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Abstract

Various wireless sensor network applications involve the computation of a pre-defined function of

the measurements without the need for reconstructing each individual sensor reading. Widely-considered

examples of such functions include the arithmetic mean and the maximum value. Standard approaches

to the computation problem separate computation from communication: quantized sensor readings are

transmitted interference-free to a fusion center that reconstructs each sensor reading and subsequently

computes the sought function value. Such separation-basedcomputation schemes are generally highly

inefficient as a complete reconstruction of individual sensor readings is not necessary for the fusion

center to compute a function of them. In particular, if the mathematical structure of the wireless channel

is suitably matched (in some sense) to the function, then channel collisions induced by concurrent

transmissions of different nodes can be beneficially exploited for computation purposes. Therefore, in this

paper a practically relevant analog computation scheme is proposed that allows for an efficient estimate of

linear and nonlinear functions over the wireless multiple-access channel. After analyzing the asymptotic

properties of the estimation error, numerical simulationsare presented to show the potential for huge

performance gains when compared with time-division multiple-access based computation schemes.
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I. INTRODUCTION

In contrast to traditional wireless networks, wireless sensor networks are deployed to perform

various application tasks such as environmental monitoring or disaster alarm. Indeed, rather than

transmitting and reconstructing the data of each individual sensor node, wireless sensor network

applications often involve the computation of some pre-defined function of these data (called

sensor readings), which includes the arithmetic mean, the maximum or minimum value, and

different polynomials [1]. In this paper, we address the problem of computing functions over

a wireless Multiple-Access Channel (MAC) with a fixed numberof sensor nodes and a single

receiver that is referred to as the fusion center. A standardapproach to this computational problem

widely used in contemporary sensor networks is to let each sensor node transmitseparatelya

quantized version of its sensor reading to the fusion centeras a stream of information-bearing

symbols. The data rate at which each sensor node transmits ischosen such that the fusion center

can reconstruct each (quantized) sensor reading perfectlyandsubsequentlycomputes the sought

function. The data transmission and the function computation are therefore completely disjoint

processes. Moreover, in order to perfectly reconstruct each sensor reading, orthogonal medium

access protocols such as Time-Division Multiple Access (TDMA) are typically used for the data

transmission to establish interference-free connectionsbetween each sensor node and the fusion

center by avoiding the interference from other transmissions.

Separation-based medium access protocols are in general highly suboptimal when for instance

maximizing computation throughput defined as the rate at which quantized sensor readings are

reconstructed at the fusion center subject to some communication constraints. In particular, the

information-theoretic result of [2] suggest that the superposition property of the wireless channel

can be beneficially exploited if the MAC ismatchedin some mathematical sense to a function

being computed. The approach, which is known asComputation over MAC (CoMAC), can be

seen as a method for merging the processes of data transmission and function computation by

exploiting channel collisions induced by a concurrent access of different nodes to a common

channel. An immediate consequence of this approach is a higher computation throughput, and

with it a reduced latency or lower bandwidth requirements.

The analysis in [2] also shows that in CoMAC scenarios, codeswith a certain algebraic

structure may outperform random codes. One such an example can be found in [3] (see also [2])
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where a receiver aims at decoding the parity of two dependentbinary messages. The code design

is in this case driven by an application which is the modulo-two sum computation, and therefore

the example lifts a strict separation between computation and communication. The research

on structured codes is however still in its infancy, with some work on codes for computing

functions that naturally match the mathematical structureof the underlying channel. Note that

due to the superposition property of the wireless channel, the wireless MAC can be seen as a

summation-type linear operator mapping the input space to the set of complex-valued numbers.

Hence functions naturally matched to this channel are linear functions that constitute only one

class of functions of interest in practice.

