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On Optimality of Myopic Sensing Policy with
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Abstract

We consider the channel access problem under imperfect sensing of channel state in a multi-channel

opportunistic communication system, where the state of each channel evolves as an independent and

identically distributed Markov process. The considered problem can be cast into a restless multi-armed

bandit (RMAB) problem that is of fundamental importance in decision theory. It is well-known that

solving the RMAB problem is PSPACE-hard, with the optimal policy usually intractable due to the

exponential computation complexity. A natural alternative is to consider the easily implementable myopic

policy that maximizes the immediate reward but ignores the impact of the current strategy on the future

reward. In this paper, we perform an analytical study on the optimality of the myopic policy under

imperfect sensing for the considered RMAB problem. Specifically, for a family of generic and practically

important utility functions, we establish the closed-formconditions under which the myopic policy is

guaranteed to be optimal even under imperfect sensing. Despite our focus on the opportunistic channel

access, the obtained results are generic in nature and are widely applicable in a wide range of engineering

domains.
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I. INTRODUCTION

We consider an opportunistic multi-channel communicationsystem in which a user has access to

multiple channels, but is limited to sense and transmit onlyon a subset of them at a time. The fundamental

problem we study is how the sender can exploit past observations and the knowledge of the stochastic

properties of the channels to maximize its utility (e.g., expected throughput) by switching opportunistically

across channels.

Formally, the considered channel access problem can be castinto the restless multi-armed bandit

(RMAB) problem, one of the most well-known generalizationsof the classic multi-armed bandit (MAB)

problem, which is of fundamental importance in stochastic decision theory. The standard formulation of

the RMAB problem can be briefly summarized as follows: There is a bandit ofN independent arms,

each evolving as a two-state Markov process. At each time slot, a player choosesk (1 ≤ k ≤ N ) of

theN arms to play and receives a certain amount of reward depending on the state of the played arms.

Given the initial state of the system, the goal of the player is to find the optimal policy of playing thek

arms at each slot so as to maximize the aggregated discountedlong-term reward.

Despite the significant research efforts in the field, the RMAB problem in its generic form still remains

open. Until today, very little result is reported on the structure of the optimal policy. Obtaining the optimal

policy for a general RMAB problem is often intractable due tothe exponential computation complexity.

Hence, a natural alternative is to seek a simple myopic policy maximizing the short-term reward. Due

to its simple and robust structure, the myopic sensing policy has begun to attract significant research

attention, especially on the optimality of the myopic sensing policy.

The vast majority of studies in the area assume perfect observation of channel states. However, sensing

or observation errors are inevitable in practical scenario(e.g., due to noise and system limitations),

especially in wireless communication systems which is the focus of our work. More specifically, a good

(bad, respectively) channel may be sensed as bad (good) and accessing a bad channel leads to zero

reward. In such context, it is crucial to study the structureand the optimality of the myopic sensing

policy with imperfect observation. We would like to emphasize that the presence of sensing error brings

two difficulties when studying the myopic sensing policy in this new context.

• The channel state evolves as a non-linear mapping (w.r.t. the current channel state) instead of a

linear one in the perfect sensing case.

• In the non-perfect sensing case, the state transition of a channel depends not only on the channel

evolution itself, but also on the observation outcome, meaning that the transition is not deterministic.
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Due to the above particularities1, our problem requires an original study on the optimality ofthe

myopic sensing policy that cannot draw on existing results in the perfect sensing case. We would like

to report that despite its practical importance and particularities, very few work has been done on the

impact of sensing error on the performance of the myopic sensing policy, or more generically, on the

RMAB problem under imperfect observation. To the best of ourknowledge, [1] is the only work in this

area, where the optimality of the myopic policy is proved forthe case of two channels with a particular

utility function. In this paper, we derive closed-form conditions under which the myopic sensing policy is

optimal under imperfect sensing for arbitraryN and generic utility functions. As shown in Section III-C,

the result obtained in this paper can cover the result of [1].Moreover, this paper also significantly extends

our previous work [2], focusing on perfect sensing scenarioin which the analysis cannot be applied in the

imperfect sensing scenario due to the non-trivial particularities introduced by sensing error as mentioned

previously. In this regard, our work in this paper contributes the existing literature by developing an

adapted analysis on the RMAB problem under imperfect sensing under the generic framework proposed

in [2].

The rest of the paper is organized as follows: Our model is formulated in Section II. Section III studies

the optimality of the myopic sensing policy and illustratesthe application of the derived results via two

typical examples. A detailed discussion on the related workis given in Section IV. Finally, the paper is

concluded by Section V.

II. PROBLEM FORMULATION

A. Multi-channel Opportunistic Access with Imperfect Sensing

As outlined in the Introduction, we consider a multi-channel opportunistic communication system,

in which a user is able to access a setN of N independent and statistically identical channels, each

characterized by a Markov chain of two states,good/idle (1) and bad/busy(0). The state transmission

probabilities are given by{pi,j}, i, j = 0, 1. We assume that the system operates in a synchronously time

slotted fashion with the time slot indexed byt (t = 1, 2, · · · , T ), whereT is the time horizon of interest.

Each channel goes through state transition at the beginningof each slott. This generic multi-channel

opportunistic communication model can be naturally cast into the opportunistic spectrum access (OSA)

problem in cognitive radio systems where an unlicensed secondary user can opportunistically access the

1Please refer to the remark of (1) for a detailed analysis
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temporarily unused channels of the licensed primary users,with the availability of each channel evolving

as an independent Markov chain.

Limited by hardware constraints and energy cost, the user isallowed to sense onlyk (1 ≤ k ≤ N )

of the N channels at each slott. We denote the set of channels chosen by the user at slott by A(t)

whereA(t) ∈ N and |A(t)| = k. We assume that the user makes the channel selection decision at the

beginning of each slot after the channel state transition. Moreover, we are interested in the imperfect

sensing scenario where channel sensing is subject to errors, i.e., a good channel may be sensed as bad

one and vice versa. LetS(t) , [S1(t), · · · , SN (t)] denote the channel state vector whereSi(t) ∈ {0, 1}

is the state of channeli in slot t and letS′(t) , {S′
i(t), i ∈ A(t)} denote the sensing outcome vector

whereS′
i(t) = 0 (1) means that the channeli is sensed bad (good) in slott. Using such notation, the

performance of channel state detection is characterized bytwo system parameters: the probability of false

alarm ǫi(t) and the probability of miss detectionδi(t), formally defined as follows:

ǫi(t) , Pr{S′
i(t) = 1|Si(t) = 0},

δi(t) , Pr{S′
i(t) = 0|Si(t) = 1}.

