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Abstract

Several key results in distributed source coding offer the intuition that little improvement in compression can be gained
from intersensor communication when the information is coded in long blocks. However, when sensors are restricted to code
their observations in small blocks (e.g., 1), intelligent collaboration between sensors can greatly reduce distortion. For networks
where sensors are allowed to “chat” using a side channel thatis unobservable at the fusion center, we provide asymptotically-
exact characterization of distortion performance and optimal quantizer design in the high-resolution (low-distortion) regime using
a framework called distributed functional scalar quantization (DFSQ). The key result is that chatting can dramatically improve
performance even when intersensor communication is at verylow rate, especially if the fusion center desires fidelity ofa nonlinear
computation applied to source realizations rather than fidelity in representing the sources themselves. We also solve the rate
allocation problem when communication links have heterogeneous costs and provide a detailed example to demonstrate the
theoretical and practical gains from chatting. This example for maximum computation gives insight on the gap between chatting
and distributed networks, and how to optimize the intersensor communication.

Index Terms

distributed source coding, high-resolution quantization, sensor networks, side information

I. I NTRODUCTION

A longstanding consideration in distributed compression systems is whether sensors wishing to convey information to a
fusion center should communicate with each other to improveefficiency. Architectures that only allow communication between
individual sensors and the fusion center simplify the network’s communication protocol and decrease sensor responsibilities.
Moreover, information theoretic results such as the Slepian–Wolf theorem show that distributed compression can perform
as well as joint compression for lossless communication of correlated information sources [1]. Although this surprising and
beautiful result does not extend fully, comparable resultsfor lossy coding show that the rate loss from separate encoding can be
small using Berger–Tung coding (see, e.g., [2]), again suggesting that communication between sensors has little or no utility.

Although it is tempting to use results from information theory to justify simple communication topologies, it is important to
note the Slepian–Wolf result is dependent on large blocklength; in the finite-blocklength regime, the optimality of distributed
encoding does not hold [3]. This paper examines the use of communication among sensors when the compression blocklength
is 1, a regime where collaboration, calledchattingin this work, can greatly decrease the aggregate communication from sensors
to the fusion center to meet a distortion criterion as compared to a distributed network. We analyze chatting networks using the
distributed functional scalar quantization (DFSQ) framework, which constrains sensors to using scalar quantizers tocompress
their observations and generalizes the fusion center’s objective to desire fidelity in computing a function of the sources rather
than determining the sources themselves [4], [5]. Our problem model is shown in Fig. 1, whereN correlated but memoryless
continuous-valued, discrete-time stochastic processes produce scalar realizationsXN

1 (t) = (X1(t), . . . , XN(t)) for t ∈ Z. For
eacht, realizations of these sources are scalar quantized by sensors and transmitted to a fusion center at ratesRN

1 . To aid this
communication, sensors can collaborate with each other viaa side channel that is unobservable to the fusion center. Since the
quantization is scalar and the sources are memoryless, we remove the time index and model the sources as being drawn from
a joint distributionfXN

1
at eacht.

The side channel facilitating intersensor communication has practical implications. In typical communication systems, the
transmission power needed for reliable communication increases superlinearly with distance and bandwidth [6]. Hence, it is
much cheaper to design short and low-rate links between sensors than reliable and high-rate links to a fusion center. Moreover,
milder transmission requirements provide more flexibilityin determining the transmission media or communication modalities
employed, which can allow intersensor communication to be orthogonal to the main network. One such example is cognitive
radio, a paradigm where the wireless spectrum can have secondary users that communicate only when the primary users are
silent [7]. This means secondary users have less priority and hence lower reliability and rate, which is adequate for intersensor
communication.

The main contributions of the paper are to precisely characterize the distortion performance of a distributed network when
chatting is allowed and to identify the optimal quantizer design for each sensor. We show that collaboration can have significant
impact on performance; in some cases, it can dramatically reduce distortion even when the chatting has extremely low rate.
We also give necessary conditions on the chatting topology and protocol for successful decodability in the DFSQ framework,

J. Z. Sun is with the Department of Electrical Engineering and Computer Science and the Research Laboratory of Electronics, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: johnsun@mit.edu).

V. K. Goyal is with the Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139USA (e-mail: v.goyal@ieee.org).
This material is based upon work supported by the National Science Foundation under Grant No. 1115159.

http://arxiv.org/abs/1210.8400v1


2

Fig. 1. A distributed computation network, whereN sensors (comprising quantizer and encoder) observe realizations of correlated sources. Each observation
Xn is encoded and communicated over rate-limited links to a fusion center. Simultaneously, each sensor can interact with asubset of other sensors using
a noiseless but rate-limited chatting channel to improve compressibility. The decoder at the fusion center computes anestimate of the functiong(Xn

1 ) =

g(X1, X2, . . . , Xn) from the received data using a reconstruction functionĝ(X̂n
1 ) but cannot observe messages communicated on the chatting channel.

thus providing insight into the architecture design for chatting networks. Finally, we recognize that intersensor communication
can occur on low-cost channels and solve the rate allocationproblem in networks with heterogeneous links and differentcosts
of transmission. The basic concepts of this work were introduced in [8]; this paper provides more complete and definitive
coverage, including more results on rate allocation, a discussion on generalizing chatting messages, and details on the impact
of various optimizations.

We begin by introducing related work, notation and prerequisite results in Section II. In Section III, we analyze the
performance of chatting networks and discuss how to optimize the communication that occurs. We then determine the
proper rate allocation for chatting networks in Section IV.Finally, we develop intuition for the behavior of chatting by
considering a maximum computation network in Section V; this specific example demonstrates the incremental gains achieved
by incorporating the different optimizations discussed inthe paper.

II. PRELIMINARIES

A. Previous Work

There is a large body of literature studying asymptotic performance of the distributed network in Fig. 1 without the chatting
channel; a comprehensive review of these works and their connections to DFSQ appears in [4]. Similarly, connections to
coding for computing (e.g. [9], [10]) are discussed there aswell. Recent work on the finite-blocklength regime [11] has led to
extensions in source coding [3], [12], [13]. In general, this analysis technique is meaningful for blocklengths as low as 100,
but is unsuitable for regimes traditionally considered in high-resolution theory.

