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Abstract

In this paper, a distributed and autonomous technique for resource and power allocation in orthog-

onal frequency division multiple access (OFDMA) femto-cellular networks is presented. Here, resource

blocks (RBs) and their corresponding transmit powers are assigned to the user(s) in each cell individually

without explicit coordination between femto-base stations (FBSs). The “allocatability” of each resource

is determined utilising only locally available information of the following quantities:

• the required rate of the user;

• the quality (i.e., strength) of the desired signal;

• the level of interference incident on each RB; and

• the frequency-selective fading on each RB.

Using a fuzzy logic system, the time-averaged values of eachof these inputs are combined to determine

which RBs are most suitable to be allocated in a particular cell, i.e., which resources can be assigned

such that the user requested rate(s) in that cell are satisfied. Furthermore, link adaptation (LA) is

included, enabling users to adjust to varying channel conditions. A comprehensive study in a femto-cell

environment is performed, yielding system performance improvements in terms of throughput, energy

efficiency and coverage over state-of-the-art inter-cell interference coordination (ICIC) techniques.

Index Terms

autonomous resource allocation, distributed ICIC, fuzzy logic, OFDMA, femto-cellular networks.

I. INTRODUCTION

Future wireless networks are moving towards heterogeneousarchitectures, where in each cell

a user may have over four different types of access points (APs) (e.g., macro-, pico-, femto-

cells, relays and/or remote radio heads) [1]. Intuitively,this has many positive effects for a
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mobile station (MS), which can now choose from several base stations (BSs) to find the most

suitable. However, pico- and femto-cellular overlays alsoimbue many difficulties,e.g., cell-

organisation/optimisation, resource assignment to users, and especially interference coordination

between APs within the same and neighbouring cells. Standard inter-cell interference coordina-

tion (ICIC) techniques based on network architectures [2, 3] only go so far in dealing with these

challenges, and hence a new approach is necessary.

A. Challenges in Heterogeneous Networks (HetNets)

Through the various types, locations and dense deployment of APs, and the different transmis-

sions powers/ranges associated with them, numerous technical challenges are posed by femto/pico-

cell overlays [1, 4, 5]. These mainly fall into the followingareas:

• Network self-organisation - Self-configuration and -optimisation are required of all cells.

In cellular networks, such organisation can be performed via optimisation techniques [6],

however these tasks become increasingly difficult given theadditional APs and network

parameters to be considered, motivating adistributed configuration approach [7].

• Backhauling - Connecting the different BSs to the core-network necessitates extra infras-

tructure [1]. In the femto-cell case, the long delay of connection via wired backhaul prevents

macro-femto ICIC [5], and hence necessitatesautonomous interference management.

• Interference - Cross-tier interference created to/from the overlaid cells (e.g., pico-/femto-

cells) must be mitigated to maintain performance, especially if access to these cells is

restricted. High intra-femto-tier interference due to dense deployment is also of concern.

The handling of this interference is paramount to the performance of such future networks,

of which the main sources in densely deployed femto-cell scenarios [1] can be given as

– Unplanned deployment- Low-power nodes such as femto-cells are deployed by end-

users at “random” locations, and can be active or inactive atany time, further ran-

domising their interference. Continuous sensing and monitoring is required by cells to

dynamically/adaptively mitigate interference from the other tiers [8].

– Closed-subscriber access - Restricted access control of pico- and femto-cells may lead

to strong interference scenarios in downlink and uplink if users cannot handover.

– Node transmission power differences - The lower power of nodes such as pico- and

femto-cells can cause associations downlink/uplink interference problems.
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In general, these issues motivate the need fordecentralised, autonomous interference coor-

dination schemes that operate independently on each cell, utilising only local information, yet

achieving efficient/near-optimal solutions for the network. By allowing BSs (all types) and MSs

to individually optimise their resource allocations and transmission powers, a global optimum

may be found without centralised algorithms governing the system. This would substantially

reduce not only the amount of signalling but also the operation complexity of the network.

B. Randomly and Densely Deployed Femto-cells

Here, we address the relatively unexplored topic of ICIC forrandomly deployed femto-cells.

Due to the relative modernity of the femto-cell concept, andthe innate random deployment

of femto-cells within a macro-cell, most interference coordination techniques are utilised for

interference reduction to the macro-cell, rather than interference protection between femto-cells.

The state-of-the-art interference coordination for Long-Term Evolution (LTE) HetNets is

the Almost-blank Subframe (ABS): a time-domain ICIC technique where an aggressor BS

creates “protected” subframes for a victim BS by reducing its transmission activity on these [9];

the occurrences of the ABSs are knowna priori at the coordinating BSs. Thus, throughput

improvements are induced via the provided interference protection [10]. However, the omitted

transmission frames may have adverse affects on the data rates at the agressor BS. Furthermore,

without guaranteed backhaul connections, femto-base stations (FBSs) may not be able coordi-

nate the ABS slots. In this paper, we provide resource and power allocation for femto-femto

interference environments which requires no signalling between FBSs, and enhances the overall

throughput, energy efficiency and fairness of the femto-network.

On another note, recent research has seen the emergence of autonomous coordination tech-

niques for Self-Organising Networks (SONs) [11, 12], wheretransmit powers on subbands is

adjusted independently in each cell via local and network utility optimisation. These utilities are

based on the average rate in the cell, however do not consideruser-specific resource allocation

for additional interference coordination. Furthermore, the proposed strategies do not consider

heterogeneous architectures that will inevitably describe future networks. Finally, the suggested

algorithms assume still some signalling between neighbouring BSs, hence cannot be considered

fully autonomous, and may also limit their applicability specifically for femto-cell networks.

Finally, the application of fuzzy logic in collaboration with reinforcement learning techniques
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is comprehensively studied in [13], in order to tune the outputs of fuzzy inference systems. The

application to wireless network coordination is investigated in [14–16], where fuzzy logic reduces

the complexity of the learning algorithms by providing coarse evaluations of the network state.

On a cell-individual basis, by again adapting subband transmission powers [14], modifying the

downlink relative narrowband transmit power (RNTP) thresholds [15], or adjusting the antenna

downtilt [16] the interference on specific resources can be controlled or removed completely,

respectively. On the other hand, QoS requirements of individual users are neglected, a perspective

that we attempt to address here. In addition, we employ a holistic approach by considering many

key parameters to perform resource allocation (i.e., frequency reuse) and power control in all

cells individually.

