
ar
X

iv
:1

30
2.

05
85

v2
  [

cs
.IT

]  
30

 J
un

 2
01

3
1

Wireless Information and Power Transfer: A
Dynamic Power Splitting Approach
Liang Liu, Rui Zhang,Member, IEEE, and Kee-Chaing Chua,Member, IEEE

Abstract—Energy harvesting is a promising solution to prolong
the operation time of energy-constrained wireless networks. In
particular, scavenging energy from ambient radio signals,namely
wireless energy harvesting (WEH), has recently drawn significant
attention. In this paper, we consider a point-to-point wireless
link over the flat-fading channel, where the receiver has no
fixed power supplies and thus needs to replenish energy via
WEH from the signals sent by the transmitter. We first consider
a SISO (single-input single-output) system where the single-
antenna receiver cannot decode information and harvest energy
independently from the same signal received. Under this practical
constraint, we propose adynamic power splitting (DPS) scheme,
where the received signal is split into two streams with adjustable
power levels for information decoding and energy harvesting
separately based on the instantaneous channel condition that
is assumed to be known at the receiver. We derive the optimal
power splitting rule at the receiver to achieve various trade-offs
between the maximum ergodic capacity for information transfer
and the maximum average harvested energy for power transfer,
which are characterized by the boundary of a so-called “rate-
energy” region. Moreover, for the case when the channel state
information is also known at the transmitter, we investigate the
joint optimization of transmitter power control and receiv er
power splitting. The achievable rate-energy (R-E) region by the
proposed DPS scheme is compared against that by the existing
time switching scheme as well as a performance upper bound
by ignoring the practical receiver constraint. Finally, we extend
the result for DPS to the SIMO (single-input multiple-output)
system where the receiver is equipped with multiple antennas.
In particular, we investigate a low-complexity power splitting
scheme, namelyantenna switching, which can be practically
implemented to achieve the near-optimal rate-energy trade-offs
as compared to the optimal DPS.

Index Terms—Energy harvesting, wireless power transfer,
power control, fading channel, ergodic capacity, multiple-antenna
system, power splitting, time switching, antenna switching.

I. I NTRODUCTION

REcently, energy harvesting has become a prominent
solution to prolong the lifetime of energy-constrained

wireless networks, such as sensor networks. Compared with
conventional energy supplies such as batteries that have fixed
operation time, energy harvesting from the environment po-
tentially provides an unlimited energy supply for wirelessnet-
works. Besides other commonly used energy sources such as
solar and wind, radio frequency (RF) signal holds a promising
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future for wireless energy harvesting (WEH) since it can also
be used to provide wireless information transmission at the
same time, which has motivated an upsurge of research interest
on RF-based wireless information and power transfer recently
[1]-[5]. Prior works [1], [2] have studied the fundamental
performance limits of wireless systems with simultaneous
information and power transfer, where the receiver is ideally
assumed to be able to decode the information and harvest the
energy independently from the same received signal. However,
this assumption implies that the received signal used for
harvesting energy can be reused for decoding information
without any loss, which is not realizable yet due to practical
circuit limitations. Consequently, in [3] the authors proposed
two practical receiver designs, namely “time switching”, where
the receiver switches between decoding information and har-
vesting energy at any time, and “power splitting”, where the
receiver splits the signal into two streams of different power
for decoding information and harvesting energy separately, to
enable WEH with simultaneous information transmission.

In this paper, we further investigate the power splitting
scheme in [3] for a point-to-point single-antenna flat-fading
channel, where the receiver is able to dynamically adjust
the split power ratio for information decoding and energy
harvesting based on the channel state information (CSI) that
is assumed to be known at the receiver, a scheme so-called
“dynamic power splitting (DPS)” as shown in Fig. 1. We
assume that the transmitter has a constant power supply,
whereas the receiver has no fixed power supplies and thus
needs to harvest energy from the received signal sent by
the transmitter. For the ease of hardware implementation, we
consider the case where the information decoding circuit and
energy harvesting circuit are separately designed (as opposed
to an integrated design in [4]). As a result, the receiver
needs to determine the amount of received signal power
that is split to the information receiver versus that to the
energy receiver based on the instantaneous channel power.
We derive the optimal power splitting rule at the receiver
to achieve various tradeoffs between the maximum ergodic
capacity for information transmission versus the maximum
average harvested energy for power transmission, which are
characterized by the boundary of a so-called “rate-energy (R-
E)” region. Moreover, for the case of CSI also known at
the transmitter (CSIT), we examine the joint optimization of
transmitter power control and receiver power splitting, and
show the achievable R-E gains over the case without CSIT.

Furthermore, we extend the DPS scheme for the single-
input single-output (SISO) system to the single-input multiple-
output (SIMO) system, where the receiver is equipped with

http://arxiv.org/abs/1302.0585v2


2

multiple antennas. After deriving the optimal DPS rule for the
SIMO system which in general requires independent power
splitters that are connected to different receiving antennas, we
further investigate a low-complexity power splitting scheme
so-called “antenna switching” proposed in [3], whereby the
total number of receiving antennas is divided into two subsets,
one for decoding information and the other for harvesting
energy. It is noted that for the SISO fading channel case,
antenna switching reduces to time switching, which has been
studied in our previous work [5]. In [5], the optimal time
switching rule based on the receiver CSI and its corresponding
transmitter power control policy (in the case of CSI known
at the transmitter) were derived to achieve various trade-
offs between wireless information and energy transfer. It was
shown that for time switching, the optimal policy is threshold
based, i.e., the receiver decodes information when the fading
channel gain is below a certain threshold, and harvests energy
otherwise. It is worth noting that although theoretically time
switching can be regarded as a special form of power splitting
with only on-off power allocation at each receiving antenna,
they are implemented by different hardware circuits (time
switcher versus power splitter) in practice.

The main results of this paper are summarized as follows:

• For the SISO case, we show that to achieve the optimal
R-E trade-offs in both the cases without or with CSIT
by DPS, a fixed amount of the received signal power
should be allocated to the information receiver, with
the remaining power allocated to the energy receiver
when the fading channel gain is above a given threshold.
However, when the fading channel gain is below this
threshold, all the received power should be allocated to
the information receiver. Compared with our previous
result for the time switching receiver in [5] where only the
energy harvesting receiver can benefit from “good” fading
channels above the threshold, the DPS scheme utilizes the
“good” fading states for both information decoding and
energy harvesting. As a result, we show by simulations
that DPS can achieve substantial R-E performance gains
over dynamic time switching in the SISO fading channel.
Moreover, we derive the R-E region for the ideal case
when the receiver can decode information and harvest
energy from the same received signal independently with-
out any rate or energy loss, which provides a theoretical
performance upper bound for the DPS scheme.

• For the SIMO case where the receiver is equipped with
multiple antennas, we extend the result for DPS as fol-
lows. First, we show that a uniform power splitting (UPS)
scheme where all the receiving antennas are assigned
with the same power splitting ratio is optimal. We derive
the optimal UPS rule and/or transmitter power control
(in the case with CSIT) based on the result for the
SISO system by treating all the receiving antennas as
one virtual antenna with an equivalent channel sum-
power. Second, to ease the hardware implementation of
UPS, we investigate the optimal antenna switching rule
to maximize the achievable R-E trade-offs. An exhaus-
tive search algorithm is presented first, and then a new
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Fig. 1. SISO system model.

low-complexity antenna selection algorithm is proposed,
which is shown to perform closer to the optimal UPS as
the number of receiving antennas increases. Moreover, it
is shown that with the optimal antenna selection, even
with two receiving antennas, the R-E performance of
antenna switching is already very close to that with the
optimal UPS. This demonstrates the usefulness of antenna
switching as a practically appealing low-complexity im-
plementation for power splitting.

The rest of this paper is organized as follows. Section
II presents the system model and illustrates the encoding
and decoding schemes for wireless information transfer with
opportunistic energy harvesting by DPS. Section III definesthe
R-E region achievable by DPS and formulates the problems to
characterize its boundaries without or with CSIT. SectionsIV
presents the optimal DPS rule at the receiver and/or power
control policy at the transmitter (in the case of CSIT) to
achieve various R-E trade-offs in the SISO fading channel.
Section V extends the result to the SIMO fading channel and
investigates the practical scheme of antenna switching. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 1, we first consider a wireless SISO link
consisting of one pair of single-antenna transmitter (Tx) and
single-antenna receiver (Rx) over the flat-fading channel.The
case of single-antenna Tx and multi-antenna Rx or SIMO sys-
tem will be addressed later in Section V. For convenience, we
assume that the channel from Tx to Rx follows a block-fading
model [6], [7]. The equivalent complex baseband channel from
Tx to Rx in one particular fading state is denoted byg(ν),
whereν denotes the fading state, and the channel power gain at
fading stateν is denoted byh(ν) = |g(ν)|2. It is assumed that
the random variable (RV)h(ν) has a continuous probability
density function (PDF) denoted byfν(h). At any fading state
ν, h(ν) is assumed to be perfectly known at Rx, but may or
may not be known at Tx.

We consider time-slotted transmissions at Tx and the DPS
scheme at Rx. As shown in Fig. 1, at Rx, the RF-band
signal is corrupted by an additive noisenA introduced by
the receiver antenna, which is assumed to be a circularly
symmetric complex Gaussian (CSCG) RV with zero mean and
varianceσ2

A, denoted bynA ∼ CN (0, σ2
A), in its baseband

equivalent. The RF-band signal is then fed into a power
splitter [8], [9], where the signal plus the antenna noise is
split to the information receiver and energy receiver [10]
separately. For each fading stateν, the portion of signal power
split to information decoding (ID) is denoted byα(ν) with
0 ≤ α(ν) ≤ 1, and that to energy harvesting (EH) as1−α(ν),
where in generalα(ν) can be adjusted over different fading



3

...