In light of practical constraints, a serious drawback of theinformation-theoretic approach in [2]

and other related results (see also Section I-A) is the implicit assumption that if two symbols are

put on the channel input, then the corresponding decoder observes the sum of these inputs. Obvi-

ously, this is satisfied in additive white Gaussian channelswith users perfectly synchronized on

the symbol and phase level. In practical wireless sensor networks, however, it may be extremely

difficult and expensive in terms of resources to ensure such aperfect synchronization. Hence,

even if structured codes were available, the question remained how to exploit the superposition

property of the wireless channel in the presence of practical impairments.

In this paper, we propose and analyze a novel CoMAC scheme forwireless sensor applications

that requires only acoarse block-synchronization, and therefore it is robust against synchroniza-

tion errors. It is a a simple analog joint source-channel computation scheme, in which

1) each sensor node encodes its message (sensor reading) in the power of a series of random

signal pulses, and

2) the receiver estimates the function value from the received power.

Another crucial advantage of the proposed analog computation scheme is its ability to reliably

and efficiently estimate non-linear functions of sensor readings. We achieve suchnon-linear

computational capabilitiesby letting each sensor node pre-process its sensor readingsprior to

transmission, followed by a receiver-side post-processing of the received signal, which is a noise-

corrupted weighted sum of the pre-processed sensor readings from different sensor nodes. The

pre-processing functions and the post-processing function are to be chosen so as to match the

wireless channel with its superposition property to a function that we intend to evaluate at the

sensor readings. The weights are due to the impact of the fading channel, which needs to be
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compensated in practical systems.

A. Related Work

In the context of sensor networks, viewed as a collection of distributed computation devices,

Giridhar and Kumar took the first steps towards a theory-based framework for in-network

computationwith the aim of characterizing efficient application-specific computation strategies

[1]. The work is however focused on complexity and protocol aspects and does not explicitly

take into account the properties of wireless communicationchannels. A similar holds true for [4],

[5], the information theoretical considerations in [6] and[7] as well as for [8], which is mainly

devoted to wired networks. In contrast, harnessing the explicit structure of the channel for reliable

function computations was first thoroughly analyzed in [2] with an emphasis on information

theoretical insights, whereas computations over noiseless linear channels are considered in [9].

Function computation in sensor networks is a fundamental building block of gossip and

consensus algorithms, a form of distributed in-network data processing aiming at achieving some

network-wide objectives based on local computations. Suchalgorithms, which compute a global

function of sensor readings and distribute the function values among the nodes, have attracted

a great deal of attention (see [10]–[12] and references therein). Most gossip and consensus

protocols, however, require interference free transmissions between adjacent nodes, except for

the recent work in [13]–[16], where it was shown that the superposition property of the wireless

channel can be advantageously exploited to accelerate convergence speeds.

In [17], an analog joint source-channel communication scheme was proposed to exploit

the superposition property of the Gaussian MAC for the optimal estimation of some desired

parameter from a collection of noisy sensor readings. The approach outperforms comparable

digital approaches based on the standard separation designprinciple between source and channel

coding, as proposed by Shannon in his landmark paper [18]. Extensions of the analog joint

source-channel scheme to more general estimation problemsin wireless networks can be found

in [19]–[22], whereas References [23]–[26] are devoted to the detection counterparts.

Finally, we point out that the basic idea ofphysical-layer network codingis to exploit the

superposition property of the wireless channel as well. Indeed, in contrast to the traditional

network coding principle applied across the packets on the network layer, the physical-layer

network coding generates linear codewords immediately on the wireless channel by superimpos-
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ing electromagnetic waves from different, concurrently transmitting and perfectly synchronized

nodes [27]–[29].

B. Paper Organization

Section II introduces the system model, formulates the problem and provides definitions used

in this paper. In Section III, we present a novel analog CoMACscheme for estimating linear

and non-linear functions of sensor readings and study the estimation error under the proposed

scheme in Section IV. This analysis is used to define appropriate estimators for two function

examples of great practical importance: the arithmetic mean and the geometric mean. Numerical

examples in Section V illustrate the performance of the proposed CoMAC scheme and compares

it with a TDMA-based computation scheme to show the potential for huge performance gains

under different network parameters. Finally, Section VI concludes the paper.1

II. DEFINITIONS, SYSTEM MODEL AND PROBLEM STATEMENT

Throughout the paper, all random elements are defined over anappropriate probability space

(Ω,A,P), with sample spaceΩ, σ-AlgebraA of subsets ofΩ and probability measureP on A.