In this paper, we introduce a novel, low-complexity, distributed and autonomous ICIC tech-

nique, that performs independent resource and power allocation in each cell, eliminating explicit

signalling between FBSs. The rest of the paper is structuredas follows: Section II describes the

system deployment scenario and channel environment, Section III explains the fuzzy logic ICIC

protocol and its performance in femto-cellular networks isanalysed in Section IV. In Section V

the simulation is described, and Section VI portrays and discusses the simulation results. Finally,

some concluding remarks are offered in Section VII.

II. SYSTEM AND CHANNEL MODEL

An orthogonal frequency division multiple access (OFDMA) network is considered, where

the system bandwidthB is divided intoM resource blocks (RBs). A RB defines one basic time-

frequency unit of bandwidthBRB=B/M. All MSs can transmit up to a fixed maximum power

Pmax. Perfect time and frequency synchronisation is assumed.

Universal frequency reuse is considered, such that each femto-cell utilises the entire system

bandwidthB. The set of RBsM, where|M|=M , is distributed by each BS to its associated

MS(s). Throughout this paper,u is used to define any MS, andvu the BS with which this MS

is associated. The received signal observed by MSu from BSvu on RBm is given by

Y m
u = Pm

u Gm
u,vu

︸ ︷︷ ︸

Sm
u

+Imu + η , (1)

whereGm
u,vu signifies the channel gain between the MSu and its serving BSvu , observed on RB

m. Furthermore,Pm
u denotes the transmit power of MSu on RB m, Sm

u the desired received
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signal,η=η0BRB the thermal noise, andImu the co-channel interference received on RBm from

MSs in neighbouring cells. The interferenceImu is defined by

Imu =
∑

i∈I

Pm
i Gm

u,vi
, (2)

whereI represents the set of interferers (i.e., set of MSs in neighbouring cells that are also

assigned RBm). Hence, the signal-to-interference-plus-noise ratio (SINR) observed at the MSu

on RBm is calculated by

γm
u =

Sm
u

Imu + η
=

Pm
u Gm

u,vu
∑

i∈I

Pm
i Gm

u,vi
+ η

. (3)

Following this, the user throughputCu is calculated as the data transmitted on the assigned RBs

that have achieved their SINR targetγ∗
u

Cu = ñRB
u kscsscεs , (4)

whereñRB
u =

∑nRB
u

m=1 1γm
u ≥γ∗

u
is the number of RBs assigned to MSu achievingγ∗, nRB

u is the total

number of RBs allocated to MSu, 1A is the indicator function,ksc the number of subcarriers per

RB, ssc the symbol rate per subcarrier, andεs the modulation and coding scheme (MCS) given

in Table I1. Finally, the system capacity is calculated as the sum throughput of all MSs in the

network

Csys =
∑

u

Cu . (5)

The power efficiencyβu measures the data rate per unit of transmit power (or, alternatively,

the data sent per unit of energy) of MSu. This is defined as follows:

βu =
Cu

Pu
=

ñRB
u kscsscεs
∑nRB

u

m Pm
u

[
bits/s

W

]

≡
[
bits

J

]

, (6)

wherePu is the transmit power of MSu, andCu the achievable capacity from (4). The availability

χ is defined as the proportion of MSs that have acquired their desired rate,i.e.,

χ=
1

nusr

nusr∑

u=1

1Cu≥C∗

u
, (7)

wherenusr is a random variable denoting the number of MSs in the scenario andC∗
u is the desired

rate of MSu. Lastly, Jain’s Fairness Index [19] is used to calculate thethroughput fairness of

1In Table I, the modulation and coding orders are taken from LTE [17], and the SINR ranges from [18]. In general, these
values are operator specific, and hence are not standardised.
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TABLE I
MODULATION AND CODING TABLE

CQI min. Code Efficiency
index SINR [dB] Modulation rate εs [bits/sym]

0 - None - 0
1 -6 QPSK 0.076 0.1523
2 -5 QPSK 0.12 0.2344
3 -3 QPSK 0.19 0.3770
4 -1 QPSK 0.3 0.6016
5 1 QPSK 0.44 0.8770
6 3 QPSK 0.59 1.1758
7 5 16QAM 0.37 1.4766
8 8 16QAM 0.48 1.9141
9 9 16QAM 0.6 2.4063
10 11 64QAM 0.45 2.7305
11 12 64QAM 0.55 3.3223
12 14 64QAM 0.65 3.9023
13 16 64QAM 0.75 4.5234
14 18 64QAM 0.85 5.1152
15 20 64QAM 0.93 5.5547

the system in each time slot

f(C) =
[
∑

u Cu]
2

∑

u C
2
u

, (8)

where the vectorC denotes the achieved throughputs of all MSs in the system.

A. Scenario Construction

A 5×5 apartment grid is considered for the femto-cell scenario, where the probabilitypact

describes the likelihood of an active FBS in a given apartment. Furthermore, we assume that

multiple MSs may be present in an apartment. As it is unlikelyall cells will have the same

number of MSs, the user generation is implemented via probability table, where depending on

the maximum number of users̃µ(u) allowed per cell, the number of MSsnc(u)∈{1, . . . , µ̃(u)}
present in cellc is randomly chosen. Table II gives two examples of probability tables, where

a) equal probabilities are given to alln(u), or b) the probability reduces with each additional MS.

Here, we utiliseµ̃(u)=3. An example of such a scenario is shown in Fig. 1. In each active

femto-cell, both the MSs and FBS are uniformly distributed in the apartment. Due to the private

deployment of femto-cells a closed-access system is assumed [20], so each MS is assigned to
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TABLE II
PROBABILITY TABLES FOR THE NUMBER OF USERS ALLOCATED IN A SINGLE FEMTO-CELL. THE LEFT TABLE INDUCES

EQUAL PROBABILITIES FOR EACH POSSIBLE NUMBER OF USERS, IN THE RIGHT TABLE THE PROBABILITY IS HALVED WITH

EACH ADDITIONAL USER.

µ̃(u) 1 2 3 4
pn(u)=1 1 1/2 1/3 1/4
pn(u)=2 0 1/2 1/3 1/4
pn(u)=3 0 0 1/3 1/4
pn(u)=4 0 0 0 1/4

or

µ̃(u) 1 2 3 4
pn(u)=1 1 2/3 4/7 8/15

pn(u)=2 0 1/3 2/7 4/15

pn(u)=3 0 0 1/7 2/15

pn(u)=4 0 0 0 1/15

the FBS in its apartment, even if a foreign cell exhibits superior link conditions.
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Fig. 1. Apartment block scenario withpact = 0.5, where each apartment is10m×10m, with µ̃(u)=3 and equal user number
probabilities.