...

1 2 3

1 2 3

h(ν )

1 2 3

Information 

Decoder

Energy 

Harvester

2

1 3

1 2 3 21

3

...

...

...

...

Transmitted Signal

Rx

Rx

Tx

Tx

(a) CSI Unknown at Tx: Receiver power splitting only.

(b) CSI Known at Tx: Joint transmit power control and receiver power splitting.

1

1

2

2

3

3

Power 

Splitter

Power 

Splitter

Information 

Decoder

Energy 

Harvester

Received Signal Split to 

Information Decoder

Received Signal Split to 

Energy Harvester

h(ν )

Fig. 2. Encoding and decoding strategies for wireless information transfer
with opportunistic WEH (via dynamic power splitting). The height of block
shown in the figure denotes the signal power.

states. The ID circuit introduces an additional baseband noise
nID to the signal split to the information receiver, which is
assumed to be a CSCG RV with zero mean and varianceσ2,
and independent of the antenna noisenA. As a result, the
equivalent noise power for ID isα(ν)σ2

A + σ2 at fading state
ν. On the other hand, in addition to the split signal energy, the
energy receiver can harvest(1 − α(ν))σ2

A amount of energy
(normalized by the slot duration) due to the antenna noise
nA. However, in practice,nA has a negligible influence on
both the ID and EH sinceσ2

A is usually much smaller than
the noise power introduced by the information receiver,σ2,
and thus even lower than the average power of the received
signal. Thus, in the rest of this paper, we assumeσ2

A = 0 for
simplicity.

For the DPS scheme, we describe the enabling encoding and
decoding strategies for the following two cases. Case I:h(ν)
is unknown at Tx for all the fading states ofν, referred to as
CSI Unknown at Tx; and Case II:h(ν) is perfectly known at
Tx for each fading stateν, referred to asCSI Known at Tx
(CSIT).

First, consider the case of CSI Unknown at Tx, which
is depicted in Fig. 2(a). In this case, Tx sends information
continuously with constant powerP for all the fading states
due to the lack of CSIT [11]. At each fading stateν, Rx
determines the optimal power ratio allocated to the information
decoderα(ν) and the energy harvester1 − α(ν), based on
h(ν). For example, as shown in Fig. 2(a), in time slot 3, all
the received power is allocated to the information decoder (i.e.,
α(ν) = 1), while in time slots 1 and 2, the received power
is split to both the information decoder and energy harvester
(i.e., 0 < α(ν) < 1).

Next, consider the case of CSIT as shown in Fig. 2(b). In
this case, Tx is able to schedule transmissions for information
and energy transfer to Rx based onh(ν). As will be shown
later in Section IV-B, the optimal power splitting rule in
this case always hasα(ν) 6= 0 provided that the transmitted
power is non-zero. As a result, without loss of generality, we
can assume that at any fading stateν, Tx either transmits
information signal or does not transmit at all (to save power).

For example, in Fig. 2(b), Tx transmits information signal in
time slots 1 and 3, and transmits no signal in time slot 2.
Accordingly, Rx splits the received signal to the information
decoder and the energy receiver (i.e.,0 < α(ν) < 1) in slot 1,
but allocates all the received power to the information receiver
in time slot 3 (i.e.,α(ν) = 1). Moreover, Tx can implement
power control based on the instantaneous CSI to further
improve the information and energy transmission efficiency.
Let p(ν) denote the transmit power of Tx at fading stateν.
In this paper, we consider two types of power constraints
on p(ν), namelyaverage power constraint (APC) andpeak
power constraint (PPC). The APC limits the average transmit
power of Tx over all the fading states, i.e.,Eν [p(ν)] ≤ Pavg,
whereEν [·] denotes the expectation overν. In contrast, the
PPC constrains the instantaneous transmit power of Tx at each
of the fading states, i.e.,p(ν) ≤ Ppeak, ∀ν. Without loss of
generality, we assumePavg ≤ Ppeak. For convenience, we
define the set of feasible power allocation as

P ,
{

p(ν) : Eν [p(ν)] ≤ Pavg, p(ν) ≤ Ppeak, ∀ν
}

. (1)

It is worth noting that for the case without CSIT, a fixed
transmit power is assumed withp(ν) = Pavg , P , ∀ν, such
that both the APC and PPC are satisfied.

III. R ATE AND ENERGY TRADE-OFF IN THE SISO FADING

CHANNEL

In this paper, we consider the ergodic capacity as a rel-
evant performance metric for information transfer. For the
DPS scheme, givenα(ν) andp(ν), the instantaneous mutual
information (IMI) for the Tx-Rx link at fading stateν is
expressed as

r(ν) = log

(

1 +
α(ν)h(ν)p(ν)

σ2

)

. (2)

As a result, the ergodic capacity can be expressed as [11]

R = Eν [r(ν)]. (3)

For information transfer, if CSIT is not available, the ergodic
capacity can be achieved by a single Gaussian codebook
with constant transmit power over all different fading states
[12]; however, with CSIT, the ergodic capacity can be further
maximized by the “water-filling (WF)” based power allocation
subject to the peak power constraintPpeak [13], [14].

On the other hand, for wireless energy transfer, the har-
vested energy (normalized by the slot duration) at each fading
stateν can be expressed asQ(ν) = ξ(1 − α(ν))h(ν)p(ν),
whereξ is a constant that accounts for the loss in the energy
transducer for converting the harvested energy to electrical
energy to be stored; for convenience, it is assumed thatξ = 1
in the rest of this paper unless stated otherwise. We thus have

Q(ν) = (1 − α(ν))h(ν)p(ν). (4)

The average energy that is harvested at Rx is then given by

Qavg = Eν [Q(ν)]. (5)

Evidently, there exist trade-offs in assigning the power
splitting ratioα(ν) and/or transmit powerp(ν) (in the case of
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Fig. 3. Examples of R-E region with versus without CSIT.

CSIT) to balance between maximizing the ergodic capacity for
information transfer versus maximizing the average harvested
energy for power transfer. To characterize such trade-offs, we
adopt the so-calledRate-Energy (R-E) region (defined below)
as introduced in [3], [5], which consists of all the achievable
ergodic capacity and average harvested energy pairs given a
power constraintP in (1). Specifically, in the case without
(w/o) CSIT, the R-E region is defined as

C
w/o CSIT
R−E ,

⋃

p(ν)=P,0≤α(ν)≤1,∀ν

{

(R,Qavg) :

R ≤ Eν [r(ν)], Qavg ≤ Eν [Q(ν)]

}

, (6)

while in the case with CSIT, the R-E region is defined as

Cwith CSIT
R−E ,

⋃

p(ν)∈P,0≤α(ν)≤1,∀ν

{

(R,Qavg) :

R ≤ Eν [r(ν)], Qavg ≤ Eν [Q(ν)]

}

. (7)

Fig. 3 shows some examples of the R-E region without
versus with CSIT by the DPS scheme (see Section IV for
the details of computing these regions). It is assumed that the
average transmit power constraint isPavg = 0.1 watt(W) or
20dBm, and the peak power constraint isPpeak = 0.2W or
23dBm. The average operating distance between Tx and Rx
is assumed to bed = 5 meters, which results in an average of
40dB signal power attenuation at a carrier frequency assumed
asfc = 900MHz. With this distance, the line-of-sight (LOS)
signal plays the dominant role, and thus Rician fading is used
to model the channel. Specifically, at each fading stateν,

the complex channel can be modeled asg(ν) =
√

K
K+1 ĝ +

√

1
K+1 g̃(ν), where ĝ is the LOS deterministic component

with |ĝ|2 = −40dB (to be consistent with the average path
loss), g̃(ν) ∼ CN (0,−40dB) denotes the Rayleigh fading
component, andK is the Rician factor specifying the power
ratio between the LOS and fading components ing(ν). Here

we setK = 3. The bandwidth of the transmitted signal is
assumed to be10MHz, and the information receiver noise
is assumed to be white Gaussian with power spectral den-
sity −120dBm/Hz or−50dBm over the entire bandwidth of
10MHz. Moreover, the energy conversion efficiency for the
energy harvester is assumed to beξ = 0.5. For comparison,
we also show the R-E regions by a special form of DPS
known as time switching [5] under the same channel setup
with or without CSIT. Furthermore, the R-E regions obtained
by assuming that the receiver can ideally decode information
and harvest energy from the same received signal without any
rate/power loss [2] are added as a performance upper bound
for DPS and time switching. It is observed that CSIT helps
improve the achievable R-E pairs at the receiver for both DPS
and time switching schemes. Moreover, as compared to time
switching, DPS achieves substantially improved R-E trade-
offs towards the performance upper bound. For example, when
90% of the maximum harvested energy is achieved, the ergodic
capacity is increased by64% for the case with CSIT and120%
for the case without CSIT, by comparing DPS versus time
switching. It is also observed that when the average harvested
power is smaller than5.1uW, DPS for the case without CSIT
even outperforms time switching for the case with CSIT.

