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On Optimality of Myopic Sensing Policy with
Imperfect Sensing in Multi-channel

Opportunistic Access
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Abstract

We consider the channel access problem under imperfedngesischannel state in a multi-channel
opportunistic communication system, where the state oh ed@nnel evolves as an independent and
identically distributed Markov process. The consideresbfgm can be cast into a restless multi-armed
bandit (RMAB) problem that is of fundamental importance iecion theory. It is well-known that
solving the RMAB problem is PSPACE-hard, with the optimaligo usually intractable due to the
exponential computation complexity. A natural alternatfisy to consider the easily implementable myopic
policy that maximizes the immediate reward but ignores thpaict of the current strategy on the future
reward. In this paper, we perform an analytical study on thénwality of the myopic policy under
imperfect sensing for the considered RMAB problem. Speificfor a family of generic and practically
important utility functions, we establish the closed-foconditions under which the myopic policy is
guaranteed to be optimal even under imperfect sensing.iteespr focus on the opportunistic channel

access, the obtained results are generic in nature and degaipplicable in a wide range of engineering
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. INTRODUCTION

We consider an opportunistic multi-channel communicasystem in which a user has access to
multiple channels, but is limited to sense and transmit onlya subset of them at a time. The fundamental
problem we study is how the sender can exploit past obsenstnd the knowledge of the stochastic
properties of the channels to maximize its utility (e.gpested throughput) by switching opportunistically
across channels.

Formally, the considered channel access problem can beirgasthe restless multi-armed bandit
(RMAB) problem, one of the most well-known generalizatiaighe classic multi-armed bandit (MAB)
problem, which is of fundamental importance in stochasgicision theory. The standard formulation of
the RMAB problem can be briefly summarized as follows: Thera ibandit of N independent arms,
each evolving as a two-state Markov process. At each time alplayer chooses (1 < k < N) of
the N arms to play and receives a certain amount of reward depgrfirthe state of the played arms.
Given the initial state of the system, the goal of the plagetoifind the optimal policy of playing the
arms at each slot so as to maximize the aggregated discolomgderm reward.

Despite the significant research efforts in the field, the FBVi@oblem in its generic form still remains
open. Until today, very little result is reported on the stuwe of the optimal policy. Obtaining the optimal
policy for a general RMAB problem is often intractable duehe exponential computation complexity.
Hence, a natural alternative is to seek a simple myopic patieximizing the short-term reward. Due
to its simple and robust structure, the myopic sensing pdiias begun to attract significant research
attention, especially on the optimality of the myopic sagsgpolicy.

The vast majority of studies in the area assume perfect edigen of channel states. However, sensing
or observation errors are inevitable in practical scenéeig., due to noise and system limitations),
especially in wireless communication systems which is teu$ of our work. More specifically, a good
(bad, respectively) channel may be sensed as bad (good)cmedsing a bad channel leads to zero
reward. In such context, it is crucial to study the structarel the optimality of the myopic sensing
policy with imperfect observation. We would like to emplmsthat the presence of sensing error brings
two difficulties when studying the myopic sensing policy Imstnew context.

o The channel state evolves as a non-linear mapping (w.et.cthrent channel state) instead of a

linear one in the perfect sensing case.

« In the non-perfect sensing case, the state transition ofaare depends not only on the channel

evolution itself, but also on the observation outcome, rr@athat the transition is not deterministic.

July 27, 2021 DRAFT



3

Due to the above particularitﬂzsour problem requires an original study on the optimalitytioé
myopic sensing policy that cannot draw on existing resuitshe perfect sensing case. We would like
to report that despite its practical importance and pderdies, very few work has been done on the
impact of sensing error on the performance of the myopicisgnsolicy, or more generically, on the
RMAB problem under imperfect observation. To the best of knowledge, [[1] is the only work in this
area, where the optimality of the myopic policy is proved tioe case of two channels with a particular
utility function. In this paper, we derive closed-form cdtimhs under which the myopic sensing policy is
optimal under imperfect sensing for arbitraky and generic utility functions. As shown in Section 111-C,
the result obtained in this paper can cover the resultlof\ttireover, this paper also significantly extends
our previous work([2], focusing on perfect sensing sceniarighich the analysis cannot be applied in the
imperfect sensing scenario due to the non-trivial parsictiés introduced by sensing error as mentioned
previously. In this regard, our work in this paper contrdmithe existing literature by developing an
adapted analysis on the RMAB problem under imperfect sgnsitder the generic framework proposed
in [2].

The rest of the paper is organized as follows: Our model imédated in Sectiohll. Sectidn]ll studies
the optimality of the myopic sensing policy and illustrathe application of the derived results via two
typical examples. A detailed discussion on the related vimigiven in Section 1V. Finally, the paper is

concluded by SectionlV.

II. PROBLEM FORMULATION
A. Multi-channel Opportunistic Access with Imperfect S®mns

As outlined in the Introduction, we consider a multi-chanapportunistic communication system,
in which a user is able to access a #étof N independent and statistically identical channels, each
characterized by a Markov chain of two statgepd/idle (1) and bad/busy(0). The state transmission
probabilities are given byp; ;},i,j = 0,1. We assume that the system operates in a synchronously time
slotted fashion with the time slot indexed byt = 1,2,--- ,T), whereT is the time horizon of interest.
Each channel goes through state transition at the begirofirgach slott. This generic multi-channel
opportunistic communication model can be naturally cast the opportunistic spectrum access (OSA)

problem in cognitive radio systems where an unlicensedreary user can opportunistically access the

Please refer to the remark &l (1) for a detailed analysis
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temporarily unused channels of the licensed primary usétis,the availability of each channel evolving
as an independent Markov chain.