We review results that relate to the chatting channel, focusing on Shannon-theoretic results. Kaspi and Berger provided inner
bounds for the rate region of a two-encoder problem where oneencoder can send information for the other using compress-
and-forward techniques [14]. Recently, this bound has beengeneralized in [15], but the exact rate region is still unknown
except in special cases. Chatting is related to source coding problems such as interaction [16], [17], omniscience [18]and
data exchange [19]. However, these settings are more naturally suited for discrete-alphabet sources and existing results rely on
large-blocklength analysis.

There are also strong connections between this work and distortion side information [20] and vector quantization with
alternative distortion measures [21].

B. Quantization

The focus of this work is on compression of continuous-valued, finite-support sources using small blocks of data. Here,
performance results from Shannon theory are overly optimistic since tools such as joint-typicality encoding and decoding are
not reliable without operating far from the distortion–rate bound. Instead, we consider the complementary asymptoticof high
resolution, where the blocklength is small and the compression rateR is large [22]–[24]. Before introducing the high-resolution
asymptotic, we summarize the quantization model for the case of blocklength 1 and set up the notation used for the rest of
the paper.

A scalar quantizerQK is a mapping from the real line to a set ofK pointsC = {ck}Kk=1 ⊂ R called the codebook, where
QK(x) = ck if x ∈ Pk and the cells{Pk}Kk=1 form a partition ofR. The quantizer is calledregular if the partition cells
are intervals containing the corresponding codewords. Forsimplicity, the codebook and partition are indexed from smallest to
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Fig. 2. The companding model is a method to construct nonuniform quantizers using a monotonic nonlinearityc satisfying limx→−∞ c(x) = 0 and
limx→∞ c(x) = 1. The notationQK,U is used to describe the canonical uniform quantizer withK codewords in the granular region[0, 1].

largest, implyingp0 < c1 ≤ p1 < c2 ≤ · · · < cK ≤ pK if Pk = (pk−1, pk], with p0 = −∞ andpK = ∞. Define thegranular
region as(c1, cK) and its complement(−∞, c1] ∪ [cK ,∞) as theoverloadregion.

Uniform quantization, where partition cells in the granular region have equal length, is most common in practice, but
nonuniform quantization can be better for compression if the source can be modeled properly. One way of constructing a
nonuniform quantizer is using the compander model, where the scalar source is transformed using a nondecreasing and smooth
compressorfunctionc : R → [0, 1], then quantized using a uniform quantizer comprisingK levels on the granular region[0, 1],
and finally passed through theexpanderfunctionc−1 (Fig. 2). Compressor functions are defined such thatlimx→−∞ c(x) = 0
andlimx→∞ c(x) = 1. It is convenient to define apoint density functionasλ(x) = c′(x). Because of the boundary conditions
on c, there is a one-to-one correspondence betweenλ and c; hence, a companding quantizer can be uniquely specified using
a point density function and codebook size, and is denotedQK,λ in this work. The conversion of point density functions to
finite-codeword quantizers is described in more detail in [5, Section II-B].

C. High-resolution Theory

It is generally difficult to determine the distortion of a scalar quantizer for any codebook sizeK. However, the performance
of QK,λ can be precisely analyzed as the number of codewordsK becomes large, which is the basis of high-resolution theory.
Assume a sourceX is a continuous random variable, and define the mean squared error (MSE) distortion as

Dmse(K,λ) = E[|X −QK,λ(X)|2], (1)

where the expectation is with respect to the source densityfX . Under the additional assumption that the tails offX decay
sufficiently fast,

Dmse(K,λ) ≃
1

12K2
E[λ−2(X)], (2)

where≃ indicates that the ratio of the two expressions approaches 1asK increases [25], [26]. Hence, the MSE performance
of a scalar quantizer can be approximated by a simple relationship between the source distribution, point density, and codebook
size, and this relation becomes more precise with increasing K. In fact, companding quantizers areasymptotically optimal,
meaning that the quantizer optimized overλ has distortion that approaches the performance of the bestQK found by any
means [27]–[29]. Experimentally, the high-resolution approximation is accurate even for moderateK [23], [30].

When the quantized values are to be communicated or stored, it is natural to map each codeword to a string of bits and
consider the trade-off between performance and communication rateR, defined to be the expected number of bits per sample.
In the simplest case, the codewords are indexed with equal-length labels and the communication rate isR = log2(K); this
is calledfixed-rateor codebook-constrainedquantization. Since the distortion’s dependence on the shape of the quantizerλ
is explicit in the asymptote, calculus techniques can be used to optimize companders. For fixed rate, Hölder’s inequality can
show the optimal point density satisfies

λmse,fr(x) ∝ f
1/3
X (x), (3)

and the resulting distortion is

D∗
mse,fr(R) ≃

1

12
‖fX‖1/3 2

−2R, (4)

with the notation‖f‖p = (
∫∞

−∞
fp(x) dx)1/p [31]. The limit conditions onc(x) imply the integral ofλ(x) is unity. Thus, (3)

specifies the point density uniquely; for clarity, we omit the normalization when presenting point density results.
In general, the codeword indices can be coded to produce bit strings of different lengths based on probabilities of occurrence;

this is referred to asvariable-ratequantization. If the decoding latency is allowed to be large, one can employ block entropy
coding and the communication rate approachesH(QK,λ(X)). This particular scenario, calledentropy-constrainedquantization,
can be analyzed using Jensen’s inequality to show the optimal point densityλ∗

mse,ec is constant on the support of the input
distribution [31]. The optimal quantizer is thus uniform, and the resulting distortion is

D∗
mse,ec(R) ≃

1

12
2−2(R−h(X)). (5)

Note that block entropy coding suggests that the sources aretransmitted in blocks even though the quantization is scalar. As
such, (5) is an asymptotic result and serves as a lower bound on practical entropy coders with finite blocklengths that match
the latency restrictions of a network.
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D. Distributed Functional Scalar Quantization

