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Abstract

Various wireless sensor network applications involve thmpgutation of a pre-defined function of
the measurements without the need for reconstructing eaividual sensor reading. Widely-considered
examples of such functions include the arithmetic mean hadrtaximum value. Standard approaches
to the computation problem separate computation from comication: quantized sensor readings are
transmitted interference-free to a fusion center thatmetacts each sensor reading and subsequently
computes the sought function value. Such separation-bamagutation schemes are generally highly
inefficient as a complete reconstruction of individual sen®adings is not necessary for the fusion
center to compute a function of them. In particular, if thetmematical structure of the wireless channel
is suitably matched (in some sense) to the function, themrelacollisions induced by concurrent
transmissions of different nodes can be beneficially exgdidior computation purposes. Therefore, in this
paper a practically relevant analog computation schemmjsgsed that allows for an efficient estimate of
linear and nonlinear functions over the wireless multiabeess channel. After analyzing the asymptotic
properties of the estimation error, numerical simulatians presented to show the potential for huge

performance gains when compared with time-division mldtgccess based computation schemes.
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I. INTRODUCTION

In contrast to traditional wireless networks, wirelessseemetworks are deployed to perform
various application tasks such as environmental mongosindisaster alarm. Indeed, rather than
transmitting and reconstructing the data of each individeasor node, wireless sensor network
applications often involve the computation of some preraefifunction of these data (called
sensor readings), which includes the arithmetic mean, tAgimum or minimum value, and
different polynomials[[1]. In this paper, we address thebpgm of computing functions over
a wireless Multiple-Access Channel (MAC) with a fixed numbérsensor nodes and a single
receiver that is referred to as the fusion center. A standppdoach to this computational problem
widely used in contemporary sensor networks is to let eaclsmenode transmiseparatelya
guantized version of its sensor reading to the fusion ceages stream of information-bearing
symbols. The data rate at which each sensor node transnch®$en such that the fusion center
can reconstruct each (quantized) sensor reading peri@etigubsequentlgomputes the sought
function. The data transmission and the function comparatire therefore completely disjoint
processes. Moreover, in order to perfectly reconstruch eansor reading, orthogonal medium
access protocols such as Time-Division Multiple AccessNIA) are typically used for the data
transmission to establish interference-free connecti@teeen each sensor node and the fusion
center by avoiding the interference from other transmissio

Separation-based medium access protocols are in genghdy Buboptimal when for instance
maximizing computation throughput defined as the rate atlhvhuantized sensor readings are
reconstructed at the fusion center subject to some comumtimncconstraints. In particular, the
information-theoretic result of [2] suggest that the sppsition property of the wireless channel
can be beneficially exploited if the MAC mmatchedin some mathematical sense to a function
being computed. The approach, which is knownCasnputation over MAC (CoMACYan be
seen as a method for merging the processes of data tranemasil function computation by
exploiting channel collisions induced by a concurrent ascef different nodes to a common
channel. An immediate consequence of this approach is a&hgmputation throughput, and

with it a reduced latency or lower bandwidth requirements.

The analysis in[]2] also shows that in COMAC scenarios, codis a certain algebraic

structure may outperform random codes. One such an examaplbecfound in[[3] (see alsol[2])
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where a receiver aims at decoding the parity of two deperuleaty messages. The code design
is in this case driven by an application which is the modwo-sum computation, and therefore
the example lifts a strict separation between computatimh @@mmunication. The research
on structured codes is however still in its infancy, with gomork on codes for computing
functions that naturally match the mathematical structfréhe underlying channel. Note that
due to the superposition property of the wireless chanhelvtireless MAC can be seen as a
summation-type linear operator mapping the input spacbeceét of complex-valued numbers.
Hence functions naturally matched to this channel are fifigactions that constitute only one
class of functions of interest in practice.

In light of practical constraints, a serious drawback ofittiermation-theoretic approach inl[2]
and other related results (see also Sedtion I-A) is the BitElssumption that if two symbols are
put on the channel input, then the corresponding decoderadsthe sum of these inputs. Obvi-
ously, this is satisfied in additive white Gaussian channétls users perfectly synchronized on
the symbol and phase level. In practical wireless sensavarks, however, it may be extremely
difficult and expensive in terms of resources to ensure supbrfect synchronization. Hence,
even if structured codes were available, the question mesdanow to exploit the superposition
property of the wireless channel in the presence of prddtiggairments.

In this paper, we propose and analyze a nhovel COMAC schemeiffeless sensor applications
that requires only @oarse block-synchronizatipand therefore it is robust against synchroniza-
tion errors. It is a a simple analog joint source-channel matation scheme, in which

1) each sensor node encodes its message (sensor readihg)gower of a series of random

signal pulses, and

2) the receiver estimates the function value from the reckpower.
Another crucial advantage of the proposed analog computatheme is its ability to reliably
and efficiently estimate non-linear functions of sensodiegs. We achieve suchon-linear
computational capabilitie®y letting each sensor node pre-process its sensor reagimaysto
transmission, followed by a receiver-side post-procegsirthe received signal, which is a noise-
corrupted weighted sum of the pre-processed sensor reattiom different sensor nodes. The
pre-processing functions and the post-processing fum@ie to be chosen so as to match the
wireless channel with its superposition property to a fiomcthat we intend to evaluate at the

sensor readings. The weights are due to the impact of thedachannel, which needs to be
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compensated in practical systems.

A. Related Work

In the context of sensor networks, viewed as a collectionistfiduted computation devices,
Giridhar and Kumar took the first steps towards a theory-dbasamework forin-network
computationwith the aim of characterizing efficient application-sgieccomputation strategies
[1]. The work is however focused on complexity and protocgpects and does not explicitly
take into account the properties of wireless communicati@nnels. A similar holds true fori[4],
[5], the information theoretical considerations lin [6] didl as well as for[[8], which is mainly
devoted to wired networks. In contrast, harnessing thei@kptructure of the channel for reliable
function computations was first thoroughly analyzedlinh [dihwan emphasis on information
theoretical insights, whereas computations over noisdiesar channels are considered!in [9].

Function computation in sensor networks is a fundamentdtibg block of gossip and
consensus algorithms, a form of distributed in-networlagabcessing aiming at achieving some
network-wide objectives based on local computations. Sugbrithms, which compute a global
function of sensor readings and distribute the functioue@alamong the nodes, have attracted
a great deal of attention (see [10]-[12] and referenceseimerMost gossip and consensus
protocols, however, require interference free transminssbetween adjacent nodes, except for
the recent work in[[13]+[16], where it was shown that the sppsition property of the wireless
channel can be advantageously exploited to accelerateegance speeds.

In [17], an analog joint source-channel communication sehaevas proposed to exploit
the superposition property of the Gaussian MAC for the ogliestimation of some desired
parameter from a collection of noisy sensor readings. Th@ogeh outperforms comparable
digital approaches based on the standard separation dasigiple between source and channel
coding, as proposed by Shannon in his landmark paper [18knSions of the analog joint
source-channel scheme to more general estimation probfemiseless networks can be found
in [19]-[22], whereas References [23]-[26] are devotechdetection counterparts.

Finally, we point out that the basic idea physical-layer network coding to exploit the
superposition property of the wireless channel as welleéuf] in contrast to the traditional
network coding principle applied across the packets on #tevark layer, the physical-layer

network coding generates linear codewords immediateljhemiireless channel by superimpos-
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ing electromagnetic waves from different, concurrenthnmitting and perfectly synchronized
nodes [[27]-+[209].