B. Channel Model

In general, the channel gain,Gm
k,l, between a transmitterl and receiverk, observed on RBm

and separated by a distanced is determined by the path loss, log-normal shadowing, and channel

variations caused by frequency-selective fading:

Gm
k,l =

∣
∣Hm

k,l

∣
∣
2
10

−Ld(d)+Xσ

10 , (9)
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whereHm
k,l describes the channel transfer function between transmitter l and receiverk on RB

m, Ld(d) is the distance-dependent path loss (in dB) andXσ is the log-normal shadowing value

(in dB) with standard deviationσ, as described in [21]. The channel response generally exhibits

time and frequency dispersions, however channel fluctuations within a RB are not considered

as the RB dimensions are significantly smaller than the coherence time and bandwidth of the

channel [22]. Furthermore, the path lossLd(d) is identical on all RBs assigned to the MS.

Finally, the delay profiles used to generate the frequency-selective fading channel transfer factor

Hm
k,l are taken from applicable propagation scenarios in [21], [23].

The path loss model used to calculateLd(d) is for indoor links [24],i.e., the link (desired or

interfering) between a FBS and an indoor MS, and calculates the path loss as

Ld(d) = α + β log10(d) [dB] . (10)

whered is the distance between transmitter and receiver, andα, β are the channel parameters.

Log-normal shadowing is added to all links through correlated shadowing maps. These are

generated such that the correlation in shadowing values of two points is distance-dependent. Ta-

ble IV shows the shadowing standard deviationσ and auto-correlation distances considered [24].

III. D ISTRIBUTED AND AUTONOMOUS RESOURCEALLOCATION

Due to the customer-side random deployment of femto-cells,and the resulting lack of fixed

connective infrastructure, FBSs must perform resource andpower allocation utilising locally

available information only. To maximise the performance inits own cell, a FBS must attempt to

allocate RBs such that the desired signal on these is maximised, while the interference incident

from neighbouring cells is minimal. Furthermore, the BS must allocate enough resources such

that the rate requirements of the user(s) in the cell are fulfilled. The necessary, and locally

available, information is therefore clearly determined:

• the required rate of a user determines the number of RBs that need to be assigned;

• the quality (i.e., strength) of the desired signal dictates the necessary transmit power;

• the level of interference incident on the RBs strongly influences their allocatability; and

• the frequency-selective fading profile also affects the preferable RBs to be allocated.

All of these variables are locally available at the FBS in thereverse link, and at the MS(s) in

the forward link, necessitating no extra information to be exchanged between BSs.
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A. Fuzzy Logic for Autonomous Interference Coordination

In general, the resource and power allocation problem for a multi-cellular wireless network

belongs to the class of mixed-integer non-linear programming (MINLP) problems; obtaining the

solutions to these is known to beNP-hard [25, 26]. Therefore, it is clear that a heuristic for

local, autonomous resource management is required to solvethis problem. A machine learning

approach where FBSs acquire information about their transmission conditions over time would

be such a viable solution, however can prove complex withoutthe availability of training data.

Therefore, we introduce fuzzy logic as our heuristic, through which “expert knowledge” is

incorporated in the RB allocation decision process.

The decision system, in its most simplified form, is represented in Fig. 2. In broad terms,

the system evaluates which RB(s) are most suitable to be allocated to the MS in a particular

time slot, and determines the transmit power on these RBs to generate the required SINR such

that the user’s rate can be met. Obviously, an RB receiving little or no interference situated in a

fading peak is most suitable for allocation to the femto-user, whereas any RB(s) receiving high

interference, or experiencing deep fades, are much less appropriate.

Fuzzy Logic

ICIC System

Interference

on each RB

Fading

on each RB

User Rate

User Desired

Signal Strength

RB Allocation

RB Transmit

Power

Fig. 2. Simplified graphical representation of our autonomous resource and power allocation technique.

In fuzzy logic, an input range is divided into multiple “membership functions” which give a

coarse evaluation of the variable. By combining the membership values of the inputs through

various rules, the allocatability of each RB is determined.The output is also “fuzzy,” indicating

how suitable (or unsuitable) an RB is given the current inputs, avoiding a hard yes/no decision.

In each time slot, the FBS allocates the most applicable RBs to each MS, and data transmission
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is performed. Based on the received signal levels from the desired user and interfering MSs, the

BS updates its information to more accurately represent thelong-term interference and fading

environments of its cell. This updated information is utilised in the next time slot to again carry

out the, hopefully improved, resource and power allocation. The same operation is performed in

all femto-cells in the scenario, and the RB allocations are continuously individually optimised

until the system converges to a stable solution, in which theuser(s) in each cell are satisfied.

1) Inputs: The input variables considered in the fuzzy logic system are:

• The required rate of the MS is defined by the service being demanded by the user. Here,

the values “Low,” “Low-medium,” “Medium-high,” and “High”are used to categorise the

rate requested by the user. The ranges of these are dependenton the user scenario (e.g., in

femto-cells, a higher rate can be requested due to the superior channel conditions). This is

a per-user requirement, and thus is equivalent for all RBs.

• The desired signal leveldescribes the transmission conditions from transmitter toreceiver,

i.e., the stronger the desired signal, the better the channel between the two. The signal power

domain is divided into “Low,” “Medium,” and “High” values2, to sort users depending on

their useful channels. Since we consider the fast fading component as a separate input

variable, the desired signal level is described per MS, and thus is equivalent over all RBs.

• The level of interference illustrates the immediate interference environment for each MS

on each RB. RBs with strong interference may indicate a closeneighbouring cell currently

utilising them, or even multiple interfering cells. Low or zero interference RBs would

obviously be very attractive to a MS. The interference powerdomain is divided into “Low,”

“Medium,” and “High” values2, to categorise RBs by the amount of interference they suffer.

• The fast fading component for each RB may not always be readily available, however

can become accessible via sounding or pilot/data transmission. Users’ frequency selective

fading profiles extend over the whole available bandwidth, and hence certain RBs are more

suitable to an MS than others; or than to other MSs. The fast fading domain is split into

“Deep,” “Average,” and “Peak” values, centred around the mean fading level 1. In general,

MSs should avoid RBs with “Deep” fades and try to acquire RBs with “Peak” fading values.

A graphical representation of the input variables and their“fuzzification” is shown in Fig. 3.

2The cut off points and slopes of the values are determined from the cumulative distribution functions (CDFs) in Fig. 5(b).

September 14, 2018 DRAFT



11

RB Mean Interference

Fuzzy Logic System

RB Fading

User Rate

User Desired Signal Strength

Rule

Evaluation

Inputs Input Fuzzification

Rule Output

Aggregation

Defuzzification

RB and Power

Allocation

Deep Average Peak

Low Medium High

Low Medium High

RB Transmit Power

Max. PowerHalf Power

Low Low-Med Med-High High

RB Allocation

NoYes

User SINR Requirement

User Modulation Order

Worse BetterAdequate

Reduce

Increase

NoChange

F
ig

.
3.