Limited by hardware constraints and energy cost, the usaldsved to sense onlj (1 < k£ < N)
of the N channels at each slét We denote the set of channels chosen by the user at $iptA(¢)
where A(t) € N and | A(t)| = k. We assume that the user makes the channel selection deaisthe
beginning of each slot after the channel state transitioaredver, we are interested in the imperfect
sensing scenario where channel sensing is subject to ermirsa good channel may be sensed as bad
one and vice versa. L&(t) = [S1(t),--- ,Sn(t)] denote the channel state vector whétét) € {0,1}
is the state of channélin slot ¢ and letS’(t) = {S!(t),i € A(t)} denote the sensing outcome vector
where S/(t) = 0 (1) means that the channelis sensed bad (good) in slet Using such notation, the
performance of channel state detection is characterizeditygystem parameters: the probability of false
alarme;(t) and the probability of miss detection(t), formally defined as follows:

ei(t) £ Pr{Si(t) = 1]8;(t) = 0},

5i(t) £ PH(S{(1) = 0[Si(r) = 1}.
In our analysis, we consider the case whe(é) andd; (¢) are independent w.rt.andi. More specifically,
we defined: andj as the system-wide false alarm rate and miss detectionia@lso assume that when
the receiver successfully receives a packet from a chamiselnds an acknowledgement to the transmitter
over the same channel at the end of the slot. The absence o€CHEnsiynifies that the transmitter does
not transmit over this channel or transmitted but the chhisnleusy in this slot.

Obviously, by sensing only: out of N channels, the user cannot observe the state information of
the whole system. Hence, the user has to infer the chanriesdtam its past decision and observation
history so as to make its future decision. To this end, we defirchannel state belief vectdhereinafter
referred to aselief vectorfor briefness)2(t) = {w;(t),i € N'}, where0 < w;(t) < 1 is the conditional
probability that channel is in state good (i.e.S;(t) = 1) at slot¢ given all past states, actions and
observatiorts Due to the Markovian nature of the channel model, the beledtor can be updated

recursively using Bayes Rule as shown[ih (1).
P11, i€ A(t),ACK =1
wi(t+1) = ¢ r(p(wi(t))), ie Alt), ACK =0, 1)

T(wi(t), i g A

2The initial beliefw;(1) can be set to,—P¢—— if no information about the initial system state is avaitabl
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where ACK = 1 denotes the case where an ACK is received (successful tissiom i.e.,S/(i) = 1

and S;(t) = 1) and ACK = 0 denotes the case where no ACK is received (failed transomssi no

ew; (t)+1—w; (t)

T(w;i(t)) £ wi(t)p11 + [1 — wi(t)]por 2)

transmission, i.e.5!(i) =1 S;(t) = 0 or §'(t) = 0), ¢(w;) = and

denotes the operator for the one-step belief update.

Remark. We would like to emphasize that in contrast to the perfecsisgncasel[2] wherey;(t + 1) is

a linear function ofw;(t) whetheri in sensed or not, in the imperfect sensing case, the mapping f
wi(t) to w;(t + 1) is no longer linear due to the sensing error (cf. the secamel &if equation[{1)).
Moreover, the state transition of a channel depends not amlthe channel evolution itself, but also on
the observation outcome, i.ev;(t + 1) = py; for i € A(t),ACK =1 andw;(t + 1) = 7(¢(w;(t)))
for i € A(t), ACK = 0. As will be shown later, these differences make the analgsishe imperfect

sensing more complicated.

To conclude this subsection, we state some structural prepeof 7(w;(t)) and ¢(w;(t)) that are

useful in the subsequent proofs.

Lemma 1. If Vi, po1 < p11, then
o 7(w;(t)) is monotonically increasing i;(t);

o po1 < T(wi(t)) < p11, VO <wit) < 1.
Proof: Lemmal follows fromr(w;(t)) = (p11 — po1)wi(t) + po1 straightforwardly. [ |

Lemma 2. If 0 <e < m, then
p11(1 Pm)
e ©(w;(t)) increases monotonically iw;(t) with ¢(0) =0 and ¢(1) = 1;

o (wi(t)) < por, Ypor < wi(t) < pii.

Proof: Noticing thaty(w;) = —-<2: 7. Lemmal2 follows straightforwardly. [

ew; (t)+1—w; (t

B. Optimal Sensing Problem Formulation and Myopic Sensiolicy?

Given the imperfect sensing context, we are interesteddnuger’s optimization problem to find the
optimal sensing policyt™ that maximizes the expected total discounted reward ovenig fhorizon.
Mathematically, a sensing policy is defined as a mapping from the belief vecfoft) to the action

(i.e., the set of channels to sens&(t) in each slott: 7 : Q(t) — A(t),|At)| =k, t=1,2,--- ,T.
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The following gives the formal definition of the optimal saégs problem:
T

> B R(Q1))

™ = argmax &
T t=1

Q(l)] ®3)

where R (€2(t)) is the reward collected in slatunder the sensing policy with the initial belief vector
Q(1), 0 < g < 1 is the discounting factor characterizing the feature that future rewards are less
valuable than the immediate reward. By treating the bekdfier of each channel as the state of each arm
of a bandit, the user’s optimization problem can be cast antestless multi-armed bandit problem.

In order to get more insight on the structure of the optimimaproblem formulated in[{3) and the

complexity to solve it, we derive the dynamic programmingnfalation of [3) as follows:

V() = maxE[R-(UT))] = _max ER-(Q(T))],

Vi(Q(t)) = max E | Rr(Q(1)) + 8 Z H(l—e)wi(t)
\él((tt))%gc ECA(t) icE

[T 00— w@Vier (@ + 1) -

JEAM\E

In the above equation$;(€2(¢)) is the value function corresponding to the maximal expeotadard
from time slott to 7' (1 < ¢t < T') with the believe vectof)(t + 1) following the evolution described
in (@) given that the channels in the subgeare sensed in state good and the channeld(if)\ are
sensed in state bad.