B. Paper Organization

Sectiorn ]l introduces the system model, formulates thelproland provides definitions used
in this paper. In Sectiob_lll, we present a novel analog CoMggbeme for estimating linear
and non-linear functions of sensor readings and study thma&son error under the proposed
scheme in Sectiop IV. This analysis is used to define apmtgpestimators for two function
examples of great practical importance: the arithmeticrmeead the geometric mean. Numerical
examples in SectionlV illustrate the performance of the psed CoMAC scheme and compares
it with a TDMA-based computation scheme to show the potéftlahuge performance gains

under different network parameters. Finally, Secfioh Vih@ades the papér.

II. DEFINITIONS, SYSTEM MODEL AND PROBLEM STATEMENT

Throughout the paper, all random elements are defined ovappropriate probability space
(12, A, P), with sample spac€, o-Algebra.A of subsets of? and probability measur on A.
It is assumed that all functions of random variables andhstsiic processes are Borel functions
to ensure that all resulting random elements are well defined

We consider a wireless sensor network consistingkofe IN spatially distributed single-
antenna sensor nodes and one designated single-antenpna Benter (FC). Without loss of
generality (w.l.o.g.) it is assumed that thenodes are identical and we uke= {1,..., K} to
denote the set of all sensor nodes (numbered in an arbitrder)o Basically the sensor nodes
have the task to jointly observe a certain physical phenamdge.g., temperature, pressure,
humidity, acceleration, illumination) and subsequentgnsmit their suitably encoded sensor

readings to the FC. We model the sensor readings as timeetiig¢-valued stochastic processes

INotation: Random variables are denoted with uppercase letters, manéators by bold uppercase letters, realizations by
lowercase letters and vector valued realizations by boletoase letters, respectively. The sets of natural, nativeginteger,
real, nonnegative real, positive real, and complex numbersienoted bW, Z ., R, R+, R4+, C. The distributions of normally
distributed real and proper complex random elements areteeérby AV (-,-) and Nc(-,-). LN(-,-) denotes the log-normal
distribution andy?2 the Chi-square distribution with degrees of freedom, respectively. The error function amdrdunction
compliment are described yf(-) anderfc(-). 15(z) denotes the indicator function on g8t The imaginary unit is denoted

by i and hence? = —1.
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X 2xXT = X, (w,t) = Xilw, t], k € K, whereX = [znin, Tmax] fOr some givenrmin < Tmax

is the underlying compact state space gnds an at most countable set of increasingly ordered
real-valued measurement tin%\%\lithout loss of generality let us assume thatC S C R, where

S = [Smin, Smax» Smin < Smax IS Called thesensing rangewhich is the hardware-dependent range
in which the sensor elements are able to quantify valuesllliit is assumed that the joint
probability densitypx : X% x T — Ry, px(z;t) = px,. xx(T1,...,2x;t) € Co(XK), of
sensor readingX[t] .= (Xi[t],..., Xk[t])T exists, withCy(B), B C R", being the space of

real-valued compactly supported continuous functions @e

A. Wireless Multiple-Access Channel

The main contribution of this paper is a novel coding schehw efficiently utilizes the
superposition property of the Wireless Multiple-Accesafiel (W-MAC) to compute functions
of sensor readings. The W-MAC is defined as follows.

Definition 1 (W-MAC): For any transmission time € Z., the W-MAC is a map fromC¥

into C defined to be
(Walr], ..., Wklr]) — Z Hy[r]|Wy[r] + N[r] = Yr] . (1)

k=1

Here and hereafter

« Wilr] € C, k € K, is the transmit signal of nodé with V7 : |[W,[7]|*? < Pnax Where
Prnax > 0 is the peak power constraint on each node,

« H.[7], k € K, is an independent complex-valued flat fading process leetwleek™ sensor
node and the FC and

« NJr] is an independent complex-valued receiver noise process.

Note thatlV[7] depends on thé" sensor reading(,[t] € X at any measurement tintec 7.
If Hy[r] =1 and N[r] =0, the W-MAC takes the form

K
(Wilr), .., Wlr]) — Y Wilr], )
k=1
which is referred to as theleal W-MAC

2Throughout the paper we skip the explicit designation ofneletary events, € £2 in the formulation of stochastic processes

and write for exampleXy[t] instead of Xy |w, t].
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Remark 1: The W-MAC is a symbol-synchronous channel similar to thed#ad synchronous
Code-Division Multiple-Access (CDMA) channel studied fostance in[[30],[[31]. We would
like to emphasize, however, that the computation schem@ogeal in this paper does not require
such a synchronous channel and the only reason for assurenfigcp synchronization is to
simplify the error analysis in Sectidn IV and the notationotighout the paper.

B. Pre-processing and Post-processing Functions

As already mentioned, the objective is not to transmit eaelsar reading via the W-MAC but
rather to compute a function of these readings at the fussatec. Throughout the paper, we use
f to denote the function of interest and refer to this funcesrnthedesired functionObviously,
given a realization ofX [t] at measurement time instante 7, we havef : X% — R, with
fzaft], ..., 2k[t]) = (fox)[t] = f(=[t]), where f(z[t]) is the function value which the FC
attempts to extract from the corresponding observed recggnal.

The basic idea behind the scheme for an efficient computafiaesired functions proposed
in this paper is to exploit the broadcast property of the W®1# allow the FC to observe
a superposition of signals transmitted by the sensors. A ktoEgs. [(1) and[{2) shows that
the basic mathematical operation which can be naturallfjopeed by the W-MAC on the
sensor readings iaddition In other words, if all sensors send their readings simelasly
over the same frequency band, then the FC would receive ehteeigum of the sensor readings
corrupted by background noiBeNow the reader may be inclined to think that such an approach
is inherently confined for computing affine functions, whichfact is true if no additional
signal processing is carried out at the transmitters andrebeiver. In this paper, in order to
overcome the restriction to affine functions, we propose édgom some pre-processing and
post-processing at the sensor nodes and the FC, respgciieekthis end, we introduce the
following two definitions.

Definition 2 (Pre-processing Function)Ve definep;, : X — R, ¢ € Co(X), with ¢ (zx[t]) =
(o o x1)[t], to be a pre-processing function of nokles K.

Definition 3 (Post-processing Functionhe continuous injective functiof® : R — R with

3In the case of an ideal W-MAC, the FC would observe the ungbedi sum of sensor readings.
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8 SUBMITTED TO IEEE TRANSACTIONS ON COMMUNICATIONS

Fig. 1. Block diagram of the overall channel, which is mattkethe desired function. The match results from the transition
of the W-MAC by the pre-processing functiofg: (z1[t]), ..., ¢x (zx[t]))"T = @(x[t]) and the post-processing functiah
respectively, which depend on the desired functfon

¢ (|y[7][?), wherey[r] given by [1) is said to be a post-processing funcBon.

In order to illustrate the above definitions, it is reasoraiol consider an ideal W-MAC, in
which case the objective of the pre- and post-processingtifurs is to transform the ideal W-
MAC in such a way that the resulting overall channel mappignfX' X into R is equal to the

desired function. Thereforey,, k € K, and¢ are to be chosen so that

fla, o ak) = @b(ZkeK @k(%)) 7 3)

wherew[r] = pr(xy) is the transmit signal of node € K at time .

