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Abstract

Several key results in distributed source coding offer tmmition that little improvement in compression can be gdin
from intersensor communication when the information isexbéh long blocks. However, when sensors are restricted tie co
their observations in small blocks (e.g., 1), intelligentl@boration between sensors can greatly reduce distoriior networks
where sensors are allowed to “chat” using a side channelishamhobservable at the fusion center, we provide asympibtic
exact characterization of distortion performance andnogtiquantizer design in the high-resolution (low-distam)i regime using
a framework called distributed functional scalar quarniira (DFSQ). The key result is that chatting can dramatjcatiprove
performance even when intersensor communication is atleeryate, especially if the fusion center desires fidelityaaionlinear
computation applied to source realizations rather tharitiidan representing the sources themselves. We also sdigerate
allocation problem when communication links have hetemegels costs and provide a detailed example to demonstrate th
theoretical and practical gains from chatting. This exanrfpl maximum computation gives insight on the gap betweetticly
and distributed networks, and how to optimize the interseasmmunication.

Index Terms

distributed source coding, high-resolution quantizatieensor networks, side information

I. INTRODUCTION

A longstanding consideration in distributed compressigsteans is whether sensors wishing to convey information to a
fusion center should communicate with each other to impsegfieiency. Architectures that only allow communicatioriveen
individual sensors and the fusion center simplify the nekisocommunication protocol and decrease sensor respbtisgh
Moreover, information theoretic results such as the Skepidolf theorem show that distributed compression can perfo
as well as joint compression for lossless communicationoofetated information sources![1]. Although this surprisiand
beautiful result does not extend fully, comparable redoltdossy coding show that the rate loss from separate engazmin be
small using Berger-Tung coding (see, e.gl, [2]), again sstijgg that communication between sensors has little ortitity.u

Although it is tempting to use results from information theto justify simple communication topologies, it is impant to
note the Slepian—Wolf result is dependent on large blodilenin the finite-blocklength regime, the optimality of tlibuted
encoding does not holdl[3]. This paper examines the use ofregritation among sensors when the compression blocklength
is 1, a regime where collaboration, calleldattingin this work, can greatly decrease the aggregate commimriciibm sensors
to the fusion center to meet a distortion criterion as coregdo a distributed network. We analyze chatting networksguthe
distributed functional scalar quantization (DFSQ) frarogy which constrains sensors to using scalar quantizecsitgpress
their observations and generalizes the fusion centersatilog to desire fidelity in computing a function of the sagcather
than determining the sources themselVés [4], [5]. Our mmhbinodel is shown in Fid.l 1, whe®¥ correlated but memoryless
continuous-valued, discrete-time stochastic processetupe scalar realizations¥ (t) = (X1 (t),..., Xn(t)) for t € Z. For
eacht, realizations of these sources are scalar quantized byrseasd transmitted to a fusion center at ra@s. To aid this
communication, sensors can collaborate with each othea gide channel that is unobservable to the fusion centeceSire
guantization is scalar and the sources are memoryless,maveethe time index and model the sources as being drawn from
a joint distributioan{v at eacht.

The side channel facilitating intersensor communicatiaa practical implications. In typical communication sysse the
transmission power needed for reliable communicationeiases superlinearly with distance and bandwidth [6]. Heitds
much cheaper to design short and low-rate links betweeroeetizan reliable and high-rate links to a fusion center. &doer,
milder transmission requirements provide more flexibilitydetermining the transmission media or communication atitels
employed, which can allow intersensor communication to theogonal to the main network. One such example is cognitive
radio, a paradigm where the wireless spectrum can have dagonsers that communicate only when the primary users are
silent [4]. This means secondary users have less priorityhemce lower reliability and rate, which is adequate foerisg¢nsor
communication.

The main contributions of the paper are to precisely chareet the distortion performance of a distributed netwohew
chatting is allowed and to identify the optimal quantizesiga for each sensor. We show that collaboration can hawdfisignt
impact on performance; in some cases, it can dramaticallyce distortion even when the chatting has extremely low. rat
We also give necessary conditions on the chatting topologlypaotocol for successful decodability in the DFSQ framewo

J. Z. Sun is with the Department of Electrical Engineering &omputer Science and the Research Laboratory of ElecsioMassachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: johnsun@exitt).

V. K. Goyal is with the Research Laboratory of Electronicsaddachusetts Institute of Technology, Cambridge, MA 02138 (e-mail: v.goyal@ieee.org).

This material is based upon work supported by the Nation@n®e Foundation under Grant No. 1115159.


http://arxiv.org/abs/1210.8400v1

Sensor 1

r-————/ A
X | R
X1 - % Q1 1=E1r1cll Ly
g ______A_______I
o - X R
XQ-E:: Q2 2»lEnc 2 2,
< Dec —> §(X)
zéo glAg
3
<
5 .
- X R
Xn= =2 QN sFne NH—>

Fig. 1. A distributed computation network, whehe sensors (comprising quantizer and encoder) observe agafiz of correlated sources. Each observation
X, is encoded and communicated over rate-limited links to @fusenter. Simultaneously, each sensor can interact withbaset of other sensors using
a noiseless but rate-limited chatting channel to improvegressibility. The decoder at the fusion center computegstimate of the functioy(X7) =

9(X1, X2, ..., Xp) from the received data using a reconstruction funcﬁ()ﬁ?f) but cannot observe messages communicated on the chatamgeih

thus providing insight into the architecture design forttihg networks. Finally, we recognize that intersensor samication
can occur on low-cost channels and solve the rate allocatioblem in networks with heterogeneous links and differsts

of transmission. The basic concepts of this work were intoed in [8]; this paper provides more complete and definitive
coverage, including more results on rate allocation, audision on generalizing chatting messages, and detailseoimiact

of various optimizations.