When the goal of acquisition is to approximate some computation applied to the sources, optimizing the compression to the
source distribution can be suboptimal and potentially worse than uniform quantization. This is most evident in distributed net-
works since each sensor cannot determine the overall computation at the encoder. The distributed functional scalar quantization
(DFSQ) framework accounts for the computational task at thefusion center, and the resulting quantizers can be substantially
better than naive designs [4], [5]. In this setting, the distortion criterion is functional MSE (fMSE):

Dfmse(K
N
1 , λN

1 ) = E
[∣∣g(XN

1 )− ĝ(QKN
1 ,λN

1
(XN

1 ))
∣∣2
]
, (6)

whereg is a scalar function of interest,̂g is the decoding function andQKN
1 ,λN

1
is scalar quantization performed on a vector

such that
QKN

1 ,λN
1
(xN

1 ) = (QK1,λ1(x1), . . . QKN ,λN
(xN )) .

Before understanding how a quantizer changes fMSE, it is convenient to define how a computation locally affects distortion.

Definition 1 ([4]). Thenth functional sensitivity profileof a multivariate functiong is defined as

γn(x) =
(
E
[
|gn(X

N
1 )|2

∣∣Xn = x
])1/2

, (7)

wheregn(x) is the partial derivative ofg with respect to itsnth argument evaluated at the pointx.

Given the sensitivity profile, the main result of DFSQ [4] says the distortion of a set ofN companding quantizers has the
asymptotic form

Dfmse(K
N
1 , λN

1 ) ≃
N∑

n=1

1

12K2
n

E

[(
γn(Xn)

λn(Xn)

)2
]
, (8)

with conditional expectation decoder

ĝ(xN
1 ) = E

[
g(XN

1 )
∣∣∣QKN

1 ,λN
1
(XN

1 ) = QKN
1 ,λN

1
(xN

1 )
]
, (9)

provided the following conditions are satisfied:
MF1. The functiong is Lipschitz continuous and twice differentiable in every argument except possibly on a set of Jordan

measure 0.
MF2. The source pdffXN

1
is continuous, bounded, and supported on[0, 1]N .

MF3. The functiong and set of point densitiesλN
1 allow E[(γn(Xn)/λn(Xn))

2] to be defined and finite for alln.
Similar conditions are given in [5] for infinite-support distributions and a simpler decoder.

Following the same recipes to optimize overλN
1 as in the MSE setting, the relationship between distortion and communication

rate is found. In both cases, the sensitivity acts to shift quantization points to where they can reduce the distortion inthe
computation. For fixed-rate quantization, the asymptotic minimum distortion is

D∗
fmse,fr(R

N
1 ) ≃

N∑

n=1

1

12
‖γnfXn

‖1/3 2
−2Rn , (10)

wherefXn
is the marginal distribution ofXn and each optimal point density satisfies

λ∗
n,fmse,fr(x) ∝ (γn(x)fXn

(x))
1/3

. (11)

Meanwhile, for entropy-constrained quantization, the asymptotic minimum distortion is

D∗
fmse,ec(R

N
1 ) ≃

N∑

n=1

1

12
22h(Xn)+2E[log2 γ(Xn)]2−2Rn , (12)

which results from point densities satisfying
λ∗
n,fmse,ec(x) ∝ γn(x). (13)
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E. Don’t-care intervals

When the computation induces the sensitivity to be 0 on some subintervals of the support, the high-resolution assumptions
are violated and the asymptotic distortion performance maynot be described by (8). This issue is addressed by carefullycoding
when the source is in such a “don’t-care” interval [4, Section VII] and then applying traditional high-resolution theory to the
remaining support. This consideration is particularly relevant because chatting among sensors can often induce the conditional
sensitivity to be 0, and proper coding can lead to greatly improved performance.

ConsiderLn don’t-care intervals inγn and letAn be the event that the source realization isnot in the unions of them. In
the fixed-rate setting, one codeword is allocated to each don’t-care interval, and the remainingKn−Ln codewords are used to
form reconstruction points in the nonzero intervals. Thereis a small degradation in performance from the loss corresponding
to Ln, but this quickly becomes negligible asKn increases. In the entropy-constrained case, the additional flexibility in coding
allows for the encoder to split its message and reduce cost. The first part is an indicator variable revealing whether the source
is in a don’t-care interval and can be coded at rateIA ≡ HB(P(An)), whereHB is the binary entropy function. The actual
reconstruction message is only sent if eventAn occurs, and its rate is amplified to(Rn− IA)/P(An) to meet the average rate
constraint. The multiplicative factor1/P(An) is called therate amplification.

F. Chatting

In [4, Section VIII], chatting is introduced in the setting where one sensor sends exactly one bit to another sensor. Under
fixed-rate quantization, this collaboration can at most decrease the distortion by a factor of 4 using a property ofL1/3 quasi-
norms. Because utilizing that bit to send additional information to the fusion center would decrease distortion by exactly a
factor of 4, this is considered a negative result. Here, there is an implicit assumption that links have equal cost per bitand
the network wishes to optimize a total cost budget. In the entropy-constrained setting, chatting may be useful even whenlinks
have equal costs. One example was given to demonstrate a single bit of chatting can decrease the distortion by an unbounded
amount; more generally, the benefit of chatting varies depending on the source joint distribution and decoder computation.

In previous work, there is no systematic theory on performance and quantizer design of chatting. Moreover, collaboration in
larger networks was still an open problem. In this paper, we extend previous results and provide a more complete discussion
on how a chatting channel affects a distributed quantization network. A sample result is that chatting can be beneficial in the
fixed-rate setting if the cost of communicating a bit to another sensor is lower than the cost of communicating a bit to the
fusion center.