It is assumed that all functions of random variables and stochastic processes are Borel functions

to ensure that all resulting random elements are well defined.

We consider a wireless sensor network consisting ofK ∈ N spatially distributed single-

antenna sensor nodes and one designated single-antenna Fusion Center (FC). Without loss of

generality (w.l.o.g.) it is assumed that theK nodes are identical and we useK := {1, . . . , K} to

denote the set of all sensor nodes (numbered in an arbitrary order). Basically the sensor nodes

have the task to jointly observe a certain physical phenomenon (e.g., temperature, pressure,

humidity, acceleration, illumination) and subsequently transmit their suitably encoded sensor

readings to the FC. We model the sensor readings as time-discreteX -valued stochastic processes

1Notation: Random variables are denoted with uppercase letters, random vectors by bold uppercase letters, realizations by

lowercase letters and vector valued realizations by bold lowercase letters, respectively. The sets of natural, nonnegative integer,

real, nonnegative real, positive real, and complex numbersare denoted byN, Z+, R, R+, R++, C. The distributions of normally

distributed real and proper complex random elements are denoted byNR(·, ·) andNC(·, ·). LN (·, ·) denotes the log-normal

distribution andχ2
n the Chi-square distribution withn degrees of freedom, respectively. The error function and error function

compliment are described byerf(·) anderfc(·). 1B(x) denotes the indicator function on setB. The imaginary unit is denoted

by i and hencei2 = −1.
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Xk : Ω×T → X , (ω, t) 7→ Xk[ω, t], k ∈ K, whereX := [xmin, xmax] for some givenxmin < xmax

is the underlying compact state space andT is an at most countable set of increasingly ordered

real-valued measurement times.2 Without loss of generality let us assume thatX ⊆ S ⊂ R, where

S := [smin, smax], smin < smax, is called thesensing range, which is the hardware-dependent range

in which the sensor elements are able to quantify values. Finally it is assumed that the joint

probability densitypX : XK × T → R+, pX(x; t) := pX1,...,XK
(x1, . . . , xK ; t) ∈ C0(XK), of

sensor readingsX[t] := (X1[t], . . . , XK [t])
T exists, withC0(B), B ⊂ Rn, being the space of

real-valued compactly supported continuous functions over B.

A. Wireless Multiple-Access Channel

The main contribution of this paper is a novel coding scheme that efficiently utilizes the

superposition property of the Wireless Multiple-Access Channel (W-MAC) to compute functions

of sensor readings. The W-MAC is defined as follows.

Definition 1 (W-MAC):For any transmission timeτ ∈ Z+, the W-MAC is a map fromCK

into C defined to be

(
W1[τ ], . . . ,WK [τ ]

)
7−→

K∑

k=1

Hk[τ ]Wk[τ ] +N [τ ] =: Y [τ ] . (1)

Here and hereafter

• Wk[τ ] ∈ C, k ∈ K, is the transmit signal of nodek with ∀τ : |Wk[τ ]|2 ≤ Pmax, where

Pmax > 0 is the peak power constraint on each node,

• Hk[τ ], k ∈ K, is an independent complex-valued flat fading process between thekth sensor

node and the FC and

• N [τ ] is an independent complex-valued receiver noise process.

Note thatWk[τ ] depends on thekth sensor readingXk[t] ∈ X at any measurement timet ∈ T .

If Hk[τ ] ≡ 1 andN [τ ] ≡ 0, the W-MAC takes the form

(
W1[τ ], . . . ,WK [τ ]

)
7−→

K∑

k=1

Wk[τ ] , (2)

which is referred to as theideal W-MAC.