In Fig. 3, there are two boundary points shown in each R-E
region, which are denoted by(0, Qw/o CSIT

max ), (Rw/o CSIT
max , 0)

for the case without CSIT, and(0, QCSIT
max ), (RCSIT

max , 0) for the
case with CSIT. For example, for the R-E trade-offs in the
case without CSIT, we have

Qw/o CSIT
max = Eν [h(ν)P ], (8)

Rw/o CSIT
max = Eν

[

log

(

1 +
h(ν)P

σ2

)]

. (9)

Note thatQw/o CSIT
max is achieved whenα(ν) = 0, ∀ν, and

thus the resulting ergodic capacity is zero, whileRw/o CSIT
max is

achieved whenα(ν) = 1, ∀ν, and thus the resulting harvested
energy is zero. The above holds for both time switching
and power splitting receivers. Similarly,QCSIT

max and RCSIT
max

in the case with CSIT can be obtained, while for brevity, their
expressions are omitted here. It is worth noting that in general
RCSIT

max > R
w/o CSIT
max due to the WF-based power control.

However, with high signal-to-noise ratio (SNR), the rate gain
by transmitter power control is negligibly small. As a result,
in Fig. 3RCSIT

max andRw/o CSIT
max are observed to be very close

to each other.
Since the optimal trade-offs between the ergodic capacity

and the average harvested energy are characterized by the
boundary of the R-E region, it is important to characterize
all the boundary(R,Qavg) pairs for DPS in both the cases
without and with CSIT. Similarly as for the case of time
switching in [5], to characterize the Parato boundary of the
R-E region for DPS, we need to solve the following two
optimization problems.

(P1) : Maximize
{α(ν)}

Eν [r(ν)]

Subject to Eν [Q(ν)] ≥ Q̄

0 ≤ α(ν) ≤ 1, ∀ν
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(P2) : Maximize
{p(ν),α(ν)}

Eν [r(ν)]

Subject to Eν [Q(ν)] ≥ Q̄

p(ν) ∈ P , ∀ν

0 ≤ α(ν) ≤ 1, ∀ν

where Q̄ is a target average harvested energy required to
maintain the receiver’s operation. By solving Problem (P1)
for all 0 ≤ Q̄ ≤ Q

w/o CSIT
max and Problem (P2) for all

0 ≤ Q̄ ≤ QCSIT
max , we can characterize the entire boundary

of the R-E region for the case without CSIT (defined in (6))
and with CSIT (defined in (7)), respectively.

Problem (P1) is a convex optimization problem in terms of
α(ν)’s, whereas Problem (P2) is non-convex in general since
both the objectiveEν [r(ν)] and harvested energy constraint
Eν [Q(ν)] are non-concave functions overα(ν) and p(ν).
However, it can be verified that the Lagrangian duality method
can still be applied to solve Problem (P2) globally optimally,
i.e., (P2) has strong duality or zero duality gap [16].

Lemma 3.1: Let {pa(ν), αa(ν)} and{pb(ν), αb(ν)} denote
the optimal solutions to Problem (P2) given the average
harvested energy constraint and average transmit power con-
straint pairs(Q̄a, P a

avg) and (Q̄b, P b
avg), respectively. Then

for any 0 ≤ θ ≤ 1, there always exists a feasible solution
{pc(ν), αc(ν)} such that

Eν [r
c(ν)] ≥ θEν [r

a(ν)] + (1− θ)Eν [r
b(ν)],

Eν [Q
c(ν)] ≥ θQ̄a + (1− θ)Q̄b,

Eν [p
c(ν)] ≤ θP a

avg + (1− θ)P b
avg,

whererχ(ν) = log(1+ h(ν)αχ(ν)pχ(ν)
σ2 ) with χ ∈ {a, b, c}, and

Qc(ν) = (1− αc(ν))h(ν)pc(ν).
Proof: Please refer to Appendix A.

Let Φ2(Q̄, Pavg) denote the optimal value of (P2) given
the average harvested energy constraintQ̄ and the average
power constraintPavg. Lemma 3.1 implies that the “time-
sharing” condition in [15] holds for (P2), and thusΦ2(Q̄, Pavg)
is concave in(Q̄, Pavg), which then yields the zero duality
gap of Problem (P2) according to the convex analysis in [16].
Therefore, in the next section, we will apply the Lagrange
duality method to solve both (P1) and (P2).

IV. OPTIMAL POLICY FOR THE SISO FADING CHANNEL

In this section, we study the optimal power splitting policy
at Rx and/or power control policy at Tx to achieve various
optimal rate and energy trade-offs in the SISO fading channel
for both the cases without and with CSIT by solving Problems
(P1) and (P2), respectively.

A. The Case Without CSIT

First, we consider Problem (P1) for the unknown CSIT
case to determine the optimal power splitting rule at Rx with
constant transmit powerP at Tx. The Lagrangian of Problem
(P1) is expressed as

L(α(ν), λ) = Eν [r(ν)] + λ(Eν [Q(ν)]− Q̄), (10)

whereλ ≥ 0 is the dual variable associated with the harvested
energy constraintQ̄. Then, the Lagrange dual function of
Problem (P1) is given by

g(λ) = max
0≤α(ν)≤1,∀ν

L(α(ν), λ). (11)

The maximization problem (11) can be decoupled into
parallel subproblems all having the same structure and eachfor
one fading state. For a particular fading stateν, the associated
subproblem is expressed as

max
0≤α≤1

Lw/o CSIT
ν (α), (12)

where

Lw/o CSIT
ν (α) = r + λQ = log

(

1 +
αhP

σ2

)

+ λ(1 − α)hP.

(13)

Note that in the above we have dropped the indexν for the
fading state for brevity.

With a givenλ, Problem (11) can be efficiently solved by
solving Problem (12) for different fading states ofν. Problem
(P1) is then solved by iteratively solving (11) with fixedλ, and
updatingλ via a simple bisection method until the harvested
energy constraint is met with equality [16]. Letλ∗ denote the
optimal dual solution that has a one-to-one correspondenceto
Q̄ in Problem (P1). Then, we have the following proposition.

Proposition 4.1: The optimal solution to Problem (P1) is
given by

α∗(ν) =

{

1
λ∗h(ν)P − σ2

h(ν)P , if h(ν) ≥ 1
λ∗P − σ2

P ,

1, otherwise.
(14)

Proof: Please refer to Appendix B.
It can be inferred from Proposition 4.1 that the power

allocated to information decoding is a constant for all the
fading states withh(ν) ≥ 1

λ∗P − σ2

P sinceα∗(ν)h(ν)P =
1
λ∗ − σ2 ≥ 0. Thus,λ∗ ≤ 1

σ2 must hold in (14). As a result,
the achievable rate is a constant equal tolog 1

λ∗σ2 for such
fading states. On the other hand, ifh(ν) < 1

λ∗P − σ2

P , all
the received power is allocated to the information receiver.
The above result is explained as follows. Suppose that if
an amount of received power̄P is allocated to information
receiver, we gainlog(1 + P̄

σ2 ) in the achievable rate, but
lose λ∗P̄ in the harvested energy. Since the utility for our
optimization problem given in (13) at each fading state is
the difference between the gain in the achievable rate and the
loss in the harvested energy, the maximum utility is achieved
when P̄ ∗ = 1

λ∗ − σ2, which is a constant regardless of the
fading state. Therefore, if the received powerh(ν)P ≥ P̄ ∗,
i.e., h(ν) ≥ 1

λ∗P − σ2

P , then the received power allocated to
the information receiver should be a constant1

λ∗ −σ2, and the
remaining received power, i.e.,h(ν)P−( 1

λ∗ −σ2), is allocated
to the energy receiver. Otherwise, if the received power is
less thanP̄ ∗, it should be totally allocated to the information
receiver.

In the following, we compare the above optimal receiver
power splitting rule to the optimal time switching rule pro-
posed in [5] for the achievable R-E trade-offs in the case
without CSIT. For convenience, letλPS andλTS denote the
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optimal dual solutions to Problem (P1) with DPS and its
modified problem (by changing the constraint0 ≤ α(ν) ≤ 1 in
(P1) toα(ν) ∈ {0, 1}, ∀ν) with time switching, respectively,
for the same given̄Q. Moreover, similarly as in [5], we define
the time switching indicator function as follows:

α(ν) =

{

1, ID mode is active
0, EH mode is active.

(15)

We then have the following observations in order:
• When the fading state is “poor”, i.e.,0 < h(ν) ≤ h̄

for time switching or 0 < h(ν) ≤ 1
λPSP

− σ2

P for
power splitting, wherēh is the unique solution to the
following equation given in [5]:log

(

1 + hP
σ2

)

= λTShP ,
the optimal receiver strategy is to allocate all the received
power to the information receiver for both cases of time
switching and power splitting, i.e.,α(ν) = 1. In other
words, the power allocated to information receiver is
h(ν)P , and that to energy receiver is0.

• When the fading state is “good”, i.e.,h(ν) > h̄ for time
switching orh(ν) > 1

λPSP
− σ2

P for power splitting, all
the received power is allocated to energy harvester for
time switching, i.e.,α(ν) = 0, while for power splitting,
a constant powerα(ν)h(ν)P = 1

λPS
− σ2 is allocated to

the information receiver, with the remaining power(1−
α(ν))h(ν)P = h(ν)P − 1

λPS
+σ2 allocated to the energy

receiver.
To summarize, the main difference between the optimal time
switching and power splitting polices in the case without
CSIT lies in the above “good” fading states. Specifically,
both information decoding and energy harvesting can benefit
from such good fading states if power splitting is used, while
only energy harvesting benefits if time switching is used.
An illustration of the above difference in the received power
allocation for power splitting versus time switching is given
in Fig. 4.

