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Abstract—Linear Programming (LP) decoding of Low-Density
Parity-Check (LDPC) codes has attracted much attention in the
research community in the past few years. LP decoding has
been derived for binary and nonbinary linear codes. However,
the most important problem with LP decoding for both binary
and nonbinary linear codes is that the complexity of standard
LP solvers such as the simplex algorithm remains prohibitively
large for codes of moderate to large block length. To addressthis
problem, two low-complexity LP (LCLP) decoding algorithms
for binary linear codes have been proposed by Vontobel and
Koetter, henceforth called the basic LCLP decoding algorithm
and the subgradient LCLP decoding algorithm. In this paper,
we generalize these LCLP decoding algorithms to nonbinary
linear codes. The computational complexity per iteration of the
proposed nonbinary LCLP decoding algorithms scales linearly
with the block length of the code. A modified BCJR algorithm
for efficient check-node calculations in the nonbinary basic LCLP
decoding algorithm is also proposed, which has complexity linear
in the check node degree. Several simulation results are presented
for nonbinary LDPC codes defined overZ4, GF(4), and GF(8)
using quaternary phase-shift keying and 8-phase-shift keying,
respectively, over the AWGN channel. It is shown that for some
group-structured LDPC codes, the error-correcting performance
of the nonbinary LCLP decoding algorithms is similar to or
better than that of the min-sum decoding algorithm.

Index Terms—Linear programming decoding, nonbinary
codes, LDPC codes, coordinate-ascent algorithm, subgradient
algorithm.

I. I NTRODUCTION

Low-Density Parity-Check (LDPC) codes have attracted
much attention in the research community in the past decade.
LDPC codes are generally decoded by message-passing iter-
ative decoding methods such as the sum-product (SP) algo-
rithm, also known asbelief propagation(BP), and the min-sum
(MS) algorithm, which perform remarkably well at moderate
SNR levels. However, binary LDPC codes often suffer from an
error-floor effect in the high-SNR region. Some progress has
been made in the direction of finite-length analysis of LDPC
codes and concepts such as stopping sets [1], trapping sets [2],
graph-cover pseudocodewords [3], etc., were introduced and
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investigated to understand the behavior of the SP algorithmin
the error-floor region. Nevertheless, finite-length analysis of
LDPC codes under the SP algorithm is a difficult task.

The main focus of research in the area of LDPC codes
has been onbinary LDPC codes. However, it is desirable
to use nonbinary LDPC codes in many applications where
bandwidth efficient higher order (i.e., nonbinary) modulation
schemes are used. Nonbinary LDPC codes are also considered
for storage applications [4]. Nonbinary LDPC codes and
the corresponding nonbinary SP algorithm were investigated
by Davey and MacKay in [5], and since then many code
construction methods and optimized nonbinary SP algorithms
have been proposed. However, the finite-length analysis of
nonbinary LDPC codes under the nonbinary SP algorithm is
also difficult and attempts in this direction (see, e.g., [6]) have
been few.

An alternative decoding algorithm for binary LDPC codes,
known as linear programming (LP) decoding1, was proposed
by Feldmanet al. in [7], [8]. In LP decoding, the ML decoding
problem is modeled as an integer programming (IP) problem
which is then relaxed to obtain the corresponding LP problem.
This LP problem is solved with the help of standard LP solvers
based on the simplex algorithm or interior-point methods.
Compared to SP decoding, LP decoding relies on the well-
studied mathematical theory of LP. Hence, LP decoding is
better suited to mathematical analysis and it is possible to
make statements about its complexity and convergence, as
well as to place bounds on its error-correcting performance.
However, the worst-case time complexity of the LP solvers
based on the simplex method is known to be exponential in
the description complexity, and with other LP solvers based
on interior-point methods the corresponding worst-case time
complexity is polynomial. On the other hand, iterative decod-
ing algorithms such as the SP algorithm have (per iteration)
time complexity linear in the block length of the code and
hence significantly outperform LP decoding algorithms based
on simplex or interior-point methods in terms of efficiency.

To overcome the complexity problem, several improved LP
decoding algorithms have been proposed in [9], [10], [11],
[12], [13], etc. In [9] and [14], the authors use techniques
from LP and coding theory to derive two low-complexity LP
(LCLP) decoding algorithms, namely thebasic LCLP decod-
ing algorithmand thesubgradient LCLP decoding algorithm,
which can be used for approximate LP decoding of binary

1In this paper, the acronym LP stands forlinear programmingor linear
program, depending on the context.
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LDPC codes. The basic and subgradient LCLP decoding
algorithms rely on theblock-coordinate ascent method(also
known as thenonlinear Gauss-Seidel method) [15] and the
incremental subgradient algorithm[16], respectively, to obtain
a solution to the LP problem proposed in [8]. Also, the variable
node (VN) and check node (CN) calculations of the basic
LCLP decoding algorithm are directly related to VN and CN
calculations of the binary SP algorithm; hence the complexity
of each iteration of the basic LCLP decoding algorithm is
similar to that of the SP algorithm. The complexity of each
iteration of the subgradient LCLP decoding algorithm is sim-
ilar to that of the min-sum algorithm. An algorithm similar to
the basic LCLP decoding algorithm for more general graphical
models was proposed in [17]. An extension of the basic LCLP
decoding algorithm was proposed and studied in [18].

In [19], LP decoding was extended from binary linear
codes to nonbinary linear codes. Nonbinary LP decoding, as
presented in [19], relies on standard LP solvers based on
simplex or interior-point methods, and hence standard iterative
decoding algorithms such as the nonbinary SP algorithm sig-
nificantly outperform these nonbinary LP decoding algorithms
in terms of computational complexity. In independent work
[20], [21], a new scheduling scheme was proposed for the
nonbinary basic LCLP decoding algorithm which extends the
low-complexity LP decoding method of [18] to nonbinary
codes.

In this paper we extend the works of [9], [14] to nonbinary
linear codes and propose the nonbinary basic and subgradi-
ent LCLP decoding algorithms. We use the LP formulation
of nonbinary linear codes proposed in [19] to develop an
equivalent primal LP formulation. Then, using the techniques
introduced in [22] and [23], the corresponding dual LP is
derived which in turn is used to develop update equations for
nonbinary LCLP decoding algorithms. The complexity of the
proposed nonbinary LCLP decoding algorithms per iteration
is linear in the code’s block length. In contrast to binary basic
LCLP decoding, the VN and CN calculations of nonbinary
basic LCLP decoding are not directly related to nonbinary
SP. Therefore, without the use of an efficient CN processing
algorithm, the complexity of the CN calculations will be
exponential in the maximum CN degree. To overcome this
problem, we propose a modified BCJR algorithm for efficient
CN processing which has complexity linear in the CN degree
and allows for efficient implementation of nonbinary basic
LCLP decoding. We also propose an alternative state metric
which can be used for faster CN processing.