We begin by introducing related work, notation and prersig@iresults in Sectiofdll. In SectidnJlll, we analyze the
performance of chatting networks and discuss how to opéntie communication that occurs. We then determine the
proper rate allocation for chatting networks in Section Rinally, we develop intuition for the behavior of chatting b
considering a maximum computation network in Seclidn Vs #pecific example demonstrates the incremental gainsvachie
by incorporating the different optimizations discussedhia paper.

Il. PRELIMINARIES
A. Previous Work

There is a large body of literature studying asymptotic @@nance of the distributed network in Fig. 1 without the tingt
channel; a comprehensive review of these works and theinaxdions to DFSQ appears inl [4]. Similarly, connections to
coding for computing (e.gl [9][ [1.0]) are discussed therevalf. Recent work on the finite-blocklength regime|[11] hed to
extensions in source codingl [3]._[12], [13]. In generalsthnalysis technique is meaningful for blocklengths as lewL@0,
but is unsuitable for regimes traditionally considered ighhresolution theory.

We review results that relate to the chatting channel, fimgusn Shannon-theoretic results. Kaspi and Berger praoidleer
bounds for the rate region of a two-encoder problem whereemweder can send information for the other using compress-
and-forward techniques [14]. Recently, this bound has lgareralized in[[15], but the exact rate region is still unkno
except in special cases. Chatting is related to source gaalioblems such as interaction [16], [17], omniscierice [48d
data exchangé [19]. However, these settings are more Hgtsuéted for discrete-alphabet sources and existingltesaly on
large-blocklength analysis.

There are also strong connections between this work andrtiist side information[[20] and vector quantization with
alternative distortion measures [21].

B. Quantization

The focus of this work is on compression of continuous-vaJu@ite-support sources using small blocks of data. Here,
performance results from Shannon theory are overly optiicnssnce tools such as joint-typicality encoding and décgdre
not reliable without operating far from the distortion-edtound. Instead, we consider the complementary asymmbtigh
resolution, where the blocklength is small and the comjassite R is large [22]-[24]. Before introducing the high-resolutio
asymptotic, we summarize the quantization model for the ecdsblocklength 1 and set up the notation used for the rest of
the paper.

A scalar quantizet)x is a mapping from the real line to a set Af pointsC = {c¢;}/< | C R called the codebook, where
Qi (z) = ¢ if © € Py, and the cells{P,}X | form a partition ofR. The quantizer is calledegular if the partition cells
are intervals containing the corresponding codewords skoplicity, the codebook and partition are indexed from basato
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Fig. 2.  The companding model is a method to construct noatmifquantizers using a monotonic nonlinearitysatisfying lim;—, — o ¢(z) = 0 and
limg 00 c(x) = 1. The notationQ k7 is used to describe the canonical uniform quantizer viitrcodewords in the granular regidf, 1].

largest, implyingpg < ¢1 <p1 <ca <--- <cg < pg if P = (pr—1,pr), With pg = —co andpx = oo. Define thegranular
region as(ci, cx) and its complement—oo, ¢;] U [ck, 00) as theoverloadregion.

Uniform quantization, where partition cells in the gramutagion have equal length, is most common in practice, but
nonuniform quantization can be better for compression é& sburce can be modeled properly. One way of constructing a
nonuniform quantizer is using the compander model, whexestlalar source is transformed using a nondecreasing anattsmo
compressofunctionc : R — [0, 1], then guantized using a uniform quantizer comprisitidevels on the granular regidf, 1],
and finally passed through tlepanderfunctionc=! (Fig.[2). Compressor functions are defined such that , . c(z) =0
andlim,_, ¢(x) = 1. It is convenient to define point density functioms A\(xz) = ¢/(x). Because of the boundary conditions
on ¢, there is a one-to-one correspondence betweand ¢; hence, a companding quantizer can be uniquely specified) usi
a point density function and codebook size, and is den@igd, in this work. The conversion of point density functions to
finite-codeword quantizers is described in more detail ingéction II-B].

C. High-resolution Theory

It is generally difficult to determine the distortion of a Eraquantizer for any codebook siZ€. However, the performance
of Qx » can be precisely analyzed as the number of codeward®comes large, which is the basis of high-resolution theory
Assume a sourc& is a continuous random variable, and define the mean squarad(BISE) distortion as

Dinse(K, A) = E[IX — Qra(X)P], (1)

where the expectation is with respect to the source derfsityUnder the additional assumption that the tailsfaf decay

sufficiently fast, )

~ —2
Duase(K.A) = T55 BN (X0) @)
where~ indicates that the ratio of the two expressions approaclesKL increases [25]/[26]. Hence, the MSE performance
of a scalar quantizer can be approximated by a simple raktip between the source distribution, point density, atebook
size, and this relation becomes more precise with incrgakinin fact, companding quantizers aasymptotically optimal
meaning that the quantizer optimized ovehas distortion that approaches the performance of the ®gsfound by any
means([2I7]-[29]. Experimentally, the high-resolution &pmation is accurate even for moderdte[23], [30].

When the quantized values are to be communicated or stdredpatural to map each codeword to a string of bits and
consider the trade-off between performance and commuoiicedte R, defined to be the expected number of bits per sample.
In the simplest case, the codewords are indexed with equakh labels and the communication rateRis= log,(K); this
is calledfixed-rateor codebook-constrainequantization. Since the distortion’s dependence on theesiod the quantizei
is explicit in the asymptote, calculus techniques can bel tgeptimize companders. For fixed rate, Holder's inedqualan
show the optimal point density satisfies

)\msc,fr(a?) X )1(/3(17), (3)
and the resulting distortion is )
mse fr (1) = B | £xll1/3 2725, 4)

with the notation|| f||, = ([~ f7() dz)"/? [31]. The limit conditions on:(z) imply the integral of\(z) is unity. Thus, [B)
specifies the point density uniquely; for clarity, we omié thormalization when presenting point density results.

