (si|ỹ):

for i = 1 : Nt

calculate the statistics of the interference-plus-noise term vi using (5) - (11),

as well as the inverse of Λi in (16),

for m = 1 : M

calculate P (z,z′+1)
m (si|ỹ) using (14), (15), (21) and (23).

end

end

Step 3. If |P (z,z′+1)
m (si|ỹ) − P (z,z′)

m (si|ỹ)| < ε, ∀i and ∀m, i.e. the

probability-matrix P(z,z′+1) has converged, where ε is a given small positive real

number, or the index z′ has reached a given number of iterations, terminate the

iteration and output P(z,z′+1) . Otherwise, let z′ = z′ + 1 and return to Step 2.

in line with our expectations, because in this case no soft
information is fed back from the FEC decoder and hence the
term P

(z,z′)
m (si) in (20) can be eliminated. In other words,

(18) becomes equivalent to (20) in this scenario. These results
further demonstrate that (18) should be regarded as a sort of
symbol-wise nominal APP, rather than the symbol-wise true
APP, as calculated in (20). As a result, we argue that in order
to generate the correct symbol-wise APPs, which are readily
applicable to (24), the calculation of P

(z,z′+1)
m (si|ỹ) has to

rely on (20) instead of (18) in the PDA based MIMO detector.

Slightly differently from the above-mentioned M -ary mod-
ulation scenarios, there exist two alternative methods of gener-
ating the extrinsic bit-wise LLRs for BPSK modulation aided
MIMO systems. On the one hand, the extrinsic LLR of b il,
simplified as bi, may be formulated as

LEBE (bi|y) = LD(bi|y) − LA(bi)

= ln
P (bi = +1|y)
P (bi = −1|y) − ln

P (bi = +1)

P (bi = −1)
,(25)

where P (bi = ±1|y) is the final output of the EB-Log-PDA
algorithm for BPSK modulation. Alternatively, we have

LD(bi|y) = ln
p(y|bi = +1)

p(y|bi = −1)
+ ln

P (bi = +1)

P (bi = −1)
. (26)

Since p(y|bi = ±1) constitutes the intermediate output of the
EB-Log-PDA algorithm for BPSK modulation, we can directly
obtain

LEBE (bi|y) = ln
p(y|bi = +1)

p(y|bi = −1)
. (27)

B. On the Relationship Between the Extrinsic LLRs of the EB-
Log-PDA and AB-Log-PDA

According to Conjecture 1 of [16], [17], the bit-wise ex-
trinsic LLRs of the AB-Log-PDA algorithm relying on (18)
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AB-Log-PDA, ito = 0

AB-Log-PDA, ito = 1

AB-Log-PDA, ito = 2

AB-Log-PDA, ito = 3

AB-Log-PDA, ito = 4

m = 1.5, 4QAM, 2 × 2,
iti = 0 for AB-Log-PDA,
and the nominal APPs are
misused as true APPs.

Fig. 2. BER of the AB-Log-PDA based IDD scheme, where the nominal
symbol-wise APPs were misinterpreted as the true symbol-wise APPs.

may be approximated by

LABE (bil|y) ≈ ln

∑
∀am∈A+

l

P(si = am|y)
∑

∀am∈A−
l

P(si = am|y) , (28)

where P(si = am|y) is calculated by invoking (18). The
resultant LABE (bil|y) in (28) was shown to work well in the
AB-Log-PDA aided IDD scheme of [16], [17], although the
right-hand-side expression of (28) appears to be in the form of
LABD (bil|y) compared with (24). Therefore, it is important to
investigate the relationship between the extrinsic LLRs of the
EB-Log-PDA formulated in (24) and that of the AB-Log-PDA
calculated by (28).

Theorem 1. For a specific bit bil, the extrinsic LLR of the
EB-Log-PDA algorithm is typically different from that of the
AB-Log-PDA algorithm.