C. Functions Computable via Wireless Multiple-Access Qleén

Figure[1 illustrates the functional principle of tlmalog computatiorscheme proposed in
Sectiorll, which is referred to as the CoMAC scheme in wiadibfvs. Consequently, the space
of all functionsF (X %) C Cy(X*) that can be computed using the analog CoMAC scheme under
the assumption of an ideal W-MAC is given by

FX =Lt s R @) = o>, ewlw) - (4)

The space of all affine functions is clearly a subseF¢f' ), because any affine function can be
computed if the pre- and post-processing functionsafe) = vz, k € K, andy(y) = ay + b,
for some(vy, ..., vk) € R¥ anda, b € R. With an appropriate choice of the parameters, we can

therefore compute any weighted sum and, in particular atithmetic mearnwhich is of great

“The restriction to a class of post-processing functions thke the squared absolute value of the W-MAC output as an
argument is necessary because of the analog computati@mecproposed in Sectidillll. In general, the post-procgssin

function can be defined on the set of complex numbers.
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interest in practice. Moreover, we can easily determinentimaber of active nodes in a network
by letting them simultaneously transmit some constantevalt- 0 and then post-process the
received signal by means of(y) = 1y.

Now the following two questions arise immediately:

i) Is the set of all affine functions proper subset ofF (X %)?

i) What is exactly the function spacg(X*) and how can its elements be computed?

In other words, the first question is one of whether functiotier than affine ones are members
of F(X¥) and therefore are computable using a COMAC scheme? The mnsvebviously
positive as we can easily compute tbeometric mearof some positive sensor readings by
choosingy,(z) = log,(z),a > 1,z > 0, for eachk € K and ¢(y) = ax¥. Indeed, with
this choice of functions, we havé(xz) = ¢ (>, wr(@r)) = (I, z;)%, where the sensor
readings are positive so that< xn,, < x, for eachk € K. The second question in contrast is
not so easy to answer. Widely considered in wireless seretaronk applications is for instance
the maximunof sensor reading$(x) = maxc xx. It is, however, not clear how to compute the
maximum function using a CoMAC scheme. On the positive dtde maximum function can be
arbitrarily closely approximated by a sequence of funaionF(X%). Indeed, it is well-known
that lim,_,o. ||2], = f(x) = maxgex 24, Wherel|z|l, = (K, 29)s € F(XE), 2, > 0,k € K,
and the norms can be computed wherix) = z¢, for all k € K, andy(y) = y%.

Recently, it was shown that in fact f@very multivariate function there exist pre- and post-
processing functions such that they can be representedeiriotin (3) [32], [33]. The main
difficulty, however, lies in a constructive characteripatiof F(X%) to determine the pre-
and post-processing functions for computing arbitrary foers of this space. Since an exact
constructive characterization dfl (4) is beyond the scopéhisf paper, we devote our attention
to the problem of computing some functions in a robust andtjpally relevant manner by

exploiting the natural computational capabilities of theMMC.

[1l. ANALOG FUNCTION COMPUTATION VIA WIRELESSMULTIPLE-ACCESSCHANNELS

Recent results in sensor network signal processing irglittzt for many wireless sensor
network applications, an analog joint source-channel camaoation architecture can be superior
to widely-spread separation-based digital approachef [34s is in particular true when the

processes of sensing, computation and data transmisseohiginly interdependent in which
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10 SUBMITTED TO IEEE TRANSACTIONS ON COMMUNICATIONS

case they should be jointly considered. In order to exploé interdependencies by merging
the processes of computation and communication, traditianalog coding schemes require a
receiver-side constructive superposition of the transigials from different sensor nodes in the
sense of[(1)[[17],[[20]. However, such a perfect synchrditnaat the symbol and phase level
is notoriously difficult to realize in wireless networks amdparticular in large-scale wireless
sensor networks [35].

Therefore, in this paper, we propose an analog computatbanse that tolerates eoarse
block-synchronizatioat the FC, which is by far easier to establish and maintain tha perfect
synchronization required by traditional approaches. Tasididea of the scheme consists in
letting each sensor node transmit a distinct sequence oplearmumbers of length/ € IN
at atransmit energythat depends on the pre-processed sensor readings. Undercemditions
and a suitable pre-processing strategy, the received erarghe FC equals the sum of all
the transmit energies corrupted by the background noise.cblarse block-synchronization is
needed to ensure a sufficiently large overlap of differeghai frames as illustrated in Fig.
[2. An application of an appropriately chosen post-procgs$iinction at the receiver together
with some simple arithmetic calculations (to ensure cerégtimation properties) yields then an

estimate of the desired function of the sensor readings.

A. Computation Transmitter

1) Data Pre-processingAs each pre-processed sensor reading is to be encoded amitan
energy only, it is necessary to apply a suitable bijectivetiooious mapping.,, : [¢min, Pmax] —
[0, Pmax] from the set of all pre-processed sensor readings onto thef sl feasible transmit
powers, Withgmin, = mingex infies 0p(2), Ymax = Maxgex SUP,es ¥k(z) and Pnax being the
transmit power constraint on each node (see Definltion 1}eNuwat the mapping depends on
the pre-processing functions and the sensing range andepémdent of;, as the FC does not
have access to each individual transmit signal but only ®\WAMAC output given by[(l1). We
call the quantity

Pilt] = g, (0r(Xilt])) (5)
transmit power of nodé, and point out that it is a random variable whene¥gft| is random.

Moreover, we have,[t| < Pnax. Thus the information to be conveyed to the FC is encoded in
Pi[t], for all k € K andt € T.
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2) Random Sequencehe transmit power modulates a sequence of random symbols. |
what follows, we use
Splt] = (Sk[1],..., Sy[M])" € CM (6)

to denote a sequence of transmit symbols generated by atany measurement timec 7.
The symbols of the sequence are assumed to be of the $pfm| = ¢©+™ m =1 ... M,
where{©[m]}., are continuous random phases that are independent idgnénd uniformly
distributed on[0, 27). This implies||.S.[t]||3 = M and a constant envelope of the transmit signal
(i.e., |Sk[m]|* = 1, for all m, k), which is a vital practical constraint. We have two remarks

Remark 2:Note that the assumption of continuous random phases is et#ssary for our
CoMAC scheme to be implemented. Without loss of performatieephases can take on values
on any discrete subset @, 27) provided that it results in a corresponding set of conjugjate
pairs of transmit symbols.

Remark 3:Instead of optimizing the sequences assigned to differedes, employing se-
guences withrandom phasesand constant envelope reduces the overhead for coordinatio
and improves scalability when compared to systems withnapéd sequences. Notice that a
corresponding sequence design will probably be differearhfthat for traditional asynchronous
CDMA systems [[31], where the objective is to eliminate oruesl the mutual interference.
CoMAC schemes in contrast have to exploit the interferelmceafcommon goal, which is the
computation of functions of sensor readings.