G
ra

ph
ic

al
re

pr
es

en
ta

tio
n

of
fu

zz
y

lo
gi

c
re

so
ur

ce
an

d
po

w
er

al
lo

ca
tio

n
sy

st
em

.
S

ep
te

m
be

r
14

,
20

18
D

R
A

F
T



12

2) Fuzzy System: The fuzzy logic system is responsible for determining the allocatability of

each RB in the cell, and the corresponding transmit powers. This is performed in three stages,

as can be seen in Fig. 3. First, the fuzzified values of the inputs (see. Fig. 3) are fed into the

rule evaluation stage, where these are combined to determine the “scores” ofthe membership

functions of the outputs. Theserules are defined in Table III. Most of these rules are self-

TABLE III
FUZZY RULES

Comb. Des. Rate Signal Interference Fading SINR RB Alloc. Power Modulation
1 AND - not Low Low - - Yes Half -
2 AND Low not Low Med Deep Yes Max. -
3 AND not Low - High - - No - -
4 AND Low-Med not Low Med not Deep - Yes Max. -
5 AND Med-High not Low Med Peak - Yes Max. -
6 OR - - High Deep - No - -
7 AND - High - not Deep - Yes Half -
8 AND - Low not Low - - No - -
9 AND Med-High High Med Peak - Yes Half -
10 - - - - - MuchWorse - - Reduce3
11 - - - - - Marg.Worse - - Reduce2
12 - - - - - Worse - - Reduce1
13 - - - - - Adequate - - NoChange
14 - - - - - Better - - Increase1
15 - - - - - Marg.Better - - Increase2
16 - - - - - MuchBetter - - Increase3

explanatory. In essence, they are intuitive guidelines as to why a specific RB should be assigned

to the MS or not,e.g., allocating an RB that is receiving high interference (3. and 6.) is not

beneficial except in certain cases; or allocating a medium-interference RB should not be done

if the required rate is too high or the signal level is too low (4. and 5.). Finally, almost any RB

with low interference can be allocated and be transmitted onwith half power to achieve its rate

(1.).

After this, in therule output aggregation stage, the results of all rules are combined for each

RB to yield a fuzzy set representinghow much an RB should or should not be allocated, and

how much it should or should not transmit at half power (i.e., if the majority of the rules yield

“Yes” for RB allocation, then the RBshould be allocatedmore than it should not be).

Finally, in the defuzzification stage, thecentre of gravity (which is calculated using the

integral-quotient in the Defuzzification box in Fig. 3) of the fuzzy set of each output is calculated

to give a “score” for each RB. In essence, this stage determines finally the RB allocation (Yes/No)

and the RB transmit power (Half/Max.),e.g., an RB allocation score of 0.25 indicates a “Yes,”
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and an RB transmit power score of 0.6 recommends maximum power transmission. Clearly, an

RB with an allocation score of 0.1 is more allocatable than one with a score of 0.4.

3) Outputs: Finally, the output variables of the fuzzy logic system are:

• The RB allocation of the MS. The allocatability of each RB is calculated by fuzzy logic

depending on the inputs. In the end, the BS assigns the required number of RBs to the

MSs, choosing those that are most suitable for each. The lower the score, the better.

• The transmit powers of the RBs assigned to the MS. Each RB can transmit with either

half or full (i.e., maximum) power, depending on the inputs. For example, an RBwith low

interference may transmit at half power, whereas if the MS’sdesired signal is low or the

fading on that RB is deep, full power should be utilised.

B. SINR-dependent Link Adaptation

In general, a wireless channel can change quite rapidly given alterations to its immediate

environment, and hence there may be situations where a MS’s desired link quality is much

better/worse than necessary for its MCS. Alternatively, the scenario may arise when the BS/MS

receives high interference from a nearby transmitter, and hence the user’s SINR may fall below

its target. Therefore, it is imperative that a MS can modify its MCS depending on the channel

conditions. In Fig. 4, such an ability is added to the fuzzy logic ICIC system.

Fuzzy Logic

ICIC System

Interference

on each RB

Fading

on each RB

User Rate

User Desired

Signal Strength
RB Allocation

RB Transmit

Power

User SINR

MS Modulation

Scheme

Fig. 4. Simplified graphical representation of our autonomous resource and power allocation technique with the opportunity
for LA.
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Since the success/failure of transmission on a given RB is mainly dependent on the SINR

achieved on it, the MS SINR3 is utilised to directly modify the MS’s MCS: this is calledLA.

More specifically, the difference between the user’s achieved average SINR̄γu and its targetγ∗
u

∆γ = γ̄u − γ∗
u , (11)

is utilised. The membership functions for the SINR input andMCS output are shown in Fig. 3.

It should be mentioned that only∆γ is used in the LA procedure, such that

• if ∆γ>3 dB the input is “Better”, and the MS modulation and coding order is “Increased

by 1;”

• if ∆γ>5 dB the input is “Marginally Better”, and the MS modulation and coding order is

“Increased by 2;”

• if ∆γ>7 dB the input is “Much Better”, and the MS modulation and coding order is

“Increased by 3;”

• if ∆γ<−3 dB the input is “Worse”, and the modulation and coding order is “Reduced by

1;”

• if ∆γ<−5 dB the input is “Marginally Worse”, and the modulation and coding order is

“Reduced by 2;”

• if ∆γ<−7 dB the input is “Much Worse”, and the modulation and coding order is “Reduced

by 3;” or lastly

• if −3<∆γ<3 dB the input is “Adequate”, and the modulation and coding order undergoes

“No Change.”

These rules are shown in Table III. Through this procedure, auser may fit its MCS to its

transmission environment, and hence more easily achieve its target rate. Moreover, the average

SINR γ̄u is considered to prevent a MS from “ping-pong”-ing between MCSs, which may

severely complicate the scheduling procedure.

3One might argue that given a user’s signal strength and RB interference information, that a separate SINR input is unnecessary.
However, because the MS can only receive interference information from other users transmitting on specific RBs, it is not
guaranteed that it receives interfering signals on all RBs.Furthermore, the desired signal is also only measured on theallocated
RBs, so a standard measure of the average SINR is the most precise description of an MS’s overall transmission conditions.
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C. Scheduling

Given the common assumption in femto-cell networks that only a single MS is present per

cell, this user can be allocated the RBs with the best scores (as determined by the fuzzy logic

system). In the reverse link, the contiguity constraint (specific to LTE) is fulfilled by allocating

the required number of consecutive RBs with the least sum-score. With each FBS allocating the

most suitable RBs in their cell, a natural frequency reuse will result. More specifically, it can be

shown that neighbouring FBSs will allocate orthogonal setsof RBs, whereas femto-cells further

from each other (i.e., less interfering) may assign the same RBs without excessive interference.