The remainder of the paper is structured as follows. We
begin with some notation and background in Section II. The
primal LP is developed in Section III and the corresponding
dual LP is given in Section IV. Section V presents the
nonbinary basic LCLP decoding algorithm, and reduced com-
plexity CN processing is presented in Section VI. Section VII
outlines the nonbinary subgradient LCLP decoding algorithm.
Simulation results are presented and discussed in Section VIII.

II. N OTATION AND BACKGROUND

The symbolsR, R>0, and Z>0 denote the field of real
numbers, the set of positive real numbers, and the set of

positive integer numbers, respectively. Letℜ be a finite ring
with q elements, where0 and 1 denote the additive and
multiplicative identity, respectively, and letℜ− = ℜ \ {0}.
The standard inner product of two vectorsx andy of equal
length is denoted by〈x,y〉.

Let C be a linear code of lengthn over the ringℜ, defined by
C = {c ∈ ℜn : cHT = 0} whereH is anm× n parity-check
matrix with entries fromℜ. The codeC has rate2 R(C) =
logq(|C|)/n and is referred to as an[n, logq(|C|)] linear code
overℜ.

The setJ = {1, . . . ,m} denotes row indices and the set
I = {1, . . . , n} denotes column indices ofH. We useHj

for the j-th row ofH andHi for the i-th column ofH. The
support of the vectorc is denoted by supp(c). For eachj ∈ J ,
let Ij = supp(Hj) and for eachi ∈ I, let Ji = supp(Hi).
Also let dj = |Ij | and d = maxj∈J {dj}. We define the
set E = {(i, j) ∈ I × J : j ∈ J , i ∈ Ij} = {(i, j) ∈
I×J : i ∈ I, j ∈ Ji}. Moreover, for eachj ∈ J , we define
the local single parity check (SPC) codeBj = {(bi)i∈Ij

∈
ℜ|Ij| :

∑

i∈Ij
bi · Hj,i = 0}. For eachi ∈ I, we denote by

Ai ⊆ ℜ
|{0}∪Ji| the repetition code of the appropriate length

and indexing. We also use the following notation introduced
in [9]: for a statementA we haveJAK = 0 if A is true and
JAK = +∞ otherwise. As in [19], we define the mapping

ξ : ℜ → {0, 1}q−1 ⊂ R
q−1

by
ξ(r) = x = (x(ρ))ρ∈ℜ−

such that for eachρ ∈ ℜ−

x(ρ) =

{

1 if ρ = r
0 otherwise.

Building on this we define

Ξ : ∪
t∈Z>0

ℜt → ∪
t∈Z>0

{0, 1}(q−1)t ⊂ ∪
t∈Z>0

R
(q−1)t ,

according toΞ(c) = (ξ(c1), . . . , ξ(ct)), ∀c ∈ ℜt, t ∈ Z>0.
For vectors f ∈ R

(q−1)n we use the notationf =
(f1 | f2 | . . . | fn) where∀i ∈ I,f i = (f

(r)
i )r∈ℜ− .

We also define the inverse ofΞ as Ξ
−1(f ) =

(ξ−1(f1), ξ
−1(f2), . . . , ξ

−1(fn)). Note that the inverse ofΞ
is well defined for anyf ∈ R

(q−1)n where each component
f i, i ∈ I, has entries from{0, 1} with sum at most1.

We assume data transmission over aq-ary input mem-
oryless channel whose input alphabet is identified withℜ,
and whose output alphabet is denoted byΣ. The received
vector is denoted byy = (y1, y2, . . . , yn) ∈ Σn. Based on
this, for eachi ∈ I we define a vectorλi = (λ

(r)
i )r∈ℜ−

where, for eachy ∈ Σ, r ∈ ℜ−, λ(r)i = log
(

p(yi|0)
p(yi|r)

)

.

Here p(y|c) denotes the channel output probability (density)
conditioned on the channel input. Based on this, we also define
Λ = (λ1 | λ2 | . . . | λn).

2The code rate is defined as the ratio of the number of information symbols
to the number of coded symbols. Note that in general, for a code over a ring
ℜ, the code rate may not in general be expressed in terms of the rank ofH
(sinceH may contain non-invertible elements).
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For κ ∈ R>0, we define the functionψ(x) = eκx, and its
inverseψ−1(x) = 1

κ
log(x). We will use Forney-style factor

graphs (FFGs), also known as normal factor graphs [24] to
represent the linear programs introduced in this paper. An FFG
is a diagram that represents the factorization of a function
of several variables. (Note that in this paper FFGs will not
represent products of functions, but sums of functions.) For
more information on FFGs the reader is referred to [24], [22],
[25].

III. T HE PRIMAL L INEAR PROGRAM

In [19] the authors presented the following linear program
to decode nonbinary linear codes:

NBLPD:

min.
∑

i∈I

λif
T
i

subj. to

f
(r)
i =

∑

b∈Bj

bi=r

wj,b ∀j ∈ J , ∀i ∈ Ij , ∀r ∈ ℜ
− ,

wj,b ≥ 0 ∀j ∈ J , ∀b ∈ Bj ,
∑

b∈Bj

wj,b = 1 ∀j ∈ J .

We denote the polytope represented by the variables and
constraints ofNBLPD asQf . Two alternative polytope rep-
resentations are also given in [19], which are both equivalent
to NBLPD. It is also possible to reformulate the constraints
of NBLPD with additional auxiliary variables. However, to
develop a low-complexity LP decoding algorithm forNBLPD,
we use the approach of [9] and reformulateNBLPD so that the
new LP formulation can be directly represented by an FFG:

PNBLPD:

min.
∑

i∈I

λif
T
i

subj. to

f i = ui,0 (i ∈ I),

ui,j = vj,i ((i, j) ∈ E),
∑

a∈Ai

αi,a Ξ(a) = ui (i ∈ I) ,

∑

b∈Bj

βj,b Ξ(b) = vj (j ∈ J ) ,

αi,a ≥ 0 (i ∈ I,a ∈ Ai) ,

βj,b ≥ 0 (j ∈ J , b ∈ Bj) ,
∑

a∈Ai

αi,a = 1 (i ∈ I) ,

∑

b∈Bj

βj,b = 1 (j ∈ J ) .

Here we introduce the definitionsui,j = (u
(r)
i,j )r∈ℜ− and

vj,i = (v
(r)
j,i )r∈ℜ− for all i ∈ I, j ∈ Ji ∪ {0}. We also

defineui = (ui,j)j∈Ji∪{0} for i ∈ I, andvj = (vj,i)i∈Ij
for

j ∈ J . We denote the polytope represented by the variables

and constraints ofPNBLPD by Qp. It is important to note
that along with the convex hulls of the single parity-check
codes,PNBLPD also explicitly models the convex hulls of
the repetition codes. The constraints ofNBLPD andPNBLPD
appear to be quite different due to the different notations.
However, the projection of each polytope onto the variables
denoted byf is the same in both cases, and therefore the LPs
are equivalent from the point of view of decoding.

Theorem 3.1:PolytopesQf andQp are equivalent from an
LP decoding perspective, i.e., for every(f ,α,β) ∈ Qp there
exists aw such that(f ,w) ∈ Qf , and conversely, for every
(f ,w) ∈ Qf there existα,β such that(f ,α,β) ∈ Qp.