Proof: Based on bil = +1 or −1, the symbols set A
may be divided into the pair of subsets A+

l and A−
l , each

hosting half of the constellation symbols. Without loss of
generality, we assume that A+

l = {a1, a2, · · · , aM/2}, and
A−
l = {aM/2+1, aM/2+2, · · · , aM}. By substituting (18) into

(28), we arrive at

LABE (bil|y)

= ln

⎛
⎝ ∑

∀am∈A+
l

p(y|si = am)

⎞
⎠ /

(
M∑
m=1

p(y|si = am)

)
⎛
⎝ ∑

∀am∈A−
l

p(y|si = am)

⎞
⎠ /

(
M∑
m=1

p(y|si = am)

)

= ln

∑
∀am∈A+

l

p(y|si = am)

∑
∀am∈A−

l

p(y|si = am)
. (29)
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On the other hand, by substituting (20) into (24), we have

LEBE (bil|y) = ln

∑
∀am∈A+

l

p(y|si = am)P (si = am)

∑
∀am∈A−

l

p(y|si = am)P (si = am)

− ln
P (bil = +1)

P (bil = −1)

= ln

∑
∀am∈A+

l

p(y|si = am)P (si = am)

∑
∀am∈A−

l

p(y|si = am)P (si = am)

− ln

∑
∀am∈A+

l

P (si = am)

∑
∀am∈A−

l

P (si = am)
. (30)

Note that (29) and (30) are typically not equal to each other,
because i) the term p(y|si = am) in (29) and in (30) might
be different if the number of inner iterations within the PDAs
is higher than zero8; ii) even if the term p(y|si = am) in (29)
and in (30) would be equal to each other at the same iteration
index (z, z ′), typically (29) and (30) would still be different
from each other, except in some specific circumstances, for
example, when P (si = am) in (30) has the same value for
the different constellation symbols am.

Apart from the nature of difference between the two types
of extrinsic LLRs encapsulated in Theorem 1, the following
proposition further characterizes the degree of difference be-
tween the two types of extrinsic LLRs.

Proposition 1. Let us consider the difference ΔLil =
LEBE (i, l)−LABE (i, l) between the two types of extrinsic LLRs
for each specific bit bil, and also the difference between the
hard-decision results sgn[LEBE (i, l)] and sgn[LABE (i, l)] based
on the two types of extrinsic LLRs for each specific bit bil.
Then, the bit-wise extrinsic LLRs LEBE (i, l) of the EB-Log-
PDA and LABE (i, l) of the AB-Log-PDA are found to be
statistically closest to each other, when the mutual information
(MI) between the bit-sequence output by the interleaver and
the corresponding a priori LLRs fed back by the outer FEC
decoder, namely IA(d2,LA2), approaches either its minimum
value of 0.0 or its maximum value of 1.0.

Remarks:

1) This proposition is inferred from the statistical results
shown in Table II, Fig. 9 and Fig. 10. It can also be
verified by comparing (29) and (30). More specifically,
in the first case, if we have no a priori information
about the bit-sequence output by the interleaver, then
IA(d2,LA2) has a minimum value of 0.0, and P (s i =
am) in (30) becomes a constant for all am. Hence (30)
may be simplified to the form of (29). Similarly, in
the second case, when the reliability of the a priori
LLRs fed back by the outer FEC decoder becomes
sufficiently high, namely IA(d2,LA2) approaches its

8The estimated symbol-wise probabilities which are used for calculating
the statistics of the interference-plus-noise term vi via (5) - (11) might
be different for the AB-Log-PDA and EB-Log-PDA algorithms, even if the
iteration index (z, z′) with z′ > 0 is the same for them.

true APPs

a priori information

AB−Log−PDA

nominal APPs 

a priori information

PDA inner iteration

symbol likelihoods

Normalizing

Invoking Bayesian formula

PDA inner iteration

EB−Log−PDA

(a)

(b)

Fig. 3. The role of the a priori information in the AB-Log-PDA and the
EB-Log-PDA algorithms.

maximum value of 1.0, then there exists a single dom-
inant probability which approaches 1.0 among the a
priori symbol-wise probabilities P (si = am) for all am.
In this case, (30) can also be approximated by the form
of (29), albeit due to the associated approximation, the
number of identical pairs of the two types of extrinsic
LLRs becomes lower than that in the first case, as shown
in the second column of Table II.