III. PERFORMANCE ANDDESIGN OFCHATTING NETWORKS

We model the chatting channel in Fig. 1 as a directed graphGc = (V , E), where the set of nodesV is the set of all sensors
andE ⊆ V × V is the set of noiseless, directed chatting links. If(i, n) ∈ E , then for each source realization, Sensori sends
to Sensorn a chatting messageMi→n with codebook sizeKi→n. The parent and children sets of a sensorn ∈ V are denoted
Np(n) andNc(n) respectively; when(i, n) ∈ E , i is a parent ofn andn is a child of i. The set of all chatting messages
is M c = {Mi→n}(i,n)∈E and the set of corresponding codebook sizes isKc = {Ki→n}(i,n)∈E . The chatting messages are
communicated according to a schedule that the sensors and the fusion center know in advance; the set of chatting messages
M c can therefore also be thought of as a sequence. We assume chatting occurs quickly in that all communication is completed
before the next discrete time instant (at which point new realizations ofXN

1 are measured). After chatting is complete, Sensorn
compresses its observationXn into a messageMn using a codebook dependent on the information gathered fromchatting
messages, which is noiselessly communicated to the fusion center with a messageMn(M

c) with codebook sizeKn(M
c).

We now present fMSE performance ofQKN
1 ,λN

1
in the fixed-rate and entropy-constrained settings, and we show how to

optimizeλN
1 givenKN

1 andKc. We first analyze the network assuming the fusion center can successfully infer the codebook
used by each sensor and hence recover the quantized values from messagesMN

1 . Later in Section III-D, we provide conditions
on the chatting graphGc and set of chatting messagesM c such that the fusion center is successful with zero error, having
benefited from already understanding the quantizer design.

Before studying fMSE, we need to extend the definition of functional sensitivity.

Definition 2. Let Np(n) ⊆ V be the set of parents of Sensorn in the graphGc induced by chatting. Thenth conditional
sensitivity profileof computationg given all chatting messagesM c is

γn|Mc(x|m) =
(
E
[
|gn(X

N
1 )|2

∣∣Xn = x,Mi→n = mi→n for all i ∈ Np(n)
])1/2

. (14)

Notice only messages from parent sensors are relevant toγn|Mc . Intuitively, chatting messages reveal information aboutthe
parent sensors’ quantized values and reshape the sensitivity appropriately. Depending on the encoding of chatting messages,
this may induce don’t-care intervals in the conditional sensitivity (whereγn|Mc = 0).

The distortion dependence on the number of codeword points and the conditional sensitivity profiles is given in the following
theorem:
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Theorem 1. Given the source distributionfXN
1

, computationg, and point densitiesλN
1 (M c) satisfying conditions MF1–3

for every possible realization ofM c, the asymptotic distortion of the conditional expectationdecoder(9) given codeword
allocationKN

1 andKc is

Dfmse(K
N
1 ,Kc, λN

1 ) ≃ EMc

[
N∑

n=1

EXn|Mc

[
1

12K2
n(m)

γ2
n|Mc(Xn|m)

λ2
n|Mc(Xn|m)

∣∣∣∣∣ M
c = m

]]
. (15)

Proof: Extend the proof of [4, Theorem 17] using the Law of Total Expectation.
Compared to the DFSQ result, the performance of a chatting network can be substantially more difficult to compute since the

conditional sensitivity may be different with each realization of M c and affects the choice of the point density and codebook
size. However, Sensorn’s dependence onM c is through a subset of messages from its parent nodes. In Section V, we will
see how structured architectures lead to tractable computations of fMSE. Following the techniques in [5], the theorem can
be expanded to account for infinite-support distributions and a simpler decoder. Some effort is necessary to justify theuse of
normalized point densities in the infinite-support case, especially in the entropy-constrained setting, but high-resolution theory
applies in this case as well.

A. Don’t-Care Intervals

We have already alluded to the fact that chatting can induce don’t-care intervals in the conditional sensitivity profiles of
certain sensors. In this case, we must properly code for these intervals to ensure the high-resolution assumptions hold, as
discussed in Section II-D.

For fixed-rate coding whereRn = log2(Kn), this means shifting one codeword to the interior of each don’t-care interval
and applying standard high-resolution analysis over the union of all intervals whereγn(x) > 0. The resulting distortion of a
chatting network is then given as:

Corollary 1. Assume the source distributionfXN
1

, computationg, and point densitiesλN
1 (M c) satisfying conditions MF1–3 for

every possible realization ofM c, with the additional requirement thatλn(x |m) = 0 wheneverγn|Mc(x |m) = 0. Let Ln(m)
be the number of don’t-care intervals in the conditional sensitivity of Sensorn whenM c = m. The asymptotic distortion of
such a chatting network where communication links utilize fixed-rate coding is

Dfmse(R
N
1 ,Kc, λN

1 ) ≃ EMc

[
N∑

n=1

EXn|Mc

[
1

12(2Rn − Ln(m))

γ2
n|Mc(Xn |m)

λ2
n|Mc(Xn |m)

∣∣∣∣∣ M
c = m

]]
. (16)

In the entropy-constrained setting whereRn = H(X̂n), we must code first the eventAn(m) that the source is not in
a don’t-care interval given the chatting messages, and thencoding the source realization only ifAn occurs. The resulting
distortion of a chatting network is:

Corollary 2. Assume the source distributionfXN
1

, computationg, and point densitiesλN
1 (M c) satisfying conditions MF1–3

for every possible realization ofM c, with the additional requirement thatλn(x |m) = 0 wheneverγn|Mc(x |m) = 0. Let
An(m) be the event thatXn is not in a don’t-care interval givenM c = m. The asymptotic distortion of such a chatting
network where communication links utilize entropy coding is

Dfmse(R
N
1 ,Kc, λN

1 ) ≃ EMc

[
N∑

n=1

EXn|Mc

[
P(An(m))

12
22h(Xn|An(m))+2E[log2 λn(Xn)|An(m)]

·
γ2
n|Mc(Xn |m)

λ2
n|Mc(Xn |m)

2−2(Rn(m)−HB(An(m)))/P (An(m))

∣∣∣∣∣ M
c = m

]]
.