Proof: The proof of Theorem 3.1 can be found in [26].

Before deriving the dual linear program, we reformulate
PNBLPD so that this LP can be represented by an FFG. For
this purpose, the constraints ofPNBLPD are expressed as
additive cost terms (also known aspenalty terms). The rule
for assigning a cost to a configuration of variables is: if a
given configuration satisfies the LP constraints then cost0 is
assigned to this configuration, otherwise+∞ is assigned. The
PNBLPD is then equivalent to the unconstrained minimization
of the augmented cost function

∑

i∈I

λif
T
i +

∑

i∈I

Jf i = ui,0K +
∑

(i,j)∈E

Jui,j = vj,iK

+
∑

i∈I

Ai(ui) +
∑

j∈J

Bj(vj) , (1)

where∀i ∈ I and∀j ∈ J we have defined

Ai(ui) ,

t
∑

a∈Ai

αi,a Ξ(a) = ui

|
+
∑

a∈Ai

Jαi,a ≥ 0K

+

t
∑

a∈Ai

αi,a = 1

|
,

Bj(vj) ,

u
v∑

b∈Bj

βj,b Ξ(b) = vj

}
~ +

∑

b∈Bj

Jβj,b ≥ 0K

+

u
v∑

b∈Bj

βj,b = 1

}
~ .

For ease of illustration we consider a(5, 2) code overZ4 with
parity-check matrix

H =





1 3 1 0 0
0 1 0 1 0
3 0 0 0 1



 .

The augmented cost function for this code is represented by
the FFG of Figure 1.

IV. T HE DUAL L INEAR PROGRAM

In this section we derive the dual LP forPNBLPD. As
shown in subsequent sections, the dual LP is useful for the
development of the nonbinary LCLP decoding algorithms.

The dual LP ofPNBLPD can be derived from the aug-
mented cost function of (1). First we derive the duals of
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Fig. 1. FFG which represents the augmented cost function of (1) for
the example(5, 2) nonbinary code.

Fig. 3. FFG which represents the augmented cost function of (4) for the
example(5, 2) nonbinary code. Here a function node which is marked
with the symbol∼, and which is connected to edgesu andv, denotes
the function−Ju = −vK.

Fig. 2. FFG for the functionAi(ui). This forms a subgraph of the
overall FFG of Figure 1. The FFG is illustrated for the special case
|Ai| = 2 and |Ji| = 2.

Fig. 4. FFG for the functionÂi(ûi). This FFG is dual to that of
Figure 2. Here, for any primal variablex, the dual variable is denoted
by x̂.

Ai(ui) andBj(vj). The (primal) FFG ofAi(ui) is shown
in Figure 2 and its dual is shown in Figure 4. For simplicity
of exposition, these graphs are shown for the special case
Ai = {a1,a2} = {(a01, a

1
1, a

2
1), (a

0
2, a

1
2, a

2
2)}, i.e., |Ai| = 2

and |Ji| = 2; the corresponding graphs for the general case
have a similar structure. The dual FFG is derived with the help
of techniques introduced in [22] and [23]. The dual function
Âi(ûi) is obtained from the dual FFG of Figure 4 as

Âi(ûi) = φ̂i −
∑

a∈Ai

Jα̂i,a ≤ 0K (2)

where, because for eacha ∈ Ai it holds that

α̂i,a = −φ̂i + 〈−ûi,Ξ(a)〉 ,

it follows that

− Jα̂i,a ≥ 0K = −
r
φ̂i ≤ 〈−ûi,Ξ(a)〉

z
. (3)

From (2) and (3) we obtain

Âi(ûi) = φ̂i −
∑

a∈Ai

Jφ̂i ≤ 〈−ûi,Ξ(a)〉K

= φ̂i −

s
φ̂i ≤ min

a∈Ai

〈−ûi,Ξ(a)〉

{
.

The same procedure can be used to derive the dual of
Bj(vj) as

B̂j(v̂j) = θ̂j −

s
θ̂j ≤ min

b∈Bj

〈−v̂j ,Ξ(b)〉

{
.
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Finally, we use techniques from [22], [23] to derive the dual
of the LP that is represented by the FFG in Figure 1. The
resulting LP is a maximization problem that is represented by
the FFG in Figure 3; its cost function equals
∑

i∈I

Âi(ûi) +
∑

j∈J

B̂j(v̂j)−
∑

i∈I

Jf̂ i = −ûi,0K

−
∑

(i,j)∈E

Jûi,j = −v̂j,iK−
∑

i∈I

r
f̂ i = −λi

z
. (4)

The dual ofPNBLPD can therefore be deduced as follows.

DNBLPD:

max.
∑

i∈I

φ̂i +
∑

j∈J

θ̂j

subj. to

φ̂i ≤ min
a∈Ai

〈−ûi,Ξ(a)〉 (i ∈ I) ,

θ̂j ≤ min
b∈Bj

〈−v̂j ,Ξ(b)〉 (j ∈ J ) ,

ûi,j = −v̂j,i ((i, j) ∈ E) ,

ûi,0 = −f̂ i (i ∈ I) ,

f̂ i = λi (i ∈ I) .

The augmented cost function of (4) for the(5, 2) binary code
is represented by the FFG of Figure 3.

We make use of the soft-minimum operator introduced in [9]
and derive thesoftened dual linear program. For anyκ ∈ R>0,
the soft-minimum operator is defined as

min
l

(κ){zl} , −
1

κ
log

(

∑

l

e−κzl

)

= −ψ−1

(

∑

l

ψ
(

−zl

)

)

.

Note thatminl
(κ){zl} ≤ minl{zl}, with equality attained in

the limit asκ → ∞. With this we define the softened dual
linear programSDNBLPD which is the same asDNBLPD
except thatmin is replaced bymin(κ).

V. NONBINARY BASIC LOW-COMPLEXITY L INEAR

PROGRAMMING DECODING ALGORITHM

As mentioned earlier, the basic LCLP decoding algorithm
proposed in [9] is a block-coordinate ascent type algorithm.
The block-coordinate ascent algorithm iteratively finds the
optimum of a given continuously differentiable function. Each
iteration of the block-coordinate ascent algorithm consists of
multiple steps and during each step, a block of variables (that
might also consist of a single variable) is updated so that the
given function is optimized with respect to them, while at
the same time the rest of the variables are kept constant. An
iteration of the block-coordinate ascent algorithm is completed
when all variables are updated.

In this section, we derive the nonbinary basic LCLP de-
coding algorithm. For this, it is important to observe from
SDNBLPD that the variableŝui,j and v̂j,i are coupledwith
each other, i.e., we always haveûi,j = −v̂j,i for all (i, j) ∈ E .