B. The Case With CSIT

For the case with CSIT, in addition to the receiver’s DPS,
the transmitter can implement power control to further improve
the R-E trade-off. To jointly optimize the values ofp(ν) and
α(ν), ∀ν, we need to solve Problem (P2), shown as follows.

Let λ and β denote the nonnegative dual variables corre-
sponding to the average harvested energy constraint and av-
erage transmit power constraint in Problem (P2), respectively.
Similarly as for Problem (P1), Problem (P2) can be decoupled
into parallel subproblems each for one particular fading state
and expressed as (by ignoring the fading indexν)

max
0≤p≤Ppeak,0≤α≤1

Lwith CSIT
ν (p, α), (16)

where

Lwith CSIT
ν (p, α) =r + λQ− βp

= log

(

1 +
αhp

σ2

)

+ λ(1 − α)hp− βp.

(17)

After solving Problem (16) with givenλ andβ for all the
fading states, we can update(λ, β) via the ellipsoid method

αhp

h

(1-α)hp

h

αhp

h

(1-α)hp

h

Received Power Allocated 
to Information Receiver

Received Power Allocated 
to Energy Receiver

Received Power Allocated 
to Information Receiver

Received Power Allocated 
to Energy Receiver

(a) Power Splitting without CSIT

(b) Time Switching without CSIT

h̄ h̄

slope P slope P

slope P

slope P

h̄P

——
λPSP

- —
P

σ21 1——
λPSP

- —
P

σ2

Fig. 4. Power splitting versus time switching: a comparisonof the received
power allocation to information receiver and energy receiver over different
fading states for the case without CSIT.

[16]. It can be shown that the sub-gradient for updating(λ, β)
is (Eν [Q

∗(ν)]−Q̄, Pavg−Eν [p
∗(ν)]), whereQ∗(ν) andp∗(ν)

denote the harvested energy and transmit power at fading state
ν, respectively, obtained by solving Problem (16) for a given
pair of λ and β. Let λ∗ and β∗ denote the optimal dual
solutions to Problem (P2) for a given set ofQ̄, Pavg andPpeak.
Similarly as for Proposition 4.1, it can be shown that when
0 ≤ Q̄ ≤ QCSIT

max , it must hold thatλ∗ < 1
σ2 . We then have

the following proposition.
Proposition 4.2: By defining h̃ = 1

λ∗Ppeak
− σ2

Ppeak
, the

optimal solution to Problem (P2) is given by
If β∗

λ∗ ≤ h̃,






















p∗(ν) = Ppeak, α∗(ν) = h̃
h(ν)

, if h(ν) ≥ h̃,

p∗(ν) = Ppeak, α∗(ν) = 1, β∗σ2

1−β∗Ppeak
≤ h(ν) < h̃,

p∗(ν) = 1
β∗ − σ2

h(ν)
, α∗(ν) = 1, β∗σ2

≤ h(ν) < β∗σ2

1−β∗Ppeak
,

p∗(ν) = 0, otherwise
(18)

if β∗

λ∗ > h̃,










p∗(ν) = Ppeak, α∗(ν) = h̃
h(ν)

, if h(ν) ≥ β∗

λ∗ ,

p∗(ν) = 1
β∗ −

σ2

h(ν)
, α∗(ν) = 1, β∗σ2

≤ h(ν) < β∗

λ∗ ,

p∗(ν) = 0, otherwise.

(19)

Proof: Please refer to Appendix C.
It is worth noting that similar to the case without CSIT, from

Proposition 4.2 it follows that in the case with CSIT, ifh(ν) >
max(β

∗

λ∗ , h̃), a constant received powerα(ν)∗h(ν)p∗(ν) =
1
λ∗ − σ2 is allocated to the information receiver, while the
remaining received power is allocated to the energy receiver;
otherwise, ifh(ν) ≤ max(β

∗

λ∗ , h̃), all the received power is
allocated to the information receiver.

Next, we compare the optimal power splitting and time
switching for the achievable R-E trade-offs in the case with
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CSIT. For convenience, let(λPS, βPS) and(λTS, βTS) denote
the optimal dual solutions to Problem (P2) with DPS and its
modified form (by changing the constraint0 ≤ α(ν) ≤ 1 in
(P2) asα(ν) ∈ {0, 1}, ∀ν) with time switching, respectively.
We then obtain the following observations:

• When the fading state is “poor”, i.e.,0 < h(ν) ≤ βTSσ
2

for time switching or0 < h(ν) ≤ βPSσ
2 for power split-

ting, the optimal strategy is to switch off the transmission
to save transmit power in both schemes.

• For moderate fading states withβTSσ
2 < h(ν) ≤ ĥ

for time switching orβPSσ
2 < h(ν) ≤ max(βPS

λPS
, h̃)

for power splitting, wherêh is the largest root of the
following equation given in [5]:log h

βTSσ2 − 1+ βTSσ
2

h −
λTShPpeak + βTSPpeak = 0, the optimal strategy is to
transmit information with water-filling power allocation
at Tx (with the maximum transmit power capped by
Ppeak) and allocate all the received power to information
receiver in both schemes.

• When the fading state is “good”, i.e.,h(ν) > ĥ for time
switching orh(ν) > max(βPS

λPS
, h̃) for power splitting, the

optimal strategy of the transmitter is to transmit at peak
powerPpeak in both schemes. However, at the receiver,
all the received power is allocated to the energy receiver
for time switching, i.e.,(1−α(ν))h(ν)p(ν) = h(ν)Ppeak,
while for power splitting, only a constant amount of the
received powerα(ν)h(ν)p(ν) = 1

λPS
− σ2 is allocated

to information receiver with the remaining power(1 −
α(ν))h(ν)p(ν) = h(ν)Ppeak −

1
λPS

+ σ2 allocated to the
energy receiver.

To summarize, similar to the case without CSIT, the main
difference between the optimal resource allocation polices
between power splitting and time switching for the case with
CSIT lies in the above “good” fading states. Specifically, both
information decoding and energy harvesting can benefit from
good fading states if power splitting is used, while only energy
harvesting benefits if time switching is used. An illustration
of the above transmitter power control and receiver power
allocation policies for power splitting versus time switching
is given in Fig. 5.

C. Performance Upper Bound

In this subsection, we derive a R-E region upper bound
for DPS (as well as other practical receiver designs) by
considering an ideal receiver that can simultaneously decode
information and harvest energy from the same received signal
without any information/energy loss. This is equivalent to
settingα(ν) = 1 ∀ν in (2) andα(ν) = 0 ∀ν in (4) at the
same time. In this case, the information rate and harvested
energy at each fading stateν can be respectively expressed as

r(ν) = log

(

1 +
h(ν)p(ν)

σ2

)

, (20)

Q(ν) = h(ν)p(ν). (21)

For the case without CSIT, there is no trade-off between
information and energy transfer from the above sincep(ν) =
P , ∀ν. As a result, as shown in Fig. 3, the R-E region upper
bound for the case without CSIT is simply a box. On the other

p
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2
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αhp
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2

(1-α)hp

hβPSσ
2
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to Information Receiver
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slope 
slope Ppeak

water-filling

1
—
λPS

-σ2

1
—
βPS

slope Ppeak

βPSσ
2

————
1-βPSPpeak

βPSσ2
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1-βPSPpeak

~
h

~
h

~
h
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λPS
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λPSPpeak
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p
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αhp
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1
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1
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λPS
< 1

λPSPpeak
− σ2

Ppeak

p
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2

h
^ 

Ppeak

αhp

hβTSσ
2

h
^ 

(1-α)hp

hβTSσ
2

h
^ 

Transmitted Power Received Power Allocatted 

to Information Receiver
Transmit Power Allocatted 
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slope

slope Ppeak

water-filling
1

—
βTS
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Fig. 5. Power splitting versus time switching: a comparisonof the transmit
power allocation and received power allocation over different fading states
for the case with CSIT.

hand, in the case with CSIT, a trade-off betweenr(ν) andQ(ν)
given in (20) and (21) due to the power allocation policyp(ν),
which has been similarly studied in [2] for the frequency-
selective AWGN channel with simultaneous information and
power transfer. By solving Problem (P2) for all feasibleQ̄’s,
with r(ν) andQ(ν) replaced by (20) and (21), respectively, the
R-E region upper bound in the case of CSIT can be obtained.
Let λ∗ and β∗ denote the optimal dual solutions associated
with the harvested energy constraintQ̄ and average power
constraintPavg, respectively. By following the similar proof
of Proposition 4.2, we can obtain the optimal power allocation
for achieving the R-E region upper bound in the case with
CSIT in the following proposition.

Proposition 4.3: For Problem (P2) withr(ν) and Q(ν)
replaced by (20) and (21), respectively, and the constraint
0 ≤ α(ν) ≤ 1 being removed, the optimal power allocation is
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Fig. 6. DPS for the SIMO system.

given by

p(ν) =







Ppeak, if h(ν) ≥ β∗

λ∗ ,
[

1
β∗−λ∗h(ν) −

σ2

h(ν)

]Ppeak

0
, otherwise,

(22)

where[x]ba = max(min(x, b), a).

V. EXTENSION AND APPLICATION: DYNAMIC POWER

SPLITTING FOR THE SIMO FADING CHANNEL

In this section, we extend the result for DPS to the SIMO
fading channel, i.e., when the receiver is equipped with
multiple antennas, and furthermore study a low-complexity
implementation of power splitting, namely antenna switching
[3].