2) As shown in Fig. 3 and (18), the AB-Log-PDA has
already invoked the a priori information as the input
of the PDA’s inner iteration for generating the symbol-
wise nominal APPs. By comparison, the EB-Log-PDA
invokes the same a priori information twice: one for
the PDA’s inner iteration (similar to the case of AB-
Log-PDA), and the other for invoking the Bayesian
formula. In other words, the same a priori information
is invoked twice for providing different functions in two
different processing blocks. This feature is also distinct
from the case of the MAP-based MIMO detection,
where the a priori information is used once and it is
uncorrelated with the function of generating the symbol-
vector likelihoods p(y|s). �

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we characterize both the convergence be-
havior and the achievable performance of the proposed EB-
Log-PDA based IDD scheme with the aid of both the semi-
analytical extrinsic information transfer (EXIT) charts [23]
and Monte-Carlo simulations. Furthermore, we investigate
the impact of inner PDA iterations on the attainable per-
formance of both the EB-Log-PDA and the AB-Log-PDA
based IDD schemes, as well as the relationship between the
extrinsic LLRs of the EB-Log-PDA and the AB-Log-PDA.
Additionally, the complexity of the proposed EB-Log-PDA
based IDD scheme is compared both to that of the AB-Log-



8 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

PDA and to that of the optimal MAP based IDD schemes,
which demonstrates the attractive performance versus com-
plexity tradeoff achieved by the proposed EB-Log-PDA based
IDD scheme. The turbo code employed uses two constituent
recursive systematic convolutional (RSC) codes concatenated
in parallel [24]. The RSC codes have a constraint length
of L = 3 and generator polynomials of (7, 5) expressed in
octal form, where half of the parity bits generated by each
of the two RSC codes are punctured, so that the turbo code
employed has a coding rate of R = k

n = 1/2. The turbo code
is decoded by the Approximate-Log-MAP algorithm using
ittc = 4 inner iterations. The interleaver employed is a 2400-
bit random sequence interleaver. The remaining scenario-
dependent simulation parameters are shown in the respective
figures, where the MIMO arrangement is represented in the
form of (Nt ×Nr).

A. Convergence and Performance of the EB-Log-PDA based
IDD

Fig. 4 compares the convergence behavior of both the
proposed EB-Log-PDA based IDD, as well as of the AB-
Log-PDA based IDD and of the optimal Exact-Log-MAP
based IDD schemes using EXIT chart [23] analysis. It is
observed that the EXIT curve of the EB-Log-PDA is close
to that of the Exact-Log-MAP, and almost overlaps with that
of the AB-Log-PDA. More particularly, when the a priori
MI is IA,inner = 0, the Exact-Log-MAP has the highest
extrinsic MI of IE,outer = 0.5596, while the EB-Log-PDA
has a higher extrinsic MI than the the AB-Log-PDA, which
is IE,outer = 0.5334 versus IE,outer = 0.5332. This indicates
that the achievable performances of the EB-Log-PDA and
of the AB-Log-PDA are similar to each other, and both of
them are close to that of the optimal Exact-Log-MAP in the
scenario considered. Additionally, the Monte-Carlo simulation
based detection/decoding trajectories indicate that the EB-
Log-PDA, the AB-Log-PDA and the Exact-Log-MAP based
IDD schemes converge after three iterations. Furthermore, the
performance improvements achieved at each iteration by the
EB-Log-PDA are more significant than those of the AB-Log-
PDA, but less significant than those of the Exact-Log-MAP.

The above EXIT chart based performance predictions and
the convergence behavior of the IDD schemes considered are
also characterized in terms of the BER performance results
of Fig. 5, where the Nakagami-m fading parameter is set to
m = 1.5. Observe from Fig. 5 that the performance of the EB-
Log-PDA based IDD scheme is improved upon increasing the
number of outer iterations ito, where ito = 0 represents the
conventional receiver structure in which the MIMO detector
and the FEC decoder are serially concatenated, but operate
without exchanging soft information. However, the attainable
improvements become gradually smaller and the performance
achieved after three outer iterations in Fig. 5 becomes similar
to that of four outer iterations. This implies that the EB-Log-
PDA based IDD scheme essentially converges after three outer
iterations. A similar convergence profile is also observed in
Fig. 5 for the optimal Exact-Log-MAP based IDD, although
its performance is always marginally better than that of the
corresponding EB-Log-PDA based IDD.
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Fig. 4. EXIT chart analysis of the EB-Log-PDA, AB-Log-PDA and Exact-
Log-MAP based IDD schemes.
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Fig. 5. Impact of the number of outer iterations on BER of the EB-Log-PDA
based IDD scheme.