It can be observed that inSDNBLPD, φ̂i and θ̂j are each
involved in only one inequality and hence we can replace
these inequalities with equality without changing the optimal

solution (the same is true forDNBLPD). With this, let us
select an edge(i, j) ∈ E and a ring elementr ∈ ℜ−, and
let us assume that all variables exceptû

(r)
i,j are kept constant;

then optimizing the cost ofSDNBLPD with respect tôu(r)i,j is

equivalent to optimizinĝh
(

û
(r)
i,j

)

, where

ĥ
(

û
(r)
i,j

)

, min
a∈Ai

(κ) 〈−ûi,Ξ(a)〉 + min
b∈Bj

(κ) 〈−v̂j ,Ξ(b)〉 . (5)

Although the soft-minimum operator is an approximation of
the minimum operator, its advantage lies in ensuring the
convexity and differentiability of the function̂h

(

û
(r)
i,j

)

in
(5), which makes possible the proofs of Lemmas 5.1 and 5.2
described below.

If the current values of the variableŝu(r)i,j , φ̂i, θ̂j related
to the edge(i, j) ∈ E and the ring elementr ∈ ℜ− are
replaced with the new values (at the same time keeping the
other variables constant) such thatĥ

(

û
(r)
i,j

)

is maximized, then
we can guarantee that the dual function also increases or else
remains constant at its current value. The new valueû

∗(r)
i,j ,

which maximizeŝh
(

û
(r)
i,j

)

is given by

û
∗(r)
i,j , argmax

û
(r)
i,j

ĥ
(

û
(r)
i,j

)

. (6)

Once we have calculated̂u∗(r)i,j , we can update the variables

φ̂i and θ̂j accordingly. The calculation of̂u∗(r)i,j is given in the
following lemma.

Lemma 5.1:The value ofû∗(r)i,j of (6) can be calculated
using

û
∗(r)
i,j =

1

2
((Vi,j,r̄ − Vi,j,r)− (Cj,i,r̄ − Cj,i,r)) ,

where

Vi,j,r̄ , − min
a∈Ai

aj 6=r

(κ)
〈

− ûi,Ξ(a)
〉

,

Vi,j,r , − min
a∈Ai
aj=r

(κ)
〈

− ũi,Ξ(ã)
〉

,

Cj,i,r̄ , − min
b∈Bj

bi 6=r

(κ)
〈

− v̂j ,Ξ(b)
〉

,

Cj,i,r , − min
b∈Bj

bi=r

(κ)
〈

− ṽj ,Ξ(b̃)
〉

.

Here the vectors̃ui and ã are the vectorŝui and a, re-
spectively, where thej-th position is excluded. Similarly, the
vectorsṽj and b̃ are obtained by excluding thei-th position
from v̂j andb, respectively.

Proof: The proof of Lemma 5.1 can be found in [26].

Lemma 5.1 is a generalization of Lemma 3 of [9] to the case
of nonbinary codes. One visible difference between the binary
case and the present generalization is in the calculation of
Vi,j,r̄ and Cj,i,r̄. Here in the case of nonbinary codes, the
calculation of Vi,j,r̄ does not exclude thej-th entry from
a ∈ Ai and ûi,j ; similarly, the calculation ofCj,i,r̄ does not
exclude thei-th entry fromb ∈ Bj and v̂j,i. Note that this is
not inconsistent sincêu(r)i,j is never used to update itself. Here
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the calculation ofVi,j,r̄ andCj,i,r̄ requiresr̄ ∈ ℜ\ {0, r} and
henceξ(r̄) is always multiplied with the correspondinĝu(r̄)i,j .

This ensures that̂u(r)i,j is not used for calculatinĝu∗(r)i,j .
As mentioned in [9], the update equation given in Lemma 3

of [9] can be efficiently computed with the help of the variable
and check node calculations of the (binary) SP algorithm.
Due to this, the complexity of computing(Cj,i,r̄ − Cj,i,r)
is O(d) for binary codes. On the other hand, in the case of
nonbinary codes the mappingΞ used inNBLPD transforms
the nonbinary linear codesAi (repetition code) andBj (SPC
code) into nonlinear binary codesANL

i = {Ξ(a) : a ∈ Ai}
and BNL

j = {Ξ(b) : b ∈ Bj}, respectively. Here, the
computation of(Vi,j,r̄ − Vi,j,r) and(Cj,i,r̄ −Cj,i,r) is related
to the SP decoding of nonlinear binary codesANL

i andBNL
j .

If Ai andBj have equal lengths then they are duals of each
other; however, the relationship betweenANL

i andBNL
j is not

so simple.
One option to compute(Cj,i,r̄−Cj,i,r) is by going through

all possible codewords of the SPC codeBj exhaustively. In
this case the complexity of computing(Cj,i,r̄ − Cj,i,r) is
O(dq(d−1)). Another possibility is to use the trellis of the
nonbinary SPC code to calculate these values. In Section VI
we prove that the computation ofCj,i,r̄ and Cj,i,r can be
carried out with complexity linear in the check node degree
by using a trellis-based variant of the SP algorithm.

Before we come to that section, we formulate the complete
decoding algorithm which uses the update equation given in
Lemma 5.1. We select an edge(i, j) ∈ E , a group elementr ∈
ℜ−, and calculatêu∗(r)i,j from Lemma 5.1. Then̂φi, θ̂j , and
the objective function are updated accordingly. Oneiteration is
completed when all variables associated with all edges(i, j) ∈
E and ring elementsr ∈ ℜ− are updated cyclically. This is a
coordinate-ascent type algorithm and its convergence may be
proved in the same manner as in Lemma 4 of [9].

Lemma 5.2:Assume thatdj ≥ 3, ∀j ∈ J , for a given
parity-check matrixH of the codeC. If we update the variables
associated with all edges(i, j) ∈ E and ring elementsr ∈ ℜ−

cyclically with the update equation given in Lemma 5.1,
then the objective function ofSDNBLPD converges to its
maximum.

Proof: The proof is essentially the same as that of Lemma
4 of [9].

The algorithm terminates after a fixed number of itera-
tions or when it finds a codeword. Knowing the solution of
SDNBLPD does not give an estimate of the codeword directly.
However, an estimate of thei-th symbolc∗i can be obtained
from the vectorûi. For this we define

x̂
(r)
i ,

{

λ
(r)
i −

∑

j∈Ji
û
(r)
i,j if r ∈ ℜ−

0 if r = 0 .

LetMi = argminr∈ℜ{x̂
(r)
i }. If Mi contains a single element

r∗, then the symbol estimate is obtained asc∗i = r∗; otherwise,
we markc∗i aserased.

Due to the soft-minimum operator, the functionĥ
(

û
(r)
i,j

)

in (5) is differentiable everywhere and this fact is used in
Lemma 5.1 to obtain the update equations. However, for

practical implementations we are interested inκ → ∞. As
mentioned earlier, in the limitκ → ∞, the soft-minimum
operator becomes the minimum operator, which requires less
computation. The following lemma considersκ→∞.