In our analysis, we consider the case whereǫi(t) andδi(t) are independent w.r.t.t andi. More specifically,

we definedǫ andδ as the system-wide false alarm rate and miss detection rate.We also assume that when

the receiver successfully receives a packet from a channel,it sends an acknowledgement to the transmitter

over the same channel at the end of the slot. The absence of an ACK signifies that the transmitter does

not transmit over this channel or transmitted but the channel is busy in this slot.

Obviously, by sensing onlyk out of N channels, the user cannot observe the state information of

the whole system. Hence, the user has to infer the channel states from its past decision and observation

history so as to make its future decision. To this end, we define thechannel state belief vector(hereinafter

referred to asbelief vectorfor briefness)Ω(t) , {ωi(t), i ∈ N}, where0 ≤ ωi(t) ≤ 1 is the conditional

probability that channeli is in state good (i.e.,Si(t) = 1) at slot t given all past states, actions and

observations2. Due to the Markovian nature of the channel model, the beliefvector can be updated

recursively using Bayes Rule as shown in (1).

ωi(t+ 1) =



























p11, i ∈ A(t), ACK = 1

τ(ϕ(ωi(t))), i ∈ A(t), ACK = 0

τ(ωi(t)), i 6∈ A(t)

, (1)

2The initial beliefωi(1) can be set to p01
p01+1−p11

if no information about the initial system state is available.
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whereACK = 1 denotes the case where an ACK is received (successful transmission, i.e.,S′
i(i) = 1

andSi(t) = 1) andACK = 0 denotes the case where no ACK is received (failed transmission or no

transmission, i.e.,S′
i(i) = 1 Si(t) = 0 or S′(t) = 0), ϕ(ωi) =

ǫωi(t)
ǫωi(t)+1−ωi(t)

and

τ(ωi(t)) , ωi(t)p11 + [1− ωi(t)]p01 (2)

denotes the operator for the one-step belief update.

Remark. We would like to emphasize that in contrast to the perfect sensing case [2] whereωi(t+1) is

a linear function ofωi(t) whetheri in sensed or not, in the imperfect sensing case, the mapping from

ωi(t) to ωi(t + 1) is no longer linear due to the sensing error (cf. the second line of equation (1)).

Moreover, the state transition of a channel depends not onlyon the channel evolution itself, but also on

the observation outcome, i.e.,ωi(t + 1) = p11 for i ∈ A(t), ACK = 1 andωi(t + 1) = τ(ϕ(ωi(t)))

for i ∈ A(t), ACK = 0. As will be shown later, these differences make the analysisfor the imperfect

sensing more complicated.

To conclude this subsection, we state some structural properties of τ(ωi(t)) and ϕ(ωi(t)) that are

useful in the subsequent proofs.

Lemma 1. If ∀i, p01 < p11, then

• τ(ωi(t)) is monotonically increasing inωi(t);

• p01 ≤ τ(ωi(t)) ≤ p11, ∀ 0 ≤ ωi(t) ≤ 1.

Proof: Lemma 1 follows fromτ(ωi(t)) = (p11 − p01)ωi(t) + p01 straightforwardly.

Lemma 2. If 0 ≤ ǫ ≤ (1−p11)p01

p11(1−p01)
, then

• ϕ(ωi(t)) increases monotonically inωi(t) with ϕ(0) = 0 andϕ(1) = 1;

• ϕ(ωi(t)) ≤ p01, ∀p01 ≤ ωi(t) ≤ p11.

Proof: Noticing thatϕ(ωi) =
ǫωi(t)

ǫωi(t)+1−ωi(t)
, Lemma 2 follows straightforwardly.

B. Optimal Sensing Problem Formulation and Myopic Sensing Policy

Given the imperfect sensing context, we are interested in the user’s optimization problem to find the

optimal sensing policyπ∗ that maximizes the expected total discounted reward over a finite horizon.

Mathematically, a sensing policyπ is defined as a mapping from the belief vectorΩ(t) to the action

(i.e., the set of channels to sense)A(t) in each slott: π : Ω(t) → A(t), |A(t)| = k, t = 1, 2, · · · , T.
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The following gives the formal definition of the optimal sensing problem:

π∗ = argmax
π

E

[

T
∑

t=1

βtRπ(Ω(t))

∣

∣

∣

∣

∣

Ω(1)

]

(3)

whereRπ(Ω(t)) is the reward collected in slott under the sensing policyπ with the initial belief vector

Ω(1), 0 ≤ β ≤ 1 is the discounting factor characterizing the feature that the future rewards are less

valuable than the immediate reward. By treating the belief value of each channel as the state of each arm

of a bandit, the user’s optimization problem can be cast intoa restless multi-armed bandit problem.

In order to get more insight on the structure of the optimization problem formulated in (3) and the

complexity to solve it, we derive the dynamic programming formulation of (3) as follows:

VT (Ω(t)) =max
π

E[Rπ(Ω(T ))] = max
A(T )⊆N
|A(T )|=k

E[Rπ(Ω(T ))],

Vt(Ω(t)) = max
A(t)⊆N
|A(t)|=k

E



Rπ(Ω(t)) + β
∑

E⊆A(t)

∏

i∈E

(1− ǫ)ωi(t)

∏

j∈A(t)\E

[1− (1− ǫ)ωj(t)]Vt+1(Ω(t+ 1))



 .

In the above equations,Vt(Ω(t)) is the value function corresponding to the maximal expectedreward

from time slot t to T (1 ≤ t ≤ T ) with the believe vectorΩ(t + 1) following the evolution described

in (1) given that the channels in the subsetE are sensed in state good and the channels inA(t)\E are

sensed in state bad.