We will use both corollaries in optimizing the design ofλN
1 (M c) in the remainder of the paper.

B. Fixed-rate Quantization Design

We mirror the method used to determine (11) in the DFSQ setup but now allow the sensor to choose from a set of codebooks
depending on the incoming messages from parent sensors. Themapping between chatting messages and codebooks is known
to the decoder of the fusion center, and each codebook corresponds to the optimal quantizer for a given conditional sensitivity
induced by the incoming message. LetZn(M

c) be the union of the don’t-care intervals of a particular conditional sensitivity.
Then using Corollary 1, the optimal point density for fixed-rate quantization satisfies

λ∗
n,fmse,fr,chat(x |m) ∝

{ (
γn|Mc(x |m)fXn|Mc(x |m)

)1/3
, x /∈ Zn(m) andfXn|Mc(x |m) > 0;

0, otherwise.
(17)

Recall that the point density is the derivative of the compressor functionc(x) in the compander model. Hence, codewords
are placed at the solutions toc(x) = (k − 1)/(K − L) for k = 1, . . . , (K − L). In addition, one codeword must be placed in
each of theL don’t-care interval.
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C. Entropy-constrained Quantization Design

Using Corollary 2, the optimal point density when entropy coding is combined with scalar quantization has the form

λ∗
n,fmse,ec,chat(x |m) ∝

{
γn|Mc(x |m), x /∈ Zn(m) andfXn|Mc(x |m) > 0;
0, otherwise.

(18)

Note that rate amplification can arise through chatting, andthis can allow distortion terms to decay at rates faster than2−2Rn .
However, there is also a penalty from proper coding of don’t-care intervals, corresponding toHB(P (An)). This loss is negligible
in the high-resolution regime but may become important for moderate rates.

D. Conditions on Chatting Graph

We have observed that chatting can influence optimal design of scalar quantizers through the conditional sensitivity, and that
sensors will vary their quantization codebooks depending on the incoming messages from parent sensors. Under the assumption
that the fusion center does not have access toM c, success of compression is contingent on the fusion center identifying the
codebook employed by every sensor from the messagesMN

1 .

Definition 3. A chatting network iscodebook identifiableif the fusion center can determine the codebooks ofQKN
1 ,λN

1
using

the messages it receives from each sensor. That is, it can determineCn(M c) from MN
1 for each time instant.

We have argued that a chatting network can successfully communicate its compressed observations if it is codebook
identifiable. The following are sufficient conditions on thechatting graphGc and messagesM c such that the network is
codebook identifiable:

C1. The chatting graphGc is a directed acyclic graph.
C2. The causality in the chatting schedule matchesGc, meaning for everyn, Sensorn sends its chatting message after it

receives messages from from all parent sensors.
C3. The quantizer at Sensorn is a function of the source joint distribution and all incoming messages from parent sensors

in Np(n).
C4. At any discrete time, the message transmitted by Sensorn is a function ofMn and incoming messages from parent

sensors inNp(n).
When each sensor’s quantizer is regular and encoder only operates on the quantized valueŝXn, matching the DFSQ setup,

the chatting message can only influence the choice of codebook. In this setting, the above conditions become necessary aswell.
Alternatively, if sensors can locally fuse messages from parents with their own observation, there may exist other conditions
for a network to be codebook identifiable.

IV. RATE ALLOCATION IN CHATTING NETWORKS

A consequence of chatting is that certain sensors can exploit their neighbors’ acquisitions to refine their own. Moreover, a
sensor can potentially utilize this side information to adjust its communication rate in addition to changing its quantization
if the network is codebook identifiable. These features of chatting networks suggest intelligent rate allocation across sensors
can yield significant performance gains. In addition, a strong motivation for intersensor interaction is that sensors may be
geographically closer to each other than a fusion center andhence require less transmit power, or can utilize low-bandwidth
orthogonal channels that do not interfere with the main communication network. As a result, the cost of communicating a bit
may vary in a network.

This section explores proper rate allocation to minimize the total cost of transmission in a chatting network, allowing
asymmetry of the information content at each sensor and heterogeneity of the communication links. Consider the distributed
network in Fig. 1. The cost per bit of the communication link and the resource allocation between Sensorn and the fusion
center are denoted byαn and bn respectively, leading to a communication rate ofRn = bn/αn from Sensorn to the fusion
center. Similarly, for a chatting link between Sensorsi andn, the cost per bit and resource allocation are denoted byαi→n and
bi→n respectively, corresponding to a chatting rate ofRi→n = bi→n/αi→n. Consistent with previous notation, we denote the set
of costs per chatting bit, resource allocations on chattinglinks, and chatting rates byαc = {αi→n}(i,n)∈E , bc = {bi→n}(i,n)∈E ,
andRc = {Ri→n}(i,n)∈E .

Given a total resource budgetC, how should the rates be allocated among these links? For simplicity, assume all chatting
links employ fixed-rate quantization; this implies thatKn = 2Rn for all n ∈ {1, 2, . . . , N} and Ki→n = 2Ri→n for all
(i, n) ∈ E . The distortion–cost trade-off is then expressed as

D(C) = inf
bN1 ,bc,λN

1 :
∑

N
n=1 bn+

∑
(i,n)∈E bi→n=C

Dfmse

(
KN

1 ,Kc, λN
1

)
. (19)

In general, this optimization is extremely difficult to describe analytically since the distortion contribution of each sensor is
dependent in a nontrivial way on the conditional sensitivity, which in turn is dependent on the design of the chatting messages.
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Fig. 3. Cost allocation for a maximum computation network, as described in Section V. In this case,N = 10, C = 5N , Rc = 3, αc = 0, andαn = 1.
In the fixed-rate setting (a), the sensors are allowed to havedifferent communication rates but cannot adjust the rate with the received chatting message. In
the entropy-constrained setting (b), each sensor except sensor 1 receives chatting messages and can adjust its communication rate appropriately.