B. Comparison of the Impact of Inner PDA Iterations on the
Performance of the Two Types of PDA-based IDDs

In Fig. 6, we investigate the impact of the number of inner
iterations of the EB-Log-PDA on the achievable performance
of the IDD scheme. We observe that the performance of the
IDD scheme is degraded as the number of its inner iterations
increases, despite its increased computational complexity.9

This implies that the optimal number of inner iterations of the
EB-Log-PDA conceived for the IDD receiver is it i = z′ = 0.
This is because the inner PDA iterations typically fail to assist
the repeated Gaussian approximation process in finding the
global optimum [9]. Hence, when the reliability of the soft

9This observation was found to be also valid for other system configura-
tions, for example, for Nt = Nr = 4 and ito = 2. However, due to page
limitations, these numerical results are not provided here.
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Fig. 6. Impact of the number of inner iterations within the EB-Log-PDA on
BER of the EB-Log-PDA based IDD scheme.
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Fig. 7. Impact of the number of inner PDA iterations on BER of the AB-
Log-PDA based IDD scheme, as well as the BER comparison between the
EB-Log-PDA and AB-Log-PDA based IDD schemes with ito = 3.

information fed back from the FEC decoder is beyond the
reliability limit that the inner iteration aided PDA can achieve,
the better-quality feedback of the FEC decoder tends to be
degraded towards this limit.

In Fig. 7 the impact of the number of inner AB-Log-PDA
iterations on the achievable performance of the IDD scheme is
investigated. More specifically, it is observed from Fig. 7 that
the optimal number of inner PDA iterations of the AB-Log-
PDA based IDD is also iti = 0, but the specific performance
degradation experienced upon increasing the number of inner
AB-Log-PDA iterations is slightly different from that of the
EB-Log-PDA based IDD, as shown in Fig. 6. This indicates
that the numerical stability of the AB-Log-PDA based IDD
scheme incorporating inner PDA iterations is not as good as
that of its counterpart using the EB-Log-PDA. Additionally,

it is shown in Fig. 7 that the best achievable performance of
the AB-Log-PDA based IDD scheme using iti = 0 is almost
identical to that of the EB-Log-PDA based IDD scheme.

Additionally, in Fig. 8 we investigate the intermediate BER
evaluated at the output of the soft MIMO detectors, namely
the BER recorded upon applying hard-decision to LD2 for
recovering the bits in d2 as shown in Fig. 1, when the soft
MIMO detector employed is the EB-Log-PDA and AB-Log-
PDA, respectively10. It is observed that the EB-Log-PDA has a
better intermediate BER performance than the AB-Log-PDA.
This is because LD2 represents the true a posteriori LLR for
the EB-Log-PDA, whereas LD2 is actually its extrinsic LLR
generated in (28) for the AB-Log-PDA, where the nominal
symbol-wise APPs are used.

By jointly considering the results of Fig. 6 - Fig. 8, we
conclude that it is not recommended to incorporate inner
iterations into the PDA algorithms, when designing the PDA-
based IDD schemes.

C. The Relationship Between the Extrinsic LLRs of the EB-
Log-PDA and the AB-Log-PDA

In Fig. 9, the CDFs of the difference between the two types
of extrinsic LLRs, defined as ΔLil = LEBE (i, l)− LABE (i, l),
is presented for scenarios associated with different values
of IA(d2,LA2), which represents the MI between the bit-
sequence output by the interleaver and the corresponding
a priori LLRs fed back by the outer FEC decoder. For
convenience, IA(d2,LA2) is simply denoted as IA in Fig. 9
and Table II. Observed in Fig. 9 that the CDFs may be divided
into two groups of functions exhibiting rotational symmetry
with respect to the point of (0, 0.5). The first group represents
the CDFs associated with the IA value spanning from 0 to 0.6,
while the other group hosts the CDFs associated with the IA
value ranging from 0.7 to 1.0. Interestingly, the two groups
of CDFs exhibit opposite trends, when increasing the value of
IA. More specifically, upon considering the CDF curves falling
within the right half-plane, we notice that when IA increases
from 0 to 0.6 with a step size of 0.1, the CDF curves of
the first group move along from the point (0, 1) to its right-
downwards direction. By contrast, when IA increases from
0.7 to 1.0 with the step size of 0.1, the CDF curves of the
second group move along in the opposite direction compared
to the first group. Additionally, by zooming in for observing
the curve of IA = 0.6 and IA = 0.7, we note that the two
curves almost overlap with each other and hence they serve as
the boundary between the two groups. In line with Proposition
1, the above observations clearly show that the bit-wise
extrinsic LLRs of the EB-Log-PDA and of the AB-Log-PDA
are statistically closest to each other, when IA approaches
either its minimum value of 0.0 or its maximum value of
1.0, and the difference between the two types of extrinsic
LLRs becomes most significant, when the value of IA is in the
middle region, say, between 0.4 to 0.7. These conclusions are
also confirmed by the corresponding PDFs shown in Fig. 10,
where both the “linear scale” and the “semilogy11 scale” are