Theoretically, the optimal policy can be obtained by solving the above dynamic programming. Unfor-

tunately, due to the impact of the current action on the future reward and the unaccountable space of the

belief vector, obtaining the optimal solution directly from the above recursive equations is computationally

prohibitive. Hence, a natural alternative is to seek simplemyopic sensing policy which is easy to compute

and implement that maximizes the expected immediate rewardF (Ω(t)), formally defined as follows:

A(t) = argmax
A(t)⊆N

Σi∈A(t)F (Ω(t)). (4)

In this paper, we focus on a class of generic and practically important functions defined in [2] as

regular functions. More specifically, the expected immediate reward function F (Ω(t)) studied in this

paper are assumed to be symmetrical, monotonically non-decreasing and decomposable, defined by the

three axioms in [2]. Under this condition, the myopic policyconsists of choosing thek channels with the

largest value ofω. In the following sections we focus on the structure and the optimality of the myopic
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sensing policy under imperfect sensing. As pointed out in the remark following equations (1) and (2), the

main technical difficulties compared with the perfect sensing case are the non-linearity of the mapping

from ωi(t) to ωi(t+ 1) and the dependency of the channel state transition on the observation outcome.

III. A NALYSIS ON OPTIMALITY OF MYOPIC SENSING POLICY UNDER IMPERFECTSENSING

The goal of this section is to establish closed-form conditions under which the myopic sensing policy,

despite of its simple structure, achieves the system optimum under imperfect sensing. To this end, we

set up by defining an auxiliary function and studying the structural properties of the auxiliary function,

which serve as a basis in the study of the optimality of the myopic sensing policy. We then establish the

main result on the optimality followed by the illustration on how the obtained result can be applied via

two concrete application examples.

For the convenience of discussion, we firstly state some notations before presenting the analysis:

• The believe vectorΩ(t) is sorted to[ω1(t), · · · , ωN (t)] at each slott such thatA = {1, 2, · · · , k} 3;

• N (m) , {1, · · · ,m} (m ≤ N) denotes the firstm channels inN ;

• GivenE ⊆ M ⊆ N , Pr(M, E) ,
∏

i∈E

(1−ǫ)ωi(t)
∏

j∈M\E

[1−(1−ǫ)ωj(t)], herein,Pr(M, E) denotes

the expected probability that the channels inE are sensed in the good state, while the channels in

M\ E are sensed in the bad state, given that the channels inM are sensed;

• PE
11

denotes the vector of length|E| with each element beingp11;

• Φ(l,m) , [τ(ωi(t)), l ≤ i ≤ m] where the components are sorted by channel index.Φ(l,m)

characterizes the updated belief values of the channels betweenl andm if they are not sensed;

• GivenE ⊆ M ⊆ N , QM,E , [τ(ϕ(ωi(t))), i ∈ M\E ] where the components are sorted by channel

index.QM,E characterizes the updated belief values of the channels inM\E if they are sensed in

the bad state;Q
M,E,l

, [τ(ϕ(ωi(t))), i ∈ M \ E and i < l] characterizes the updated belief values

of the channels inM\ E if they are sensed in the bad state with the channel index smaller thanl;

QM,E,l , [τ(ϕ(ωi(t))), i ∈ M\E and i > l] characterizes the updated belief values of the channels

in M\ E if they are sensed in the bad state with the channel index larger thanl;

• Let ω−i , {ωj, j ∈ A, j 6= i} and














∆max , max
ω−i∈[0,1]k−1

{F (1, ω−i)− F (0, ω−i)},

∆min , min
ω−i∈[0,1]k−1

{F (1, ω−i)− F (0, ω−i)}.

3For presentation simplicity, by slightly abusing the notations without introducing ambiguity, we drop the time slot index t.
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A. Definition and Properties of Auxiliary Value Function

In this subsection, inspired by the form of the value function Vt(Ω(t)) and the analysis in [3], we first

define the auxiliary value function with imperfect sensing and then derive several fundamental properties

of the auxiliary value function, which are crucial in the study on the optimality of the myopic sensing

policy.

Definition 1 (Auxiliary Value Function under Imperfect Sensing). The auxiliary value function, denoted

asWt(Ω) (t = 1, 2, · · · , T ) is recursively defined as follows:

WT (Ω(T )) =F (ω1(T ), · · · , ωk(T )); (5)

Wt(Ω(t)) =F (ω1(t), · · · , ωk(t))+

β
∑

E⊆N (k)

Pr(N (k), E)Wt+1(ΩE(t+ 1)), (6)

whereΩE(t+1) , (PE
11
,Φ(k+1, N),QN (k),E ) denotes the belief vector generated byΩ(t) based on(1).

The above recursively defined auxiliary value function gives the expected cumulated reward of the

following sensing policy: in slott, sense the firstk channels; if a channeli is correctly sensed idle

(S′
i = 1 andSi = 1), then put it on the top of the list to be sensed in next slot, otherwise drop it to the

bottom of the list. Recall Lemma 1 and Lemma 2, under the condition 0 ≤ ǫ ≤ (1−p11)p01

p11(1−p01)
, if the belief

vectorΩ(t) is ordered decreasingly in slott, the above sensing policy is the myopic sensing policy with

Wt(Ω(t)) being the total reward from slott to T .

In the subsequent analysis of this subsection, we prove somestructural properties of the auxiliary value

function.

Lemma 3 (Symmetry). If the expected reward functionF is regular, the correspondent auxiliary value

functionWt(Ω) is symmetrical in any two channeli, j ≤ k for all t = 1, 2, · · · , T , i.e.,

Wt(ω1, · · · , ωi, · · · , ωj, · · · , ωN ) =

Wt(ω1, · · · , ωj , · · · , ωi, · · · , ωN ), ∀i, j ≤ k. (7)

Proof: The lemma can be easily shown by backward induction noticingthat(ω1, · · · , ωi, · · · , ωj, · · · , ωN )

and (ω1, · · · , ωj, · · · , ωi, · · · , ωN ) generate the same belief vectorΩE(t+ 1) for any E .

Lemma 4 (Decomposability). If the expected reward functionF is regular, then the correspondent

auxiliary value functionWt(Ω(t)) is decomposable for allt = 1, 2, · · · , T , i.e.,

July 27, 2021 DRAFT
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Wt(ω1, · · · , ωi, · · · , ωN ) = ωiWt(ω1, · · · , 1, · · · , ωN )+

(1− ωi)Wt(ω1, · · · , 0, · · · , ωN ), ∀i ∈ N .

Proof: The proof is given in the appendix.

Lemma 4 can be applied one step further to prove the followingcorollary.

Corollary 1. If the expected reward functionF is regular, then for anyl,m ∈ N it holds that

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN )−

Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN )

= (ωl − ωm)
[

Wt(ω1, · · · , 1, · · · , 0, · · · , ωN )−

Wt(ω1, · · · , 0, · · · , 1, · · · , ωN )
]

, t = 1, 2, · · · , T.