There are, however, many possibilities to perform resourceallocation in the presence of

multiple users. For instance, in the forward link an FBS may simply assign RBs in the ascending

order of scores calculated for all MSs. This is clearly a greedy approach, and may not be optimal

in cases where MSs have vastly different channel conditions(not usually the case in femto-

cells, but possible). Another possibility, then, for resource allocation may be a proportional fair

scheduler (PFS), where the RB scores for each user are scaledby the ratio of achieved and desired

rates. Here, an MS that strongly underachieved its rate would be allocated RBs before an MS

that was closer to its target. Lastly, a “priority” scheduler may be utilised to give precedence to

users with higher required rates/modulation orders, to more likely fulfil their QoS requirements.

D. Signal Statistics

In Fig. 3, the membership functions of the desired and interfering signal inputs are determined

via analysis of the signal statistics in the deployment environment. While these can be determined

experimentally, we analytically derive here these statistics such that they can be expanded to

other scenarios. Thus, we know the power of any received signal Pr is calculated as

Pr = PtG

Pr,dB = Pt,dB +GdB = Pt,dB − LdB (12)

whereLdB=Ld,dB + Xσ is the signal path loss, andLd andXσ are described in Section II-B.

Hence, the probability distribution function (PDF) ofPr (in dB) is given by

fPr ,dB(̺) = fPt,dB(θ)⊛ fL,dB(−l;D) . (13)
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where⊛ denotes the convolution operator. And since

fL,dB(l;D) = fLd,dB(l)⊛ fXσ,dB(x) , (14)

by finding fLd,dB(l) andfPt,dB(θ), fPr,dB(̺) is derived for both desired and interfering signals.

Due to the random nature of the BS and MS positions, the first step in analysing the signal

PDFs is estimating the distribution of the path losses between transmitter (whether it is desired

or interfering) and receiver. From (10) it is clear that the path lossl is proportional to the Tx-Rx

distanced, and the inverse relationship is given by

ρ(l) = d = 10
(l−α)/β . (15)

Hence, the distance dependent loss PDFfLd,dB(l;D) is calculated by

fLd,dB(l;D) =

∣
∣
∣
∣

dρ(l)

dl

∣
∣
∣
∣
fd(ρ(l);D) (16)

∣
∣
∣
∣

dρ(l)

dl

∣
∣
∣
∣
=

ln 10

β
10

l−α/β =
ln 10

β
ρ(l)

fLd,dB(l;D) =
ln 10

β
ρ(l)fd(ρ(l);D) , (17)

wherefd(ρ(l);D) is the PDF of the Tx-Rx distance parametrised by the dimension D. This PDF

is given in [27] by

fd(d;D) =

=







2 d
D

((
d
D

)2 − 4 d
D
+ π

)

0 ≤ d ≤ D

2 d
D

[

4
√
(

d
D

)2 − 1−
((

d
D

)2
+ 2− π

)

− 4 tan−1

(√
(

d
D

)2 − 1

)]

D < d ≤
√
2D

. (18)

Thus, by evaluating (18) as in (17), the distance-dependentpath loss PDFfLd,dB(l;D) becomes

fLd,dB(l;D) =

=
ln 10

β
ρ(l)







2δ(l) (δ(l)2 − 4δ(l) + π) α ≤ l ≤ L(D)

2δ(l)
[

4
√

δ(l)2−1− (δ(l)2+2−π)−4 tan−1
(√

δ(l)2 − 1
)]

L(D)<l≤L
(√

2D
),

(19)

whereδ(l)=ρ(l)/D. This PDF can be seen for both the desired signal (D=10m) and the interfering

signal (D=50m, as interferer and receiver could be located in any two apartments in the scenario)

in Fig. 5(a). Monte Carlo simulations that randomly place two nodes within the given dimensions

D×D, and calculate the resulting path loss, verify that the PDF given in (19) is indeed correct.
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Referring back to (12), we have accurately described the path lossLdB, and must now find the

distribution of the RB transmit powersPt. In our model, each MS transmits with a maximum

total powerPmax that is spread evenly over all RBs assigned to it. The number of RBs nRB an

MS is assigned is directly dependent on the required rateC∗
u of the user, thusPt is defined by

Pt =
Pmax

nRB
wherenRB =

⌈
C∗

kscssc

⌉

=
Pmaxkscssc

C∗
=

A

C∗
. (20)

Here, the ceiling operation is removed for ease of derivation, however without loss of generality.

Therefore, it is clear from (20) thatPt is inversely proportional to the rater, which in our

scenario is a random variable with distributionfC∗(r). Hence, the CDF of the transmit power

FPt
(p) is given by

FPt
(p) = P [Pt ≤ p] = P

[
A

r
≤ p

]

= P

[
A

p
≤ r

]

= 1−P

[

r ≤ A

p

]

= 1− FC∗

(
A

p

)

,

whereFC∗(r) is the CDF of user desired rates, and therefore the PDF of the MS transmit power

fPt
(p) is given by

fPt
(p) =

dFPt
(p)

dp
=

A

p2
fC∗

(
A

p

)

(21)

The general expression is given in (21) for any rate PDFfC∗(r). Now, we need to perform a

change of variable transform to determine the PDF of the transmit power in dB (refer to (12))

θ = Pt,dB = 10 log10(Pt) , (22)

and the inverse is given by

ϕ(θ) = p = 10
θ/10 . (23)

Thus, the PDF of MS transmit powerfPt,dB(θ) is calculated by

fPt,dB(θ) =

∣
∣
∣
∣

dϕ(θ)

dθ

∣
∣
∣
∣
fP,dB(ϕ(θ)) (24)

∣
∣
∣
∣

dϕ(θ)

dθ

∣
∣
∣
∣
=

ln 10

10
10

θ/10 =
ln 10

10
ϕ(θ) ,
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hence

fPt,dB(θ) =
ln 10

10
ϕ(θ)fPt

(ϕ(θ))

=
ln 10

10

A

ϕ(θ)
fC∗

(
A

ϕ(θ)

)

(25)

where (25) is the general expression for any rate distribution. Thus, the PDF of user transmit

power has been derived, however under the assumption of transmission of a single bit per channel

use. This is, of course, not a realistic assumption, and in our scenario we consider a user’s ability

to send with various MCSs (see Table I). Clearly, the MCS affects the number of RBs required

by an MS, and thus also the MS transmit power. This is shown in (26)