Lemma 5.3:In the limit κ → ∞, the functionĥ(û(r)i,j ) is

maximized by any valuêu(r)i,j that lies in the closed interval
between

(V∞
i,j,r̄ − V

∞
i,j,r) and −(C∞

j,i,r̄ − C
∞
j,i,r)

where

V∞
i,j,r̄ , − min

a∈Ai

aj 6=r

〈−ûi,Ξ(a)〉 C∞
j,i,r̄ , − min

b∈Bj

bi 6=r

〈−v̂j ,Ξ(b)〉 ,

V∞
i,j,r , − min

a∈Ai
aj=r

〈−ũi,Ξ(ã)〉 C∞
j,i,r , − min

b∈Bj

bi=r

〈−ṽj ,Ξ(b̃)〉.

Proof: The proof of the lemma is a generalization of
Lemma 5 of [9].

Conjecture 5.1:It is possible to update the variables as-
sociated with the edges(i, j) ∈ E and the ring elements
r ∈ ℜ− cyclically, where û∗(r)i,j is calculated according to
Lemma 5.3. The authors believe that with a suitable update
schedule such an algorithm cannot get stuck in a suboptimal
point, and that the objective function should converge towards
the optimal solution ofDNBLPD. However, in this case it
is difficult to prove the convergence of the algorithm. This is
because forκ → ∞ the objective function is not everywhere
differentiable and it is not possible to use the same argument
as in Lemma 5.2. This problem is also discussed for the binary
case in Conjecture 6 and Section E of [9].

After the algorithm terminates, the decision rule described
above can be used to obtain each symbol estimatec∗i , i ∈ I.
The nonbinary basic LCLP decoding algorithm of Lemma 5.1
updates a single variable associated with an edge(i, j) ∈ E
and a ring elementr ∈ ℜ− at a time. However, we observed
from our simulation work that updating all variables related to
an edge(i, j) ∈ E simultaneously and processing each edge
(i, j) ∈ E one at a time, does not effect the convergence or
the error-correcting performance of the nonbinary basic LCLP
decoding algorithm. It is also possible to solveNBLPD by
varying all the edge variables related to a VNi ∈ I or a
CN j ∈ J simultaneously. Such a variant was proposed for
the basic LCLP algorithm in [27]. We extended the work of
[27] to nonbinary codes for the case in which all the edge
variables related to a VNi ∈ I are updated simultaneously.
Details about this case can be found in [28]. For the other case
in which all edge variables related to a CNj ∈ J are updated
simultaneously, we remark that the approach of [27] cannot
be used with the nonbinary basic LCLP decoding algorithm.
Again, the interested reader is referred to [28] for details.

VI. M ODIFIED BCJR ALGORITHM FOR

CHECK NODE CALCULATION

In this section we propose a modified BCJR algorithm
which allows for efficient implementation of the nonbinary
basic LCLP decoding algorithm. We observe that the equations
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for Cj,i,r̄ andCj,i,r defined in Lemma 5.1 can be rewritten as
follows:

ψ
(

Cj,i,r

)

=
∑

b∈Bj

bi=r

ψ
(

〈ṽj ,Ξ(b̃)〉
)

, (7)

ψ
(

Cj,i,r̄

)

=
∑

b∈Bj

bi 6=r

ψ
(

〈v̂j ,Ξ(b)〉
)

. (8)

It may be observed from the above equations that the
calculation ofCj,i,r andCj,i,r̄ is in the form of the marginal-
ization of a product of functions. Hence it is possible to
computeCj,i,r and Cj,i,r̄ with the help of a trellis-based
variant of the SP algorithm (i.e., a BCJR-type algorithm). One
possibility is to use the trellis of the binary nonlinear code
CNL
j = {Ξ(b) : b ∈ Bj}. However, due to the nonlinear

nature of this binary code, the state complexity at the center
of its trellis would be exponential indj . Here state merging
is also not possible. Hence there is no complexity advantage
when we use the trellis of the binary nonlinear codeCNL

j .
However, if the trellis for the nonbinary SPC codeBj is

used, then the state complexity at each trellis step isO(q) and
is independent ofdj . The branch complexity of this trellis is
O(q2). In the following, we prove that the marginalsCj,i,r̄ and
Cj,i,r can be efficiently calculated with some modifications to
the BCJR algorithm which uses the trellis of the nonbinary
codeBj.

For ease of exposition, we will assume here thatIj =
{1, . . . , dj}, and lethi = Hj,i for i ∈ Ij . We then define
the following for the trellis of the SPC codeBj :

1) The set of all states at timei′ is given by Si′ = ℜ,
i′ ∈ {0, . . . , dj}.

2) There is a branch joinings ∈ Si′−1 and s′ ∈ Si′
for every symbolbi′ satisfying s′ − s = hi′bi′ (if no
such symbolsbi′ exist, there is no such trellis branch).
For such a symbolbi′ , the “branch metric” is given by
g(bi′) = ψ (〈v̂j,i′ , ξ(bi′)〉).

3) We defineσ(i′1, i
′
2) =

∑i′=i′2
i′=i′1

hi′bi′ for b ∈ Bj . In the
trellis for the SPC code, each states ∈ Si′ represents
the “partial syndrome”σ(1, i′).

4) The state metric for forward recursion is

µi′(s) =
∑

(b1,...,bi′ )

σ(1,i′)=s

i′
∏

i′′=1

g(bi′′), s ∈ Si′ , i
′ ∈ Ij (9)

with µ0(0) = 1, µ0(r) = 0, ∀r ∈ ℜ−. Similarly, the
state metric for backward recursion is

νi′(s) =
∑

(bi′+1,...,bdj )

σ(i′+1,dj)=−s

dj
∏

i′′=i′+1

g(bi′′), s ∈ Si′ , i
′ ∈ Ij

(10)

with νdj
(0) = 1, νdj

(r) = 0, ∀r ∈ ℜ−.

Lemma 6.1:Cj,i,r andCj,i,r̄ can be efficiently computed
on the trellis of the nonbinary codeBj as follows,

ψ
(

Cj,i,r̄

)

=
∑

s∈Si

∑

bi∈R\{r}

µi−1(s− hibi) · νi(s) · g(bi) ,

(11)

ψ
(

Cj,i,r

)

=
∑

s∈Si

µi−1(s− hir) · νi(s) , (12)

where state metricsµi′ andνi′ are calculated recursively from
previous state metrics via

µi′(s) =
∑

bi′∈ℜ

µi′−1(s− hi′bi′) · g(bi′) ,

νi′(s) =
∑

bi′+1∈ℜ

νi′+1(s+ hi′+1bi′+1) · g(bi′+1) .

Proof: The proof of Lemma 6.1 can be found in [29] for
the case where all of the coefficientsHj,i (for i ∈ Ij) equal
the ring’s multiplicative identity1; extension of the proof to
handle arbitrary coefficients is straightforward.

Here the CN calculations are carried out in two phases:
in the first phase, the forward and backward state metrics are
calculated and stored; in the second phase the marginalsCj,i,r

andCj,i,r̄ are computed according to Lemma 6.1, where the
state metrics computed in first phase are utilized. It may be
observed that the aforementioned algorithm is essentiallythe
same as the BCJR algorithm except for the second phase where
the marginals are calculated. Note that in general the trellis
may contain parallel branches, since some of the entries of
the parity-check matrix may be non-invertible elements of the
ring.