However, the relationship betweenbN1 and the overall system distortion is much simpler, as described in Theorem 1. Hence,
once the chatting allocationsbc is fixed, the optimalbN1 is easily determined using extensions of traditional rate allocation
techniques described in Appendix A. In particular, the optimal bN1 can be found by applying Lemmas 3 and 4 with a total cost
constraint

C′ = C −
∑

(i,n)∈E

bi→n. (20)

A brute-force search overbc then provides the best allocation, but this procedure is computationally expensive. More realistically,
network constraints may limit the maximum chatting rate, which greatly reduces the search space.

In Fig. 3, we show optimal communication rates for the network described in Section V. We delay description of the specific
network properties and aim only to illustrate how the cost allocationsbn(m) may change depending with sensors or chatting
messages. Under fixed-rate coding,bn varies depending on the chatting graph. In the entropy-constrained setting, the allocation
can also vary with the chatting messages, except for Sensor 1. This increased flexibility allows for a wider range of rates, as
well as improved performance in many situations.

V. M AXIMUM COMPUTATION

The results in the previous sections hold generally, and we now build some intuition about chatting using a specific distributed
network performing a maximum computation. The choice of this computation is not arbitrary; we will show that it allows
for a particular chatting architecture that makes it convenient to study large networks. Moreover, this network reveals some
surprising insights into the behavior of chatting. While this paper restricts its attention solely to the maximum computation,
more examples are discussed in [8].

A. Problem Model

We consider a network where the fusion center aims to reproduce the maximum ofN sources, where eachXn is independent
and uniformly distributed on[0, 1]. The sensors measuring these sources are allowed to chat in aserial chain, meaning each
sensor has at most one parent and one child (see Fig. 4). Initially, we will consider the simplest such network with the following
assumptions:

1) The chatting is serial, meaning the sequence of chatting messages is{M(n−1)→n}
N
n=2.

2) Each chatting link is identical and has rateRc, codebook sizeKc = 2Rc and costαc.
3) The communication links between sensors and the fusion center are allowed to have different rates. For simplicity, we

assume them to be homogeneous and normalize the cost to beαn = 1.
4) The outgoing chatting message at Sensor1 is the index of a uniformly quantized version of its observation with Kc levels.
5) For n > 1, the chatting message from Sensorn is the maximum of the index of Sensorn’s own uniformly quantized

observation and the chatting message from its parent.
Under this architecture, the chatting messages effectively correspond to a uniformly quantized observation of the maximum

of all ancestor nodes:
M(n−1)→n = I(QKc,U (max(Xn−1

1 ))), (21)

whereI is the index of the quantization codeword and can takes values {1, . . . ,Kc}. The simplicity of the chatting message
here arises from the permutation-invariance of the maximumfunction. We will exploit this structure to provide precise
characterizations of system performance.
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Fig. 4. A fusion center wishes to determine the maximum ofN iid uniform sources and receives messagesMn from each sensorn at rateRn. The sensors
are allowed to chat serially down the network using messagesM(n−1)→n at rateRc.

B. Quantizer Design

Using (7), we find the max function has sensitivityγ2
n(x) = xN−1 for all n. Without chatting, each sensor’s quantizer would

be the same with a point density that is a function of the source distribution and sensitivity. Moreover, since the cost per bit
of transmitting to the fusion center is the same, the solution of the resource allocation problem assigns equal weight toeach
link. Hence, minimizing (10) yields the optimal fixed-rate distortion–cost trade-off:

Dmax,fr(C) ≃
N

12

(
3

N + 2

)3

2C/N . (22)

Similarly, the minimum of (12) leads to the optimal entropy-constrained distortion–cost trade-off

Dmax,ec(C) ≃
N

12
e−N+12C/N . (23)

These high-resolution expressions provide scaling laws onhow the distortion relates to the number of sensors. They require
the total costC increase linearly withN to hold.

With chatting, we first need to determine the conditional sensitivity, which is given below for uniform sources:

Lemma 1. GivenKc = 2Rc , the sensitivity profile corresponding to a received chatting messageM(n−1)→n = k is

γ2
n |M(n−1)→n

(x | k) =





0, x < k−1
Kc

;
(Kcx)

n−1−(k−1)n−1

kn−1−(k−1)n−1 xN−n, k−1
Kc

≤ x < k
Kc

;

xN−n, x ≥ k
Kc

.

(24)

Proof: See Appendix B.
We have already noted the incident chatting message of Sensor n is a uniformly quantized observation ofYn = max(Xn−1

1 ),
wherefY (y) = (n− 1)yn−2. Hence,

P
(
M(n−1)→n = k

)
=

(
k

Kc

)n−1

−

(
k − 1

Kc

)n−1

. (25)

Below, we give distortion asymptotics for the serial chatting network under both fixed-rate and entropy-constrained quantization.
1) Fixed-rate case:From Theorem 1, the asymptotic total fMSE distortion is

N∑

n=1

βn2
−2Rn , (26)

whereβn = 1
12‖γ

2
n|Mc‖1/3. Because Sensor 1 has no incoming chatting messages, its sensitivity is γ2

1(x) = xN−1 and the
resulting distortion constant is

β1 =
1

12

(
3

N + 2

)3

.

For other sensors, the distortion contribution is

βn =
1

12

Kc∑

k=1

P
(
M(n−1)→n = k

) ∥∥γ2
n |M(n−1)→n=k

∥∥
1/3

.

For Sensorn with n > 1, all incoming messages besidesk = 1 induce a don’t-care interval, so one of the2Rn codewords is
placed exactly at(k − 1)/K.
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Fig. 5. Performance of the maximum computation network in both the fixed-rate (left plots) and entropy-constrained (right plots) settings. Plots (a) and (b)
illustrate the trade-off between fMSE and chatting rate forchoices ofN assuming total costC = 4N andαc = 0.01. Plots (c) and (d) illustrate the trade-off
between fMSE and chatting rate for choices ofαc assumingN = 4 sensors and total costC = 4N . In all cases, the cost of communication isαn = 1.
For the fixed-rate setting, we validate the distortion through simulated runs on real quantizers designed using (17). Weobserve that high-resolution theory
predicts actual performance at rates as low as 4 bits/sample, as shown by crosses in the fixed-rate plots.