3) Transmitter-side Channel Inversionf a receiver-side elimination of the impact of the
fading channel may be infeasible, we suggest that eachnittes corrects this impact by
inverting its own channel. To this end, channel state infdiom is necessary at each transmitter,
which can be estimated from a known pilot signal transmitigdhe FC. In practical systems,
the pilot signal can also be used to wake up sensor nodes diadieirthe computation process.
With the channel state information at the nodes, each trdtesrsay transmittek, inverts its

channel by sending
= By[t]

whereW,[m] is the W-MAC input of node: € K at sequence symbalb (see also[(1)). In'[36]

Wi[m] ol (7)

it is shown that the division by the channel amplitydg [m]| is sufficient so that channel phase

estimation is not necessary.
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[1] nodel M
[1] node2 [M]|
[1] node3 M
[1] node K [V
teT et

Fig. 2. Transmit sequences of nodes sent between measurémest andt’, respectively, without precise symbol- and

phase-synchronization. The gray rectangle emphasizesiéixénum overlapping area.

The resulting computation-transmitter structure is diggidn Fig.[3(a).

Remark 4:Notice that any nodé with P.[t]/|H[m]|* > Pmax for somem cannot invert
its channel under the power constraint, and therefore mesextiuded from transmissions
associated with measurement tihe 7. One possibility to mitigate the problem is to scale
down all transmit powers by the same constant so that thempoowestraint is satisfied. Of course
this impacts the performance in noisy channels and reqswese degree of coordination. We
are not going to dwell on this point and assume in the follgniimat the sefC is chosen such

that each node can invert its own channel without violatimg power constraint.

B. Computation Receiver

As mentioned before (see Rematk 1), in order to avoid curobgsnotation and to simplify
the error analysis in the next section, we assume a perfeathsynization of signals from
different nodes at the FC. The reader however may easilffyvérat the proposed CoMAC
scheme based on a simple energy estimator is insensitihe tat¢k of synchronization provided
that a significant overlap of different signal frames is eaduas illustrated in Fid.J2 (i.e., a
coarse frame-synchronization). We also point out that #seimption of perfect synchronization
has been widely used when analyzing asynchronous CDMA regs{eee([31] and references
therein).

1) Received SignalWith this assumption in hand, the W-MAC is a memoryless ckeband
its output follows with [¥) from[(ll) toX < m < M,t € T)

Yim] = \/Pft]Si[m] + N[m] . (8)
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For any givent € T, we arrange the symbols in a vectwit] .= (Y[1],...,Y[M])T € CM to
obtain the vector-valued W-MAC

K
Y[ =Y \/9.(en(Xelt]) Silt] + Nt 9)
k=1
where N[t] == (NJ1],...,N[M])T € CM denotes a stationary proper complex-valued white

Gaussian noise process, thathNgt] ~ N¢(0,0%11), 0% € (0,00).
2) Signal Post-processingfhe observation vector in(9) is a basis for estimating therdd
function value f(X[t], ..., Xk]t]). To this end, the receiver first computes the received sum-

energy given by

K K K
Y3 =MD Plt]+> > /Pultl PSS 1]
k=1 k=1 é:ﬂlC
b ::Alv[t}elR i (10)
K
+ 2> /Bt Re{S[t]"N[]} + N["N[t] ,
. o . —AsJeRy
=:Aq[t]leR

which can be expressed in a more compact way as

IY[HI5 = MY Pt + Al (11)

where A[t] == Ay[t] + Aq[t] + As[t] € R is the overall noise incorporating the three different
noise sources.

Before applying the post-processing function, the recemast remove the influence of the
function g, which is used to map the sensing range on the set of feasdierit powers.
In other words, ifA[t] = 0, then an application of the post-processing function mesteptly
reconstruct the sought function value, which is expectethfany computation or transmission
scheme. Now an examination ¢f {11) wiffl (5) shows that giygn) and gy, k € K, we need
to apply a functiom:, : R — R to (11) such that

0 (e (MY go(prmlt)) = (X wnlmlt)) = f(l) € F@XX) . )

Thus, given some pre-processing and post-processingidasctwe can compute any desired
function of the form([(B) provided thaf\[t] = 0 and the paifg,, h,,) satisfies[(I2). The following
proposition provides a necessary and sufficient conditimrtte functions to fulfill [1R).
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o ~E{u (250}
LA B o U »%W’“[m]r 2 I I b bl 0
e B{v (i)
(@ ®)

Fig. 3. (a) Block diagram of the CoMAC computation-trangenitof sensor nodé € K. (b) Block diagram of the CoMAC
computation-receiver for computing the arithemtic meavit¢h position1) and the geometric mean (switch positnFunctions
h, and depend on the choice of the desired function and should bsechaccording to the discussion in Secfionlll-C and

Definition[3 or Definition 6. For brevity, standard radio comgnts (e.g., modulator, demodulator, filters) are notaegi

Proposition 1: Let K > 2 be arbitrary. Then,[{12) holds witli defined by [(B) for some
giveny, o1, ..., ¢k, if and only if g, andh, are affine functions with, = g;l — ¢, where the
constantc € R depends ory,,.

Proof: The proof is deferred to Appendix| A. [ |

Examples of the data pre-processing functions and the Isgps-processing functions for
the arithmetic mean and the geometric mean can be found imo8d¥-B] and Section_IV-C,

respectively.

C. Performance Metric

The performance of the CoMAC scheme is determined in termthe@function estimation
error defined as follows.
Definition 4 (Function Estimation Error)Let f € F(X¥) be the desired function continu-
ously extended ont&’, whereS’ C S is an appropriate subset 6TH Furthermore, Ietf be
a corresponding estimate at the Ffax = supgcsx f(x) and fmin = inf csx f(x). Then,
E = (f(X) = f(X))/(fmax— fmin) is said to be thdunction estimation errofrelative t0S).
Practical systems tolerate estimation errors providetlttiey are small enough. This means
that | E| < e must be satisfied for some given application-dependenttaons > 0. However,
in many applications, the requirement cannot be met pernigndue to, for instance, some

random influences. In such cases, the main figure of meriteisuktage probabilityP(|E| > ),

5S’ is introduced since it may be impossible to continuousheedtf onto the entire sensing range
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which is the probability that the function estimation erredarger than or equal te > 0. It is

clear that the smaller the outage probability, the higherdbmputation accuracy.

V. ERRORANALYSIS

This section is devoted to the performance analysis of tbpgeed CoMAC scheme in the
presence of noise. First we show that, for sufficiently lavgkies of M, the distribution of
the computation noise\[t] can be approximated by a normal distribution. Since the tfanc
estimation error is strongly influenced by the post-proogs$unction ¢, and with it on the
choice of the desired functiori, we confine our attention in subsequent subsections to two
special cases of great practical importanagthmetic meanand geometric meanNote that
these two functions are canonical representatives of tee laaithmetic operationsummation
and multiplication For both cases, we define appropriate estimators by takitay account
statistical properties of the transformed overall nai§¢| (transformed by.,, and+) and prove
some properties. Without loss of generality, we focus on dnitrary but fixed measurement

time instance € 7 and therefore drop the time index for brevity.

A. Approximation of the Overall Error Distribution

The statistics of the overall noise in_{11) play a key role wihiefining function estimators
and evaluating the performance of the proposed CoMAC sch8mee an exact distribution of
A = A, + Ay + Az conditioned on the sensor readings = « is difficult to determine, we
focus on suitable asymptotic approximations.