In general, the codeword indices can be coded to productribigs of different lengths based on probabilities of ocence;
this is referred to agariable-ratequantization. If the decoding latency is allowed to be lage can employ block entropy
coding and the communication rate approacH¢€) i (X)). This particular scenario, calleghtropy-constraineduantization,
can be analyzed using Jensen’s inequality to show the oppoiat density \; .. .. is constant on the support of the input

distribution [31]. The optimal quantizer is thus uniforrmdathe resulting distortion is

mse,ec

. L o(r-
D (R) ~ 52 2B=h(X)), (5)

Note that block entropy coding suggests that the sourcesramemitted in blocks even though the quantization is scala
such, [b) is an asymptotic result and serves as a lower bonrmaxtical entropy coders with finite blocklengths that chat
the latency restrictions of a network.



D. Distributed Functional Scalar Quantization

When the goal of acquisition is to approximate some comjurtatpplied to the sources, optimizing the compression &o th
source distribution can be suboptimal and potentially wdhan uniform quantization. This is most evident in disttédal net-
works since each sensor cannot determine the overall catipruiat the encoder. The distributed functional scalantiation
(DFSQ) framework accounts for the computational task afftiseon center, and the resulting quantizers can be suletgant
better than naive designs [4]./[5]. In this setting, theatisdn criterion is functional MSE (fMSE):

Dimse( K, M) = E [Jg(XY) = 3@y sy (XD (6)

whereg is a scalar function of interes§, is the decoding function an@K{v_’A{v is scalar quantization performed on a vector
such that

Quy oy (@) = (Qrin (@1), - Qi an (1)) -
Before understanding how a quantizer changes fMSE, it isexuent to define how a computation locally affects distorti
Definition 1 ([4]). The nth functional sensitivity profilef a multivariate functiory is defined as
1/2
Ya(2) = (E [lgn(XT)P? | X = 2]) 77, @)
whereg,, (x) is the partial derivative of with respect to its:th argument evaluated at the point

Given the sensitivity profile, the main result of DFSQ [4] sdkie distortion of a set oV companding quantizers has the
asymptotic form

N 2
Ny n(Xn)
pomti )= i (R55) |
with conditional expectation decoder
3@ = B [g(X0) | Queprap (XI) = Quey sy (2] (©)

provided the following conditions are satisfied:

MF1. The functiong is Lipschitz continuous and twice differentiable in everguament except possibly on a set of Jordan
measure 0.

MF2. The source pde{v is continuous, bounded, and supported[@ni ]~

MF3. The functiong and set of point densities) allow E[(7,,(X,)/ . (X5))?] to be defined and finite for ai.
Similar conditions are given in_[5] for infinite-support ttibutions and a simpler decoder.

Following the same recipes to optimize ov€Y as in the MSE setting, the relationship between distortrmh@mmunication
rate is found. In both cases, the sensitivity acts to shifingjzation points to where they can reduce the distortiotha
computation. For fixed-rate quantization, the asymptoticimum distortion is

N

* 1 —
Dfmsc,fr(R{V) = Z E ||’Yann ||1/3 2 2Rna (10)
n=1
where fx, is the marginal distribution of(,, and each optimal point density satisfies
)‘rz,fmse,fr(‘r) X ('Yn(x)an (l’))1/3 . (11)
Meanwhile, for entropy-constrained quantization, thengsiptic minimum distortion is
N
1
* Ny 2h(Xn)+2 Ellog, ¥(Xn)]o—2R,
Dfmse,eC(Rl ) - ; 122 827 2 (12)

which results from point densities satisfying
:L,fmsc,cc('r) X Tn (I) (13)



E. Don't-care intervals

When the computation induces the sensitivity to be 0 on sarbetervals of the support, the high-resolution assunmgtio
are violated and the asymptotic distortion performance nwybe described by{8). This issue is addressed by carefodling
when the source is in such a “don’t-care” interval [4, Sattidl] and then applying traditional high-resolution thgdo the
remaining support. This consideration is particularhevaint because chatting among sensors can often inducertéiaoal
sensitivity to be 0, and proper coding can lead to greatlyrowgd performance.

ConsiderL,, don't-care intervals iny,, and letA,, be the event that the source realizatiomé in the unions of them. In
the fixed-rate setting, one codeword is allocated to each-dare interval, and the remainingj,, — L,, codewords are used to
form reconstruction points in the nonzero intervals. Thisra small degradation in performance from the loss cornmeding
to L,, but this quickly becomes negligible &S, increases. In the entropy-constrained case, the addifienility in coding
allows for the encoder to split its message and reduce cbstfiist part is an indicator variable revealing whether tharse
is in a don't-care interval and can be coded at thte= Hg(P(A,,)), where Hg is the binary entropy function. The actual
reconstruction message is only sent if eventoccurs, and its rate is amplified {&,, — I4)/ P(4, ) to meet the average rate
constraint. The multiplicative factar/ P(A,,) is called therate amplification

F. Chatting

In [4, Section VIII], chatting is introduced in the settinghare one sensor sends exactly one bit to another sensorr Unde
fixed-rate quantization, this collaboration can at mosteiese the distortion by a factor of 4 using a property’of; quasi-
norms. Because utilizing that bit to send additional infation to the fusion center would decrease distortion by thxac
factor of 4, this is considered a negative result. Here,ethgran implicit assumption that links have equal cost perahd
the network wishes to optimize a total cost budget. In theopytconstrained setting, chatting may be useful even Winks
have equal costs. One example was given to demonstratela bihgf chatting can decrease the distortion by an unbodinde
amount; more generally, the benefit of chatting varies deipgnon the source joint distribution and decoder compaitati

In previous work, there is no systematic theory on perforceaand quantizer design of chatting. Moreover, collaborsiti
larger networks was still an open problem. In this paper, wterel previous results and provide a more complete diszussi
on how a chatting channel affects a distributed quantinatietwork. A sample result is that chatting can be benefioidhe
fixed-rate setting if the cost of communicating a bit to aeotkensor is lower than the cost of communicating a bit to the
fusion center.