Theoretically, the optimal policy can be obtained by salvihe above dynamic programming. Unfor-
tunately, due to the impact of the current action on the &uteward and the unaccountable space of the
belief vector, obtaining the optimal solution directly finche above recursive equations is computationally
prohibitive. Hence, a natural alternative is to seek sinmp@pic sensing policy which is easy to compute
and implement that maximizes the expected immediate rewaft(¢)), formally defined as follows:

A(t) = argmax ;e 4 F(Q(1)). 4)
AN

In this paper, we focus on a class of generic and practicatiyortant functions defined inl[2] as
regular functions. More specifically, the expected immediate reWfnction F'(€2(¢)) studied in this
paper are assumed to be symmetrical, monotonically noredsing and decomposable, defined by the
three axioms inlJ2]. Under this condition, the myopic pol@mynsists of choosing thee channels with the

largest value ofv. In the following sections we focus on the structure and tpenaality of the myopic
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sensing policy under imperfect sensing. As pointed out énrémark following equation§l(1) and (2), the
main technical difficulties compared with the perfect segsiase are the non-linearity of the mapping

from w;(t) to w;(t + 1) and the dependency of the channel state transition on thenati®n outcome.

1. ANALYSIS ON OPTIMALITY OF MYOPIC SENSING POLICY UNDER IMPERFECTSENSING

The goal of this section is to establish closed-form condgiunder which the myopic sensing policy,
despite of its simple structure, achieves the system optimader imperfect sensing. To this end, we
set up by defining an auxiliary function and studying the dtrtal properties of the auxiliary function,
which serve as a basis in the study of the optimality of the pig/sensing policy. We then establish the
main result on the optimality followed by the illustratiom dow the obtained result can be applied via
two concrete application examples.

For the convenience of discussion, we firstly state sometinotabefore presenting the analysis:

« The believe vectof2(t) is sorted tofw; (t),--- ,wn(t)] at each slot such thatd = {1,2,--- |k} [3;
e N(m) = {1,---,m} (m < N) denotes the first» channels in\V;

. Givenf C M C N, Pr(M, &) £ [[(1—e)wi(t) ] [1-(1—e)w;(t)], herein,Pr(M,£) denotes
ic€ jEM\E
the expected probability that the channel§imjre sensed in the good state, while the channels in

M\ & are sensed in the bad state, given that the channeld iare sensed,;

« P{, denotes the vector of lengtl| with each element being;;

e ®(I,m) £ [1(w;(t)),l < i < m] where the components are sorted by channel inde,m)
characterizes the updated belief values of the channelgebati andm if they are not sensed;

« GivenE C M C N, QM€ £ [7(p(w;(t))),i € M\ E] where the components are sorted by channel
index. Q¢ characterizes the updated belief values of the channeld in€ if they are sensed in

the bad state’"*"' 2 |

T(p(wi(t))),7 € M\ € andi < [] characterizes the updated belief values
of the channels inM \ £ if they are sensed in the bad state with the channel indexlambbn;
QML £ [r(p(w;i(1))),i € M\ E andi > ] characterizes the updated belief values of the channels
in M\ € if they are sensed in the bad state with the channel inderdalgni;

o Letw_; = {wj,j € A, j+#i}and
Az = max  {F(L,w_;) — F(0,w_4)},
w7¢6[071}k71

Apin & min — {F(1,w-;) = F(0,0-)}.
w,ie[O,l}k*1

3For presentation simplicity, by slightly abusing the nimas without introducing ambiguity, we drop the time slotléx t.
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A. Definition and Properties of Auxiliary Value Function

In this subsection, inspired by the form of the value funefig(€2(¢)) and the analysis i [3], we first
define the auxiliary value function with imperfect sensimgl ahen derive several fundamental properties

of the auxiliary value function, which are crucial in the édyuon the optimality of the myopic sensing

policy.

Definition 1 (Auxiliary Value Function under Imperfect Sensing)he auxiliary value function, denoted

asWy(Q2) (t=1,2,---,T) is recursively defined as follows:
Wr(QT)) =F(wi(T), - ,wi(T)): (5)
Wi(Q1)) =F(wi(t), - ,wi(t))+

g Z Pr(N(k), E)Wip1 (Qe(t + 1)), (6)
ECN (k

whereQg (t+1) 2 (P5,, ®(k+1,N),QV¥)£€ ) denotes the belief vector generated(by) based or(l).

The above recursively defined auxiliary value function gitke expected cumulated reward of the
following sensing policy: in slot, sense the first channels; if a channel is correctly sensed idle
(S/ =1 andsS; = 1), then put it on the top of the list to be sensed in next sldientise drop it to the
bottom of the list. Recall Lemmd 1 and Lemina 2, under the ¢mmd) < e < % if the belief
vector()(t) is ordered decreasingly in slotthe above sensing policy is the myopic sensing policy with
Wi (€(t)) being the total reward from sldtto 7'

In the subsequent analysis of this subsection, we prove stnnetural properties of the auxiliary value

function.

Lemma 3 (Symmetry) If the expected reward functiof is regular, the correspondent auxiliary value

functionW,(2) is symmetrical in any two channelj < k forall t =1,2,--- T, i.e.,

Wt(wla"' y Wiyt mr Wy, e >WN) =

Wt(Wl,"',Cdj,"',wi,"',WN), VZ7]§]€ (7)

Proof: The lemma can be easily shown by backward induction notitiat(w,, - - - ,w;, -+ ,wj, -+ ,WN)

and (wi,- - ,wj, -+ ,w;, - ,wn) generate the same belief vecteg (t + 1) for any €. [ |

Lemma 4 (Decomposability) If the expected reward functio’ is regular, then the correspondent

auxiliary value functioni¥;(2(¢)) is decomposable for al =1,2,--- , T, i.e,,
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Proof: The proof is given in the appendix. [ |

Lemmal4 can be applied one step further to prove the followimllary.