To this end, let us first compute the first and second ordesstal moments ofd,, A, and

As. As far asA,; is concerned, we have

K K M N M
=33 S VAR SimISn] =23 Y /Py cos(®}fm]) (13)
k=1 ¢=1 m=1 n=1 m=1

I#k —Zn[ ]

whereN = K(K —1)/2, P, .= PP, and®’,[m] := (604[m] — O,[m]) mod2x the random phase
difference between noddsand/ at sequence symbeh. The mappingk, /) — n is obtained
byn=n(k,{)=0+(k—1)K—k(k+1)/2,k=1,...,K—1and{ = k+1,..., K, respectively.
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By convolution of the densities a®,[m| and ©,[m|, ©.[m] is independent uniformly dis-
tributed over|0, 27), for all n, m. Hence, the probability density of each,[m] in (13) i

pz(2) = ﬁﬂ(_l’l)<z) ) (14)
which is symmetric around zero. Stw, m : E{Z,[m|} = 0 and
N M ~1
Vpx € Co(X") 1 B{A} =23 Y E{P?}E{Z,[m]} =0. (15)
n=1m=1
Furthermore,
N M ~ N ~
Var{A;} =4) Y E{P,} Var{Z,[m]} = 2M Y E{P,} (16)
n=1 m=1 n=1

sinceVm,n # n' : Cov{Z,[m|, Z,,[m|} = 0 andVm,n : Var{Z,[m|} = 1/2, where the latter

can be concluded by considerinigl(14). As for the second éeran A,, we have

K 2M
42_22\/& Re{SIN} =2> "3 " /P Uil (17)

k=1 ¢(=1
where for any odd/, Uy, = cos(©x[m]), N, = Re{N[m|} and UM = sin(B[m]), N, =
Im{N[m]}, for any even/ (m = 1,...,M). Notice thatV¢ : ~ Ngr(0,30%) and the

probability density function of/,, is given by [(14). Becausé/, and U,, are zero mean and

independent for alk, ¢, it follows for the expectation value

K 2M
Vpx € Co(X™) : B{A} =2 Y E{V/P:} E{Ur}E{N;} = 0. (18)
k=1 (=1
Arguing along similar lines as in the case 4f, the variance ofA, can be easily shown to be
K 2M
Var{A;} =4 > E{P:} Var{Uy} Var{N}} = 2Mo% Z E{P.} . (19)
k=1 ¢=1

SinceA; = > |N[m]|* ~ x3,,, we finally concludeE{A;} = Mo%, and

Var{Az} = Moy, . (20)
Lemma 1: A, A, and A3 are mutually orthogonal (in the Hilbert space of randomalalgs
with the inner product defined to big\;, A;) = E{A;A;}) for all px € Co(X5F).

®Note that by the definitions, all the probability density dtions and expected values in this section exists.
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Proof: Since the sensor readings, the sequence symbols and tleeaneisiutually indepen-
dent random variables witttm : E{N[m]|} = 0, a straightforward calculation of the covariances
betweenA;, and A, as well as between\; and A; proves the lemma. [ |

The above derivations show thépx € Co(X%) : E{A} = Mo%, while, by LemmdL, the
variance ofA is the sum of the variancels (16]), {19) afd](20). Thus,

N K
0% = Var{A} =2M Y "E{F,} +2Mo} > E{P}+ Moy (21)

n=1 k=1

and note that when conditioned d¥i = x, the variance in[(21) yields

N K
0w = E{(A— Mo} )’|X =a} =2M > jn+2Mox Y _ pi+ Moy . (22)

n=1 k=1

As mentioned in the introduction to this section, we were ablke to find out the exact
distribution of the overall noise)\, which includes various terms with different distributton
However, since the number of summanfis= K (K — 1)M /2 + 2K M + 2M in the definition
of A is already relatively large for small values af and M, we argue that it is well-founded
to invoke the central limit theorem so as to approximate thaddional distribution by a normal
distribution. The following proposition proves the copesding convergence ag — oo.

Proposition 2: Let Alxz be the overall noise according to {10) andl(11) conditionedhe
sensor readingX = x with E{A|X =z} = Moy}, 0 < 0% < oo, ando?, as defined in
(22). Then, for any fixeds<, Pnax < oo and a compact set’, we have
Alx — Mo3,

OA|x

Vo e X% 4 NR(0,1) (23)

asM — oo, where—% denotes the convergence in distribution.
Proof: Since the sum terms af\|x are neither identically distributed nor independent, the

convergence to a normal distribution is not clear. Let usetfoge rearrange the sum to obtain:

K 2M
A|$—A1\w+A2|m+A3—ZZ Dn, cos(O +QZZ\/7UMN5+Z|N
u N n=1m= lK k=1 /=1
- Z Z P cos(© +Z<Re{N |} cos(O[m]) - - -
m=1 [n=1 =1

M
S o

m=1

+ Im{N[m]}sm(@k[m])) +|N[m ]

June 8, 2018 DRAFT



18 SUBMITTED TO IEEE TRANSACTIONS ON COMMUNICATIONS

This makes clear that,,, m = 1,..., M, are independent and identically distributed nondegen-
erate (i.e..Var{A,} > 0) random variables. Moreover, for aiy, Pnax, 03 < oo and a compact
setX, E{A}| X = x} = 2 (ZnNzlﬁn +0% 8 i +a§1\,) is finite. Hence the proposition
follows from Theorem 3 in[[37, p.326] with (22) art{ A | X = x} = Mo%,. [ |
Since Proposition]2 implies the uniform convergence of #guence of distribution functions
associated wit A|x} en, We can conclude that the distribution difxz can be approximated

by a normal distribution provided that’ is sufficiently large. This is summarized in a corollary.

Corollary 1: If M is sufficiently large A|z is close toA|z ~ Nk (Mo, 0—2A|m) in distribution.
We point out that determining the convergence rate is beyoadcope of this paper, extensive
numerical experiments (see Sectloh V) suggest that theogippation stated in Corollary]1 is

justified already for small values df/ and most cases of practical interest.

B. Arithmetic Mean Analysis

First, we define a suitablarithmetic mearestimator based on the observation of the channel
output energyl|Y'||2 given by [11). Subsequently, we analyze the outage prdbahbitder the
proposed estimator.

Definition 5 (Arithmetic Mean Estimate):et f be the desired function “arithmetic mean” and
let the expected valuB{y(As/(Maqi))} be known to the FC. Then, givel, the estimate
fu(X) of f(X) is defined to be

Fur(X) =0 (ho(|Y]3)) — E{(As/(qaic)) } - (24)

AssumingM >, g, (pr(zk)) = M Y, pr = z and ot = Prac \ye have

Smax—Smin

[ Data pre-proces&ng\v% . (pk;(x) — [L’,g@(l') — Oéam(l' - Smin), (pmm — Smin, (pmax — Smax,

« Signal post-processing)(z) = z/K,z € R, h,(z) = M;amz + K Smin-

Now, we prove two propositions to show that the arithmeti@amestimator of Definitiofl5
provides two most desired properties: unbiasedness argistemncy. The resulting computation-
receiver is depicted in Fif. 3(b) with the switch in positibn

Proposition 3: The function value estimator of Definitidd 5 isnbiased that is, we have
Ve € XX E{fy(X)| X =z} = f(x).
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Proof: With the definitions introduced in Secti¢n II-C and Definiti@ in mind, we can
write (28) asfy (X) = f(X) + —1;(A— Mo3,). From this, it follows tha£{ f,(X) | X =
x} = f(x)+ aamKM(E{A | X = x} — Mo%) = f(x). So the proposition follows sincer €
XEE{A| X =z} = E{A3} = Mo%. ]

Proposition 4: Let K, Pnayx, 0% < oo be arbitrary but fixed, and Ie{th}Me]N be a sequence
of estimators[{24). Then, the arithmetic mean estimgtaf Definition[5 is consistentthat is
Ve > 0 : limyoo P(|far — f| > €) = 0.