A. Optimal Power Splitting

First, we study the optimal DPS scheme for the SIMO
system, as shown in Fig. 6. Assuming that the receiver is
equipped withM > 1 antennas, then at any fading state
ν, the complex channel and the channel power gain from
Tx to the mth antenna of Rx are denoted bygm(ν) and
hm(ν) = |gm(ν)|2, 1 ≤ m ≤ M , respectively. Without loss
of generality, similar to the SISO case, at fading stateν, each
receiving antennam can split 0 ≤ αm(ν) ≤ 1 portion of
the received signal power to the information receiver, and the
remaining1−αm(ν) portion of power to the energy receiver.

For the information receiver, it is assumed that the maximal
ratio combining (MRC) is applied over the signals split from
the M receiving antennas. Therefore, at fading stateν, the
achievable rate can be expressed as

r(ν) = log

(

1 +
M
∑

m=1

αm(ν)hm(ν)p(ν)

σ2

)

. (23)

Moreover, the total harvested energy from the signals split
from theM receiving antennas at the energy receiver can be
expressed as

Q(ν) =

M
∑

m=1

(1− αm(ν))hm(ν)p(ν). (24)

Then, with r(ν) andQ(ν) given by (23) and (24), we can
define the achievable R-E regions for the SIMO system in
both the cases without and with CSIT asC

w/o CSIT (SIMO)
R−E and

C
CSIT (SIMO)
R−E , respectively, similarly to (6) and (7) in the SISO

case, and characterize their boundaries by solving problems
similarly to (P1) and (P2).

1) The Case Without CSIT:
First, we study the optimal DPS for the case without CSIT in

the SIMO fading channel to obtainCw/o CSIT (SIMO)
R−E . Given

p(ν) = P , ∀ν, similar to solving (P1) in Section IV-A, by
introducing the Lagrange dual variableλ associated with the
energy constraint̄Q, the optimization problem for the SIMO
system can be decoupled into parallel subproblems each for
one fading state, which is expressed as (by ignoring the fading
index ν)

max
{0≤αm≤1}

Lw/o CSIT (SIMO)
ν ({αm}), (25)

where

Lw/o CSIT (SIMO)
ν ({αm})

=r + λQ

= log









1 +

M
∑

m=1
αmhmP

σ2









+

M
∑

m=1

λ(1 − αm)hmP. (26)

Lemma 5.1: Given any fixedλ, Problem (25) is equivalent
to the following problem:

Maximize
α

log









1 +

α
M
∑

m=1
hmP

σ2









+ (1− α)

M
∑

m=1

λhmP

Subject to 0 ≤ α ≤ 1. (27)

Proof: Given anyαm ∈ [0, 1], 1 ≤ m ≤ M , it follows

that α ,

M∑

m=1

αmhmP

M∑

m=1

hmP

lies in [0, 1] and achieves the same

objective value of Problem (27) as that of Problem (25).
Thus, the optimal value of Problem (27) must be no smaller
than that of Problem (25). On the other hand, given any
0 ≤ α ≤ 1, there exists at least one solution forαm’s such

that
M
∑

m=1
αmhmP = α

M
∑

m=1
hmP with 0 ≤ αm ≤ 1, ∀m.

Thus, the optimal value of Problem (25) must be no smaller
than that of Problem (27). Therefore, Problems (25) and (27)
have the same optimal value and thus are equivalent. Lemma
5.1 is thus proved.

Lemma 5.1 suggests that a “uniform power splitting (UPS)”
scheme by settingαm = α, ∀m, is in fact optimal to achieve
the boundary ofCw/o CSIT (SIMO)

R−E in the SIMO fading channel
without CSIT. More interestingly, Lemma 5.1 establishes the
equivalence between the optimal DPS policies for the SIMO
and SISO systems, given as follows. By comparing Problem
(12) in the SISO case and Problem (27) in the SIMO case, it is

observed that ifh is replaced by
M
∑

m=1
hm, then Problem (12) is

the same as Problem (27). Therefore, in the SIMO case, we can
treat all the receiving antennas as one “virtual” antenna with an

equivalent channel sum-power gain from Tx ash =
M
∑

m=1
hm;
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thereby, the SIMO system in Fig. 6 becomes equivalent to a
SISO system that has been studied in Section IV-A. Hence,

by replacingh(ν) by
M
∑

m=1
hm(ν) and lettingαm(ν) = α(ν),

∀m, ν, the optimal UPS solution for the SIMO fading channel
can similarly be obtained by Proposition 4.1 in the SISO case,
for which the details are omitted for brevity.

2) The Case With CSIT:
Next, we consider the joint DPS at Rx and power control

at Tx for the SIMO case with CSIT to characterize the
boundary ofCCSIT (SIMO)

R−E . Similar to solving Problem (P2)
in Section IV-B, by introducing the Lagrange dual variables
λ andβ associated with the energy constraintQ̄ and average
power constraintPavg, respectively, the optimization problem
for the SIMO fading channel can be decoupled into parallel
subproblems each for one fading state, which is expressed as
(by ignoring the fading indexν)

max
0≤p≤Ppeak,{0≤αm≤1}

Lwith CSIT (SIMO)
ν ({αm}, p), (28)

where

Lwith CSIT (SIMO)
ν ({αm}, p)

=r + λQ

= log









1 +

M
∑

m=1
αmhmp

σ2









+

M
∑

m=1

λ(1− αm)hmp− βp.

(29)

Similar to Lemma 5.1, the following lemma establishes the
optimality of UPS in the SIMO case with CSIT.

Lemma 5.2: Given any fixedλ and β, Problem (28) is
equivalent to the following problem:

Maximize
p,α

log









1 +

α
M
∑

m=1

hmp

σ2









+ (1− α)
M
∑

m=1

λhmp− βp

Subject to 0 ≤ α ≤ 1,

0 ≤ p ≤ Ppeak. (30)

The proof of Lemma 5.2 is similar to that of Lemma 5.1,
and is thus omitted for brevity. Lemma 5.2 implies that the
equivalence between the SIMO and SISO systems also holds
in the case with CSIT, by treating all the receiving antennasin
the SIMO system as one “virtual” antenna in the SISO system

with the equivalent channel power gain given byh =
M
∑

m=1
hm.

As for the case without CSIT, the optimal transmitter power
allocationp(ν) and receiver UPSαm(ν) = α(ν), ∀m, ν, for
the SIMO fading channel with CSIT can similarly be obtained
from Proposition 4.2 in the SISO case by replacingh(ν) by
M
∑

m=1
hm(ν).

B. Antenna Switching

Note that the optimal UPS for the SIMO system requires
multiple power splitters each equipped with one receiving
antenna to adjust the power splitting ratio at each fading

Antenna 1

Tx

Information 

Receiver

Energy 

Receiver

h1(ν)

.

.

.

Antenna M

h
M(ν)

Rx

Fig. 7. Antenna switching for the SIMO system.

state. Practically, this could be very costly to implement.
Therefore, in this subsection we consider a low-complexity
implementation for power splitting in the SIMO system with
multiple receiving antennas, namely antenna switching [3]. As
shown in Fig. 7, at each fading state, instead of splitting the
power at each receiving antenna, the antenna switching scheme
simply connects one subset of the receiving antennas (denoted
by ΦID(ν)) to information receiver, with the remaining subset
of antennas (denoted byΦEH(ν)) to energy harvester, i.e.,

αm(ν) =

{

1, if m ∈ ΦID,

0, if m ∈ ΦEH,
1 ≤ m ≤M. (31)

It is worth noting that antenna switching can be shown

equivalent to UPS withαm(ν) =

∑

m∈ΦID

hm(ν)p(ν)

M∑

m=1

hm(ν)p(ν)

for ∀m, ν.

However, since antenna switching only requires the time
switcher at each receiving antenna instead of the more costly
power splitter in UPS, it is practically more favorable. In the
following, we study the optimal antenna switching policy for
the SIMO fading channel without or with CSIT.

1) The Case Without CSIT:

In this case, the optimal antenna switching rule can be
obtained by solving Problem (25) withαm(ν)’s given in (31).
However, to find the optimal antenna partitions, i.e.,Φ∗

ID(ν)
andΦ∗

EH(ν), at any fading stateν, we need to search over2M

possible antenna combinations to maximize (26), for which the
complexity goes up exponentially asM increases.

2) The Case With CSIT:

In this case, the optimal transmitter power controlp∗(ν) and
receiver antenna switchingΦ∗

ID(ν) andΦ∗
EH(ν) at each fading

stateν can be obtained by solving Problem (28) withαm’s
given by (31). First, given any policy ofΦID(ν) andΦEH(ν),
Problem (28) reduces to the following problem:

Maximize
p

log



1 +

∑

m∈ΦID

hmp

σ2



+
∑

m∈ΦEH

λhmp− βp

Subject to 0 ≤ p ≤ Ppeak. (32)

It can be shown that the optimal solution to Problem (32) is
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given by

p
∗ =















Ppeak, if
∑

m∈ΦEH

hm ≥
β

λ
,

[

1
β−λ

∑

m∈ΦEH

hm
−

σ2
∑

m∈ΦID

hm

]Ppeak

0

. otherwise

(33)

Therefore, given any antenna partitionsΦID(ν) andΦEH(ν),
the value of (29) can be obtained by (33). Then, the optimal
Φ∗

ID(ν) andΦ∗
EH(ν) can be found by searching over all2M

possible antenna combinations to maximize the resulting value
of (29).