10Note that this intermediate BER is different from the BER in uncoded
systems, because the outer iterations also contribute to the output of the soft
MIMO detectors.

11This means only the y-axis is in logarithmic scale.
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TABLE II
STATISTICAL COMPARISON OF LEB

E AND LAB
E FOR SAMPLES OF 240, 000 BITS, iti = 0 INNER PDA ITERATION, AND m = 1.0.

IA # of minΔLi maxΔLi min |ΔLi| max |ΔLi| mean(|ΔLi|) mean(ΔLi) var(|ΔLi|) var(ΔLi) # of sgn(LEB
E (i))

ΔLi = 0 �= sgn(LAB
E (i))

0 132564 -5.3291e-15 7.1054e-15 0 7.1054e-15 2.1777e-16 1.2659e-18 1.0895e-31 1.5637e-31 0

0.1 0 -0.7602 0.5945 1.7764e-15 0.7602 0.0029 -1.0932e-05 1.0259e-04 1.1092e-04 93

0.2 1 -1.2742 1.5731 0 1.5731 0.0087 1.1815e-04 8.2980e-04 9.0512e-04 236

0.3 0 -1.8188 1.9493 1.5099e-14 1.9493 0.0159 5.9897e-05 0.0025 0.0027 453

0.4 0 -2.1574 2.8015 2.6645e-15 2.8015 0.0231 3.7206e-05 0.0049 0.0055 575

0.5 1 -2.7502 3.7835 0 3.7835 0.0296 -6.2531e-05 0.0080 0.0089 738

0.6 0 -3.8543 3.6252 3.5527e-15 3.8543 0.0339 -2.1830e-05 0.0113 0.0124 859

0.7 0 -3.4085 3.1513 5.3291e-15 3.4085 0.0344 -3.9238e-05 0.0132 0.0144 794

0.8 0 -3.4185 5.2725 3.5527e-15 5.2725 0.0300 -8.3517e-05 0.0131 0.0140 685

0.9 3 -4.6007 3.1890 0 4.6007 0.0190 8.8096e-06 0.0088 0.0091 369

1.0 6334 -3.3751e-14 3.0198e-14 0 3.3751e-14 9.3921e-15 -2.6836e-17 4.4944e-29 1.3315e-28 0
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Fig. 8. Impact of the number of inner iterations on BER of the AB-Log-PDA
and EB-Log-PDA MIMO detectors, evaluated using LD2

at the output of the
MIMO detectors for FEC-coded bits d2 in Fig. 1, ito = 3.

used for facilitating accurate observations. Finally, in Table II,
the detailed statistical metrics of ΔLil = LEBE (i, l)−LABE (i, l)
are provided, which also support our conclusions.

D. Complexity Comparison

The computational complexity of the proposed EB-Log-
PDA based IDD scheme may be evaluated by simply com-
paring its complexity to those of the AB-Log-PDA and the
Exact-Log-MAP based IDDs in a single (outer) iteration. This
is because i) the turbo codec module is common to all the
IDD schemes considered; 2) we have shown that the EB-Log-
PDA, as well as the AB-Log-PDA and the Exact-Log-MAP
based IDD schemes all converge after three outer iterations in
the scenarios considered; 3) the PDAs’ inner iterations should
not be invoked when designing IDD schemes. As shown in
Table I, the major computational cost of the EB-Log-PDA
per transmit symbol is the calculation of Λ−1

i and the matrix
multiplication of (15). Direct calculation of Λ−1

i imposes a
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Fig. 9. The cumulative distribution functions of ΔLi = LEB
E (i)−LAB

E (i),
for samples of 240, 000 bits, iti = 0 inner PDA iteration, and m = 1.0.

computational cost of O(8N 3
t ) real-valued operations (addi-

tions/multiplications), which is still relatively expensive. For-
tunately, by using the Sherman-Morrison-Woodbury formula
based complexity-reduction techniques of [4], the computa-
tional cost of calculating Λ−1

i can be reduced to O(4N 3
t ) real

operations per iteration. Additionally, the calculation of (15)
requires O(4MN 3

t + 2MN2
t ) real operations per iteration.