Corollary 1. If the expected reward functiof is regular, then for any, m € N it holds that

Wi(wr, Wi, Wiy WN)—
Wi(wi, Wiy W, WN)
= (W — wm) [Wi(wg, -+ 1,50, wn)—
Wiwt, 50, 1, MN)], t=1,2... T

Lemma 5 (Monotonicity). If the expected reward functiofi is regular, the correspondent auxiliary value

function 1;(2) is monotonously non-decreasingdn, VI € N, i.e.,

UJZ Zwl :>Wt(w17"' 7&][/7"‘ 7&]]\[) 2 Wt(&]l,“‘ y Wiy o ,O.)N).

Proof: The proof is given in the appendix. [ |

B. Optimality of Myopic Sensing under Imperfect Sensing

In this section, we study the optimality of the myopic seggiolicy under imperfect sensing. We start
by showing the following important auxiliary lemmas (Lemf@land Lemmd]7) and then establish the

sufficient condition under which the optimality of the myogiensing policy is guaranteed.

i i por(1—p11) < Anin
Lemma 6. Given that (1)F' is regular, (2)e < P=por)” and (3)5 < . [(1_6)(1_%1” T ] :

1—(1—e)(p11—Po1)
if p11 > w; > w,y > po1r Wherel < m, then it holds that e

Wt(wl’... SW, Wiyt e 7WN) Z
Wt(wly"',wm,“‘,(Ul,"',CUN), t:l”T
Lemma 7. Given that (1)F is regular, (2)e < 22U=P1) anq (3)4 < Apin ’
( ) g ( )E Pi1(1—po1) ( )ﬁ T Anae [(1—6)(1—p01)+%]

if p11 > w1 > >wy > po1, foranyl <t < T, it holds that
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IN
_
|

Wi(wi, - ,wn—1,wn)  — Wilwn,wi, - ,wn—1) WN)Amazs

Wi(wr,wa, -+ ywn—1,wN) — Wi(wn, w2, -+ ,wn_1,w1) <

1—[B(1=e€)(p11 — por)]" !
1—B(1 = ¢€)(p11 — por)

Lemmal6 states that by swapping two element§2imwith the former larger than the latter, the user

(pll - pOl)Amax

does not increase the total expected reward. Lefdma 7, ontlilee lsand, gives the upper bound on the
difference of the total reward of the two swapping operaj@wappingoy andw, (k=N —1,--- ,1)
and swappings; andwy, respectively. For clarity of presentation, the detailedofs of the two lemmas
are deferred to the Appendix. From a technical point of vievg, insightful to compare the methodology
in the proof with that in the analysis presented [ih [4] for {herfect sensing case with = 1. The
key point of the analysis iri [4] lies in the coupling argumé@ding to Lemma 3 in[4]. This analysis,
however, cannot be directly applied in the generic case imiierfect sensing due to the non-linearity
of the belief vector update as stated in the remark aftertequfll). Hence, we base our analysis on the
intrinsic structure of the auxiliary value functidiv and investigate the different "branches” of channel
realizations to derive the relevant bounds, which are &répplied to study the optimality of the myopic

sensing policy, as stated in the following theorem.

Theorem 1. If pg; < w;(1) < p11,1 < ¢ < N, the myopic sensing policy is optimal if the following

conditions hold: (1)F(Q) is regular; (2) ¢ < 220=Pu):(3) g < Auin r

Pri(1—por) Amas {(1—6)(1—])01)4-%

Proof: It suffices to show that fot = 1,--- , T, by sorting€2(¢) in decreasing order such tha >
- > wy, it holds thatWy(wy, - ,wn) > Wi(wi,, -+ ,wiy ), Where(w;,, - ,w;,) IS any permutation
of (1,---,N).
We prove the above inequality by contradiction. Assume, bgtradiction, the maximum oWV, is

achieved alw;:, - ,w;y ) # (w1, ,wn), i€,
Wi(wir, -+ ywin ) > Wi(wi, -+ ,wn). (8)

However, run a bubble sort algorithm @u;:, - - - ,w;+ ) by repeatedly stepping through it, comparing
each pair of adjacent element; and w;; and swapping them ifv;; < wj-4;. Note that when
the algorithm terminates, the channel belief vector aréedodecreasingly, that is to say, it becomes
(w1, ,wn). By applying Lemmal6 at each swapping, we h&Vgw;:, - ,w; ) < Wi(wi, -+ ,wn),
which contradicts to[{8). Theorem 1 is thus proven. [ |
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As noted in[1], when the initial belief; is set topmfﬁ as is often the case in practical systems, it
can be checked that; < w;(1) < p11 holds. Moreover, even the initial belief does not fall[in, p11],
all the the belief values are bounded in the interval fromsbeond slot following Lemmia 1. Hence our

results can be extended by treating the first slot separftmty the future slots.

C. Discussion

In this subsection, we illustrate the application of theulesbtained above in two concrete scenarios
and compare our work with the existing results.

Consider the channel access problem in which the user iselinio sensé: channels and gets one
unit of reward if a sensed channel is in the good state, he.,utility function can be formulated as
F(Qa) = (1 — €)Y ;c4wi. Note that the optimality of the myopic sensing policy untteis model is
studied in [1] for a subset of scenarios whdre= 1, N = 2. We now study the generic case with

k,N > 2. To that end, we apply Theordrh 1. Notice in this example, wels,,;;, = Ay = 1 —€. We

H A po1(1=pi1) Avin
can then verify that when < 55—/, it holds thatam[(1—s)(1—pm)+ BETETTI 1. Therefore,

1-(1—€)(p11—Po1)

when the condition 1 and 2 holds, the myopic sensing poligptimal for anys. This result in generic
cases significantly extends the results obtainedlin [1] e/tiee optimality of the myopic policy is proved
for the case of two channels and only conjectured for gercases.