C. Low-Complexity Antenna Switching Algorithm

Although antenna switching reduces the hardware complex-
ity as compared to power splitting for the SIMO system,
its optimal policy by the exhaustive search as shown in the
previous subsection is of exponentially increasing complexity
with the number of receiving antennasM . In this subsection,
we propose a low-complexity algorithm for antenna switching
which only has a polynomial complexity in the order of
O(M2) instead ofO(2M ) by the exhaustive search. Instead
of solving Problems (25) and (28) directly withαm(ν)’s given
in (31), the proposed algorithm first solves the optimal UPS
policy (see Section V-A) by treating the SIMO system as an
equivalent SISO system with one virtual antenna and then
efficiently finds a pair ofΦID(ν) andΦEH(ν) to approximate
the obtained UPS solution as close as possible.

1) The Case Without CSIT:
From Proposition 4.1, it is known that the optimal UPS

policy for the equivalent SISO system (with channel power

gainh(ν) =
M
∑

m=1
hm(ν)) in the case of SIMO system without

CSIT allocates 1
λ∗ − σ2 amount of power to the information

receiver if the total received power
M
∑

m=1
hm(ν)P is larger than

1
λ∗ − σ2; otherwise, all the received power is allocated to the
information receiver (c.f. Fig. 4(a)). Therefore, to approximate
the optimal UPS policy in the case without CSIT, at each
fading state we should find a solution for antenna switching
such that

∑

m∈ΦID(ν)

hm(ν)P is as close to1
λ∗ −σ

2 as possible.

On the other hand, to satisfy the average harvested energy con-
straintQ̄,

∑

m∈ΦID(ν)

hm(ν)P should be no large than1λ∗ −σ2.

Hence, by defining the setT = {h1(ν)P, · · · , hM (ν)P}, our
proposed antenna switching algorithm searches for a subsetof
T that has the sum of elements closest to, but no larger than
1
λ∗ − σ2. This leads to the following problem at each fading
state ofν.

(P3) : Minimize
Υ={α1(ν),··· ,αM (ν)}

1

λ∗
− σ2 −

M
∑

m=1

αm(ν)hm(ν)P

Subject to

M
∑

m=1

αm(ν)hm(ν)P ≤
1

λ∗
− σ2,

αm(ν) ∈ {0, 1}, ∀m.

TABLE I
ALGORITHM TO SOLVE PROBLEM (P3)

1. Check whether
M
∑

m=1
hm(ν)P ≤ 1

λ∗ −σ2. If yes, setΥ = {1, · · · , 1}

and exit the algorithm; otherwise, do the following steps.
2. Given ǫ > 0 and η > 0 to control the algorithm accuracy, and set

S0 = {0}, Υ0,1 = {0, · · · , 0}.
3. For i = 1 : M

a. for j = 1 : |Si−1|

i. Set S̄(j)
i = S

(j)
i−1, S̄

(|Si−1|+j)
i = S

(j)
i−1 + hi(ν)P ;

ii. Set Ῡi,j = Υi−1,j , Ῡi,|Si−1|+j = Υi−1,j , Ῡ(i)
i,|Si−1|+j

=

1;
b. Sort the elements of̄Si in a non-decreasing order; adjustῩi,j ’s

accordingly such that each̄Υi,j indicates the antenna partitions

to achieveS̄(j)
i ;

c. Setn = 1, S(n)
i = {0} andΥi,n = {0, · · · , 0}; do for j = 2 :

|S̄i|

i. if
(

1 + ǫ
2M

)

S
(n)
i

< S̄
(j)
i

≤ 1
λ∗ − σ2 , then setn = n + 1

andS(n)
i = S̄

(j)
i , Υi,n = Ῡi,j .

d. if
1

λ∗ −σ2

1+η
≤ S

(|Si|)
i ≤ 1

λ∗ − σ2 , setΥ = Υi,|Si|
and exit the

algorithm;
4. SetΥ = ΥM,|SM |.

For any setΩ, let |Ω| denote the cardinality ofΩ, and
Ω(n) denote thenth element inΩ. In Table I, we provide
an algorithm to efficiently solve Problem (P3). Note that
in Step 1 of the algorithm, all the received power is allo-
cated to the information receiver, i.e.,Υ = {1, · · · , 1}, if
M
∑

m=1
hm(ν)P ≤ 1

λ∗ −σ2 at a particular fading state. Otherwise,

at theith iteration in Step 3a,̄Si consists of all the possible
values of the total power allocated to the information receiver
if only the first i antennas perform antenna switching while
the remainingM − i antennas allocate all the received power
to the energy receiver, i.e.,αm(ν) = 0, ∀m > i, and
Ῡi,j = {α1(ν), · · · , αM (ν)} denotes the antenna switching
strategy that achieves the valuēS(j)

i . Steps 3b and 3c aim to
eliminate the elements that are close to each other in the set
Si. Finally, the algorithm terminates if the stopping criterion
in Step 3d is satisfied.

Note that in this algorithm, ifǫ is set to zero, then it
becomes the exhaustive search method, which has the same
complexity order as that of the optimal antenna switching
given in Section V-B, i.e.,O(2M ). However, the following
proposition shows that with a small positive numberǫ > 0, the
proposed algorithm in Table I has a guaranteed performance
as well as a polynomial-time complexity.

Proposition 5.1:
1. For anyǫ > 0, the solution obtained by the algorithm in

Table I,Υ = {α1(ν), · · · , αM (ν)}, satisfies

M
∑

m=1
α∗
m(ν)hm(ν)P

1 + ǫ
≤

M
∑

m=1

αm(ν)hm(ν)P

≤
M
∑

m=1

α∗
m(ν)hm(ν)P, (34)
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Fig. 8. R-E regions of power splitting versus antenna switching for the SIMO
system without CSIT.

where{α∗
1(ν), · · · , α

∗
M (ν)} denotes the optimal solution

to Problem (P3).
2. The algorithm in Table I has the worst-case complexity

in the order ofO(M2).

Proof: Please refer to Appendix D.
Proposition 5.1 indicates that (1) the accuracy of the al-

gorithm in Table I can be made arbitrarily high by setting
an appropriate value ofǫ > 0; and (2) this algorithm has
a complexity in the order ofO(M2), which is significantly
lower thanO(2M ) by the exhaustive search.

2) The Case With CSIT:
According to Proposition 4.2, in the case of SIMO system

with CSIT, the optimal UPS policy for the equivalent SISO
system should allocate1λ∗ −σ2 amount of power to the infor-

mation receiver if the total received power
M
∑

m=1
hm(ν)p∗(ν)

with the optimal transmit powerp∗(ν) is larger than 1
λ∗ −σ2.

However, if at any fading state the total received power is less
than 1

λ∗ −σ2, then it should be all allocated to the information
receiver (c.f. Fig. 5 (a) and (b)). Thus, in the case with CSIT,
we can first obtain the optimal transmitter power allocation
p∗(ν) for the equivalent SISO system based on Proposition
4.2, and then find a pair ofΦID(ν) andΦEH(ν) for antenna
switching such that

∑

m∈ΦID(ν)

hm(ν)p∗(ν) is closest to, but

no larger than 1
λ∗ − σ2, similar to the case without CSIT.

Therefore, the algorithm proposed in Table I for Problem
(P3) (with P replaced byp∗(ν) ) can be applied to the case
with CSIT as well to find a low-complexity antenna switching
solution.

D. Numerical Results

In this subsection, we provide numerical results to com-
pare the performance of the following three schemes for the
SIMO system: the optimal DPS in Section V-A, the optimal
antenna switching by exhaustive search in Section V-B, and
the low-complexity antenna switching in Section V-C. For the

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

Ergodic Capacity (bps/Hz)

A
ve

ra
ge

d 
H

ar
ve

st
ed

 P
ow

er
 (

uW
)

R−E region with CSIT

 

 

low−complexity antenna switching: M=5
optimal antenna switching: M=5
optimal power splitting: M=5
low−complexity antenna switching: M=2
optimal antenna switching: M=2
optimal power splitting: M=2
optimal power splitting: M=1

Fig. 9. R-E regions of power splitting versus antenna switching for the SIMO
system with CSIT.

proposed algorithm in Table I, bothǫ andη are set as0.1. All
the parameters for the SIMO setup, e.g.,Ppeak andPavg, are
the same as those in the SISO case for Fig. 3 in Section III.
Furthermore, letg(ν) = [g1(ν), · · · , gM (ν)]T denote the com-
plex channel vector at any fading stateν; then similar to the

SISO case, the channel can be modeled asg(ν) =
√

K
K+1 ĝ+

√

1
K+1 g̃(ν), where ĝ is the LOS deterministic component,

g̃(ν) = [g̃1(ν), · · · , g̃M (ν)]T denotes the Rayleigh fading
component with each elementg̃m(ν) ∼ CN (0,−40dB), and
K is the Rician factor set to be3. Note that for the LOS
component, we use the far-field uniform linear antenna array
model [17] with ĝ = 10−4[1, ejτ , · · · , ej(M−1)τ ]T , whereτ
denotes the difference of the phases between two successive
receive antennas. Here we setτ = −π

2 .
Figs. 8 and 9 compare the achievable R-E regions by the

three considered schemes in the SIMO system without versus
with CSIT. It is observed that as compared to the case of
SISO system withM = 1, a significantly enlarged R-E region
is achieved by using two receiving antennas (M = 2), even
with the low-complexity antenna switching algorithm. It is
also observed that asM increases, the performance of the
optimal antenna switching by the exhaustive search approaches
to that of the optimal UPS. Since antenna switching is a
generalization of time switching for the SISO system to the
SIMO system, this observation is in sharp contrast to that
in Fig. 3 where there exists a significant R-E performance
loss by time switching as compared to power splitting for
the SISO system. More interestingly, asM increases, even
the low-complexity antenna switching algorithm is observed
to perform very closely to the optimal UPS, which suggests
that antenna switching for the SIMO system with a sufficiently
largeM can be an appealing low-complexity implementation
of power splitting in practice.