Lemma 5 (Monotonicity). If the expected reward functionF is regular, the correspondent auxiliary value

functionWt(Ω) is monotonously non-decreasing inωl, ∀l ∈ N , i.e.,

ω′
l ≥ ωl =⇒ Wt(ω1, · · · , ω

′
l, · · · , ωN ) ≥ Wt(ω1, · · · , ωl, · · · , ωN ).

Proof: The proof is given in the appendix.

B. Optimality of Myopic Sensing under Imperfect Sensing

In this section, we study the optimality of the myopic sensing policy under imperfect sensing. We start

by showing the following important auxiliary lemmas (Lemma6 and Lemma 7) and then establish the

sufficient condition under which the optimality of the myopic sensing policy is guaranteed.

Lemma 6. Given that (1)F is regular, (2)ǫ < p01(1−p11)
P11(1−p01)

, and (3)β ≤ ∆min

∆max

[

(1−ǫ)(1−p01)+
ǫ(p11−p01)

1−(1−ǫ)(p11−p01)

] ,

if p11 ≥ ωl ≥ ωm ≥ p01 wherel < m, then it holds that

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN ) ≥

Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN ), t = 1, · · · , T.

Lemma 7. Given that (1)F is regular, (2)ǫ < p01(1−p11)
P11(1−p01)

, and (3)β ≤ ∆min

∆max

[

(1−ǫ)(1−p01)+
ǫ(p11−p01)

1−(1−ǫ)(p11−p01)

] ,

if p11 ≥ ω1 ≥ · · · ≥ ωN ≥ p01, for any1 ≤ t ≤ T , it holds that

July 27, 2021 DRAFT
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Wt(ω1, · · · , ωN−1, ωN ) − Wt(ωN , ω1, · · · , ωN−1) ≤ (1 − ωN )∆max,

Wt(ω1, ω2, · · · , ωN−1, ωN )−Wt(ωN , ω2, · · · , ωN−1, ω1) ≤

(p11 − p01)∆max
1− [β(1− ǫ)(p11 − p01)]

T−t+1

1− β(1− ǫ)(p11 − p01)
.

Lemma 6 states that by swapping two elements inΩ with the former larger than the latter, the user

does not increase the total expected reward. Lemma 7, on the other hand, gives the upper bound on the

difference of the total reward of the two swapping operations, swappingωN andωk (k = N − 1, · · · , 1)

and swappingω1 andωN , respectively. For clarity of presentation, the detailed proofs of the two lemmas

are deferred to the Appendix. From a technical point of view,it is insightful to compare the methodology

in the proof with that in the analysis presented in [4] for theperfect sensing case withk = 1. The

key point of the analysis in [4] lies in the coupling argumentleading to Lemma 3 in [4]. This analysis,

however, cannot be directly applied in the generic case withimperfect sensing due to the non-linearity

of the belief vector update as stated in the remark after equation (1). Hence, we base our analysis on the

intrinsic structure of the auxiliary value functionW and investigate the different ”branches” of channel

realizations to derive the relevant bounds, which are further applied to study the optimality of the myopic

sensing policy, as stated in the following theorem.

Theorem 1. If p01 ≤ ωi(1) ≤ p11, 1 ≤ i ≤ N , the myopic sensing policy is optimal if the following

conditions hold: (1)F (Ω) is regular; (2) ǫ < p01(1−p11)
P11(1−p01)

; (3) β ≤ ∆min

∆max

[

(1−ǫ)(1−p01)+
ǫ(p11−p01)

1−(1−ǫ)(p11−p01)

] .

Proof: It suffices to show that fort = 1, · · · , T , by sortingΩ(t) in decreasing order such thatω1 ≥

· · · ≥ ωN , it holds thatWt(ω1, · · · , ωN ) ≥ Wt(ωi1 , · · · , ωiN ), where(ωi1 , · · · , ωiN ) is any permutation

of (1, · · · , N).

We prove the above inequality by contradiction. Assume, by contradiction, the maximum ofWt is

achieved at(ωi∗1 , · · · , ωi∗N ) 6= (ω1, · · · , ωN ), i.e.,

Wt(ωi∗1 , · · · , ωi∗N
) > Wt(ω1, · · · , ωN ). (8)

However, run a bubble sort algorithm on(ωi∗1 , · · · , ωi∗N ) by repeatedly stepping through it, comparing

each pair of adjacent elementωi∗l
and ωi∗l+1

and swapping them ifωi∗l
< ωi∗l +1. Note that when

the algorithm terminates, the channel belief vector are sorted decreasingly, that is to say, it becomes

(ω1, · · · , ωN ). By applying Lemma 6 at each swapping, we haveWt(ωi∗1 , · · · , ωi∗N ) ≤ Wt(ω1, · · · , ωN ),

which contradicts to (8). Theorem 1 is thus proven.
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As noted in [1], when the initial beliefωi is set to p01

p01+1−p11
as is often the case in practical systems, it

can be checked thatp01 ≤ ωi(1) ≤ p11 holds. Moreover, even the initial belief does not fall in[p01, p11],

all the the belief values are bounded in the interval from thesecond slot following Lemma 1. Hence our

results can be extended by treating the first slot separatelyfrom the future slots.

C. Discussion

In this subsection, we illustrate the application of the result obtained above in two concrete scenarios

and compare our work with the existing results.

Consider the channel access problem in which the user is limited to sensek channels and gets one

unit of reward if a sensed channel is in the good state, i.e., the utility function can be formulated as

F (ΩA) = (1 − ǫ)
∑

i∈A ωi. Note that the optimality of the myopic sensing policy underthis model is

studied in [1] for a subset of scenarios wherek = 1, N = 2. We now study the generic case with

k,N ≥ 2. To that end, we apply Theorem 1. Notice in this example, we have∆min = ∆max = 1− ǫ. We

can then verify that whenǫ < p01(1−p11)
P11(1−p10)

, it holds that ∆min

∆max[(1−ǫ)(1−p01)+
ǫ(p11−p01)

1−(1−ǫ)(p11−p01)
]
> 1. Therefore,

when the condition 1 and 2 holds, the myopic sensing policy isoptimal for anyβ. This result in generic

cases significantly extends the results obtained in [1] where the optimality of the myopic policy is proved

for the case of two channels and only conjectured for generalcases.