A. Alternative State Metric for Faster Calculation ofCj,i,r̄

The forward state metricµ as defined in (9) needs to be
computed for the calculation ofCj,i,r and can be reused for
the calculation ofCj,i,r̄. In (11) the algorithm needs to go
through all branches(s, s′) ∈ Si−1 × Si, s′ − s 6= hir
for the calculation ofCj,i,r̄. If the proposed algorithm is
implemented in hardware or on multicore architectures, then
the computation time forCj,i,r̄ can be reduced by parallelizing
its calculation. One possibility to parallelize the calculation
of Cj,i,r̄ is to define a new forward state metric̄µ which
can be computed in parallel withµ in the first phase and
reduces the calculations required during the second phase of
the algorithm. For this we define an alternative forward state
metric as follows,

µ̄i′(s, r) =
∑

(b1,...,bi′ )

σ(1,i′)=s, bi′ 6=r

i′
∏

i′′=1

g(bi′′), s ∈ Si′ , i
′ ∈ Ij , r ∈ ℜ

−

(13)

with µ̄0(s, r) = 0, ∀s ∈ S0, ∀r ∈ ℜ
−. It should be noted that

due to the conditionbi′ 6= r, µ̄i′(s, r) cannot be calculated
recursively fromµ̄i′−1; instead it is calculated together with
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µi′ from µi′−1 as follows,

µ̄i′(s, r) =
∑

bi′∈ℜ\{r}

µi′−1(s− hi′bi′) · g(bi′).

With the help of the alternative forward state metric given in
(13), the expression (11) of Lemma 6.1 can be rewritten as

ψ
(

Cj,i,r̄

)

=
∑

s∈Si

µ̄i(s, r) · νi(s). (14)

The forward state metric̄µi′(s, r) requires the calculation
and storage of an additionalq − 1 values for each states ∈
Si′ during the first phase. Hence the storage requirement for
the calculation ofCj,i,r̄ with (14) increases by a factor ofq.
However, all additional state metric values can be calculated
in parallel withµ which does not effect the run time of the
first phase of the algorithm. Also, the second phase of the
algorithm needs to go through onlyq states instead ofq(q−1)
branches, hence the overall run time for computingCj,i,r̄ is
reduced with the state metric̄µ.

B. Calculation of Marginals withκ→∞

In Lemma 6.1,κ is assumed to be finite. However, for many
practical applications we are interested inκ→∞. According
to Lemma 5.3, forκ→∞ we need to calculate(C∞

j,i,r−C
∞
j,i,r̄)

to update the corresponding variables. The marginalsC∞
j,i,r

andC∞
j,i,r̄ are here obtained as the limitκ → ∞ of (7) and

(8), respectively, i.e.,

C∞
j,i,r , − min

b∈Bj

bi=r

〈−ṽj ,Ξ(b̃)〉, C∞
j,i,r̄ , − min

b∈Bj

bi 6=r

〈−v̂j ,Ξ(b)〉 .

(15)
Thus C∞

j,i,r and C∞
j,i,r̄ can be obtained by replacing all

“product” operations with “sum” operations and similarly
by replacing all “sum” operations with “min” operations in
(7) and (8) (marginals with finiteκ). In (7) and (8) the
marginalization is performed in the sum-product semiring.
However, for κ → ∞ the marginalization is performed in
the min-sum semiring and hence the marginals of (15) can
be computed with a trellis-based variant of the MS algorithm.
If we replace all “product” operations with “sum” operations
and all “sum” operations with “min” operations in (9), (10),
(11), (12), (13) and (14), and then redefine the branch metric
asg(bi′) = 〈v̂j,i′ , ξ(bi′)〉, then the resulting equations can be
used on the trellis of the nonbinary SPC codeBj to compute
the marginals of (15). This trellis-based variant of the MS
algorithm is related to the Viterbi algorithm.

VII. N ONBINARY SUBGRADIENT LOW-COMPLEXITY

LP DECODING ALGORITHM

In [9] the authors proposed the subgradient LCLP decoding
algorithm for binary LDPC codes. The objective function of
the dual LP (denotedDLPD2 in [9]) can be expressed as a sum
of several component functions. Based on this observation,the
authors proposed the use of incremental subgradient methods
[16] for the maximization of the dual objective function in
DLPD2.

The main idea behind incremental subgradient methods is to
process each component function separately where variables
related to the selected component function are updated imme-
diately. An iteration of the incremental subgradient method can
be seen as a sequence within which each component function
is processed exactly once [16].

Similar to the dual LPDLPD of [9], the objective func-
tion (which is concave but not everywhere differentiable) of
DNBLPD can also be expressed as the sum of component
functions. Hence it is also possible to use incremental sub-
gradient methods to find the solution ofDNBLPD. As in the
previous section, we assumêui,j = −v̂j,i for all (i, j) ∈ E .

To develop the nonbinary subgradient LCLP decoding algo-
rithm, we consider the component function given by the term
in the objective function related to CNj ∈ J , i.e.,

mj (v̂j) = min
b∈Bj

〈−v̂j ,Ξ(b)〉 . (16)

We provide the definition of the subgradient for this part of
the objective function in the following lemma.

Lemma 7.1:For the term in the objective function related
to the CNj ∈ J given in (16), a subgradient is given by

sj(v̂j) = −Ξ

(

argmin
b∈Bj

〈−v̂j , Ξ(b)〉

)

.

Proof: For sj(v̂j) to be a subgradient ofmj(v̂j), the
following inequality must hold [16]

mj(v
′
j) ≤ mj(v̂j) + 〈sj(v̂j), v

′
j − v̂j〉 (17)

for all v′
j ∈ R

(q−1)|Ij |. We define

b′ , argmin
b∈Bj

〈−v̂j , Ξ(b)〉. (18)

With this, we obtain

mj(v̂j) + 〈sj(v̂j), v
′
j − v̂j〉

= min
b∈Bj

〈−v̂j , Ξ(b)〉+ 〈sj(v̂j), v
′
j〉 − 〈sj(v̂), v̂j〉

= 〈−v̂j , Ξ(b′)〉+ 〈−Ξ(b′), v′
j〉 − 〈−Ξ(b′), v̂j〉

= 〈−v′
j , Ξ(b′)〉

≥ min
b∈Bj

〈−v′
j , Ξ(b)〉

= mj(v
′
j) ,

thereby proving (17) and the fact thatsj(v̂j) is a subgradient
of mj(v̂j).

Note that if more than one vectorb ∈ Bj achieves the
minimum in (18), a subgradient is given by the negative of
an arbitrary linear combination of the corresponding vectors
Ξ(b).