VI. CONCLUSION

This paper studies simultaneous wireless information and
power transfer (SWIPT) via the approach of dynamic power
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splitting (DPS). Under a point-to-point flat-fading SISO chan-
nel setup, we show the optimal power splitting rule at the
receiver based on the CSI to optimize the rate-energy per-
formance trade-off. When the CSI is also known at the
transmitter, the jointly optimized transmitter power control
and receiver power splitting is derived. The performance of
the proposed DPS in the SISO fading channel is compared
with that of the existing time switching as well as a perfor-
mance upper bound obtained by ignoring the practical circuit
limitation. Furthermore, we extend the DPS scheme to the
SIMO system with multiple receiving antennas and show that
a uniform power splitting (UPS) scheme is optimal. We also
investigate the practical antenna switching scheme and propose
a low-complexity algorithm for it, which can be efficiently
implemented to achieve the R-E performance more closely
to the optimal UPS as the number of receiving antennas
increases.

APPENDIX

A. Proof of Lemma 3.1

We consider an infinitesimal interval{h(ν)|ĥ ≤ h(ν) ≤
ĥ+∆h}, where∆ → 0. Since this interval is infinitesimal, we
can assume that the value ofh(ν) is constant over this interval,
i.e., h(ν) = ĥ. Moreover,fν(h) is also a constant denoted
by fν(ĥ) since it is assumed to be a continuous function.
As a result, given the constraint pair(Q̄a, P a

avg), the optimal
solution can be assumed to be constant within this interval,
i.e., αa(ν) = α̂a andpa(ν) = p̂a, because the same Karush-
Kuhu-Tucker (KKT) conditions hold in the interval. Similarly,
given the constraint pair(Q̄b, P b

avg), it follows thatαa(ν) = α̂b

and pa(ν) = p̂b over this interval. Next, we construct a new
solution for Problem (P2) as follows. We divide the interval
into two sub-intervals, which have the solutionαc(ν) = α̂a

and pc(ν) = p̂a corresponding toθ portion of the interval,
andαc(ν) = α̂b andpc(ν) = p̂b for the other1 − θ portion,
respectively. It then follows that the average harvested energy
in this interval with the new solution is

∆Qc =(1 − α̂a)ĥp̂afν(ĥ)× θ∆h

+ (1− α̂b)ĥp̂bfν(ĥ)× (1− θ)∆h.

As a result, the average harvested energy over all the fading
states can be expressed as

Eν [Q
c(ν)] =

∫

∆Qcdν = θQa + (1− θ)Qb

≥ θQ̄a + (1 − θ)Q̄b,

where Qγ = Eν [(1 − αγ(ν))h(ν)pγ(ν)] with γ ∈
{a, b} denotes the average harvested energy by the solution
{pγ(ν), αγ(ν)}. Similarly, it can be shown that with the new
solution, Eν [r

c(ν)] ≥ θEν [r
a(ν)] + (1 − θ)Eν [r

b(ν)] and
Eν [p

c(ν)] ≤ θP a
avg + (1 − θ)P b

avg can be satisfied. Lemma
3.1 is thus proved.

B. Proof of Proposition 4.1

The derivative ofLw/o CSIT
ν (α) in (13) with respect toα

can be expressed as

∂L
w/o CSIT
ν (α)

∂α
=

hP

αhP + σ2
− λhP. (35)

Since0 ≤ α ≤ 1, it follows that

hP

hP + σ2
− λhP ≤

∂L
w/o CSIT
ν (α)

∂α
≤
hP

σ2
− λhP. (36)

If hP
hP+σ2 − λhP ≥ 0, i.e., h ≤ 1

λP − σ2

P , then
∂Lw/o CSIT

ν (α)
∂α ≥ 0 for all 0 ≤ α ≤ 1. Thus the optimal

solution to Problem (12) isα∗ = 1. Otherwise, if h >
1
λP − σ2

P , the maximum ofLw/o CSIT
ν (α) is achieved when

∂Lw/o CSIT
ν (α)

∂α = 0, i.e., α∗ = 1
λhP − σ2

hP . Proposition 4.1 is
thus proved.

C. Proof of Proposition 4.2

The derivative ofLwith CSIT
ν (p, α) given in (17) with re-

spect toα can be expressed as

∂Lwith CSIT
ν (p, α)

∂α
=

hp

αhp+ σ2
− λhp. (37)

For any givenp ∈ [0, Ppeak], since0 ≤ α ≤ 1, it follows that

hp

hp+ σ2
− λhp ≤

∂Lwith CSIT
ν (p, α)

∂α
≤
hp

σ2
− λhp. (38)

It can be shown that ifλ ≥ 1
σ2 , it follows that

∂Lwith CSIT
ν (p,α)

∂α ≤ 0, ∀p. In this case, for all the fading states
we haveα∗ = 0, which implies that Problem (16) is not
feasible. As a result, in the following we only consider the
case ofλ < 1

σ2 .
DefineS1 andS2 as follows:

S1 =

{

p

∣

∣

∣

∣

hp

hp+ σ2
− λhp ≥ 0, 0 ≤ p ≤ Ppeak

}

, (39)

S2 =

{

p

∣

∣

∣

∣

hp

hp+ σ2
− λhp < 0, 0 ≤ p ≤ Ppeak

}

. (40)

To be specific, if 1
λh − σ2

h ≤ Ppeak, i.e., h ≥ 1
λPpeak

− σ2

Ppeak
,

it follows that

S1 =

{

p

∣

∣

∣

∣

0 ≤ p ≤
1

λh
−
σ2

h

}

, (41)

S2 =

{

p

∣

∣

∣

∣

1

λh
−
σ2

h
< p ≤ Ppeak

}

. (42)

Otherwise, we have

S1 =

{

p

∣

∣

∣

∣

0 ≤ p ≤ Ppeak

}

, (43)

S2 = ∅. (44)

It can be shown that ifp ∈ S1, then

∂Lwith CSIT
ν (p, α)

∂α
≥

hp

hp+ σ2
− λhp ≥ 0, ∀α. (45)
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In this case,Lwith CSIT
ν (p, α) is a monotonically increasing

function of α, and thus the optimal power splitting ratio is
α∗ = 1. If p ∈ S2, then we have

∂Lwith CSIT
ν (p, α)

∂α
= 0 ⇒ α∗ =

1

λhp
−
σ2

hp
. (46)

To summarize, we have

Lwith CSIT
ν (p, α∗)

=

{

log
(

1 + hp
σ2

)

− βp, if p ∈ S1,

log 1
λσ2 + λhp− βp+ λσ2 − 1, if p ∈ S2.

(47)

To find the optimal power allocationp∗ given any channel
power h, we need to compare the optimal values of the
following two subproblems.

(P2.1) : Maximize
p

log

(

1 +
hp

σ2

)

− βp

Subject to p ∈ S1,

(P2.2) : Maximize
p

log
1

λσ2
+ λhp− βp+ λσ2 − 1

Subject to p ∈ S2.

Since the expressions ofS1 andS2 depend on the relationship
betweenh and 1

λPpeak
− σ2

Ppeak
, in the following we solve

Problems (P2.1) and (P2.2) in two different cases.

1) Case I: h ≥ 1
λPpeak

− σ2

Ppeak

In this case,S1 and S2 are expressed in (41) and (42),
respectively. Then the optimal solution to Problem (P2.1) can
be expressed as

p =







1
λh − σ2

h , if h ≥ ψ,
(

1
β − σ2

h

)+

, if 1
λPpeak

− σ2

Ppeak
≤ h < ψ,

(48)

whereψ = max{β
λ ,

1
λPpeak

− σ2

Ppeak
}, and(x)+ = max{0, x}.

Furthermore, the optimal solution to Problem (P2.2) can be
obtained as

p =

{

Ppeak, if h ≥ ψ,
1
λh − σ2

h , if 1
λPpeak

− σ2

Ppeak
≤ h < ψ.

(49)

Since the expressions of (48) and (49) depend on the
relationship betweenβλ and 1

λPpeak
− σ2

Ppeak
, in the following

we further discuss two subcases.

• Subcase I-i: 1
λPpeak

− σ2

Ppeak
≤ β

λ

In this subcase,ψ = β
λ . It can be observed from (48) and

(49) that if ψ = β
λ , the optimal power solution to Problem

(P2.1) is 1
λh −

σ2

h , 1
β −

σ2

h or 0, while that to Problem (P2.2) is

Ppeak or 1
λh−

σ2

h , depending on the value ofh. Therefore, three
cases exist when 1

λPpeak
− σ2

Ppeak
≤ β

λ , discussed as follows.

The first case ish ≥ β
λ , for which the difference between the

optimal values of Problems (P2.1) and (P2.2) can be expressed

as

d1 =

[

log

(

1 +
hp

σ2

)

− βp

] ∣

∣

∣

∣

p= 1
λh− σ2

h

−

[

log
1

λσ2
+ λhp− βp+ λσ2 − 1

] ∣

∣

∣

∣

p=Ppeak

=

(

log
1

λσ2
−

β

λh
+
βσ2

h

)

−

(

log
1

λσ2
+ λhPpeak − βPpeak + λσ2 − 1

)

=(λh− β)

(

1

λh
−
σ2

h
− Ppeak

)

< 0. (50)

Therefore, ifh ≥ β
λ , the optimal value of Problem (P2.2) is

always larger than that of Problem (P2.1), and the optimal
solution to Problem (16) isp∗ = Ppeak andα∗ = 1

λhPpeak
−

σ2

hPpeak
.