Next consider another scenario where the user can sensek channels but can only choose one of them

to transmit its packets. Under this model, the user wants to maximize its expected throughput. More

specifically, the slot utility functionF = F (ΩA) = 1 − Πi∈A[1 − (1 − ǫ)ωi], which is regular. In this

context, we have∆max = (1 − ǫ)k−1pk−1
11 and∆min = (1 − ǫ)k−1pk−1

01 . The third condition on for the

myopic policy to be optimal becomesβ ≤ pk−1
01

pk−1
11 [(1−ǫ)(1−p01)+

ǫ(p11−p01)

1−(1−ǫ)(p11−p01)
]
. Particularly, whenǫ = 0,

β ≤ pk−1
01

pk−1
11 (1−p01)

. It can be noted that even when there is no sensing error, the myopic policy is not

ensured to be optimal, which confirms our findings in previouswork [5] on perfect sensing scenarios.

IV. RELATED WORK

Due to its application in numerous engineering problems, the restless multi-armed bandit (RMAB)

problem is of fundamental importance in stochastic decision theory. However, finding the optimal policy

in the generic RMAB problem is shown to be PSPACE-hard by Papadimitriou et al. in [6]. Whittle

proposed a heuristic index policy, called Whittle index policy [7] which are shown to be asymptotically

optimal in certain limited regime under some specific constraints [8]. Unfortunately, not every RMAB

problem has a well-defined Whittle index. Moreover, computing the Whittle index can be prohibitively
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complex. In this regard, Liuet al. studied in [9] the indexability of a class of RMAB problems relevant

to dynamic multi-channel access applications. However, the optimality of the myopic policy based on

Whittle index is not ensured in the general cases, especially when the arms follow non-identical Markov

chains.

A natural alternative, given that the RMAB problem is not tractable, is to seek simple myopic

policies maximizing the short-term reward. In this line of research, significant research efforts have

been devoted to studying the performance gap between the myopic policy and the optimal one and

designing approximation algorithms and heuristic policies (cf. [10], [11], [12]). Specifically, a simple

myopic policy, termed as greedy policy, is developed in [10]that yields a factor2 approximation of

the optimal policy for a subclass of scenarios referred to asMonotone bandits. Recently, the RMAB

problem finds its application in the opportunistic channel access and has motivated the study of the

myopic sensing policy in this context. More specifically, the structure of the myopic sensing policy is

studied in [13]. The optimality of the myopic sensing policyis derived in [4] for the positively correlated

channels when the sender is limited to choose one channel each time (i.e.,k = 1). The result is further

extended in to the case of sensing multiple channels (k ≥ 1) channels in [3] for a particular form of

utility function modeling the fact that the user gets one unit of reward for each channel sensed good. A

separation principle has been established in [11] which reveals the optimality of the myopic approach in

the design of the channel state detector and the access policy. Our previous work [2] [14] adopts another

line of research by focusing a family of generic and practically important utility functions and deriving

closed-form conditions under which the myopic sensing policy is ensured to be optimal. In the context

of imperfect sensing, the optimality of the myopic sensing policy is proved for the case ofN = 2 and

k = 1 in [1]. Our work presented in this paper contributes the literature by deriving the closed-form

conditions on the optimality of the myopic sensing policy with imperfect sensing in the general case.

V. CONCLUSION

In this paper, we have investigated the problem of opportunistic channel access under imperfect channel

state sensing. We have derived closed-form conditions under which the myopic sensing policy is ensured

to be optimal. Due to the generic RMAB formulation of the problem, the obtained results and the analysis

methodology presented in this paper are widely applicable in a wide range of domains.
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APPENDIX A

PROOF OFLEMMA 4

We proceed the proof by backward induction. Firstly, it is easy to verify that the lemma holds for slot

T .

Assume that the lemma holds from slotst + 1, · · · , T , we now prove it also holds for slott by the

following two different cases.

• Case 1: channell is not sensed in slott, i.e. l ≥ k + 1. Let M , N (k) = {1, · · · , k}, ωl = 0 and

1, respectively, we have

Wt(ω1, · · · , ωl, · · · , ωn) = F (ω1, · · · , ωk) + β
∑

E⊆M

Pr(M, E)Wt+1(Ω
E
l (t+ 1)),

Wt(ω1, · · · , 0, · · · , ωn) = F (ω1, · · · , ωk) + β
∑

E⊆M

Pr(M, E)Wt+1(Ω
E
l,0(t+ 1)),

Wt(ω1, · · · , 1, · · · , ωn) = F (ω1, · · · , ωk) + β
∑

E⊆M

Pr(M, E)Wt+1(Ω
E
l,1(t+ 1)),

where

ΩE
l (t+ 1) = (PE

11,Φ(k + 1, l − 1), τ(ωl),Φ(l + 1, N),QM,E),

ΩE
l,0(t+ 1) = (PE

11,Φ(k + 1, l − 1), p01,Φ(l + 1, N),QM,E),

ΩE
l,1(t+ 1) = (PE

11,Φ(k + 1, l − 1), p11,Φ(l + 1, N),QM,E).

To prove the lemma in this case, it is sufficient to prove

Wt+1(Ω
E
l (t+ 1)) = (1− ωl)Wt+1(Ω

E
l,0(t+ 1)) + ωlWt+1(Ω

E
l,1(t+ 1)) (9)

According to induction result, we have

Wt+1(Ω
E
l (t+ 1)) =τ(ωl) ·Wt+1(P

E
11,Φ(k + 1, l − 1), 1,Φ(l + 1, N),QM,E )

+ (1− τ(ωl)) ·Wt+1(P
E
11,Φ(k + 1, l − 1), 0,Φ(l + 1, N),QM,E )

(10)

Wt+1(Ω
E
l,0(t+ 1)) =p01 ·Wt+1(P

E
11,Φ(k + 1, l − 1), 1,Φ(l + 1, N),QM,E )

+ (1− p01) ·Wt+1(P
E
11,Φ(k + 1, l − 1), 0,Φ(l + 1, N),QM,E )

(11)

Wt+1(Ω
E
l,0(t+ 1)) =p11 ·Wt+1(P

E
11,Φ(k + 1, l − 1), 1,Φ(l + 1, N),QM,E )

+ (1− p11) ·Wt+1(P
E
11,Φ(k + 1, l − 1), 0,Φ(l + 1, N),QM,E )

(12)