The subgradient of the above lemma is denoted bySΞ. It can
be observed that the subgradientSΞ, which is a generalization
of the subgradient given in [9] for binary codes, can be
efficiently obtained with the help of the Viterbi algorithm on
the trellis of the nonbinary SPC codeBj. Once the subgradient
is obtained, the dual variablêvj can be updated as [16]

v̂j ← v̂j + ϑl · sj(v̂j), (19)
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where ϑl ∈ R>0 is the step size at iterationl. The dual
variable ûi related to VN i ∈ I can be updated in an
analogous manner. The subgradient for the VN update can
be computed with some modifications to the VN calculations
used in the nonbinary SP algorithm. One iteration of the
algorithm is completed when all check-node-related updates of
dual variableŝvj , j ∈ J , and then, all variable-node-related
updates of dual variableŝui, i ∈ I, have been (sequentially)
performed. The convergence of this algorithm is guaranteed
for a suitably chosen step size sequence{ϑl}l≥1 [16]. The
decision rule to obtain the estimate of the symbols from the
dual variablesûi, i ∈ I, is the same as the one given in
Section V.

The choice of step size sequence{ϑl}l≥1 can also affect
the convergence as well as the error-correcting performance
of the algorithm. Some possible step size rules (e.g., constant,
diminishing, dynamic etc.) are discussed in [16]. It was deter-
mined through extensive simulation works that the following
staircase typestep size rule works best for most nonbinary
LDPC codes (independent of the code parameters):

ϑl =

{

ϑl−1 × 0.8 if l is divisible by20
ϑl−1 otherwise.

The initial valueϑ1 is also determined by the simulation.
The nonbinary basic LCLP decoding algorithm is anedge-

by-edgealgorithm, i.e., it processes each edge in the Tanner
graph separately. During the decoding of(dv, dc)-regular
LDPC codes with the nonbinary basic LCLP decoding algo-
rithm, the modified BCJR algorithm of Lemma 6.1 is utilized
m · dc times, and VN calculations are carried outn · dv
times, in a single iteration.3 In contrast to this, the nonbinary
subgradient LCLP decoding algorithm works on anode-by-
nodebasis, i.e., it updates all the edges related to a CN or a VN
simultaneously. Hence the nonbinary subgradient algorithm
runs the Viterbi algorithm onlym times, and performs the
VN calculationsn times, in a single iteration. Also, the Viterbi
algorithm is computationally less expensive than the modified
BCJR algorithm used in the nonbinary basic LCLP decoding
algorithm. This reduces the complexity of a single iteration
of the nonbinary subgradient algorithm significantly. One
more advantage of the nonbinary subgradient LCLP decoding
algorithm is the ease of computation of the dual function
value (the contribution of the component function given in
Lemma 7.1 towards the global function is computed by the
Viterbi algorithm in the form of the forward state metric).
Similarly, the component function value is also output as a by-
product of the VN computations. Hence the global function
value can be easily computed during each iteration. The
algorithm may be deemed to have converged to the solution
of DNBLPD when the difference between the global function
values computed during successive iterations is close to zero;
this criterion may be used to efficiently implement an early
stopping mechanism. The global function value computed
during each iteration can also be utilized to adapt the step-
size dynamically to improve the convergence and/or error-

3However, the complexity of the nonbinary basic LCLP decoding algorithm
can be significantly reduced with the help of a suitable update schedule and
a suitable reuse of partial results.

correcting performance of the nonbinary subgradient LCLP
decoding algorithm.

The complexity per iteration of the nonbinary SP and MS
algorithms is dominated by that of the CN calculation, which
isO(q2) [30]. The nonbinary SP and MS algorithms also work
on a node-by-node basis, and consequently the nonbinary SP
(resp. MS) algorithm uses the BCJR (resp. Viterbi) algorithm
m times during each iteration. As mentioned earlier, the
nonbinary basic LCLP decoding algorithm uses the modified
BCJR algorithmm · dc times (however, see Footnote 3)
and hence its complexity per iteration is significantly higher
than that of the nonbinary SP or MS algorithm. In contrast,
the nonbinary subgradient LCLP decoding algorithm, which
uses the Viterbi algorithmm times during each iteration, has
complexity per iteration similar to that of the nonbinary MS
algorithm and smaller than that of the nonbinary SP algorithm.

VIII. S IMULATION RESULTS

This section presents simulation results for the nonbinary
basic and subgradient LCLP decoding algorithms. We use a
cyclic edge-update schedule for the nonbinary basic LCLP
decoding algorithm. The nonbinary basic LCLP decoding
algorithm uses the trellis-based CN calculations described in
Section VI and we considerκ → ∞ for all simulations. The
MS and SP algorithms also use the trellis of the nonbinary
SPC code for CN processing. We use the binary(204, 102)
MacKay LDPC matrix and the(155, 64), (755, 334), and
(1055, 424) group-structured LDPC matrices from [31], but
with nonzero parity-check matrix entries replaced by randomly
selected nonzero entries from the finite ring. The(155, 64)
and(1055, 424) LDPC codes have parity-check matrix entries
from Z4 and GF(4), respectively, and the(204, 102) and
(755, 334) LDPC codes have parity-check matrix entries from
GF(8). We also use the LDPC code of lengthn = 80 over
Z4 used in [19] which has rateR(C) = 0.6 and constant
check-node degree of5. The (155, 64), (1055, 424), and
(755, 334) matrices are(3, 5)-regular group-structured LDPC
matrices; hence there are5 nonzero entries in each row. For
the (155, 64) and (1055, 424) matrices, we set all non-zero
entries to1 (= ζ0) in each row (ζ is a primitive element of
the finite field under consideration). For the(755, 334) LDPC
matrix, the first, second, third, fourth, and fifth nonzero entry
in each row is set to1, ζ2, ζ4, ζ6, and 1, respectively. The
(204, 102) LDPC matrix is a(3, 6)-regular matrix and we set
the first, second, third, fourth, fifth, and sixth nonzero entry
in each row to elements1, ζ2, ζ4, ζ6, ζ1, and1, respectively.

Furthermore, we assume transmission over the AWGN
channel where for the(155, 64) and(1055, 424) LDPC codes
the nonbinary symbols are directly mapped to quaternary
phase-shift keying (QPSK) signals and for the(204, 102)
and(755, 334) codes, nonbinary symbols are directly mapped
to 8-PSK signals. We simulate up to100 frame errors per
simulation point. Unless otherwise specified, the maximum
number of iterations is set to100.

Figure 5 compares the frame error rate (FER) for nonbinary
LP decoding of [19] (solution performed using the Simplex
solver) with that of the nonbinary basic LCLP decoding algo-
rithm. As can be observed, the error correcting performance
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Fig. 5. Frame error rate for the(80, 48) LDPC code overZ4 under QPSK
modulation.

Fig. 6. Frame error rate for the(1055, 424) LDPC code over GF(4) under
QPSK modulation.

Fig. 7. Frame/symbol error rate for the(155, 64) quaternary LDPC code
under QPSK modulation.

Fig. 8. Average number of iterations required to converge for the(155, 64)
quaternary LDPC code under QPSK modulation.

of the nonbinary basic LCLP decoding algorithm is within
0.2 dB of the LP decoder. Note however that since the non-
binary LCLP decoding algorithm only approximately solves
PNBLPD, it does not possess the ML certificate property.