Proof: Let ¢ := 1/(aqitK) > 0 ande > 0 be arbitrary and fixed. By the preceding proof,
we know thatE,, = fy — f = 17 (A — E{A3}). Hence, a{A} = E{A;}, we obtain

P(|Ey| > €) = P(E} > €) = P(M (A — E{A3})* > ¢*)

A(Me)PE{(A —E{A})*} = *(Me)"* Var{A} , (25)

where we used Markov’s inequality [37, p.47] (also calledeyshev’s inequality). ByL(21),
we have forK, Pnax, 0% < oo that Var{A} € O(M) so that the right-hand side of the above
inequality goes to zero a%/ tends to infinity. Since > 0 is arbitrary, this completes the proof.
[
Since the upper bound in_(25) typically provides rather éobsunds for finite values df/, we
cannot use it to approximate the outage probability. Itgwont that a better approach is to invoke
Propositiori 2 and approximal|E| > ¢) by using a transformed normal distribution. Note that
as fmax = SUPgesk f() = Smax aNd frmin = supgesr f(T) = smin With f being continuously

extended ont&, we have
Elx = (fu(@) = f(2)) ] (smax— smin) = (A& = Mo) /0 (26)

whereal; = M K Ppax

ari
The Mann-Wald theorem [37, p.356] guarantees that, for @ay continuous mapping =
h(z), one hash(X,) 4 h(X) wheneverX,, <% X. We can therefore conclude from Corollary 1
that for sufficiently large values a¥/, E|x in (26) can be approximated by a random variable
Elx ~ Ng(0, 02?%) with conditional distribution functionP;(e|x) == P(E < e|X = z) =

1 f arit
511+ erf(= ‘\/_)] e € R.
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Since the absolute value is also continuous B®| > €| X = x) = 1 — Py (e|z) + Py (—¢|x)

for any e > 0, we obtain for sufficiently largé/,

PIE| > )~ B(E 2 0 = [ BIE|>¢| X = alpx(@) da

= /XKerfc(agrite/(QazAm);)pX(:v) dex (27)

where we used the fact thatf(—z) = —erf(z) for all z € R.

C. Geometric Mean Analysis

As in the preceding subsection, we first define an estimatahfdesired functiogeometric
meanincluding the required data pre-processing and signalpastessing functions.

Definition 6 (Geometric Mean Estimatelet f be the desired function “geometric mean” as
defined in Sectiof II-C, and let the expected valifg)(As/ageo)} be known to the FC (see
Lemmal2 below). Then, givei/, the estimatef,;(X) of f(X) is defined to be

; _ v(h(YN3) U (A/ (argeoM))
L o vyt ry) Sl o o pw ey @)
AssumingM >, g, (pi(zr)) = M >, pr = z and ageo = 1Oga(8m§r)nixloga(s’)’ we have

« Data pre-processinglf smin < 0, choose an arbitrary but fixed such tha) < s’ < zin <

Smax and otherwises’ = smin. Then,Vk : ¢i(z) = log,(z), a > 1, pmin = log,(s’) and

Pmax = 10g,(Smax), ANAVE : g, (log,(x)) = agedlog, (z) —log,(s')).
« Signal post-processing)(z) = a®/¥,z € R, h,(z) = 77~z + K log,(s').

MOlgeo

The resulting computation-receiver is shown in Fig. B(b)hmthe switch in position 2. As
mentioned, our estimator requires the knowledgeEdt)(As/(ageoM))}, Which is explicitly
given in part (i) of the following lemma. Part (ii) is used inet proof of Proposition]5.

Lemma 2:Let « > 1 be given and fixed, and letqe, be as in Definitior{ 6. Suppose that
o3 log.(a) < ageo M. Then

M
() A =E{9(As/(ageM)) } = <ageol<;?iof?ivioge(a)>

. JI2V loge(a)
(i) lm Ay =e ageoK
M—o0
Proof: The proof is deferred to Appendix B. [ |

We point out that the expected valug, exists if 0% log,(a) < ageo K M holds, which is
usually fulfilled in practical situations and therefore wased in what follows. With the estimator
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of Definition[8, the fuction estimation error conditioned thve sensor readingX = = becomes

Ble = —Zle - 8(@) = A(e) (”—'“’ - 1) , (29)

b
V()
where we used the following notatioffinax = Smax fmin = & (0 < & < xmin), Blx) =
f(®)/(smax— 8'), v(®) = A /B(x) and |z = ¢(Alz/(ageol)).

Note that the estimator of Definitidd 6 is not necessarilyiaséd but it offers the advantage

of a simple implementation in practical systems. In conjrédee estimator

Fur(X) = (o (Y 12)E {2 (A/ (ageaM)) } (30)

is unbiased but not applicable in practice, because in ashto the expected value ih_{28)
dependsE {1 (A/(ageoM)) } in B0) on the overall noise, and thus on the distribution hef t
sensor readings, which is usually unknown at the FC.

Although the estimator is not unbiased, the following pr&ipon shows that it is (weakly)
consistent, and therefore asymptotically unbiased.

Proposition 5: For any fixed K, Pnax, 03 < oo, the geometric mean estimator proposed in
Definition[§ is consistent

Proof: Let K, Prax 0% < oo ande > 0 be arbitrary and fixed. Le{fy}yen be the

sequence of estimators given lhy |(28). We show that the oyteggability P(|E| > ¢) — 0 as
M — oo. To this end, consideP(|E|z| > ¢) = P(|E| > ¢/X = z) for anyz € XX, and
note thatf(x) > 0, 5(x) > 0,\yy > 0 and =, := Z|x > 0. By (29), we haveP(|E|x| > ¢) =
P(Zz/ A > 14+ ¢€¢/6(x)) + P(1 — =2/ v > €/5(x)). An application of Markov’s inequality
[37, p.47] yields an upper bound on the first sum term:
Eflog(Zz)} — log.(Au)

P(Za/Mr 2 1+ ¢/8(®)) = P(log( £ ) = log.(1+¢/B(@)) ) <

log.(1+ €/5(x))
(31)
By (ii) of Lemmal[2, we havelimy_,xlog,(A\y) = log.(limy o Ayy) = 75252 By the

results on the distribution functions of random variableattare functions of other random
variables [37, pp.239-240], we obtai{log,(Z,)} = & {aje'ofw} = "Na:"f;{ where we
usedE{A | X = x} = Mo% in the last step. Combining the results shows that the uppeandd
in (31) tends to zero a8/ — oo. As for P(1 — =, /Ay > €/B(x)), note that we can focus
one/B(x) < 1 since =,/ Ay > 0. With this in hand, we hav®(1 — =,/ \y > €¢/f(x)) =

P\ /Z2 > 1/(1 —€/5(x))). Proceeding essentially along the same lines as above shaivs
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this probability goes to zero witd/ — oo. Now, by compactness ot and Theorem 3 or
Theorem 4 of [[37, p.188], we haviém,; ... P(|E| > €) = limpy oo E{P(|Ey| > €| X =
)} =E{limy . P(|E| >€¢| X =x)} — 0.