Combing (10), (11), (12), we have (9).
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• Case 2: channell is sensed in slott, i.e. l ≤ k. Let M , N (k) \ {l} = {1, · · · , l− 1, l+1, · · · , k},

we have according to (6)

Wt(Ω(t)) =F (ω1, · · · , ωl, · · · , ωk)

+ β(1− ǫ)ωl

∑

E⊆M

Pr(M, E)Wt+1(P
E
11, p11,Φ(k + 1, N),Q

M,E,l
,QM,E,l)

+ β[1− (1− ǫ)ωl]
∑

E⊆M

Pr(M, E)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, τ(ϕ(ωl)),Q

M,E,l)

Let ωl = 0 and1, respectively, we have

Wt(ω1, · · · , 0, · · · , ωn) =F (ω1, · · · , 0, · · · , ωk)

+ β
∑

E⊆M

Pr(M, E)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p01,Q

M,E,l),

Wt(ω1, · · · , 1, · · · , ωn) =F (ω1, · · · , 1, · · · , ωk)

+ β(1 − ǫ)
∑

E⊆M

Pr(M, E)Wt+1(P
E
11, p11,Φ(k + 1, N),Q

M,E,l
,QM,E,l)

+ βǫ
∑

E⊆M

Pr(M, E)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p11,Q

M,E,l)

To prove the lemma in this case, it is sufficient to show

[1− (1− ǫ)ωl]Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, τ(ϕ(ωl)),Q

M,E,l)

= (1− ωl)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p01,Q

M,E,l)

+ ǫωlWt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p11,Q

M,E,l) (13)

According to induction result, we have

Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, τ(ϕ(ωl)),Q

M,E,l)

= τ(ϕ(ωl))Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 1,QM,E,l)

+ (1− τ(ϕ(ωl)))Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 0,QM,E,l) (14)

Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p01,Q

M,E,l)

= p01Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 1,QM,E,l)

+ (1− p01)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 0,QM,E,l) (15)
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Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p11,Q

M,E,l)

= p11Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 1,QM,E,l)

+ (1− p11)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 0,QM,E,l) (16)

Combing (14), (15), (16), we have (13).

Combing the above analysis in two cases, we thus prove Lemma 4.

APPENDIX B

PROOF OFLEMMA 5

We proceed the proof by backward induction. Firstly, it is easy to verify that the lemma holds for slot

T .

Assume that the lemma holds from slotst + 1, · · · , T , we now prove that it also holds for slott by

distinguishing the following two cases.

• Case 1: channell is not sensed in slott, i.e., l ≥ k + 1. In this case, the immediate reward is

unrelated toωl andω′
l. Moreover, letΩ(t+ 1) andΩ′(t+ 1) denote the belief vector generated by

Ω(t) = (ω1, · · · , ωl, · · · , ωN ) andΩ′(t) = (ω1, · · · , ω
′
l, · · · , ωN ), respectively, it can be noticed that

Ω(t+1) andΩ′(t+1) differ in only one element:ω′
l(t+1) ≥ ωl(t+1). By induction, it holds that

Wt+1(Ω
′(t+ 1)) ≥ Wt+1(Ω(t+ 1)). Noticing (6), it follows thatWt(Ω

′(t)) ≥ Wt(Ω(t)).

• Case 2: channell is sensed in slott, i.e., l ≤ k. Following Lemma 4 and after some straightforward

algebraic operations, we have

Wt(ω1, · · · , ω
′
l, · · · , ωN )−Wt(ω1, · · · , ωl, · · · , ωN ) =

(ω′
l − ωl)[Wt(ω1, · · · , 1, · · · , ωN )−Wt(ω1, · · · , 0, · · · , ωN )].

Let M , N (k) \ {l} = {1, · · · , l − 1, l + 1, · · · , k}, by developingWt(Ω(t)) as a function ofωl,

we have

Wt(Ω(t)) = F (ω1(t), · · · , ωk(t)) + β(1− ǫ)ωl

∑

E⊆M

Pr(M, E)Wt+1(ΩE(t+ 1))

+ β[1− (1− ǫ)ωl]
∑

E⊆M

Pr(M, E)Wt+1(ΩE (t+ 1)).

Let ωl = 0 and1, respectively, we have

Wt(ω1, · · · , 0, · · · , ωn) = F (ω1, · · · , 0, · · · , ωn) + β
∑

E⊆M

Pr(M, E)Wt+1(Ω
E
0 (t+ 1)),
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Wt(ω1, · · · , 1, · · · , ωn) = F (ω1, · · · , 1, · · · , ωn) + β(1 − ǫ)
∑

E⊆M

Pr(M, E)Wt+1(Ω
E
1−ǫ(t+ 1))

+ βǫ
∑

E⊆M

Pr(M, E)Wt+1(Ω
E
ǫ (t+ 1)),

where

ΩE
0 (t+ 1) = (PE

11,Φ(k + 1, N),Q
M,E,l

, p01,Q
M,E,l),

ΩE
1−ǫ(t+ 1) = (PE

11, p11,Φ(k + 1, N),Q
M,E,l

,QM,E,l),

ΩE
ǫ (t+ 1) = (PE

11,Φ(k + 1, N),Q
M,E,l

, p11,Q
M,E,l).

It can be checked thatΩE
1−ǫ(t + 1) ≥ ΩE

0 (t + 1) and ΩE
ǫ (t + 1) ≥ ΩE

0 (t + 1). It then follows

from induction that givenE , Wt+1(Ω
E
1−ǫ(t + 1)) ≥ Wt+1(Ω

E
0 (t + 1)) andWt+1(Ω

E
1−ǫ(t + 1)) ≥

Wt+1(Ω
E
0 (t+ 1)). Noticing thatF is increasing, we then have

Wt(ω1, · · · , 1, · · · , ωn)−Wt(ω1, · · · , 0, · · · , ωn) = F (ω1, · · · , 1, · · · , ωn)− F (ω1, · · · , 0, · · · , ωn)

+ β(1− ǫ)
∑

E⊆M

Pr(M, E)[Wt+1(Ω
E
1−ǫ(t+ 1))−Wt+1(Ω

E
0 (t+ 1))]

+ βǫ
∑

E⊆M

Pr(M, E)[Wt+1(Ω
E
ǫ (t+ 1))−Wt+1(Ω

E
0 (t+ 1))] ≥ 0.

Combining the above analysis in two cases completes our proof.

APPENDIX C

PROOF OFLEMMA 6 AND LEMMA 7

Due to the dependency between the two lemmas, we prove them together by backward induction.