The second case ismax( 1
λPpeak

− σ2

Ppeak
, βσ2) ≤ h < β

λ , for
which the difference between the optimal values of Problems
(P2.1) and (P2.2) can be expressed as

d2 =

[

log

(

1 +
hp

σ2

)

− βp

] ∣

∣

∣

∣

p= 1
β− σ2

h

−

[

log
1

λσ2
+ λhp− βp+ λσ2 − 1

] ∣

∣

∣

∣

p= 1
λh− σ2

h

=

(

log
h

βσ2
− 1 +

βσ2

h

)

−

(

log
1

λσ2
−

β

λh
+
βσ2

h

)

= log
λh

β
+

β

λh
− 1. (51)

It can be shown that the functionf(x) = log x + 1
x − 1

is a monotonically decreasing function in the interval(0, 1].
Moreover,λhβ < 1. It then follows that

d2 =

[

log x+
1

x
− 1

] ∣

∣

∣

∣

x=λh
β

>

[

log x+
1

x
− 1

] ∣

∣

∣

∣

x=1

= 0.

(52)

Thus, for this case the optimal value of Problem (P2.1) is
always larger than that of Problem (P2.2), and the optimal
solution to Problem (16) isp∗ = 1

β − σ2

h andα∗ = 1.

The third case is 1
λPpeak

− σ2

Ppeak
≤ h < βσ2 (if 1

λPpeak
−

σ2

Ppeak
< βσ2), for which the difference between the optimal

values of Problems (P2.1) and (P2.2) can be expressed as

d3 =

[

log

(

1 +
hp

σ2

)

− βp

] ∣

∣

∣

∣

p=0

−

[

log
1

λσ2
+ λhp− βp+ λσ2 − 1

] ∣

∣

∣

∣

p= 1
λh− σ2

h

=−

(

log
1

λσ2
−

β

λh
+
βσ2

h

)

(a)

≥ −

(

log
1

λσ2
−

1

λσ2
+ 1

)

(b)

≥0, (53)
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where (a) is due to the fact that the function on the left
hand side is a decreasing function in the interval ofh ∈
[ 1
λPpeak

− σ2

Ppeak
, βσ2) if λ < 1

σ2 , while (b) is due to that
f(x) = − log x + x − 1 is an increasing function ifx ≥ 1,
and thusf(x = 1

λσ2 ) ≥ f(x = 1) = 0. As a result, for this
case the optimal value of Problem (P2.1) is larger than that of
Problem (P2.2), and the optimal solution to Problem (16) is
thusp∗ = 0, α∗ = 1.

• Subcase I-ii: 1
λPpeak

− σ2

Ppeak
> β

λ

In this subcase,ψ = 1
λPpeak

− σ2

Ppeak
. It can be observed from

(48) and (49) that ifψ = 1
λPpeak

− σ2

Ppeak
, the optimal power

solution to Problem (P2.1) is1λh − σ2

h , and that to Problem
(P2.2) isPpeak, and the difference between the optimal values
of Problems (P2.1) and (P2.2) can be expressed as (50). Thus,
if 1

λPpeak
− σ2

Ppeak
> β

λ , the optimal solution to Problem (16)

is given byp∗ = Ppeak andα∗ = 1
λhPpeak

− σ2

hPpeak
.

2) Case II: h < 1
λPpeak

− σ2

Ppeak

In this case,S1 and S2 are expressed in (43) and (44),
respectively. SinceS2 = ∅, the optimal power splitting
ratio to Problem (16) isα∗ = 1. Moreover, the optimal
power allocation is only determined by Problem (P2.1), which

can be expressed asp∗ =
[

1
β − σ2

h

]Ppeak

0
, where [x]ba =

max(min(x, b), a).
By combining the above results, Proposition 4.2 is thus

proved.

D. Proof of Proposition 5.1

It is observed in Table I that at any iterationi, if any element
in Si does not exceed its previous element by a ratio ofǫ

2M , it
will not be included in the same set. As a result, each iteration
introduces a multiplicative error factor of at mostǫ2M . In the
worst case, it is then guaranteed that

M
∑

m=1
α∗
m(ν)hm(ν)P

M
∑

m=1
αm(ν)hm(ν)P

≤
(

1 +
ǫ

2M

)M

≤ 1 + ǫ. (54)

The first part of Proposition 5.1 is thus proved.
Next, at each iterationi, let smin

i denote the smallest positive
element in the setSi. Since each element inSi is at least ǫ

2M
times larger than its previous element, it follows that

smin
i

(

1 +
ǫ

2M

)|Si|−2

≤
1

λ∗
− σ2. (55)

In other words, by definingτi =
1
λ∗ −σ2

smin
i

, then at each iteration
i, the size ofSi must satisfy

|Si| ≤ 2 + log(1+ ǫ
2M ) τi

= 2 +
log τi

log
(

1 + ǫ
2M

)

(a)

≤ 2 +
4M log τi

ǫ
, (56)

where(a) is due tof(x) = log(1 + x) − x
2 > 0 when 0 <

x ≤ 1, andx = ǫ
2M ≪ 1.

It is observed from (56) that all the setsSi’s with 1 ≤ i ≤
M have their sizes linearly growing withM ; thus, since in
Table I the algorithm has at mostM iterations, its complexity
is in the order ofO(M2) for the worst case. The second part
of Proposition 5.1 is thus proved.

REFERENCES

[1] L. R. Varshney, “Transporting information and energy simultaneously,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1612-1616, July 2008.

[2] P. Grover and A. Sahai, “Shannon meets Tesla: wireless information and
power transfer,” inProc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 2363-
2367, June 2010.

[3] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless
information and power transfer,” inProc. IEEE Global Commun. Conf.
(GLOBECOM), Houston, Dec. 2011.

[4] X. Zhou, R. Zhang, and C. Ho, “Wireless information and power transfer:
architecture design and rate-energy tradeoff,” inProc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2012.

[5] L. Liu, R. Zhang, and K. C. Chua, “Wireless information transfer with
opportunistic energy harvesting,”IEEE Trans. Wireless Commun., vol. 12,
no. 1, pp. 288-300, Jan. 2013.

[6] L. H. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic
considerations for cellular mobile radio,”IEEE Trans. Veh. Technol., vol.
43 no. 2, pp. 359-378, 1994.

[7] G. Caire, G. Taricco, and E. Biglieri, “Optimal power control over fading
channels,”IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1468-1489, Jul.
1999.

[8] Y. Wu, Y. Liu, Q. Xue, S. Li, and C. Yu, “Analytical design method of
multiway dual-band planar power dividers with arbitrary power division,”
IEEE Trans. Microwave Theory and Techniques, vol. 58, no. 12, pp. 3832-
3841, Dec. 2010.

[9] Product Datasheet, 11667A Power Splitter, Agilent Technologies.
[10] T. Paing, J. Shin, R. Zane, and Z. Popovic, “Resistor emulation approach

to low-power RF energy harvesting,”IEEE Trans. Power Electronics, vol.
23, no. 3, pp. 1494-1501, May 2008.

[11] E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fadingchannels:
information-theoretic and communications aspects,”IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2619-2692, Oct. 1998.

[12] G. Caire and S. Shamai (Shitz), “On the capacity of some channels with
channel state information,”IEEE Trans. Inf. Theory, vol. 45, no. 6, pp.
2007-2019, Sep. 1999.

[13] A. Goldsmith and P. P. Varaiya, “Capacity of fading channels with
channel side information,”IEEE Trans. Inf. Theory, vol. 43, no. 6, pp.
1986-1992, Nov. 1997.

[14] M. Khojastepour and B. Aazhang, “The capacity of average and peak
power constrained fading channels with channel side information,” in
Proc. IEEE Wireless Commun. Networking Conf., Mar. 2004, vol. 1, pp.
77-82.

[15] W. Yu and R. Lui, “Dual methods for nonconvex spectrum optimization
of multicarrier systems,”IEEE Trans. Commun., vol. 54, no. 7, pp. 1310-
1322, July 2006.

[16] S. Boyd and L. Vandenberghe,Convex Optimization, Cambidge Univ.
Press, 2004.

[17] E. Karipidis, N. D. Sidiropoulos, and Z. Q. Luo, “Far-field multicast
beamforming for uniform linear antenna arrays,”IEEE Trans. Signal
Process., vol. 55, no. 10, pp. 4916-4927, Oct. 2007.


	I Introduction
	II System Model
	III Rate and Energy Trade-off in the SISO Fading Channel
	IV Optimal Policy for the SISO Fading Channel
	IV-A The Case Without CSIT
	IV-B The Case With CSIT
	IV-C Performance Upper Bound

	V Extension and Application: Dynamic Power Splitting for the SIMO Fading Channel
	V-A Optimal Power Splitting
	V-A1 The Case Without CSIT
	V-A2 The Case With CSIT

	V-B Antenna Switching
	V-B1 The Case Without CSIT
	V-B2 The Case With CSIT

	V-C Low-Complexity Antenna Switching Algorithm
	V-C1 The Case Without CSIT
	V-C2 The Case With CSIT

	V-D Numerical Results

	VI Conclusion
	Appendix
	A Proof of Lemma ??
	B Proof of Proposition ??
	C Proof of Proposition ??
	D Proof of Proposition ??

	References