Pt =
Pmax

nRB
wherenRB =

⌈
C∗

kscsscεs

⌉

=
Pmaxkscsscεs

C∗
=

Aεs
C∗

. (26)

Further, we assume each user is uniformly distributed a MCS4, hence by replacing (20) with (26)

and performing the same CDF transformation, the transmit power PDFs (i.e., fPt
(p) andfPt,dB(θ))

are modified correspondingly as

fPt
(p) → 1

4

15∑

m=0

Aεs(m)

p2
fC∗

(
Aεs(m)

p

)

,

fPt,dB(θ) →
ln 10

40

15∑

m=0

Aεs(m)

ϕ(θ)
fC∗

(
Aεs(m)

ϕ(θ)

)

(27)

wherem is the CQI index in Table I, and again, (27) is the general expression for any user

rate distribution. Now, if we revisit thatnRB=
⌈

C∗

kscsscεs

⌉

, it is clear that only integer number of

RBs can be assigned to each MS, and thus each user can only assume a transmit power from a

discrete set ofPt=
Pmax

nRB

Pt ∈
{
Pmax

1
,
Pmax

2
, · · · , Pmax

M

}

, (28)

whereM denotes the total number of RBs available in each cell. Thus,fPt
(p) is evaluated at

the powers in (28), as are the histogram bins in the Monte Carlo simulation, the results of which

are presented in Fig. 5(a) forC∗∼Rayl
(
C̄
)
, whereC̄ is the average rate. The close match of

4This would be independent of its signal quality. This is not the best assumption, admittedly, however the reason is to further
randomise the user requirements, and hence the necessary RBallocations. Through this, the allocation problem becomesmore
challenging for ICIC techniques, including our own.
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theoretical and empirical results confirms that the derivation for fPt,dB(θ) is indeed accurate.

Thus, we have now found accurate and precise analytical models for the distributions of the

path losses and transmit powers, which are directly dependent on the network topology of the

investigated scenario. From (12) it is clear that

fPr ,dB(̺) = fPt,dB(θ)⊛ fL,dB(−l;D) . (29)

Hence, the desired and interfering signal PDFs are given in (30) and (31), respectively,

fS,dB(s) = fPt,dB(θ)⊛ fL,dB(−l;D=10) (30)

fI,dB(i) = fPt,dB(θ)⊛ fL,dB(−l;D=50) . (31)

In Fig. 5(b) a comparison to simulation results is drawn, where it is evident that the theoretical

CDFs are slightly shifted from their experimental counterparts. The general shape (i.e., variance)

of the CDFs is accurate, and while there is a minor shift (1-2 dB) between simulation and theory,

we feel that this difference is within the numerical margin of error, and thus acceptable.
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Fig. 5. Comparison of derived theoretical desired and interfering signal PDFs and CDFs to Monte Carlo simulation results,
considering lognormal shadowing.

It is clear that the signal strength PDFs are mainly dependent on the distance between

transmitter and receiver, and the transmit power. Therefore, extending fuzzy logic ICIC to other

scenarios is straightforward, as simply the distance PDFfd(d;D) must be modified to fit the new

environment, and the statistics can be found. Hence, not only have the desired and interfering

signals been derived for the femto-cell scenario, they are easily modified to other environments,
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thus expanding the applicability of fuzzy logic ICIC to virtually any wireless network.

IV. OPTIMALITY OF FUZZY LOGIC ICIC

Due to the heuristic nature and non-linearity of fuzzy logic, it is very difficult to perform a

comprehensive theoretical analysis of the system performance of fuzzy logic ICIC. Therefore, to

analyse the optimality of our technique, we perform an experimental comparison between fuzzy

logic ICIC and two well-known forms of resource allocation.We demonstrate that fuzzy logic

ICIC provides close-to-optimal throughput and coverage atsignificantly reduced complexity.

A. System Optimisation

The most obvious choice for performance comparison is that of posing the resource allocation

as a system-wide optimisation problem. Since fuzzy logic isautonomous and, more importantly,

distributed it should, on average, be suboptimal in terms of overall system performance. The

optimal RB allocation of the system can be achieved by solving the problem posed in (32), and

thus the aim of fuzzy logic is to as closely as possible approach the result of this problem. Given

the definition for user throughput (4) and system sum throughput (5), we solve

max Csys =
∑

u

Cu u=1, 2, . . . , nusr . (32)

s.t.
M∑

j=1

1Pu,j>0 = nRB
u ∀u (32a)

M∑

j=1

Pu,j ≤ Pmax ∀u (32b)

Pu,j ≥ 0 ∀u, j (32c)

in order to determine the maximum rate achievable in a given scenario. In the constructed

MINLP [26] problem, (32b) and (32c) describe the restrictions on transmit power allocation at

each MS: the sum of the allocated powers on all RBs cannot exceed Pmax, and the individual

powers must be non-negative, respectively. The constraint(32a) limits the number of transmitting

RBs at a single MS to thenRB
u the user needs to achieve its desired rate. This is necessaryas

since the objective is sum-rate-maximisation, the best solution is generally transmission on most,
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if not all RBs. However, since fuzzy logic ICIC only aims to satisfy user requirements5, this

would be an unfair comparison; hence the constraint (32a).

B. Greedy Heuristic

While the comparison to the system-wide optimisation problem will demonstrate the optimality

of fuzzy logic ICIC, it is important to note that we are comparing a centralised and a distributed

approach. Therefore, we implement a commonly utilised distributed allocation technique, which

“greedily” allocates the best RBs to the MS(s) in the cell [8]. Here, the potential SINR achievable

on each RB is calculated using prior interference, signal, and transmit power information; and

then the RBs with the strongest SINRs will be allocated to theuser.

Given: Pu = Pmax/nRB
u , Imu , Gm

u,vu m=1, 2, . . . , M ,

Find: γm
u =

PuG
m
u,vu

Imu + η
∀m.

(33)

In (33), the same information is available as for fuzzy logic, and a greedy approach is utilised to

allocate the RBs. This technique should maximise the throughput in each cell, however it does

not take a system view as in (32), and hence will be suboptimalin terms of network throughput.

Therefore, we argue that the fuzzy logic ICIC comparison to this greedy heuristic will show the

optimality of fuzzy logic on an individual cell basis, whereas the comparison to the optimisation

problem will show the optimality achieved at the network level.

C. Results Comparison

To compare the performance of these three methods, a Monte Carlo simulation is run utilising

the 5×5 apartment grid model described in Section II-A, withµ̃(u)=1, andC̄=1.25Mbps. We

utilise standard fuzzy logic ICIC without LA, as neither theoptimisation technique nor the greedy

heuristic employ LA. Fig. 6 shows the throughput and availability results for this scenario, where

it is evident that the system-optimum solution cannot be reached by the distributed techniques.