In summary, in terms of real operations, the computational
complexity of the decoupled signal model based EB-Log-PDA
method is O(4MN 3

t +2MN2
t ) + O(4N3

t ) per outer iteration,
which is not related to the number of receive antennas N r, as
opposed to the IDD scheme using the non-decoupled signal
model based AB-Log-PDA, which has a computational com-
plexity of O(4MNtN

2
r + 2MNtNr) + O(4NtN

2
r ) per outer

iteration [16], [17]. This implies that the decoupled model
based EB-Log-PDA has a lower computational complexity
than the non-decoupled model based AB-Log-PDA in the
scenario of Nr > Nt, which is particularly important, because
Nr > Nt is a typical configuration for spatial multiplexing
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Fig. 10. The probability density functions of ΔLi = LEB
E (i) − LAB

E (i),
for samples of 240, 000 bits, iti = 0 inner PDA iteration, and m = 1.0.

based MIMO systems.
By comparison, the Exact-Log-MAP algorithm has to cal-

culate the Euclidean distance of ‖y −Hs‖2 MNt times per
bit per outer iteration [13], hence its complexity order is
O(MNtNt log2 M) per outer iteration. More specifically, the
evaluation of ‖y−Hs‖2 requires O(4NrNt+6Nr) real oper-
ations. Therefore, the Exact-Log-MAP algorithm has a com-
putational complexity of O[MNtNt log2 M(4NrNt + 6Nr)]
real operations per outer iteration. There exist other types
of reduced-complexity MAP algorithms, such as the look-up-
table based Approximate-Log-MAP algorithm and the Max-
Log-MAP algorithm [13]. Unfortunately, although they exhibit
some advantages in terms of their DSP implementation, in
essence both of them are still based on the exhaustive search,
hence the computational complexity of calculating the extrin-
sic LLR for each bit increases exponentially with both the

number of transmit antennas Nt and the constellation size M ,
because MNt = 2MbNt hypotheses have to be evaluated for
each bit [13]. Therefore, all the three representative Log-MAP
algorithms have a complexity that is significantly higher than
that of the EB-Log-PDA, especially when Nt, Nr and M have
large values.

VI. CONCLUSIONS

It was demonstrated in our previous work that the estimated
symbol-wise probabilities output by the existing approximate
Bayesian theorem based PDA algorithms are not the true
APPs, they rather constitute nominal APPs, which are un-
suitable for the classic IDD architecture of MIMO systems
using general M -ary modulations. By contrast, the estimated
symbol-wise probabilities at the output of the EB-Log-PDA
proposed in this paper exhibit similar characteristics to the
true APPs, hence they are readily applicable to the classic
IDD architecture of M -ary modulation aided MIMO systems.
Furthermore, we demonstrated that introducing inner iterations
within both the EB-Log-PDA and the AB-Log-PDA, actually
degrades the IDD receiver’s performance despite significantly
increasing the overall computational complexity of the IDD
receiver, which implies that the optimal number of inner
iterations of both the EB-Log-PDA and the AB-Log-PDA is
zero when they are invoked in IDD receivers. Additionally,
the relationship between the EB-Log-PDA and the AB-Log-
PDA was investigated, and it was revealed that the bit-
wise extrinsic LLRs of the EB-Log-PDA and of the AB-
Log-PDA are statistically closest to each other, when the
mutual information between the bit-sequence output by the
interleaver and the corresponding a priori LLRs fed back
by the outer FEC decoder approaches its minimum value
of 0.0 and maximum value of 1.0. The difference between
the two types of extrinsic LLRs becomes most significant,
when the value of the mutual information is in the middle
region of the interval [0, 1.0]. Finally, similar to the case of
the AB-Log-PDA based IDD scheme, the IDD scheme based
on the proposed EB-Log-PDA using no inner PDA iterations
is shown to achieve a comparable performance to that of the
optimal MAP detector based IDD receiver, while imposing a
significantly lower computational complexity in the scenarios
considered.
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