Ill. PERFORMANCE ANDDESIGN OFCHATTING NETWORKS

We model the chatting channel in F[g. 1 as a directed g@&ps (V, £), where the set of nodes is the set of all sensors
and€ C V x V is the set of noiseless, directed chatting links(ilfn) € £, then for each source realization, Senssends
to Sensom a chatting messagk/;_,,, with codebook sizes;_,,,. The parent and children sets of a sensa V are denoted
N,(n) and N, (n) respectively; wher(i,n) € &, i is a parent ofn andn is a child ofi. The set of all chatting messages
is M¢ = {M; n}@un)ee and the set of corresponding codebook size&'fs= {K; .} n)ce. The chatting messages are
communicated according to a schedule that the sensors arfdigion center know in advance; the set of chatting messages
Me¢ can therefore also be thought of as a sequence. We assurtiaglbaturs quickly in that all communication is completed
before the next discrete time instant (at which point nedizations of X are measured). After chatting is complete, Semsor
compresses its observation, into a messagé/,, using a codebook dependent on the information gathered éfuaiting
messages, which is noiselessly communicated to the fusintecwith a messagk/,,(M¢) with codebook sizey,, (M¢).

We now present fMSE performance Ofx~ v in the fixed-rate and entropy-constrained settings, and hveevshow to
optimize \l¥ given KV and K¢. We first analyze the network assuming the fusion center sacessfully infer the codebook
used by each sensor and hence recover the quantized valuesnessages/{" . Later in SectiofIll-D, we provide conditions
on the chatting graply¢ and set of chatting messagé$© such that the fusion center is successful with zero erraringa
benefited from already understanding the quantizer design.

Before studying fMSE, we need to extend the definition of fiomal sensitivity.

Definition 2. Let NV, (n) C V be the set of parents of Senserin the graphG® induced by chatting. Theth conditional
sensitivity profileof computationg given all chatting messaged ¢ is

1/2

Yn|me (z]m) = (E [|gn(XfV)|2 ‘ X, =z, M;_., =m;_,, forallie Np(n)}) (14)

Notice only messages from parent sensors are relevapf te-. Intuitively, chatting messages reveal information aktbet
parent sensors’ quantized values and reshape the sdgsitppropriately. Depending on the encoding of chatting sagss,
this may induce don't-care intervals in the conditionalsitvity (where -y, p;c = 0).

The distortion dependence on the number of codeword poiratdhee conditional sensitivity profiles is given in the fallimg
theorem:



Theorem 1. Given the source dlstnbutlongN, computationg, and point densities\)Y (M/¢) satisfying conditions MF1-3
for every possible realization af/¢, the asymptotlc distortion of the conditional expectatiecoder(d) given codeword
allocation K{¥ and K¢ is

N 2
1 Yo are (Xn|m)
Dimse (KN K¢ AN) ~ Epre | Ex, e | Me=m||. 15
mee( L, KO L) 2 By E ol [121{2( ) X2 Koy | M (o)
Proof: Extend the proof of[[4, Theorem 17] using the Law of Total Eotp&on. ]

Compared to the DFSQ result, the performance of a chattitwgank can be substantially more difficult to compute since th
conditional sensitivity may be different with each reafiaa of M < and affects the choice of the point density and codebook
size. However, Sensot's dependence o/¢ is through a subset of messages from its parent nodes. lin&BAt we will
see how structured architectures lead to tractable cortipugaof fMSE. Following the techniques inl[5], the theoreanc
be expanded to account for infinite-support distributiond a simpler decoder. Some effort is necessary to justifyuieeof
normalized point densities in the infinite-support casegemlly in the entropy-constrained setting, but highsheon theory
applies in this case as well.

A. Don’t-Care Intervals

We have already alluded to the fact that chatting can induet-¢are intervals in the conditional sensitivity profilef
certain sensors. In this case, we must properly code foretisrvals to ensure the high-resolution assumptions, resd
discussed in Sectidn I[AD.

For fixed-rate coding wher®,, = log,(K,,), this means shifting one codeword to the interior of each'teltare interval
and applying standard high-resolution analysis over theruof all intervals wherey,,(x) > 0. The resulting distortion of a
chatting network is then given as:

Corollary 1. Assume the source dlstrlbuuq‘p(zv, computatiory, and point densmesN(Mc) satisfying conditions MF1-3 for
every possible realization af/¢, with the additional requirement that, (x | m) = 0 whenevery,| ;- (z | m) = 0. Let L, (m)
be the number of don't-care intervals in the conditional Stvity of Sensom whenM¢ = m. The asymptotic distortion of
such a chatting network where communication links utilixedirate coding is

N 2
1 Tl Me (Xn|m)
Dimse (RN, K¢, \V) ~ E e lz Ex, e M Me=ml||. (16)

— [12(21% — L,(m)) )\iwc (X, |m)

In the entropy-constrained setting whelg, = H(Xn), we must code first the evemt,, (m) that the source is not in
a don't-care interval given the chatting messages, and tioging the source realization only i, occurs. The resulting
distortion of a chatting network is:

Corollary 2. Assume the source dIStI’Ibuth’f)(N, computationg, and point densities\’ (M/¢) satisfying conditions MF1-3
for every possible realization a¥/¢, with the additional requirement that, (z |m) = 0 whenevery, (x| m) = 0. Let
A, (m) be the event thak,, is not in a don't-care interval givenl/¢ = m. The asymptotic distortion of such a chatting
network where communication links utilize entropy codisg i

al P (A, (m))
Dimse(RY, K¢, A7) 2 Enge lz Ex,|me {771 92h(Xn|An (m))+2 Ellogy An (Xn)[An(m)]

12
]V[C:mH .