However, fuzzy logic is able to perform, on average, within 4% of the optimum throughput

performance, and in fact the difference after 20 time slots (i.e., two LTE frames) is less than

2%. Furthermore, it is clear that the average throughput of fuzzy logic is improved over the greedy

5It should be mentioned that a minimum rate constraint was originally considered. However, if a single MS cannot achieve
its target rate, then no solution can be found by the problem,and hence this constraint was removed.
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Fig. 6. System performance comparison of fuzzy logic ICIC, the system-wide optimal solution, and the proposed greedy
heuristic.

heuristic (by 4%), even though after 15 time slots the performance is similar. This highlights that

fuzzy logic ICIC is optimal on a cell-individual basis, however is able to (due to other inputs

such as rate requirement and desired signal strength) converge to this optimum much quicker6.

On the other hand, the performance difference to the optimumis minute, and therefore fuzzy

logic ICIC provides a “near-optimal” solution for the network as a whole.

The same trends can be seen for the system availability, where while the optimum is clearly

full availability (i.e., χ=1), fuzzy logic ICIC achieves 98% coverage, and hence produces almost

negligible outage. Furthermore, it is able to reach this availability much faster than the greedy

heuristic, indicating that fuzzy logic ICIC employs a balance between system-wide optimisation

and cell-individual performance.

D. Complexity

To conclude our comparison, we analyse the complexities of the three schemes, to highlight

the simplicity and efficiency of our fuzzy logic technique. In a cell where fuzzy logic ICIC is

applied,K=4 inputs (see Fig. 2) are combined at each ofM RBs available at the FBS, inducing

a complexity ofKM . Following this, the RBs are sorted according to their fuzzyscore, in order

6The substantial decline in performance by the greedy heuristic in the first time slots results from the lack of interference
information. The unused RBs with “zero” interference are allocated in all cells simultaneously, thus causing large outages in
these slots. After more accurate statistics have been received, the performance improves as expected.
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to allocate the most appropriate to the MS. Since, in general, sorting algorithms demonstrate

O(N2) complexity, the fuzzy logic complexity within a cell increases to(KM)2. Finally, given

a scenario withnusr MSs, the system complexity of fuzzy logic ICIC is given by

OFL(nusr(KM)2) .

The greedy heuristic utilises a similar methodology as fuzzy logic, in that it also computes a

“score” (in this case the instantaneous SINR) for each RB andthen orders them for allocation.

Hence, the evaluation complexity at each RB isKM (where in this caseK=2 inputs), the

sorting complexity is(KM)2 and the overall complexity is given by

OGH(nusr(KM)2) .

For the optimisation problem (32), finding the solution complexity is more challenging than

for the heuristics, as the problem is consideredNP-hard [26]. In general,NP-hard problems

are only solvable (if possible) in exponential time. Here, we want to simultaneously find the

resource allocation ofnusr MSs, each wishing to allocatenRB
u of theM RBs available to it. In

the worst-case, an exhaustive search must be performed where all allocation possibilities at the

MSs must be tested. Therefore, we estimate the complexity of(32) as

OOP





nusr∏

u=1




M

nRB
u







 .

This is clearly much greater than the complexity of the two heuristics, which is expected. A

comparison of the achieved throughputs and required complexities7 of the three techniques is

shown in Fig. 7.

It is evident that, while (32) provides the greatest system throughput, it is substantially (i.e.,

exponentially) more complex than both fuzzy logic and the SINR heuristic, which only suffer

slightly in terms of achieved throughput. On the other hand,it is clear that fuzzy logic ICIC

provides enhanced throughput and coverage for the system compared to the greedy heuristic,

even though the complexities are very similar. Hence, we conclude that fuzzy logic provides

low-complexity, near-optimal system performance in an autonomous and distributed manner.

7Due to the massive complexity of the optimisation technique, thex-axis in Fig. 7 is given in dB-flops (dBf,10 log10 (Ox(·))),
such that results can be compared.
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Fig. 7. System throughput versus required complexity for fuzzy logic ICIC, the system-wide optimal solution, and the proposed
greedy heuristic.

V. SIMULATION

Monte Carlo simulations are used to provide performance statistics of the system with fuzzy

logic ICIC and two benchmarks. The simulator is built following LTE specifications.

A. Scenario Construction and User Distribution

A 5×5 apartment grid is considered for the simulation environment with µ̃(u)=3 (see Fig. 1),

and is constructed as described in Section II-A. In order to obtain statistically relevant results,

the random effects from MS/BS placement, lognormal shadowing and frequency selective fading

must be removed. Therefore, 2000 scenarios (with minimum three FBSs) are simulated and the

results combined to acquire mean performance statistics ofthe system.

B. Resource Allocation

Each MS is assigned two transmission requirements: a desired throughput and MCS. The

desired rateC∗
u of each user is drawn from a random distribution8 with meanC̄. Due to this,

each MSu will require a different number of RBsnRB
u , and hence the system will function best

when strongly interfering FBSs are assigned orthogonal resources.

The MCS is also assigned randomly, with equal probabilitiesfor all available symbol effi-

ciencies. While this is not the most realistic assumption9, it has been applied here to further

8The distribution can be dependent on the scenario and traffic/applications (i.e., internet, mobile TV, etc.) desired by the users.
9When LA is applied, the user’s MCS will more accurately reflect its SINR conditions. Furthermore, the number of RBs

requested will clearly change dependent on the modulation order selected.
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randomise the number of RBs each MS needs to achieve its rate.

Finally, RBs are allocated individually in each cell by the FBS. In the benchmarks, a PFS is

used for RB assignment, which improves the frequency diversity relative to a random allocation.

On the other hand, the fuzzy logic ICIC technique autonomously allocates RBs based on the

local information available, in order to optimise the MS(s)performance in the cell. For our

purposes, the allocation of RBs to MSs is performed greedily, as described in Section III-C.

C. Time Evolution

Each run of the Monte Carlo simulation is iterated overz=25 subframes, or, equivalently,2.5

LTE frames, such that long-term SINR statistics can be gathered. Due to the random user and

FBS distribution, plentiful runs with different network generations are considered in order to

obtain statistically accurate results. At the start of eachsubframe, the scheduling and allocation

of RBs is reperformed. The MSs are assumed to be quasi-staticfor the duration of a run.