Next consider another scenario where the user can senbannels but can only choose one of them
to transmit its packets. Under this model, the user wants agimmize its expected throughput. More
specifically, the slot utility functionF’ = F(24) = 1 — I;ea[l — (1 — €)w;], which is regular. In this

context, we haved,,,, = (1 — €)*'pht and A, = (1 — €)F~'pk !, The third condition on for the

k—1
myopic policy to be optimal become$ < —— Po_— . Particularly, whene = 0,
Pi1 [(1—6)(1—P01)+m}
k—1
B < —=Pu____ |t can be noted that even when there is no sensing error, thapim policy is not

Pt H(1—por)
ensured to be optimal, which confirms our findings in previaask [5] on perfect sensing scenarios.

IV. RELATED WORK

Due to its application in numerous engineering problems, ristless multi-armed bandit (RMAB)
problem is of fundamental importance in stochastic degisi@ory. However, finding the optimal policy
in the generic RMAB problem is shown to be PSPACE-hard by Biapgiou et al. in [6]. Whittle
proposed a heuristic index policy, called Whittle indexippl[7] which are shown to be asymptotically
optimal in certain limited regime under some specific caists [8]. Unfortunately, not every RMAB

problem has a well-defined Whittle index. Moreover, compgitihe Whittle index can be prohibitively
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complex. In this regard, Liet al. studied in [9] the indexability of a class of RMAB problemdenaant
to dynamic multi-channel access applications. However,dptimality of the myopic policy based on
Whittle index is not ensured in the general cases, espgeidlen the arms follow non-identical Markov
chains.

A natural alternative, given that the RMAB problem is notcteble, is to seek simple myopic
policies maximizing the short-term reward. In this line @fsearch, significant research efforts have
been devoted to studying the performance gap between th@imypolicy and the optimal one and
designing approximation algorithms and heuristic poficief. [10], [11], [12]). Specifically, a simple
myopic policy, termed as greedy policy, is developed[in [f¥§t yields a factor2 approximation of
the optimal policy for a subclass of scenarios referred tdvlasotone banditsRecently, the RMAB
problem finds its application in the opportunistic channetess and has motivated the study of the
myopic sensing policy in this context. More specificallye tbtructure of the myopic sensing policy is
studied in[[13]. The optimality of the myopic sensing polisyderived in [4] for the positively correlated
channels when the sender is limited to choose one channelteae (i.e.,k = 1). The result is further
extended in to the case of sensing multiple chanrels (1) channels in[[B] for a particular form of
utility function modeling the fact that the user gets onet wfireward for each channel sensed good. A
separation principle has been established in [11] whickatsvthe optimality of the myopic approach in
the design of the channel state detector and the accesy.lic previous work[[2][[14] adopts another
line of research by focusing a family of generic and pradticanportant utility functions and deriving
closed-form conditions under which the myopic sensinggyoilé ensured to be optimal. In the context
of imperfect sensing, the optimality of the myopic sensidjqy is proved for the case aV = 2 and
k = 1 in [I]. Our work presented in this paper contributes therditere by deriving the closed-form

conditions on the optimality of the myopic sensing policyttwimperfect sensing in the general case.

V. CONCLUSION

In this paper, we have investigated the problem of oppostinchannel access under imperfect channel
state sensing. We have derived closed-form conditionsrunteh the myopic sensing policy is ensured
to be optimal. Due to the generic RMAB formulation of the desh, the obtained results and the analysis

methodology presented in this paper are widely applicable wide range of domains.

July 27, 2021 DRAFT



13

APPENDIX A
PROOF OFLEMMA [4]
We proceed the proof by backward induction. Firstly, it isyeto verify that the lemma holds for slot
T.
Assume that the lemma holds from slats- 1,--- ,7', we now prove it also holds for slatby the
following two different cases.
« Case 1: channdlis not sensed in slat, i.e. ! > k + 1. Let M = N(k) = {1,--- ,k}, w; = 0 and

1, respectively, we have

Wi(wi, - ywpye ywyn) = Flwy, - wi)+ 0 Z Pr(M, &)W (6 (t + 1)),

ECM

Wilwr, -0, wn) = Flwr,wi) +8 Y PriM,E)Wi (4t + 1)),
ECM

Wt(wla"' RS 7wn) = F(w17'” 7wk) + Z PT(M75)Wt+1(Qil(t+ 1))7
ECM

where
QF(t+1) = (P, ®(k+1,0—1),7(w), ®( +1,N),QM*),
Qot+1) = (Pi, ®(k+1,1—1),por, (1 +1,N),QM¥),
QF (t+1) = (Pl ®(k+1,0-1),p1, &1+ 1,N), Q).
To prove the lemma in this case, it is sufficient to prove
Wit (QF (t+ 1)) = (1 = @) Wer (ot + 1)) + iWein (1 (¢ + 1)) 9)

According to induction result, we have

Wiera (Q (¢ + 1)) =7(wr) - Wira (PEp, @(k + 1,1 - 1),1,@(1 + 1, N), Q")

(10)
+ (1 =7(w)) Wi (P§,, ®(k+1,1—1),0,®(1+1,N), QM*)
W, QS _ £ o M, E
t+1( l,O(t+1)) =Po1 'Wt+1(P117(I>(k+17l 1)717(I>(l+17N)7Q ) (11)
+(1—po1) Wi (P§, ®(k+1,1—1),0,®( +1,N), Q%)
W, QS _ £ o M, E
t+1( l,O(t+1)) =P11 'Wt+1(P117(I>(k+17l 1)717(I>(l+17N)7Q ) (12)

+ (1 —p1) Wi (P§,, ®@(k+1,01—1),0,®(1 +1,N), QM%)
Combing [I0), [(Ih),[{T2), we havEl(9).
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« Case 2: channdlis sensed in slot, i.e.l < k. Let M 2 N (k)\ {I} = {1,--- , 1 —1,1+1,--- K},
we have according td §6)

Wi(Q(t)) =F(wi,- -+ ,wi, -+ we)

+ B(1 = €)w; Z Pr(M, E)Wi1 (Piy,pi1, ®(k + 1, N),QM’g’l,ngg’l)
ECM

+ B = (1= ew] > Pr(M, &)Wy (P, ®(k+1,N),Q
ECM

M,E L

(@), QM)