We will use both corollaries in optimizing the design bf (1¢) in the remainder of the paper.

n=1
721\MC (X [m)
)\2

niaze (Xn [m)

—2(Rn(m)—Hp(An(m)))/P(An(m))

B. Fixed-rate Quantization Design

We mirror the method used to determibel(11) in the DFSQ sattpdow allow the sensor to choose from a set of codebooks
depending on the incoming messages from parent sensorsn@pping between chatting messages and codebooks is known
to the decoder of the fusion center, and each codebook pomds to the optimal quantizer for a given conditional ssitsi
induced by the incoming message. L&t(M¢) be the union of the don’t-care intervals of a particular goadal sensitivity.
Then using Corollar{]1, the optimal point density for fixexdter quantization satisfies

1/3
A o (] m) o (Ynjaze (@ [m) fx, e (x[m)) ", @ & Zn(m) and fx, ae (x| m) > 0; (17)
notmse,fr.chat 0, otherwise.
Recall that the point density is the derivative of the corspoe functionc(z) in the compander model. Hence, codewords
are placed at the solutions t¢x) = (k —1)/(K — L) for k =1,..., (K — L). In addition, one codeword must be placed in
each of theL don’t-care interval.



C. Entropy-constrained Quantization Design
Using Corollary(2, the optimal point density when entropyliog is combined with scalar quantization has the form

. (] m) { gnwc (|m), @ ¢ Z,(m) and fx,ae(x|m) > 0; a8)

n,fmse,ec,chat , otherwise.

Note that rate amplification can arise through chatting, thigican allow distortion terms to decay at rates faster haf-.
However, there is also a penalty from proper coding of doalie intervals, corresponding iz (P(A,,)). This loss is negligible
in the high-resolution regime but may become important foderate rates.

D. Conditions on Chatting Graph

We have observed that chatting can influence optimal dedignadar quantizers through the conditional sensitivityg ¢ghat
sensors will vary their quantization codebooks dependimthe incoming messages from parent sensors. Under the pssom
that the fusion center does not have access8/tg success of compression is contingent on the fusion cedéstifying the
codebook employed by every sensor from the messagfs

Definition 3. A chatting network iscodebook identifiabld@ the fusion center can determine the codebookézgflwﬁv using
the messages it receives from each sensor. That is, it cemeeC,,(M¢) from M{¥ for each time instant.

We have argued that a chatting network can successfully aorimate its compressed observations if it is codebook
identifiable. The following are sufficient conditions on thkatting graphG® and messaged/c such that the network is
codebook identifiable:

C1. The chatting grapB© is a directed acyclic graph.

C2. The causality in the chatting schedule matcfigsmeaning for every:, Sensom sends its chatting message after it
receives messages from from all parent sensors.

C3. The quantizer at Sensaris a function of the source joint distribution and all incoimimessages from parent sensors
in NVp(n).

C4. At any discrete time, the message transmitted by Semssra function of M,, and incoming messages from parent
sensors iV, (n).

When each sensor’s quantizer is regular and encoder onhatgseon the quantized valués,, matching the DFSQ setup,
the chatting message can only influence the choice of codtelothis setting, the above conditions become necessamehs
Alternatively, if sensors can locally fuse messages fromemia with their own observation, there may exist other gt
for a network to be codebook identifiable.

IV. RATE ALLOCATION IN CHATTING NETWORKS

A consequence of chatting is that certain sensors can éxpkir neighbors’ acquisitions to refine their own. Moreg\ae
sensor can potentially utilize this side information tousdjits communication rate in addition to changing its gization
if the network is codebook identifiable. These features dattifig networks suggest intelligent rate allocation agresnsors
can yield significant performance gains. In addition, argjronotivation for intersensor interaction is that sensoes/ rhe
geographically closer to each other than a fusion centerh@mde require less transmit power, or can utilize low-badtiw
orthogonal channels that do not interfere with the main comication network. As a result, the cost of communicatingta b
may vary in a network.

This section explores proper rate allocation to minimize tbtal cost of transmission in a chatting network, allowing
asymmetry of the information content at each sensor anddugsaeity of the communication links. Consider the distiéol
network in Fig.[1. The cost per bit of the communication limkdathe resource allocation between Sensand the fusion
center are denoted by, andb,, respectively, leading to a communication ratef/df = b,,/«,, from Sensom to the fusion
center. Similarly, for a chatting link between Sensoendn, the cost per bit and resource allocation are denoted;hy, and
b;—.,, respectively, corresponding to a chatting rateef,,, = b;—,,/a;_,,. Consistent with previous notation, we denote the set
of costs per chatting bit, resource allocations on chattirigs, and chatting rates by = {®;n}(in)jee, 0° = {bissn}(in)ee
and R° = {Ri—wz}(i,n)eg'

Given a total resource budgét, how should the rates be allocated among these links? Falisity, assume all chatting

links employ fixed-rate quantization; this implies that, = 27~ for all n € {1,2, ..., N} and K;_,, = 2%~~ for all
(i,n) € €. The distortion—cost trade-off is then expressed as

D(C) = inf Dise (KN, K¢ ANV . 19

(@) b e AN, f; ( 1 1 ) (19)

25:1 b”-"_z(i,n)EE bisn=C

In general, this optimization is extremely difficult to debe analytically since the distortion contribution of bagensor is
dependent in a nontrivial way on the conditional sensitjwithich in turn is dependent on the design of the chattingsagss.
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Fig. 3.  Cost allocation for a maximum computation network,dascribed in Sectidn]V. In this cas¥, = 10, C = 5N, R. = 3, a. = 0, anda, = 1.
In the fixed-rate setting (a), the sensors are allowed to diferent communication rates but cannot adjust the raté wie received chatting message. In
the entropy-constrained setting (b), each sensor excegbséd receives chatting messages and can adjust its cowatiani rate appropriately.