We study the trade-off between chatting rateRc and fMSE for several choices ofN andαc using optimal cost allocation as
determined by Lemma 3. In Fig. 5a, we observe that increasingthe chatting rate yields improvements in fMSE. As the number
of sensors increases, this improvement becomes more pronounced. However, this is contingent on the chatting costαc being
low. As discussed in Section II-D, chatting can lead to worsesystem performance if the cost of chatting is on the same order
as the cost of communication given a total resource budget, as demonstrated by Fig. 5c. Although the main results of this
work are asymptotic, we have asserted the distortion equations are reasonable at finite rates. To demonstrate this, we design
real quantizers under the same cost constraint and demonstrate that the resulting performance is comparable to high-resolution
approximations of Theorem 1. This is observed in Figs. 5a andc, which shows the asymptotic prediction of the distortion–rate
trade-off is accurate even at 4 bits/sample.

2) Entropy-constrained case:Generally, the total distortion in the entropy-constrained case is
N∑

n=1

E
[
βn,k2

−2Rn,k
∣∣M(n−1)→n = k

]
, (27)

noting each sensor is allowed to vary its communication ratewith the chatting messages it receives. Like in the fixed-rate
setting, an incoming messagek will induce a don’t-care interval of[0, (k − 1)/K] in the conditional sensitivity. IfAn,k is the
event thatXn is not in a don’t-care interval when receiving messagek, then

βn,k =
1

12
P
(
M(n−1)→n = k

)
2
2h(Xn|An,k)+2E[log2 γn |M(n−1)→n

(Xn|k)] (28)

andRn,k = (Rn −HB(P(An,k)))/P(An,k).
Like in the fixed-rate setting, we study the relationship between the chatting rateRc and fMSE, this time using the probabilistic

allocation optimization of Lemma 4 in Appendix A. Due to the extra flexibility of allowing a sensor to vary its communication
to the fusion center with the chatting messages it receives,we observe that increasing the chatting rate can improve performance
more dramatically than in the fixed-rate case (see Fig. 5b). Surprisingly, chatting can also lead to inferior performance for
some combinations ofRc and N , even whenαc is small. This phenomenon will be discussed in greater detail below. In
Fig. 5d, we compare different choices ofαc to see how performance changes with the chatting rate. Unlike for fixed rate, in
the entropy-constrained setting, chatting can be useful even when its cost is close to the cost of communication to the fusion
center.

C. Generalizing the Chatting Messages

We have considered the case where a chatting message is the uniform quantization of the maximum of all ancestor nodes,
as shown in (21). Although simple, this coding of chatting messages is not optimal. Here, we generalize chatting messages to
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Fig. 6. Distortion improvement compared to no chatting in the maximum computation network for the fixed-rate (left plot)and entropy-constrained (right
plot) settings when varying the partition boundaryp1. We assume chatting is free, i.e.,αc = 0, but the chatting rate is limited to one bit.

understand how the performance can change with this design choice.
We begin by considering the same network under the restriction that the chatting rate isRc = 1, but allow the single partition

boundaryp1 to vary rather than setting it to1/2. Currently, we keep the coding consistent for every sensor such that a chatting
messagek = 1 implies max(Xn−1

1 ) ∈ [0, p1] andk = 2 meansmax(Xn−1
1 ) ∈ (p1, 1]. Distortions for a range ofN and p1

are shown in Fig. 6.
From these performance results, we see that the choice ofp1 should increase with the size of the network, but precise

characterization of the bestp1 is difficult because of the complicated effect the conditional sensitivity has on both the distortion
constants and rate allocation. We can recover some of the results of Fig. 5 by consideringp1 = 1/2. It is now evident that
this choice ofp1 can be very suboptimal, especially asN becomes large. In fact, we observe that for certain choices of the
partition with entropy coding, the distortion with chatting can be larger than from a traditional distributed network even though
the chatting cost is 0. This unintuitive fact arises becausethe system’s reliance on the conditional sensitivity is fixed, and the
benefits of a don’t-care interval are mitigated by creating amore unfavorable conditional sensitivity. We emphasize that this
phenomenon disappears as the rate becomes very large.

Since the flexibility in the choice of the chatting encoder’spartitions can lead to improved performance whenRc = 1,
we can expect even more gains when the chatting rate is increased. However, the only method for optimizing the choice of
partition boundaries developed currently involve brute-force search using the conditional sensitivity derived in Appendix B.
Another extension that leads to improved performance is to allow chatting encoders to employ different partitions. This more
general framework yields strictly improved results, but some of the special structure of the serial chatting network islost as
the chatting message is no longer necessarily the maximum ofall ancestor sensors. The added complexity of either of these
extensions make their performances difficult to quantify.

D. Optimizing a Chatting Network

In this paper, we have formulated a framework allowing low-rate collaboration between sensors in a distributed network. We
have introduced several methods to optimize such a network,including nonuniform quantization, rate allocation, and design
of chatting messages. Here, we combine these ingredients and see how each one impacts fMSE.

We will continue working with the maximum computation network from Fig. 4 assumingRc = 1, αc = 0, N = 5 and
C = 5N . We further assume the coding of chatting messages is the same for every sensor on the serial chain. We will then
consider the following scenarios:

1) A chatting network withRn = 5 for all n and chatting designed by (21).
2) A chatting network with rate allocation and chatting designed by (21).
3) A chatting network with rate allocation and optimizationover chatting messages.

We analyze the fMSE of each scenario compared to a distributed network without chatting (Rc = 0). From Fig. 7, we
can see that incorporating rate allocation and chatting optimization yields substantial gains in the entropy-constrained setting.
For fixed rate, the most meaningful improvement comes from allowing chatting, while additional optimization provides little
additional benefit. Up to this point, we have limited chatting to have fixed codebook size and did not allow entropy coding.
Lifting these restrictions increase system complexity andcan provide even greater compression gain.