We first show that Lemma 6 and Lemma 7 hold for slotT . It is easy to verify that Lemma 6

holds.

We then prove Lemma 7. Noticing thatp01 ≤ ωN ≤ ωk ≤ p11 ≤ 1, we have

WT (ω1, · · · , ωN )−WT (ωN , ω1, · · · , ωN−1) = F (ω1, · · · , ωk)− F (ωN , ω1, · · · , ωk−1)

= (ωk − ωN)[F (ω1, · · · , ωk−1, 1)− F (ω1, · · · , ωk−1, 0)] ≤ (1− ωN )∆max,

WT (ω1, · · · , ωN )−WT (ωN , ω2, · · · , ωN−1, ω1) = F (ω1, · · · , ωk)− F (ωN , ω2, · · · , ωk−1)

= (ω1 − ωN )[F (1, ω2, · · · , ωk)− F (0, ω2, · · · , ωk)] ≤ (p11 − p01)∆max.

Lemma 7 thus holds for slotT .

Assume that Lemma 6 and Lemma 7 hold for slotsT, · · · , t+1, we now prove that it holds for

slot t.
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We first prove Lemma 6. We distinguish the following three cases consideringl < m:

• Case 1:l ≥ k + 1. In this case, we have

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN )−Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN )

= (ωl − ωm)[Wt(ω1, · · · , 1, · · · , 0, · · · , ωN )−Wt(ω1, · · · , 0, · · · , 1, · · · , ωN )]

= (ωl − ωm)β
∑

E⊆N (k)

Pr(N (k), E)[Wt+1(ΩE(t+ 1))−Wt+1(Ω
′
E(t+ 1))],

where

ΩE(t+ 1) = (PE
11, τ(ωk+1), · · · , p11, · · · , p01, · · · , τ(ωN ),QN (k),E ),

Ω′
E(t+ 1) = (PE

11, τ(ωk+1), · · · , p01, · · · , p11, · · · , τ(ωN ),QN (k),E ).

It follows from the induction result thatWt+1(ΩE(t+ 1)) ≥ Wt+1(Ω
′
E(t+ 1)). Hence

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN ) ≥ Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN ).

• Case 2:l ≤ k and m ≥ k + 1. In this case, denoteM , N (k) \ {l}, it can be noted that

QM,E = QM,E,l +Q
M,E,l

. In this case, we have

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN )−Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN )

= (ωl − ωm)[Wt(ω1, · · · , 1, · · · , 0, · · · , ωN )−Wt(ω1, · · · , 0, · · · , 1, · · · , ωN )]

= (ωl − ωm)[F (ω1, · · · , 1, · · · , ωk)− F (ω1, · · · , 0, · · · , ωk)+

β
∑

E⊆M

Pr(M, E)[(1 − ǫ)Wt+1(P
E
11, p11, τ(ωk+1), · · · , p01, · · · , τ(ωN ),QM,E)+

ǫWt+1(P
E
11, τ(ωk+1), · · · , p01, · · · , τ(ωN ),Q

M,E,l
, p11,Q

M,E,l)−

Wt+1(P
E
11, τ(ωk+1), · · · , p11, · · · , τ(ωN ),Q

M,E,l
, p01,Q

M,E,l)]

≥ (ωl − ωm)[∆min + β
∑

E⊆M

Pr(M, E) · [(1− ǫ)Wt+1(p01,P
E
11, p11, τ(ωk+1), · · · , τ(ωN ),QM,E)+

ǫWt+1(p01,P
E
11, τ(ωk+1), · · · , τ(ωN ),QM,E , p11)−

Wt+1(P
E
11, p11, τ(ωk+1), · · · , τ(ωN ),QM,E , p01)]

≥ (ωl − ωm)



∆min − β
∑

E⊆M

Pr(M, E)·

(

(1− ǫ)(1− p01)∆max + ǫ(p11 − p01)∆max
1− [β(1− ǫ)(p11 − p01)]

T−t

1− β(1− ǫ)(p11 − p01)

)]

July 27, 2021 DRAFT



18

≥ (ωl − ωm)
∑

E⊆M

Pr(M, E)·

[

∆min − β

(

(1− ǫ)(1− p01)∆max + ǫ(p11 − p01)∆max
1

1− (1− ǫ)(p11 − p01)

)]

≥ 0,

where the first inequality follows the induction result of Lemma 6, the second inequality follows

the induction result of Lemma 7, the third inequality follows the condition in the lemma.

• Case 3:l,m ≥ k. This case follows Lemma 3.

Lemma 6 is thus proven for slott.

We then proceed to prove Lemma 7. We start with the first inequality. We developWt w.r.t. ωk and

ωN according to Lemma 4 as follows:

Wt(ω1, · · · , ωk−1, ωk, · · · , ωn−1, ωn)−Wt(ωn, ω1, · · · , ωk−1, ωk, ..., ωn−1)

= ωkωn[Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 1)−Wt(1, ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1)]

+ωk(1− ωn)[Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 0)−Wt(0, ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1)]

+(1− ωk)ωn[Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 1)−Wt(1, ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1)]

+(1− ωk)(1− ωn)[Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 0) −Wt(0, ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1)]

(17)

We proceed the proof by upbounding the four terms in (17).

For the first term, we have

Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 1)−Wt(1, ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1)

= β
∑

E⊆N (k−1)

Pr(N (k − 1), E) · [(1− ǫ)Wt+1(P
E
11, p11,Φ(k + 1, N − 1), p11,Q

N (k−1),E)

+ ǫWt+1(P
E
11,Φ(k + 1, N − 1), p11,Q

N (k−1),E , p11)

− (1− ǫ)Wt+1(p11,P
E
11, p11,Φ(k + 1, N − 1),QN (k−1),E )

− ǫWt+1(P
E
11, p11,Φ(k + 1, N − 1), p11,Q

N (k−1),E)] ≤ 0

where, the inequality follows the induction of Lemma 6.