The simulation is performed for a constant-traffic model, where each user requests the same

number of RBs in each time slot (i.e., subframe). Furthermore, the users are assumed to be static

for the duration of a subframe, such that effects due to Doppler spread can be neglected. Perfect

synchronisation in time and frequency is assumed, such thatintra-cell interference is avoided.

The relevant simulation parameters can be found in Table IV.

TABLE IV
SIMULATION PARAMETERS

Parameter Value
Apartment width,W 10m
FBS probability,pact 0.5
Number of available RBs,NRB 50
RB bandwidth,BRB 180 kHz
Average rate,C̄ 1.25Mbps
Subcarriers per RB,ksc 12
Symbol rate per subcarrier,ssc 15 ksps
Time slots 25
ABS prob.,ΓABS 0.1
Spectral noise density,η0 −174 dBm/Hz
Total FBS transmit power 10 dBm
Channel parametersα, β 97, 30
Shadowing Std. Dev.,σ 10 dB
Auto-correlation distance 50m
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D. Benchmarks

To evaluate the performance of fuzzy logic ICIC, two well-known benchmark systems have

been implemented for comparison purposes. These are:

• Maximum Power Transmission: In the first benchmark, no power allocation is performed,

and all MSs transmit at the maximum power on each RB.

• Random ABS Transmission: In the second benchmark, again all links transmit at full

power, however, in each time slot a user transmits an ABS withprobability ΓABS, where

for this simulationΓABS=0.1.

VI. RESULTS AND DISCUSSION

From the simulation, the statistics of the system throughput, energy efficiency, availability and

fairness are generated for systems employing fuzzy logic ICIC and compared against the two

benchmark systems. General simulation parameters are taken from Table IV and [28].

It is clear from Fig. 8 that fuzzy logic ICIC provides substantially improved system perfor-

mance over both benchmark techniques. Especially in terms of system throughput, where the

fuzzy logic schemes are the only techniques which achieve the overall desired rate (i.e., sum

of individual desired rates). In fact, fuzzy logic substantially overachieves the sum desired rate,

indicating almost maximum coverage and all but negligible outage. The additional rate results

from the discrete allocation of bandwidth (i.e., RBs), and hence the achieved user rate is generally

slightly greater than what was desired. With LA this becomeseven more apparent, as with higher

spectral efficiency the throughput “overshoot” becomes even greater.

The ABS performance is constant over all time slots (except the first), as the probability of

ABS transmission(s) is identical in each slot. Hence, in each time slot10%, on average, of the

users transmit an ABS, providing some interference mitigation for the remaining users. This

abstinence of data transmission explains the throughput losses by the ABS system relative to

full power transmission, as clearly the interference mitigation provided is less significant than

the throughput sacrificed.

Fig. 8 also displays the energy efficiency of the simulated scenario, yielding again very

dominant results of the fuzzy logic systems. This is mainly due to the fact that fuzzy logic

has the possibility of transmitting at half power, which is usually the case after multiple time

slots and the achievement of a relatively orthogonal RB allocation. Furthermore, the high energy
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Fig. 8. System downlink efficiency performance results of fuzzy logic ICIC, random ABSs transmission, and maximum power
transmission.

efficiency is achieved quite rapidly. The added energy efficiency due to LA is a direct result of

the augmented throughputs (see (6)). It is shown that ABS transmission is slightly more energy

efficient than maximum power transmission, which is logicalsince on average 10% less power

is used, but the loss in throughput is<10%, thus enhancing the energy efficiency.
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Fig. 9. System downlink coverage results of fuzzy logic ICIC, random ABSs transmission, and maximum power transmission.

Lastly, the availability and throughput fairness in the system are investigated. As expected,

fuzzy logic ICIC/LA provides by far the best MS availability, as can be seen from Fig. 9,

achieving∼94% availability. This is expected as both the system throughputs are augmented, a

direct result of the greater portion of satisfied MSs. Furthermore, it is clear that the fairness is
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greatly improved as well, especially when utilising LA. This is mainly due to the fact that users

are (through LA) more adept to their transmission environments, and hence better achieve their

desired rates10. On another note, the max. power availability and fairness is boosted with regards

to the ABS system, as all MSs can transmit without restrictions or abstinence, and hence even

unsatisfied (in terms of rate) users achieve decent throughputs. A summary of the quantitative

results is shown in Table V.

TABLE V
PERFORMANCERESULTS

%-gain vs. Throughput Energy Eff. Availability Fairness
FL. ICIC/LA Max. Power 57 151 59 33

FL. ICIC Max. Power 38 103 48 29
FL. ICIC/LA ABS 68 143 70 44

FL. ICIC ABS 48 97 59 40
FL. ICIC/LA FL. ICIC 14 24 7 3

VII. CONCLUSIONS

In this paper, a distributed and autonomous ICIC technique for femto-femto interference

management and resource allocation is presented. At each FBS, locally available information is

utilised to evaluate the allocatability of the available RBs in a particular cell, taking into account

the interference neighbourhood, user rates, and the own-cell signal and fading environment.

Fuzzy logic generates broad evaluations of these inputs, combines them based on a defined set

of RB allocation rules, and submits to the BS the most suitable resources and transmit powers

for successful and efficient communication. After several time slots and more accurate average

signal statistics, the locally optimised resource allocations form a near-optimal global solution.

By comparing fuzzy logic ICIC to a system-wide optimisationproblem, it was shown that

fuzzy logic provides close-to-optimal system performancewith drastically reduced complexity.

Furthermore, a comparison to a greedy heuristic of similar complexity shows faster convergence

to cell-individual optimum resource allocation. Hence, fuzzy logic provides a low-complexity

near-system-optimal solution of ICIC in femto-cell networks. This is confirmed in the simulation

results, where fuzzy logic ICIC satisfies the system throughput requirements and significantly

outperforms the given benchmarks. The addition of LA gives afurther performance boost,

achieving almost full availability along with enhanced throughput, energy efficiency, and fairness.

10In fact, due to the reduced throughput granularity at higherMCSs, more MSs achieve the same throughput, and hence fuzzy
logic ICIC/LA achieves a greater fairness than if all MSs would exactly achieve their targets.
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The main focus of the further development of fuzzy logic ICICis the extension to HetNets,

as highlighted in Section I. This will see macro-, pico- and femto-cells available in the same

scenario, thus the MSs will not only need to perform resourceand power allocation, but also

determine which AP they desire to connect with. The autonomous and distributed nature of

fuzzy logic ICIC should allow these networks to self-configure, and self-optimise, eliminating

excessive signalling normally required in such networks. Furthermore, we seek to heuristically

optimise the fuzzy logic system (i.e., more specifically, the rules) by analysing the input-output

characteristics, and tuning the system to make better decisions on each RB.
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