However, the relationship betwe#lf and the overall system distortion is much simpler, as desdrin Theoreni]1. Hence,
once the chatting allocationis is fixed, the optimab" is easily determined using extensions of traditional rdiecation
techniques described in Appendix A. In particular, the mptiv)¥ can be found by applying LemmBk 3 ddd 4 with a total cost
constraint

C'=C— > bisn. (20)

(i,n)e€

A brute-force search oveéf then provides the best allocation, but this procedure isoedationally expensive. More realistically,
network constraints may limit the maximum chatting ratejohihgreatly reduces the search space.

In Fig.[3, we show optimal communication rates for the nekndescribed in Sectidn]V. We delay description of the specific
network properties and aim only to illustrate how the cokicationsb,,(m) may change depending with sensors or chatting
messages. Under fixed-rate codihg,varies depending on the chatting graph. In the entropytcaingd setting, the allocation
can also vary with the chatting messages, except for Sensthid increased flexibility allows for a wider range of ratas
well as improved performance in many situations.

V. MAXIMUM COMPUTATION

The results in the previous sections hold generally, andawebuild some intuition about chatting using a specific distied
network performing a maximum computation. The choice o$ ttwmputation is not arbitrary; we will show that it allows
for a particular chatting architecture that makes it commento study large networks. Moreover, this network resesdme
surprising insights into the behavior of chatting. Whiléstpaper restricts its attention solely to the maximum cotafin,
more examples are discussed|in [8].

A. Problem Model

We consider a network where the fusion center aims to repethe maximum ofV sources, where eaci, is independent
and uniformly distributed or0, 1]. The sensors measuring these sources are allowed to chateiriah chain, meaning each
sensor has at most one parent and one child (se€]Fig. 4allinitve will consider the simplest such network with theldaling
assumptions:

1) The chatting is serial, meaning the sequence of chattiegsages i$M(n_1)_m}f;’:2.

2) Each chatting link is identical and has rate, codebook sizé{. = 27 and costa..

3) The communication links between sensors and the fusiatecare allowed to have different rates. For simplicity, we
assume them to be homogeneous and normalize the costdq bel.

4) The outgoing chatting message at Serisiarthe index of a uniformly quantized version of its obseiatvith K. levels.

5) Forn > 1, the chatting message from Sensois the maximum of the index of Senseis own uniformly quantized
observation and the chatting message from its parent.

Under this architecture, the chatting messages effegtamirespond to a uniformly quantized observation of the imar
of all ancestor nodes:

Mp—1)sn = Z(Qk..v(max(X7 1)), (21)

whereZ is the index of the quantization codeword and can takes sdlue .., K.}. The simplicity of the chatting message
here arises from the permutation-invariance of the maxinfunction. We will exploit this structure to provide precise
characterizations of system performance.
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are allowed to chat serially down the network using messaggs_1)—,, at rate R.

B. Quantizer Design

Using [7), we find the max function has sensitivit§(x) = ™V ~! for all n. Without chatting, each sensor’s quantizer would
be the same with a point density that is a function of the sodistribution and sensitivity. Moreover, since the cost Ipie
of transmitting to the fusion center is the same, the satutibthe resource allocation problem assigns equal weigletitih
link. Hence, minimizing[(T0) yields the optimal fixed-ratestdrtion—cost trade-off:

N/ 3 \°
Dmaxe(C) = = | ——) 2¢/V. 22
(€)= 35 (355) 22
Similarly, the minimum of [(IR) leads to the optimal entropynstrained distortion—cost trade-off
N
Dinax,ec(C) ~ ﬁe*NHzC/N. (23)

These high-resolution expressions provide scaling lawtaw the distortion relates to the number of sensors. Theyireq
the total costC' increase linearly withV to hold.
With chatting, we first need to determine the conditionalsg@rity, which is given below for uniform sources:

Lemma 1. Given K, = 2%, the sensitivity profile corresponding to a received clmgttmessagé/(,, 1), = k is

0, T < ’“K;l;
2 o Kc n—1_ k—1 n—1 _ k— € k .
Tn | M1y n (z|k) = (1\?:21_%(—1)"21 N, Tcl Skx <% (24)
" T2
Proof: See AppendiXB. [ |

We have already noted the incident chatting message of 8eris@ uniformly quantized observation Bf, = max(X}'!),
where fy (y) = (n — 1)y 2. Hence,

n—1 n—1
P =t = () - (55) 25)

Below, we give distortion asymptotics for the serial clragthetwork under both fixed-rate and entropy-constraineghtization.
1) Fixed-rate caseFrom Theorenil, the asymptotic total fMSE distortion is

N
> B2, (26)
n=1

where g, = %”’YflwcHl/& Because Sensor 1 has no incoming chatting messages, #igivignis vZ(z) = zV~! and the
resulting distortion constant is
IR
fr=13 (N + 2) ‘

R
=15 kZP (Mn—1)5n =) 170 001y o=t ||y 5
:1

For other sensors, the distortion contribution is

For Sensom with n > 1, all incoming messages besides- 1 induce a don’t-care interval, so one of th&" codewords is
placed exactly atk — 1)/ K.
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Fig. 5. Performance of the maximum computation network ithlibe fixed-rate (left plots) and entropy-constrainedhfriplots) settings. Plots (a) and (b)
illustrate the trade-off between fMSE and chatting rateclooices of N assuming total cosf’ = 4N anda,. = 0.01. Plots (c) and (d) illustrate the trade-off
between fMSE and chatting rate for choicescof assumingN = 4 sensors and total cost = 4N. In all cases, the cost of communicationds, = 1.
For the fixed-rate setting, we validate the distortion tiglosimulated runs on real quantizers designed u$inh (17)observe that high-resolution theory
predicts actual performance at rates as low as 4 bits/samplshown by crosses in the fixed-rate plots.