The FER curves for the(1055, 424) LDPC code is shown
in Figure 6 and the FER of nonbinary basic LCLP decoding
is within 0.5dB of that of the SP and MS algorithm.

The error-correcting performance of the(155, 64) LDPC
code is shown in Figure 7 where the FER and symbol error
rate (SER) of the nonbinary basic LCLP decoding algorithm
is compared with that of the SP and MS algorithm. For
this code, the FER of the nonbinary basic LCLP decoding
algorithm is similar to that of the SP and MS algorithms for
low and moderate SNR levels; however, it is better by around
0.25dB for higher SNR levels. The SER of the nonbinary
basic LCLP decoding algorithm is better than that of the SP
and MS algorithms for all tested SNR values. Figure 8 shows
the average number of iterations required for the nonbinary
basic LCLP, SP, and MS algorithms to converge during the

decoding of the(155, 64) LDPC code. The nonbinary basic
LCLP decoding algorithm requires around10% to 15% more
iterations than the MS algorithm to converge for lower SNR
levels, whereas nonbinary basic LCLP and MS algorithms
require a similar number of iterations for moderate to high
SNR values (i.e., in the waterfall region). Hence the nonbinary
basic LCLP decoding algorithm outperforms the MS decoding
algorithm in terms of the error-correcting performance forthe
(155, 64) LDPC code. The SP algorithm requires around 30%
less iterations to converge compared to nonbinary basic LCLP
decoding algorithm for most SNR values.

The FER curve for the(204, 102) LDPC code is shown
in Figure 9. In this case the FER of nonbinary basic LCLP
decoding is within1.5dB and0.75dB of that of the SP and
MS algorithms, respectively.

Figure 10 shows the FER curves for the(755, 334) LDPC
code. Unlike the above mentioned results, here the FER
performance of the nonbinary basic LCLP decoding algorithm
is around1.2dB and 1.7dB worse than that of the SP and
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Fig. 9. Frame error rate for the(204, 102) LDPC code over GF(8) under
8-PSK modulation.

Fig. 10. Frame error rate for the(755, 334) LDPC code over GF(8) under
8-PSK modulation.

MS algorithm, respectively, for low to moderate SNR values.
However, for SNR values higher than9dB, the SP and MS
algorithm shows an error-floor effect and by around10dB its
FER is the same as that of the nonbinary basic LCLP decoding
algorithm. After10.25dB, the nonbinary basic LCLP decoding
algorithm also shows the error floor effect but still has better
FER than the MS and SP algorithm. The FER of nonbinary
basic LCLP decoding algorithm at10.25dB and10.5dB was
simulated for60 frame errors per simulation point for this
code. A similar phenomenon was also observed in [18] where
the binary LCLP decoding algorithm outperformed the MS
algorithm in the error-floor region. It is important to note that
the binary(755, 334) LDPC code is constructed with the same
algorithm as the other(3, 5) group-structured LDPC codes
[31]; however its minimum distance is relatively low compared
to other binary LDPC codes from the same family, and hence
one can expect the binary MS (or SP) algorithm to show an
error-floor effect. Our observation of a high error-floor forthe
(755, 334) LDPC code over GF(8) could be due to a similar
problem with respect to the Lee distance.

The FER of the(155, 64) LDPC code overZ4 for the nonbi-
nary subgradient LCLP decoding algorithm is shown in Figure
11. The FER of the nonbinary basic LCLP decoding algorithm
is also shown here for reference, where the maximum number
of iterations is set to100. Both the constant and staircase
type step-size rules are used for these simulations. Also,
Figure 12 shows the average number of iterations required
for the nonbinary subgradient LCLP decoding algorithm to
converge, with different step-size rule combinations (maxi-
mum 100 iterations). The initial value of the step-size at the
first iteration for the simulations of Figure 11 was optimized
through simulation, and for the constant step-size rule it is
0.08 whereas for the staircase type step-size rule it is0.15.
The nonbinary subgradient LCLP decoding algorithm with
staircase type step-size rule has better FER than the constant
step-size rule, while requiring a similar average number of
iterations to converge.

The FER of the nonbinary subgradient LCLP decoding algo-

rithm with staircase type step-size rule is0.38dB away from
the FER of the nonbinary basic LCLP decoding algorithm
for a maximum of100 iterations and is better by0.06dB for
a maximum of200 iterations. However, it requires approx-
imately 3 times as many iterations on average to converge
than the nonbinary basic LCLP decoding algorithm. As was
already discussed in the previous section, the complexity of a
single iteration of the nonbinary subgradient LCLP decoding
algorithm is significantly lower than that of the nonbinary
basic LCLP decoding algorithm. However, this complexity
advantage is somewhat mitigated by the fact that the nonbi-
nary subgradient LCLP decoding algorithm requires a higher
number of iterations than the nonbinary basic LCLP decoding
algorithm to reach a similar FER for a given SNR value.

For the (204, 102) LDPC code, if the same step-size rule
and maximum number of iterations is used, then the nonbinary
subgradient LCLP decoding algorithm requires around0.75dB
more transmit power than the nonbinary basic LCLP decoding
algorithm to reach same FER.

For the (1055, 424) and the(755, 334) LDPC codes, the
FER of the nonbinary subgradient LCLP decoding algorithm
which uses the staircase type step-size rule (maximum200
iterations) is similar to or better than that of the nonbinary
basic LCLP decoding algorithm (maximum100 iterations).
For these simulations, the initial value of the step-size (again
optimized through simulation) for the(1055, 424) code was
0.20 and for the(755, 334) code was0.09.

IX. CONCLUSIONS

In this paper we generalized the basic LCLP decoding
algorithm and the subgradient LCLP decoding algorithm to
nonbinary linear codes. The complexity per iteration of the
nonbinary LCLP decoding algorithms is linear in the code’s
block length and hence they can also be used for moderate
and long block length codes. The complexity of nonbinary
basic LCLP decoding algorithm is dominated by the max-
imum check node degree and the number of elements in
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Fig. 11. Frame error rate for the(155, 64) quaternary LDPC code under
QPSK modulation. The FER performance of the nonbinary basicLCLP
decoding algorithm is compared with that of the nonbinary subgradient
LCLP decoding algorithm (with different step-size rule).

Fig. 12. Average number of iterations required for the nonbinary basic
LCLP and the nonbinary subgradient LCLP decoding algorithm(with
different step-size rule) to converge for the(155, 64) quaternary LDPC code
under QPSK modulation.

the nonbinary alphabet. Furthermore, we proposed a modified
BCJR algorithm for efficient check node processing in the
nonbinary basic LCLP decoding algorithm. The proposed CN
processing algorithm has complexity linear in the check node
degree. We also proposed an alternative state metric which
can be used to reduce the run time of the CN calculations
of the nonbinary basic LCLP decoding algorithm. The error-
correcting performance of the nonbinary basic LCLP decoding
algorithm is similar to that of the MS algorithm for some
classes of LDPC codes.
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