Let w; = 0 and 1, respectively, we have

Wt(wlv"' 707"' 7wn) :F(wb'" 707"' ,Wk)
+8 Y PrM. &)W (P5y, ®(k +1,N), Q"
ECM

N |
7]9(]179/\/(7 7)7

Wt(wla"' 717”' 7wn) :F(w17'” 717"' ,O.)k)

+ 81— Y PrM,E)Wia(P§y.pin, ®(k +1,N), Q5 QM)

ECM
—M,E ]
+ Be Z Pr(M,E)Wi1 (P4, ®(k+1,N),Q pi1, QMEY)
ECM
To prove the lemma in this case, it is sufficient to show
—M,E]
[1— (1 - ] Wigp1(PEy, @(k + 1,N), Q" 7(p(wr)), QM)
—M,E]
- (1 _wl)Wt"'l(Pi‘l’@(k_‘_ 17N)7Q 7p0179M7g’1)

M,E L

+ Elet—l-l(Pilv ‘I’(k + 17 N)vQ 7p1179M’&1) (13)

According to induction result, we have

M,E L

Wi (PE,, ®(k+1,N),Q ,T(go(wl)),gM’&l)

—M,E 1
= T(@(wl))Wt-l-l (P(IC[‘L (I,(k +1, N)a Q

’179/\4,5,1)

M,E L

+ (1 - T(QD(W[)))Wt+1 (P(;l’ (I)(k + 17 N))Q 7079/\/{7871) (14)

—M.E
Wi (P§,, ®(k+1,N),Q por, QMEN

AMEL
= po1 W1 (P41, ®(k+ 1,N), Q 7179/\4,5,1)

M,E L

+ (1 _pOI)Wt—i—l(Pi‘l’ (I)(k + 17N)76 7079M’&1) (15)
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M, &1

Wi (PSy, ®(k+1,N), Q" piy, M8

—M,E 1
= puWi1 (P51, ®(k +1,N), Q

71’9/\/175,1)

~M,E 1
+ (1 - pll)Wt+1(P§17 (b(k + 17N)7 Q ’07gM,g,l) (16)

Combing [I#), [(1b),[(T6), we havE_{13).

Combing the above analysis in two cases, we thus prove Lemhma 4

APPENDIX B

PROOF OFLEMMA 5

We proceed the proof by backward induction. Firstly, it isyeto verify that the lemma holds for slot
T.

Assume that the lemma holds from slots- 1,--- , 7, we now prove that it also holds for slotby

distinguishing the following two cases.

o Case 1: channdl is not sensed in slat, i.e., ! > k + 1. In this case, the immediate reward is
unrelated tav; andw;. Moreover, letQ(t + 1) and€'(t + 1) denote the belief vector generated by
Qt) = (w1, ywy, -+ ,wn) andQ'(t) = (wr, -+ ,wj, - -+ ,wn), respectively, it can be noticed that
Q(t+1) and€Y' (¢t + 1) differ in only one elementw;(t + 1) > w;(¢t +1). By induction, it holds that
Wi (Q/(t + 1)) > Wi 1 (Q(t + 1)). Noticing (8), it follows thatiV, (' (¢)) > W, (Q(t)).

« Case 2: channédlis sensed in slaot, i.e.,! < k. Following Lemmd# and after some straightforward

algebraic operations, we have

Wt(&)l,“‘ 7(");7”’ ,O.)N)—Wt((AJh“‘ y Wiy e ,O.)N) -
(WZ—Wl)[Wt(Wlf“ 717"' ,O.)N) _Wt(wla'” 707”' 7wN)]

Let M &2 N(k)\ {1} ={1,--- ;1 = 1,1+ 1,---  k}, by developingi¥;(Q(t)) as a function ofv;,
we have
Wi(Q(1) = F(wi(t), - ,wi(t)) + B = wr Y Pr(M,E)Wer (Qe(t +1))
ECM

+B[1 = (1 = €)w] Z Pr(M, &)W (Qe(t + 1))
ECM

Let w; = 0 and 1, respectively, we have

Wt(&)l,“‘ 707"' 7wn) - F(O.)l,“‘ 707"' 7wn)+/8 Z Pr(Mag)Wt-i-l(Qg(t—’_l))a
ECM
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Wt(w17"' 717"' 7wn) = F(O.)l,"’ 717"' 7w7L)+/8(1 _6) Z PT(M75)Wt+1(Q§—e(t+1))
ECM

+ ﬁE Z PT(Mvg)Wt+l(Qf(t+ 1))7
ECM

where

QE(t+1) = (P§,®(k+1,N),Q"""!

7p01,9./\/l,5,1)’
=M,E 1

QF (t+1) = (Pi,pu, ®(k+1LN), Q7 Q)

7p1179M7571)'

It can be checked tha®{ (¢t +1) > Q5(t + 1) and QE(t + 1) > Q(t + 1). It then follows
from induction that givent, W, 1(Q5_.(t + 1)) > Wi (Q§(t + 1)) and W1 (Q5_ (¢ + 1)) >

OE(t+1) = (P§,,®(k+1,N), Q"

Wi1(Q§(t + 1)). Noticing thatF is increasing, we then have
Wt(wla"' 717"' ,wn)—Wt(W1,"' 707"' 7wn) :F(w17”' 717”' 7wn) _F(wl7”' 707”' 7wn)
+B(1 =€) Y Pr(M,E) Wit (Q_(t+1)) = Wira (5 (t +1))]
ECM

+8e S Pr(M, E)[Weat (R (1 +1)) — Wesa (2 (¢ +1))] > 0.
ECM

Combining the above analysis in two cases completes ourf.proo

APPENDIXC
PROOF OFLEMMA [6/AND LEMMA [7]
Due to the dependency between the two lemmas, we prove thgethtr by backward induction.
We first show that Lemmal[@ and LemmalY hold for slotT. It is easy to verify that Lemma] 6
holds.