We study the trade-off between chatting rétg and fMSE for several choices &f anda. using optimal cost allocation as
determined by Lemmid 3. In Figl 5a, we observe that increabimghatting rate yields improvements in fMSE. As the number
of sensors increases, this improvement becomes more proeduHowever, this is contingent on the chatting easbeing
low. As discussed in Sectidn 111D, chatting can lead to wagstem performance if the cost of chatting is on the samerorde
as the cost of communication given a total resource budgetieaonstrated by Fif] 5c. Although the main results of this
work are asymptotic, we have asserted the distortion emnmtre reasonable at finite rates. To demonstrate this, signde
real quantizers under the same cost constraint and deratm#tat the resulting performance is comparable to higblaéion
approximations of Theoref 1. This is observed in Higis. 5acanhich shows the asymptotic prediction of the distortiate
trade-off is accurate even at 4 bits/sample.

2) Entropy-constrained caseGenerally, the total distortion in the entropy-constrdimase is

N

Z E [ﬂn,k2_2Rn’k ‘ M(n—l)—)n = k} ) (27)

n=1
noting each sensor is allowed to vary its communication véth the chatting messages it receives. Like in the fixed-rat
setting, an incoming messagewill induce a don't-care interval of0, (k — 1)/ K] in the conditional sensitivity. I4,,  is the
event thatX,, is not in a don’t-care interval when receiving messag¢hen

(Xnlk)]

1 o
Bk = o P (M(n—l)—>n _ k) 22h(Xn|An,k)+2E[l 82 V0 | M(y_1)sm (28)

anan,k = (Rn — HB(P(An,k)))/P(An,k)-

Like in the fixed-rate setting, we study the relationshipnestn the chatting ratB. and fMSE, this time using the probabilistic
allocation optimization of Lemnia 4 in AppendiX A. Due to thara flexibility of allowing a sensor to vary its communicati
to the fusion center with the chatting messages it receivegbserve that increasing the chatting rate can improvieipeance
more dramatically than in the fixed-rate case (see Hig. Stpr&ingly, chatting can also lead to inferior performarfor
some combinations of?. and N, even whena,. is small. This phenomenon will be discussed in greater kdb&dow. In
Fig.[3d, we compare different choices @f to see how performance changes with the chatting rate. &lik fixed rate, in
the entropy-constrained setting, chatting can be usefer @hen its cost is close to the cost of communication to tisefu
center.

C. Generalizing the Chatting Messages

We have considered the case where a chatting message isitheruguantization of the maximum of all ancestor nodes,
as shown in[(21). Although simple, this coding of chattingssages is not optimal. Here, we generalize chatting message
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Fig. 6. Distortion improvement compared to no chatting ie thaximum computation network for the fixed-rate (left plat}d entropy-constrained (right
plot) settings when varying the partition boundary. We assume chatting is free, i.e.e = 0, but the chatting rate is limited to one bit.

understand how the performance can change with this debigice

We begin by considering the same network under the restni¢kiat the chatting rate B, = 1, but allow the single partition
boundaryp, to vary rather than setting it to/2. Currently, we keep the coding consistent for every sensch ¢hat a chatting
messagek = 1 implies max(X]™') € [0,p;] andk = 2 meansmax(X"!) € (py, 1]. Distortions for a range oV and p,
are shown in Figl16.

From these performance results, we see that the choigg should increase with the size of the network, but precise
characterization of the begt is difficult because of the complicated effect the condiimsensitivity has on both the distortion
constants and rate allocation. We can recover some of thitsesf Fig.[5 by considering; = 1/2. It is now evident that
this choice ofp; can be very suboptimal, especially Asbecomes large. In fact, we observe that for certain choitéseo
partition with entropy coding, the distortion with chatlican be larger than from a traditional distributed netwargnethough
the chatting cost is 0. This unintuitive fact arises becahsesystem'’s reliance on the conditional sensitivity isdixend the
benefits of a don't-care interval are mitigated by creatinm@e unfavorable conditional sensitivity. We emphasiz this
phenomenon disappears as the rate becomes very large.

Since the flexibility in the choice of the chatting encodeyatitions can lead to improved performance whegn= 1,
we can expect even more gains when the chatting rate is sede&lowever, the only method for optimizing the choice of
partition boundaries developed currently involve bruiezé search using the conditional sensitivity derived inpépdix[B.
Another extension that leads to improved performance idldavachatting encoders to employ different partitions. § hore
general framework yields strictly improved results, butngoof the special structure of the serial chatting networlost as
the chatting message is no longer necessarily the maximuatl ahcestor sensors. The added complexity of either ofethes
extensions make their performances difficult to quantify.

D. Optimizing a Chatting Network

In this paper, we have formulated a framework allowing l@tercollaboration between sensors in a distributed netvilek
have introduced several methods to optimize such a netvineckyding nonuniform quantization, rate allocation, aresidn
of chatting messages. Here, we combine these ingrediedtsesnhow each one impacts fMSE.

We will continue working with the maximum computation netwdrom Fig.[4 assuming?. = 1, a. = 0, N = 5 and
C = 5N. We further assume the coding of chatting messages is the &@mevery sensor on the serial chain. We will then
consider the following scenarios:

1) A chatting network withR,, = 5 for all n and chatting designed by (21).

2) A chatting network with rate allocation and chatting desid by [(21).

3) A chatting network with rate allocation and optimizatiover chatting messages.