2Throughout the paper we skip the explicit designation of elementary eventsω ∈ Ω in the formulation of stochastic processes

and write for exampleXk[t] instead ofXk[ω, t].
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Remark 1:The W-MAC is a symbol-synchronous channel similar to the standard synchronous

Code-Division Multiple-Access (CDMA) channel studied forinstance in [30], [31]. We would

like to emphasize, however, that the computation scheme proposed in this paper does not require

such a synchronous channel and the only reason for assuming perfect synchronization is to

simplify the error analysis in Section IV and the notation throughout the paper.

B. Pre-processing and Post-processing Functions

As already mentioned, the objective is not to transmit each sensor reading via the W-MAC but

rather to compute a function of these readings at the fusion center. Throughout the paper, we use

f to denote the function of interest and refer to this functionas thedesired function. Obviously,

given a realization ofX[t] at measurement time instancet ∈ T , we havef : XK → R, with

f
(
x1[t], . . . , xK [t]

)
=: (f ◦ x)[t] = f

(
x[t]
)
, wheref

(
x[t]
)

is the function value which the FC

attempts to extract from the corresponding observed receive signal.

The basic idea behind the scheme for an efficient computationof desired functions proposed

in this paper is to exploit the broadcast property of the W-MAC to allow the FC to observe

a superposition of signals transmitted by the sensors. A look at Eqs. (1) and (2) shows that

the basic mathematical operation which can be naturally performed by the W-MAC on the

sensor readings isaddition. In other words, if all sensors send their readings simultaneously

over the same frequency band, then the FC would receive a weighted sum of the sensor readings

corrupted by background noise.3 Now the reader may be inclined to think that such an approach

is inherently confined for computing affine functions, whichin fact is true if no additional

signal processing is carried out at the transmitters and thereceiver. In this paper, in order to

overcome the restriction to affine functions, we propose to perform some pre-processing and

post-processing at the sensor nodes and the FC, respectively. To this end, we introduce the

following two definitions.

Definition 2 (Pre-processing Function):We defineϕk : X → R, ϕk ∈ C0(X ), with ϕk(xk[t]) =

(ϕk ◦ xk)[t], to be a pre-processing function of nodek ∈ K.

Definition 3 (Post-processing Function):The continuous injective functionψ : R → R with

3In the case of an ideal W-MAC, the FC would observe the uncorrupted sum of sensor readings.
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ϕ W-MAC ψ
y[τ ] f̂(x[t])ϕ(x[t])

Matched Channel

x[t]

Fig. 1. Block diagram of the overall channel, which is matched to the desired function. The match results from the transformation

of the W-MAC by the pre-processing functions(ϕ1(x1[t]), . . . , ϕK(xK [t]))T =: ϕ(x[t]) and the post-processing functionψ,

respectively, which depend on the desired functionf .

ψ
(
|y[τ ]|2), wherey[τ ] given by (1) is said to be a post-processing function.4

In order to illustrate the above definitions, it is reasonable to consider an ideal W-MAC, in

which case the objective of the pre- and post-processing functions is to transform the ideal W-

MAC in such a way that the resulting overall channel mapping from XK into R is equal to the

desired function. Therefore,ϕk, k ∈ K, andψ are to be chosen so that

f(x1, . . . , xK) = ψ
(∑

k∈K
ϕk(xk)

)

, (3)

wherewk[τ ] = ϕk(xk) is the transmit signal of nodek ∈ K at timeτ .