Remark 5:Notice that the proposition implies that the proposed ge¢omenean estimator
@8) is asymptotically unbiased, that is, we hdu®,, .. E{f(X)|X = 2} = f(z). As a
consequence, the proposed estimdfor (28) is asymptgtieqilivalent to[(30).

Unfortunately,P(|E| > €) cannot be exactly evaluated because we are not able to dieterm
the distribution function of £| = |y(X)™'Z — 3(X)|. For this reason, as in the preceding
subsection, we approximate the distribution®fr by a transformed normal distribution since
in contrast to the arithmetic mean case depefigs nonlinearly on the conditioned overall noise
Alx.

Lemma 3:Let K < oo, X be compact and\/ sufficiently large. Then=|x can be ap-
proximated by a random variabl|z ~ LN (u=, 02 ,), wherepz = 0% log.(a)/(ageok ) and
0%, = 0%, 108.(a))?/(ageok )?, respectively.

Proof: The proof can be found in Appendix C. [
With Lemmal3 in hand, we are now in a position to prove the masulit of this section.
Proposition 6: Consider the proposed geometric mean estimatdr (28) amubsaghat® is

the corresponding function estimation error. Let and aé‘w be given by Lemmal3, and let
B(x),v(x) > 0 be as defined in((29). Then, fav/ sufficiently large, the outage probability
P(|E| > €), € > 0, can be approximated by

PIE| > )~ B(El 2 0 = [ B(E|>dX = e)px()do (32)

with
1 log.(p~ (z,€))—pz \ log. (o (x,€))—p=
5 [2 + erf < Viowi ) erf ( VEoes )], 0<e<f(x)

1 erfe <bg°(p\/+§($>, f(x) <e< oo
(33)

P(|E| > €| X = x) =

Y

wherep™ (x, €) .= vy(x)(B(x) — €) and p™ (x, €) = vy(x)(B(x) + €), respectively.
Proof: The proof is deferred to Appendix|D. [ |
In Sectiorl V-A, we choose a particular dengity(x) and evaluatd (32) numerically to indicate

the accuracy of the approximation for different networkgmaeters.
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V. NUMERICAL EXAMPLES

The objective of this section is twofold. First, we show irc&en[V-Al that the approximations
of Section[ 1V are very accurate, and second, we compare iticBé¢-B| the proposed analog
CoMAC scheme with a TDMA-based scheme to indicate the hudenpal for performance
gains in typical sensor network operating points.

As a basis, we consider a classical environmental mongostcenario in which the FC is
interested in the arithmetic mean or geometric mean of teatpe measurements taken by
a number of sensor nodes distributed over some geograpreal We assume that all nodes
are equipped with a low-power temperature sensor suppgosirypical sensing rangé =
[—55°C, 130°C] [38].

A. Approximation Accuracy

To assess the accuracy of the approximated distributioescansider two scenarios: one
where the FC estimates the arithmetic mean, and one whegethaetric mean is desired. We
compare[(27) and_(32) with Monte Carlo evaluations of thegetprobabilityP(|E| > ¢) based
on 10 - 10? realizations. Note that for both simulation examplBsa.x and o3, have been chosen
in agreement with commercial IEEE 802.15.4 compliant sepsforms [39].

Example 1 (Arithmetic Mean)tet M = 25,50, 150, 250, the number of node& = M and
the sensor readings uniformly and i.i.d. # = [1°C,30°C] C S. The resulting experimental
data is depicted in Fig. 4(a).

The plots in Figl 4(a) indicate that expression| (27) acelyaapproximates the true outage
probability P(|E| > ¢) for all ¢ > 0, since already for relatively short sequence lengths,
differences between the analytical expression and the &@airlo simulations are negligible.
Furthermore, the plots numerically confirm the consistestegement of Propositidd 4, because
the probability curves tend to the ordinate axis with grayviv.

Example 2 (Geometric Mean)et &’ = [¢/,smay = [0.5°C,130°C] C S, a = 2, X =
[1°C,30°C] C & and all other simulation parameters as in Exa The resulting experi-
mental data is depicted in Fig. 4|b).

"Notice that the corresponding function estimation errdieseon S’ since desired function geometric mean can not be

continuously extended onto the entire sensing rafige
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1!’ T T T T
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Fig. 4. Monte Carlo evaluation of the outage probabilitié8 -(10° realizations) vs. analytical results for differehf = K.

Similar as for Examplel1, the plots in F[g. 4(b) show thal (@& (33) approximates the true
outage probability sufficiently accurate, with a negligildleviation for short sequence lengths.
In Section IV-C, we mentioned that although the geometriamestimator(28) is applicable in
practice, it has the drawback of only an asymptotic unbiasssl compared to the impractical
unbiased estimatoi_(B0). Nevertheless, besides a cormpanfsa Monte Carlo evaluation of
P(|E| > €) using [28) with the analytical resuli (33), the figure alsmtains a plot in which
(30) was used to quantify the drawback. The difference betw{@8) and[(30) vanishes quickly
with increasing)M, which confirms Proposition] 5 and Remaik 5.

Remark 6:Propositions ¥4 anl5 as well as Examglés 1 [@nd 2 demonst@téhth sequence
length M is the crucial design parameter, which determines the ‘{offdeetween computation

accuracy and computation throughput.

B. Comparisons with TDMA

The numerical examples in the preceding subsection irelittae general behavior of the
proposed analog computation architecture without coaaeidence regarding the computation
performance compared to standard multiple-access schdrerefore, we demonstrate in this
subsection the superiority of the proposed CoMAC architecby a comparison with an ideal-
ized uncoded TDMA scheme. For TDMA, the individual nodesrgiza their sensor readings

uniformly overS with Q € IN bit, followed by binary phase shift keying, such that eadhnsse
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has to transmit a bit stream of lengthto the FC.

To ensure fairness between CoMAC and TDMA, with fixed degfefseedom (e.g., band-
width, symbol duration), both schemes should induce theesaosts per function value computa-
tion with respect to transmit energy and transmit time. €fae, let7 € R, be the common
symbol duration and lePrpua r € R4 denote the instantaneous TDMA transmit power on
nodek € K. Then, the transmit times per function value &kguac = MT andTrpua = QKT,
whereas the transmit energies can be writteft@sacr = M P.T and Evpma x = @ Prowa k1,
respectively. Now, from the fairness conditiofigmac = Troma andEcomac x = Etoma k., for all

k€ K, it follows M = QK for the COMAC sequence length atioma » = 25 = gw(“akg(’ﬂ))M,

k € IC, for the required instantaneous TDMA transmit powers.

In addition to fairness, requires an adequate comparisoddtermination of a common system
operating point, which can be done in terms of an averageabigaNoise Ratio (SNR). Assume
for simplicity that the sensed value$, are i.i.d. inX, for all £, such that the average received
TDMA-SNR per node can be defined as

(34)

which depends on the desired function.

Example 3 (Small Network Sizelet K = 25, Q = 10bit, the sequence lengthl = QK,
and letPnax ando?; be chosen such thSiNR‘}B = 101log,,(SNRy) € {0,2,4,6,8,10}. Further-
more, let the sensor readings be uniformly and i.i.dXis= [5°C,30°C] C S and let the desired
function be “arithmetic mean”. The corresponding simulatdata is depicted in Fi§. 5(a).