We analyze the fMSE of each scenario compared to a distdboédwork without chatting R. = 0). From Fig.[T, we
can see that incorporating rate allocation and chattingrnigation yields substantial gains in the entropy-coris&d setting.
For fixed rate, the most meaningful improvement comes frdowahg chatting, while additional optimization providdglée
additional benefit. Up to this point, we have limited chajtio have fixed codebook size and did not allow entropy coding.
Lifting these restrictions increase system complexity aad provide even greater compression gain.

VI. CONCLUSIONS

In this work, we explored how intersensor communicationrted chatting—can improve approximation of a function of
sensed data in a distributed network constrained to scakamtization. We have motivated chatting from two direcsiopro-
viding an analysis technique for distortion performancewlow-blocklength limitations make Shannon theory todrojstic,
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considered.

and illustrating the potential gains over simplistic preat designs. There are many opportunities to leveragerdgt@eous
network design to aid information acquisition using thel$aaf high-resolution theory, and we provide precise charizations
of distortion performance, quantizer design, and costcation to optimize distributed networks. Many challengesain in
analyzing chatting networks. Some future directions thatraeaningful include a more systematic understanding f foo
design chatting messages and applications where chattiygbe feasible and beneficial.

One can consider “sensors” being distributed in time rathan space, with the decoder computing a function of samples
from a random process. Connections of this formulation tocstired vector quantizers are of independent interest.

APPENDIXA
RATE ALLOCATION FOR DISTRIBUTED NETWORKS
Consider the distributed network in Flg. 1 without the cingttchannel. The cost per bit of the communication link arel th

cost allocation between Senserand the fusion center is denoted by andb,, respectively, leading to a communication rate
of R,, = b, /«a,,. Below, we solve the cost allocation problem under the agsiom that companding quantizers are used and

noninteger rates are allowed.

Lemma 2. The optimal solution to

N
D(C) = i , 2720/ an 29
(©) zbffgfbnzo;ﬂ (29)
has cost allocation )
b* = max (o, 5 logs ﬂ"go‘”) , (30)

where 3 is chosen such thaf b% = C.

Proof: This lemma extends the result from [32] or can be derivedctirdrom the KKT conditions. [ ]
Eachg,, is calculated using only the functional sensitivity and marginal source pdfy . Although LemmaR is always true,
we emphasize that its effectiveness in predicting the propst allocation in a distributed network is only rigoroushown
for high cost (i.e. high rate) due to its dependence[dn (8jvéver, it can be experimentally verified that costs corragpm
to moderate communication rates still yield near-optiniaications.
When the solution of Lemmid 2 is strictly positive, a closedif expression exists:

Lemma 3. Assuming each? in (30) is strictly positive, it can be expressed as

* Qp Qo Bn/an
bn = EC‘F?lOgQ o l/zai. (31)
(Hj (Bj/ ) J)
Proof: The proof uses Lagrangian optimization. ]

If Sensorn is allowed to vary the communication rate depending on the siformationMj; ,, it receives, further gains
can be enjoyed. This situation is natural in chatting nekapowhere the side information is the low-rate messagesfdsg
neighboring sensors. Here, we introdymebabilistic cost allocationyielding a distortion—cost trade-off

N
— 1 B 72bn(Ms;yn)/an
D)= omin S E {ﬁn(Mm,n)z , (32)

b (M) >0 n=1
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where the expectation is taken with respect\fg ,,. Each link will have a cost allocatiol, (m) for every possible message
m while satisfying an average cost constraint. An analogessilt to Lemma]2 can be derived; for the situation where the
optimal allocation is strictly positive, it can again be esgsed in closed form:

Lemma 4. Assume the side informatial{; ,, received at Sensat is m € M,, and the cost per bit of the communication
link may vary withm. Assuming each allocatiob}, (m) in the solution to32) is strictly positive, it can be expressed as
an(m)

ulm) === C+ log > (33)
) ? 2 Hj 1L ((Bj(l)/aj(l))aj(l)/a)

an(m)

wherea =3, >°. far , (m) an(m).

Here, we extended previous known rate allocation resul, [B2] to account for heterogeneity in distributed netksor
Although these results do not account for chatting, we se8dation[IV that they become important tools in optimizing
performance in such networks.

APPENDIXB
SENSITIVITY OF MAXIMUM COMPUTATION NETWORK

Assuming iid uniform sources on the suppfirt1], the sensitivity of each sensor in the maximum computatietwvark in
Fig.[4 without chatting is

72(2) = Ellgn (X7 | X, = a]
— P (min(X)) = X, | X,, = 2)

:P(Xl < .”L')P(Xn_l < .”L')P(Xn+1 < ,T)P(XN < $)
= N1

When the chatting graph is a serial chain, Sensdras some lossy version of the information collected by itseator
sensors. For the max function, chatting reduces the suppdhe estimate ofnax(X]'~') by Sensom. Hence, the message
M, 1), reveals the max of the ancestor sensors is in the rénge,]. This side information forms three distinct intervals
in the conditional sensitivity. First, in the interval < s;, X,, is assuredly less thamax(X"~') and hence sensitivity is
0 since the information at Sensaris irrelevant at the fusion center. Secondxif> s,, X, is greater tharmax(Xffl)
and the sensitivity should only depend on the number of celu® sensors, leading to a sensitivityadf —™. Finally, when
s; < x < sy, Sensom must take into consideration both ancestors and descendagiding sensitivity

P (min(X{') = X,, | Xn = z, max(X{") € [s, 50])
=P (max(X]7 ") < z|max(X]") € [s1,84]) P (max(X),,) < z)

More specific to the case when messages correspond to unifeamtization, we definé’, = 2% and denote each received
message\l(,,_1)_., ask,. Settings; = (k, —1)/K. ands, = k,/K. gives Lemmal.
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