For the second term, we have

Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 0) −Wt(0, ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1)

= F (ω1, · · · , ωk−1, 1) − F (0, ω1, · · · , ωk−1)
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+β
∑

E⊆N (k−1)

Pr(N (k − 1), E) · [(1 − ǫ)Wt+1(P
E
11, p11,Φ(k + 1, N − 1), p01,Q

N (k−1),E)

+ǫWt+1(P
E
11,Φ(k + 1, N − 1), p01,Q

N (k−1),E , p11)−Wt+1(P
E
11, p11,Φ(k + 1, N − 1), p01,Q

N (k−1),E)]

= F (ω1, · · · , ωk−1, 1) − F (0, ω1, · · · , ωk−1) + β
∑

E⊆N (k−1)

Pr(N (k − 1), E)·

[ǫWt+1(P
E
11,Φ(k + 1, N − 1), p01,Q

N (k−1),E , p11)− ǫWt+1(P
E
11, p11,Φ(k + 1, N − 1), p01,Q

N (k−1),E)]

≤ ∆max

following the induction of Lemma 6.

For the third term, we have

Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 1)−Wt(1, ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1)

= F (ω1, · · · , ωk−1, 0) − F (1, ω1, · · · , ωk−1)+

β
∑

E⊆N (k−1)

Pr(N (k − 1), E)[Wt+1(P
E
11,Φ(k + 1, N − 1), p11,Q

N (k−1),E , p01)−

(1− ǫ)Wt+1(p11,P
E
11, p01,Φ(k + 1, N − 1),QN (k−1),E)− ǫWt+1(P

E
11, p01,Φ(k + 1, N − 1), p11,Q

N (k−1),E)]

≤ −∆min + β
∑

E⊆N (k−1)

Pr(N (k − 1), E)[Wt+1(P
E
11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)−

(1− ǫ)Wt+1(p01, p11,P
E
11,Φ(k + 1, N − 1),QN (k−1),E)− ǫWt+1(p01,P

E
11,Φ(k + 1, N − 1),QN (k−1),E , p11)]

≤ −∆min + β
∑

E⊆N (k−1)

Pr(N (k − 1), E)

[

(1− ǫ)(1 − p01)∆max + ǫ(p11 − p01)∆max
1− [β(1− ǫ)(p11 − p01)]

T−t

1− β(1− ǫ)(p11 − p01)

]

≤
∑

E⊆N (k−1)

Pr(N (k − 1), E)

[

−∆min + β

[

(1− ǫ)(1 − p01)∆max + ǫ(p11 − p01)∆max
1

1− (1− ǫ)(p11 − p01)

]]

≤ 0

where the first inequality follows the induction result of Lemma 6, the second equality follows the

induction result of Lemma 7, the forth inequality is due the condition in Lemma 7.

For the fourth term, we have

Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 0) −Wt(0, ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1)

= β
∑

E⊆N (k−1)

Pr(N (k − 1), E)[Wt+1(P
E
11,Φ(k + 1, N − 1), p01,Q

N (k−1),E , p01)

−Wt+1(P
E
11, p01,Φ(k + 1, N − 1),QN (k−1),E , p01)]

= β
∑

E⊆N (k−1)

Pr(N (k − 1), E)[Wt+1(P
E
11,Φ(k + 1, N − 1), p01,Q

N (k−1),E , p01)

−Wt+1(p01,P
E
11,Φ(k + 1, N − 1),QN (k−1),E , p01)]
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≤ β
∑

E⊆N (k−1)

Pr(N (k − 1), E)[Wt+1(P
E
11,Φ(k + 1, N − 1),QN (k−1),E , p01, p01)

−Wt+1(p01,P
E
11,Φ(k + 1, N − 1),QN (k−1),E , p01)]

≤ (1− p01)β∆max

where, the second equality follows Lemma 3, the first inequality follows the induction result of Lemma 6

and the second inequality follows the induction result of Lemma 7.

Combing the above results of the four terms, we have

Wt(ω1, · · · , ωN )−Wt(ωn, ω1, · · · , ωN−1)

≤ ωk(1− ωN ) ·∆max + (1− ωk)(1− ωN ) · (1− p01)β∆max

≤ ωk(1− ωN )∆max + (1− ωk)(1− ωN )∆max ≤ (1− ωN )∆max,

which completes the proof of the first part of Lemma 7.

Finally, we prove the second part of Lemma 7. To this end, denote M , {2, · · · , k}, we have

Wt(ω1, · · · , ωN )−Wt(ωN , ω2, · · · , ωN−1, ω1)

= (ω1 − ωN )[Wt(1, ω2, · · · , ωN−1, 0)−Wt(0, ω2, · · · , ωN−1, 1)]

= (ω1 − ωN )(F (1, ω2, · · · , ωk)− F (0, ω2, · · · , ωk) + β
∑

E⊆M

Pr(M, E)·

[(1− ǫ)Wt+1(P
E
11, p11,Φ(k + 1, N − 1), p01,Q

M,E) + ǫWt+1(P
E
11,Φ(k + 1, N − 1), p01, p11,Q

M,E)

−Wt+1(P
E
11,Φ(k + 1, N − 1), p11, p01,Q

M,E)]

≤ (ω1 − ωN )(∆max + β
∑

E⊆M

Pr(M, E)[(1 − ǫ)Wt+1(P
E
11, p11,Φ(k + 1, N − 1), p01,Q

M,E)

+ǫWt+1(P
E
11,Φ(k + 1, N − 1), p01, p11,Q

M,E)−Wt+1(P
E
11,Φ(k + 1, N − 1), p01, p11,Q

M,E)])

= (ω1 − ωN )(∆max + β
∑

E⊆M

Pr(M, E)[(1 − ǫ)Wt+1(P
E
11, p11,Φ(k + 1, N − 1), p01,Q

M,E)

−(1− ǫ)Wt+1(P
E
11,Φ(k + 1, N − 1), p01, p11,Q

M,E ])

≤ (ω1 − ωN )(∆max + β
∑

E⊆M

Pr(M, E)[(1 − ǫ)Wt+1(P
E
11, p11,Φ(k + 1, N − 1),QM,E , p01)−

(1− ǫ)Wt+1(p01,P
E
11,Φ(k + 1, N − 1),QM,E , p11)])

≤ (p11 − p01)



∆max + β
∑

E⊆M

Pr(M, E)(1 − ǫ)
1− [β(1− ǫ)(p11 − p01)]

T−t

1− β(1− ǫ)(p11 − p01)
(p11 − p01)∆max





=
1− [β(1− ǫ)(p11 − p01)]

T−t+1

1− β(1− ǫ)(p11 − p01)
(p11 − p01)∆max
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where the first two inequalities follows the recursive application of the induction result of Lemma 6, the

third inequality follows the induction result of Lemma 7.

We thus complete the whole process of proving Lemma 6 and Lemma 7.
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