Example 4 (Medium Network Sizd)et K = 250, the desired function be “geometric mean”
with &' = [1°C,130°C] C S, a = 2 and let all other simulation parameters as in Example 4.
The corresponding simulation data is shown in Fig. |5(b).

Figured 5(d) anfl 5(p) indicate the huge potential of the gged analog COMAC scheme for
efficiently computing linear and nonlinear functions ovee tvireless channel. In both examples,
CoMAC entirely outperforms TDMA with respect to the compgida accuracy for different
network parameters. It should be clear that the shown padnce gains can be replaced by a
computation throughput gain.

Remark 7:It is important to emphasize that the shown performancesgaie quite conser-

vative since the simulated TDMA scheme was idealized in maays. For example, a realistic
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=3 |
. 0.1 015 0.2 025
€

(a) Arithmetic Mean,K = 25 nodes

(b) Geometric MeanK = 250 nodes
Fig. 5.

CoMAC vs. TDMA: outage probabilities for quantizati with @ = 10 bit (in the case of TDMA), sequence length
M = QK, andSNR® = 0,2, 4,6,8,10dB.

TDMA would require an established protocol stack with cdesable amount of overhead

per frame (e.g., header, synchronization informationckhsim) such that the overall TDMA
transmission time would extend Bpua = (Q + R)KT with a certainR € IN.

VI. CONCLUSION

In this paper, we proposed a simple analog scheme for effigieomputing functions of
the measurements in wireless sensor networks. The mairofdimee approach is to exploit the
natural superposition property of the wireless channeldynlg nodes transmit simultaneously
to a fusion center. Applying an appropriate pre-processimngtion to each sensor reading prior
to transmission and a post-processing function to the kigeaived by the fusion center, which
is the superposition of the signals transmitted by the iddial nodes, the approach allows the
analog computation of a huge set of linear and nonlineartiomg over the channel. To relax

corresponding synchronization requirements, the nodessitnit some random sequences at a
transmit power that is proportional to the respective paepssed sensor information. As a
consequence, only a coarse frame synchronization is emfjginch that the scheme is robust
against synchronization errors on the symbol and phasé [Eke second essential part of the
scheme consists of an analog computation-receiver thaesgyed to appropriately estimate

desired function values from the post-processed received af transmit energies. Since the
DRAFT
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estimator has to be matched to the desired function, we dered two canonical function
examples and proposed corresponding estimators with gatidtgal properties.

Numerical comparisons with a standard TDMA have shown ti@ptroposed analog computa-
tion scheme has the potential to achieve huge performamae iggerms of computation accuracy
or computation throughput. In addition to the weaker regints regarding the synchronization
of sequences, the scheme needs no explicit protocol steyatthich significantly reduces the
overhead. Computation schemes following the describetynlesle are therefore energy and
complexity efficient and can be easily implemented in pcactFinally, the hardware-effort is
reduced as well since energy consuming digital componengs, (analog-to-digital converters,
registers) are not required. Note that the proposed computscheme can be used as a building

block for more complex in-network processing tasks.

APPENDIX
A. Proof of Propositiof]l
Let g, == Mg, andh;, .= 1/Mh, so that we have to show that (>, g.()) = >_, & With

&k € [emin, pmax,k € KC, holds if and only ifg,, andh,, are affine functions. The<" direction is
trivial, while the other direction is shown by contradictiGSuppose, is bijective and continuous
but not affine. Then there exist two points;, ..., x) and (&1, ..., k) IN [Pmin, @mad ™ With

S & # 0, & but >, gL (&) = X, 9,(&). By the last equation, we have
>k = h:p (Ek 9;(&)) = h:p (Zk 9;(&:)) = ék ;

which however contradicty”, & # 3°, &. Hence,g/, is affine and so ig,.. Moreover, we have
ho (D 2k 95(6k)) = ho(Mg, (32, &) + ¢) for someé € R, from which we conclude that,, is an
affine function as well withh,, = g;l — c and some constantc R that depends op,,.

B. Proof of Lemmal2

Since Az ~ x3,,, the probability density ofA; is pa,(z) = JQM},(M)xM—l e=/7N .00y (),
N

whereI'(z) with Re{z} > 0 is used to denote the Gamma function. Hence, one obtains

: < M- ageoK M —03; log,(a
B0 ()} = b || e (- (=RdEE)e) a9

Now assume?, log,(a) < ageoK M and note thaf (z) = [ a* e "de = k* [* a7 e " du,

Re{z} > 0, which holds for anyRe{k} > 0 [40]. So substituting this into[ (35) with an
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appropriately choseh proves (i). As for (ii), if % log.(a) < ageoK M, then it follows from (i)

that lim gealt M Y lim (1+ )M = ¢~v, wherey = — i)
M—roc0 ageok M—02, log, (a) - M—r00 M - ’ = ageoK

C. Proof of Lemmé&l]3

Let X be an arbitrary compact set and < oo any fixed natural number. By Section
M-Cl and Definition[6, we know that |z = ¢(oﬁﬁ) = g AT pe Qgeo > 0, a > 1.
Since ¢ is continuous and strictly increasin@=({|z) = P(Z < X = x) = P(A <
ageolS M log,(§)| X = ) = Pa(ageoK M log,(€)|x), £ > 0. Thus, bearing in mind Corollafy 1,
we can conclude that, a¥ sufficiently large,A|x can be approximated by a random variable
Alx ~ Ng(Mo?, o). An immediate consequence of this is that for sufficientlgéavalues
of M, the distribution function ofA|x can be approximated b ;(d|x) = 1 + %erf(‘i/_;;zfz:)
(i.e., Pa(d]x) =~ Px(d]x)). Moreover, forM large enough, the Mann-Wald theorem|[37, p. 356]

implies P=({|x) =~ Pz(§|x) = Pi(ageoK M log,(§)|z), where € € R, )

1 1 e M1 e — o3 M1 o

2
Note that [[36) describes the distribution function of a tagmally distributed random variable

(36)

; g% loge(a) . log, (a) 2 _. 2 e i ;
with parametersNag7 =: u=z and (agegOKMUAIw) = Oz Thus =|x is approximated by a

random variableS @ ~ LN (uz, 0% ,).

D. Proof of Proposition 6

Note that it is sufficient to show (83). Becaude|x| = |y(x) ' Z|x — 8(x)| is continuous in
Z|z, Lemmal3 and the Mann-Wald theorem allow for the approxiomatf |=|xz| by |E|x| =
[y(z)~'Z|@ — B(x)|, where the probability distribution function cf|z ~ LN (uz=,0%,) is
given by [36). Sincé® < f(x),y(x) < co, we haveP(|E| > ¢|X = x) = P(|E| > | X = x) =
1-P(—e< E<éeX =x)=1-P(—e < ~y(x)'5 — B(x) < ¢|X = x) which leads to

P(B| > dX = 2) = 1— Pz(p™(z,€)|z) + P=(p~ (m,¢)|x), 0<e<p(x) (37)
1— Pz(p™(z,€)|z), flx) <e< o0
wherep™(x,€) == v(x)(S(x) +¢€) andp~(x, €) == y(x)(B(x) — €). Inserting the right-hand side
of (36) into expressior_(37) and usiegic(x) = 1 — erf(z), for all z € R, shows[(3B) and thus
completes the proof.
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