We then prove Lemmial 7. Noticing thag; < wy < wi < p11 < 1, we have

Wr(wi, - ,wn) — Wr(wn,wi, -+ swn—1) = F(wy, -+ ,wi) — Flwy,wi, -+ ,wi—1)
= (wgp —wn)[F(wr,- -+ wg—1,1) = F(w1,- - ,wk—1,0)] < (1 —wn)Amaz,
Wr(wi,- - ,wn) — Wr(wn,wa, - ,wn—1,w1) = Fwi, - ,wg) — Flwun,ws, -+ ,wk—_1)

= (w1 —wn)[F(1,wa, -+ ,wg) — F(0,wa, -+ ,wi)] < (P11 — Po1)Amaa-

LemmalT thus holds for sIdf.
Assume that Lemmal® and Lemmdl7 hold for slotsT’,--- ,¢+ 1, we now prove that it holds for

slot ¢.
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We first prove Lemmal[@. We distinguish the following three cases considering m:
e Case 11 > k + 1. In this case, we have
Wt(&)l,“‘ y Wiyt Wiyt ,(A)N)—Wt(W1,“‘ yWmy mm W, ,O.)N)
- (wl_wm)[Wt(wla"' 717"' 707”' ,O.)N)—Wt(O.)l,"' 707"' 717"' ,O.)N)]

— Wi wn)B S PrN(R),E)Wert (et +1)) — Wear ((t + 1)),
ECN (k)

where
Qe(t+1) = Py, m(Wit1)s p11s - P01, T(wn), QVEE),
Qe(t +1) = (P, 7(@rs1), + spor, - s pans -+ T(wn), QVEOE),

It follows from the induction result thaiV; 1 (Qe(t + 1)) > W1 (Q(t 4+ 1)). Hence
Wiwi, - Wi Wi W) = Wi(Wh, e Wiy Wl W)

« Case 2:l < k andm > k + 1. In this case, denote\l = A(k) \ {I}, it can be noted that

QM’g _ QM’g’l +6M75,1

. In this case, we have

Wilwr, - Wiy Wiy WN) — Wielwi, -+ 3 @Wmy - 5w, W)
= (W — w)[Wilwr, -+, 1, ,0, -+ wn) — Wilwr, -+ ,0,-+ 1, wp)]
= (W — wp)[Fwr, 1, wp) — Flwr, -+ ,0,- -+, wg)+

ﬁ Z PT(M78)[(1 - E)Wt-i-l(P(j‘[:lvpll)T(wk-i-l)’ s, Doty 7T(WN)7QM75)+

ECM
Wit (PEy, m(@hrn), - pors - 7(wn), @ pry, QMEN) -
Wip1 (PY1, 7(wkg1), -+ 11y ,T(WN),QM’g’I,pm,QM’E’I)]
> (wi = wim)[Bin + 8 Y PriM,E) - [(1 = West (por, iy, pin, T(wir), - T(wn), QY6)+

ECM

EWt—I-l(pOla Pil’ T(wk-i-l)) e 77—(("}]\7)7 QM7g7p11)_

Wit (PE1, 11, T(@rgn), - 7(wn), QM por)]

> (Wl _wm) Anin -3 Z PT(M78)
ECM

1—[B(1 —€¢)(p11 — p01)]T_t>}

<(1 — €)(1 = po1)Amaz + €(P11 — Po1) Amas 1— (1 =€) (p11 — po1)
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> (w; — wim) Z Pr(M,é&)-
ECM

1
|:Amm - ﬁ <(1 - E)(l - pOl)Amax + E(pll - pOl)Amax

)
1—(1—=¢€)(p11 —po)

where the first inequality follows the induction result ofrhmal®, the second inequality follows
the induction result of Lemmid 7, the third inequality follewhe condition in the lemma.

o Case 3i,m > k. This case follows Lemmia 3.

Lemma 6 is thus proven for slot

We then proceed to prove Lemmdl7 We start with the first inequality. We develép; w.r.t. w; and

wy according to Lemmal4 as follows:

Wi(wi, Wh—1, Wy * W1, Wn) — Wi(Wn, W1, W1, Wy «evy W1 )

= wrwp[Wi(w, -+ ywi—1, L,wks1, - wn—1,1) = Wi(l,wr, -+ ywg—1, L, Wkt1, "+ ,Wn—1)]

+wi (1 — wp) [Wi(wr, -+ s wi—1, L, wga1,+ wWn—1,0) — Wi(0, w1, -+ ywik—1, 1, Wea1, -+ wWn—1)]

+(1 — wi)wn [We(wi, -+ s wik—1,0,Wpa1, -+ ywWn—1,1) = Wi(1, w1, ywik—1,0, Wgs1, -+ wWn—1)]

+(1 — wi)(1 — wp) [Wi(wr, -+ wi—1,0,wka1, -+ ywn—1,0) = Wi(0,w1, -+ s wi—1,0,Wpa1, ", Wn—1)]
17)

We proceed the proof by upbounding the four termdid (17).

For the first term, we have

Wt(wla"' ,Wk_l,l,Wk+1,"' 7wn—171) _Wt(lywla"' 7wk—1717wk+17"' 7wn—1)

=8 > PrN(k—1),€) - [(1 — Wip1 (Piy, pur, ®(k + 1N — 1), pyy, QY1)
ECN (k-1)

+ W1 (Pi1, ®(k +1,N — 1), py1, QN(k_l)’g,pn)
— (1= OWis1(p11, P{1, p11, ®(k + 1, N — 1), QV 1)
— Wi (P, p11, @(k + 1, N —1),p11, QYD) <0

where, the inequality follows the induction of Lemina 6.