VI. CONCLUSIONS

In this work, we explored how intersensor communication—termedchatting—can improve approximation of a function of
sensed data in a distributed network constrained to scalar quantization. We have motivated chatting from two directions: pro-
viding an analysis technique for distortion performance when low-blocklength limitations make Shannon theory too optimistic,
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Fig. 7. Distortion improvement for Scenarios 1–3 over a distributed network without chatting. Both rate allocation (RA) and optimized chatting (OC) are
considered.

and illustrating the potential gains over simplistic practical designs. There are many opportunities to leverage heterogeneous
network design to aid information acquisition using the tools of high-resolution theory, and we provide precise characterizations
of distortion performance, quantizer design, and cost allocation to optimize distributed networks. Many challenges remain in
analyzing chatting networks. Some future directions that are meaningful include a more systematic understanding of how to
design chatting messages and applications where chatting may be feasible and beneficial.

One can consider “sensors” being distributed in time ratherthan space, with the decoder computing a function of samples
from a random process. Connections of this formulation to structured vector quantizers are of independent interest.

APPENDIX A
RATE ALLOCATION FOR DISTRIBUTED NETWORKS

Consider the distributed network in Fig. 1 without the chatting channel. The cost per bit of the communication link and the
cost allocation between Sensorn and the fusion center is denoted byαn andbn respectively, leading to a communication rate
of Rn = bn/αn. Below, we solve the cost allocation problem under the assumption that companding quantizers are used and
noninteger rates are allowed.

Lemma 2. The optimal solution to

D(C) = min∑
bn=C,bn≥0

N∑

n=1

βn2
−2bn/αn (29)

has cost allocation

b∗n = max

(
0,

1

2
log2

βn/αn

β̃

)
, (30)

whereβ̃ is chosen such that
∑

b∗n = C.

Proof: This lemma extends the result from [32] or can be derived directly from the KKT conditions.
Eachβn is calculated using only the functional sensitivityγn and marginal source pdffXn

. Although Lemma 2 is always true,
we emphasize that its effectiveness in predicting the proper cost allocation in a distributed network is only rigorously shown
for high cost (i.e. high rate) due to its dependence on (8). However, it can be experimentally verified that costs corresponding
to moderate communication rates still yield near-optimal allocations.

When the solution of Lemma 2 is strictly positive, a closed-form expression exists:

Lemma 3. Assuming eachb∗n in (30) is strictly positive, it can be expressed as

b∗n =
αn

α̃
C +

αn

2
log2

βn/αn(∏
j (βj/αj)

αj

)1/
∑

αi
. (31)

Proof: The proof uses Lagrangian optimization.
If Sensorn is allowed to vary the communication rate depending on the side informationMsi,n it receives, further gains

can be enjoyed. This situation is natural in chatting networks, where the side information is the low-rate messages passed by
neighboring sensors. Here, we introduceprobabilistic cost allocation, yielding a distortion–cost trade-off

D(C) = min∑
E[bn(Msi,n)]=C

bn(m)≥0

N∑

n=1

E
[
βn(Msi,n)2

−2bn(Msi,n)/αn

]
, (32)
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where the expectation is taken with respect toMsi,n. Each link will have a cost allocationbn(m) for every possible message
m while satisfying an average cost constraint. An analogous result to Lemma 2 can be derived; for the situation where the
optimal allocation is strictly positive, it can again be expressed in closed form:

Lemma 4. Assume the side informationMsi,n received at Sensorn is m ∈ Mn and the cost per bit of the communication
link may vary withm. Assuming each allocationb∗n(m) in the solution to(32) is strictly positive, it can be expressed as

b∗n(m) =
αn(m)

α̃
C +

αn(m)

2
log2

βn(m)/αn(m)
∏

j

∏
l

(
(βj(l)/αj(l))

αj(l)/α̃
) , (33)

whereα̃ =
∑

n

∑
m fMsi,n(m)αn(m).

Here, we extended previous known rate allocation results [22], [32] to account for heterogeneity in distributed networks.
Although these results do not account for chatting, we see inSection IV that they become important tools in optimizing
performance in such networks.

APPENDIX B
SENSITIVITY OF MAXIMUM COMPUTATION NETWORK

Assuming iid uniform sources on the support[0, 1], the sensitivity of each sensor in the maximum computation network in
Fig. 4 without chatting is

γ2
n(x) = E[|gn(X

N
1 )|2 |Xn = x]

= P
(
min(XN

1 ) = Xn |Xn = x
)

= P(X1 < x) · · ·P(Xn−1 < x) P(Xn+1 < x) · · ·P(XN < x)

= xN−1.

When the chatting graph is a serial chain, Sensorn has some lossy version of the information collected by its ancestor
sensors. For the max function, chatting reduces the supportof the estimate ofmax(Xn−1

1 ) by Sensorn. Hence, the message
M(n−1)→n reveals the max of the ancestor sensors is in the range[sl, su]. This side information forms three distinct intervals
in the conditional sensitivity. First, in the intervalx < sl, Xn is assuredly less thanmax(Xn−1

1 ) and hence sensitivity is
0 since the information at Sensorn is irrelevant at the fusion center. Second, ifx > su, Xn is greater thanmax(Xn−1

1 )
and the sensitivity should only depend on the number of descendant sensors, leading to a sensitivity ofxN−n. Finally, when
sl ≤ x < su, Sensorn must take into consideration both ancestors and descendants, yielding sensitivity

P
(
min(XN

1 ) = Xn

∣∣Xn = x,max(Xn−1
1 ) ∈ [sl, su]

)

= P
(
max(Xn−1

1 ) < x
∣∣max(Xn−1

1 ) ∈ [sl, su]
)
P
(
max(XN

n+1) < x
)

=
xn−1 − sn−1

l

sn−1
u − sn−1

l

xN−n.

More specific to the case when messages correspond to uniformquantization, we defineKc = 2Rc and denote each received
messageM(n−1)→n askn. Settingsl = (kn − 1)/Kc andsu = kn/Kc gives Lemma 1.
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