C. Functions Computable via Wireless Multiple-Access Channels

Figure 1 illustrates the functional principle of theanalog computationscheme proposed in

Section III, which is referred to as the CoMAC scheme in what follows. Consequently, the space

of all functionsF(XK) ⊂ C0(XK) that can be computed using the analog CoMAC scheme under

the assumption of an ideal W-MAC is given by

F(XK) :=
{

f : XK → R

∣
∣
∣ f
(
x
)
= ψ

(∑

k∈K
ϕk

(
xk
))}

. (4)

The space of all affine functions is clearly a subset ofF(XK), because any affine function can be

computed if the pre- and post-processing functions areϕk(x) = νkx, k ∈ K, andψ(y) = ay+ b,

for some(ν1, . . . , νK) ∈ RK anda, b ∈ R. With an appropriate choice of the parameters, we can

therefore compute any weighted sum and, in particular, thearithmetic meanwhich is of great

4The restriction to a class of post-processing functions that take the squared absolute value of the W-MAC output as an

argument is necessary because of the analog computation scheme proposed in Section III. In general, the post-processing

function can be defined on the set of complex numbers.
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interest in practice. Moreover, we can easily determine thenumber of active nodes in a network

by letting them simultaneously transmit some constant value c > 0 and then post-process the

received signal by means ofψ(y) = 1
c
y.

Now the following two questions arise immediately:

i) Is the set of all affine functions aproper subset ofF(XK)?

ii) What is exactly the function spaceF(XK) and how can its elements be computed?

In other words, the first question is one of whether functionsother than affine ones are members

of F(XK) and therefore are computable using a CoMAC scheme? The answer is obviously

positive as we can easily compute thegeometric meanof some positive sensor readings by

choosingϕk(x) = loga(x), a > 1, x > 0, for eachk ∈ K and ψ(y) = a
1
K
y. Indeed, with

this choice of functions, we havef(x) = ψ
(∑

k∈K ϕk(xk)
)
= (
∏K

k=1 xk)
1
K , where the sensor

readings are positive so that0 < xmin ≤ xk for eachk ∈ K. The second question in contrast is

not so easy to answer. Widely considered in wireless sensor network applications is for instance

themaximumof sensor readingsf(x) = maxk∈K xk. It is, however, not clear how to compute the

maximum function using a CoMAC scheme. On the positive side,the maximum function can be

arbitrarily closely approximated by a sequence of functions inF(XK). Indeed, it is well-known

that limq→∞ ‖x‖q = f(x) = maxk∈K xk, where‖x‖q = (
∑K

k=1 x
q
k)

1
q ∈ F(XK), xk ≥ 0, k ∈ K,

and the norms can be computed whenϕk(x) = xq, for all k ∈ K, andψ(y) = y
1
q .

Recently, it was shown that in fact foreverymultivariate function there exist pre- and post-

processing functions such that they can be represented in the form (3) [32], [33]. The main

difficulty, however, lies in a constructive characterization of F(XK) to determine the pre-

and post-processing functions for computing arbitrary members of this space. Since an exact

constructive characterization of (4) is beyond the scope ofthis paper, we devote our attention

to the problem of computing some functions in a robust and practically relevant manner by

exploiting the natural computational capabilities of the W-MAC.

III. A NALOG FUNCTION COMPUTATION VIA WIRELESS MULTIPLE-ACCESSCHANNELS

Recent results in sensor network signal processing indicate that for many wireless sensor

network applications, an analog joint source-channel communication architecture can be superior

to widely-spread separation-based digital approaches [34]. This is in particular true when the

processes of sensing, computation and data transmission are highly interdependent in which
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case they should be jointly considered. In order to exploit the interdependencies by merging

the processes of computation and communication, traditional analog coding schemes require a

receiver-side constructive superposition of the transmitsignals from different sensor nodes in the

sense of (1) [17], [20]. However, such a perfect synchronization at the symbol and phase level

is notoriously difficult to realize in wireless networks andin particular in large-scale wireless

sensor networks [35].

Therefore, in this paper, we propose an analog computation scheme that tolerates acoarse

block-synchronizationat the FC, which is by far easier to establish and maintain than the perfect

synchronization required by traditional approaches. The basic idea of the scheme consists in

letting each sensor node transmit a distinct sequence of complex numbers of lengthM ∈ N

at a transmit energythat depends on the pre-processed sensor readings. Under some conditions

and a suitable pre-processing strategy, the received energy at the FC equals the sum of all

the transmit energies corrupted by the background noise. The coarse block-synchronization is

needed to ensure a sufficiently large overlap of different signal frames as illustrated in Fig.