For the second term, we have
Wt(wla e, WEe—1, 17wk+17 T 7wn—170) - Wt(oywla o, WE—1, 17wk+17 ce 7wn—1)

:F(W1,"' ,Wk_l,l) _F(vab"' ,Wk_l)
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w8 Y PrN(k—1),6) - [(1 — @Wis1(P§y, pi, ®(k + 1, N — 1), por, QVEDE)
ECNk 1)

+€Wt+1(P117 (b(k + 17 N - 1)7p017 QN(k_l)’gapll) - Wt+1(P(]C/_‘17p117 Q(k + 17 N - 1)7p017 QN(k_1)75)]

=F(wi, wpe1, 1) = FO,w1, -+ wpm1) + 8 Y PrN(k—1),€)
ECN(k—1)

W1 (PEy, ®(k+ 1,N — 1), por, QVEDE piy) — Wiy (PLy, p11, ®(k + 1, N — 1), por, QVED4)]
< Aoz
following the induction of Lemmal6.

For the third term, we have
Wi(wi, - ywi—1,0,wks1, -+ wn—1,1) = Wi(lwr, + ywk—1,0,Wkt1, "+ ,Wn—1)

=F(wy, - wk-1,0) = F(1,wy, -+ ,wi_1)+

B Z Pr(N(k—1),8)[Wia Py, @(k + 1, N — 1), p11, QY€ pgy)—
ECN (k—1)
(1= W1 (par, iy, por, @(k + 1, N — 1), QVEDE) — W, 1y (PYy, por, ®(k + 1, N — 1), pr1, Q¥ D))
< Amin+B Y PrN(k—1),8)Wi1(Piy,pin, ®(k + 1,N = 1), QNI pyy)—
ECN(k—1)
(1 — Wit (por, 11, Piy, ®(k + 1, N — 1), QY IE) — Wy (por, Py, @(k + 1, N — 1), QVETDE )]

, B Ol c(prr — 1— 301 = e)(pu1 —por)]" "
S _Amzn + /ng/\%_l) PT(N(k 1)75) |:(1 )(1 pOl)Amax + (pll pOl)Amax 1_ ,8(1 — 6)(]?11 — p01) :|

1
< gg%_nprw(k ~1),6) [—Amm +8 [(1 = = 200) s + el = 200) A T pm)H <0

where the first inequality follows the induction result of hmal[®, the second equality follows the
induction result of Lemm@]7, the forth inequality is due tlomdition in Lemmdl7.

For the fourth term, we have

Wt(wla"' 7Wk_17O,Wk+1,"' 7wn—170) - Wt(O,Wl,"' 7Wk_17O,Wk+17"‘ 7wn—l)

=B Y PrN(k—1),8) W1 (Piy, ®(k+ 1, N — 1), por, QVE1€ pyy)
ECN(k—1)

_Wt+l(P117p017 (b(k + 17 N - 1)7 QN(k_1)767p01)]

=p Z Pr(N(k —1),6)[Wip1 (P, ®(k + 1, N — 1), por, QVEDE pyy)
ECN (k—1)

~Wis1(por, Piq, ®(k +1,N — 1), QVEDE 5o
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<B D PrN(k—1),)[Wi (Pfy, @(k+ 1,N — 1),QVEDE oy por)
ECN (k-1)

W1 (por, PE1, @k + 1, N — 1), QVE1E )

é (1 - pOl)ﬂAmam

where, the second equality follows Lemfda 3, the first indgufdilows the induction result of Lemnid 6
and the second inequality follows the induction result ofmea[7.

Combing the above results of the four terms, we have

Wi(wr, -+ ,wn) — Wi(wp, w1, ,wn—1)
< wi(l —wn) - Amaz + (1 —wg) (1 —wn) - (1 = po1) BAmaz
< wr(l = wn)Amaz + (1 —wi)(1 = wn)Anmaz < (1 — wn)Ama,
which completes the proof of the first part of Lemfla 7.
Finally, we prove the second part of Lemina 7. To this end, teend = {2,---  k}, we have
Wi(wi, - ,wn) — Wi(wn,wa, -+, wN—1,w1)
= (w1 —wN) Wi (L,wa, -+ ,wn—1,0) — W(0,wa, -+ ,wn—1,1)]

= (w1 —wn)(F(Lws,  ,wi) = F(0,wa, - wi) + 8 Y Pr(M,€):
ECM

(1 — W1 (Piy, p11, ®(k + 1, N — 1), por, QM) + eWi 1 (PE;, ®(k + 1, N — 1), por, p11, QMF)
~Wit1(Piq, ®(k + 1, N — 1), p11, po1, QM%)
S (O.)l - wN)(AmaZ‘ + B Z PT(M75)[(1 - E)Wt-i-l(P(]C/_‘lapllu Q(k + 17N - 1)7p017QM7g)

ECM
+€Wt+1(P§17 (b(k + 17 N - 1)7p017p117 QM’E) - Wt-i—l(Pi‘lu Q(k + 17 N - 1)7p017p117 QM78)])

= (w1 —wN)Aaz + 8 Y Pr(M,E)[(1 — W1 (Piy, prr, ®(k + 1, N — 1), por, QM%)
ECM

—(1 = OWit1(Pi1, ®(k + 1, N — 1), por, p11, QM])

< (w1 = wN)(Amaz + B8 Y, PrM,E)[(1 = Wi (P, pir, @(k + 1, N — 1), QM€ poy)—
ECM

(1 — €)Wit1(por1, Py, ®(k + 1, N — 1), QM€ p1)))

1—[B(1 —€)(p11 — por)]" "

- Amaac
1—B(1 —¢€)(p11 — po1) (P11 = po1)

< (pll _p01) Amaac +B Z PT(M,E)(l - 6)
ECM
1—[B(1 — €)(p11 — por)]

= 1_ ,8(1 — 6)(]?11 — p01) (pll - pOl)Amam
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where the first two inequalities follows the recursive agguion of the induction result of Lemnia 6, the

third inequality follows the induction result of Lemrha 7.

We thus complete the whole process of proving Lemiina 6 and Laihm
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