2. An application of an appropriately chosen post-processing function at the receiver together

with some simple arithmetic calculations (to ensure certain estimation properties) yields then an

estimate of the desired function of the sensor readings.

A. Computation Transmitter

1) Data Pre-processing:As each pre-processed sensor reading is to be encoded in transmit

energy only, it is necessary to apply a suitable bijective continuous mappinggϕ : [ϕmin, ϕmax] →
[0, Pmax] from the set of all pre-processed sensor readings onto the set of all feasible transmit

powers, withϕmin := mink∈K infx∈S ϕk(x), ϕmax := maxk∈K supx∈S ϕk(x) and Pmax being the

transmit power constraint on each node (see Definition 1). Note that the mapping depends on

the pre-processing functions and the sensing range and is independent ofk, as the FC does not

have access to each individual transmit signal but only to the W-MAC output given by (1). We

call the quantity

Pk[t] := gϕ
(
ϕk(Xk[t])

)
(5)

transmit power of nodek, and point out that it is a random variable wheneverXk[t] is random.

Moreover, we havePk[t] ≤ Pmax. Thus the information to be conveyed to the FC is encoded in

Pk[t], for all k ∈ K and t ∈ T .
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2) Random Sequences:The transmit power modulates a sequence of random symbols. In

what follows, we use

Sk[t] :=
(
Sk[1], . . . , Sk[M ]

)T ∈ C
M (6)

to denote a sequence of transmit symbols generated by nodek at any measurement timet ∈ T .

The symbols of the sequence are assumed to be of the formSk[m] = eiΘk[m], m = 1, . . . ,M ,

where{Θk[m]}k,m are continuous random phases that are independent identically and uniformly

distributed on[0, 2π). This implies‖Sk[t]‖22 =M and a constant envelope of the transmit signal

(i.e., |Sk[m]|2 = 1, for all m, k), which is a vital practical constraint. We have two remarks.

Remark 2:Note that the assumption of continuous random phases is not necessary for our

CoMAC scheme to be implemented. Without loss of performance, the phases can take on values

on any discrete subset of[0, 2π) provided that it results in a corresponding set of conjugated

pairs of transmit symbols.

Remark 3: Instead of optimizing the sequences assigned to different nodes, employing se-

quences withrandom phasesand constant envelope reduces the overhead for coordination

and improves scalability when compared to systems with optimized sequences. Notice that a

corresponding sequence design will probably be different from that for traditional asynchronous

CDMA systems [31], where the objective is to eliminate or reduce the mutual interference.

CoMAC schemes in contrast have to exploit the interference for a common goal, which is the

computation of functions of sensor readings.

3) Transmitter-side Channel Inversion:If a receiver-side elimination of the impact of the

fading channel may be infeasible, we suggest that each transmitter corrects this impact by

inverting its own channel. To this end, channel state information is necessary at each transmitter,

which can be estimated from a known pilot signal transmittedby the FC. In practical systems,

the pilot signal can also be used to wake up sensor nodes and initiate the computation process.

With the channel state information at the nodes, each transmitter, say transmitterk, inverts its

channel by sending

Wk[m] =

√

Pk[t]

Hk[m]
Sk[m] =

√

Pk[t]

Hk[m]
eiΘk[m] , (7)

whereWk[m] is the W-MAC input of nodek ∈ K at sequence symbolm (see also (1)). In [36]

it is shown that the division by the channel amplitude|Hk[m]| is sufficient so that channel phase

estimation is not necessary.
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1

M

node1
node2

M

node3
M

M

1 nodeK

t′ ∈ T

1

1

t ∈ T

Fig. 2. Transmit sequences of nodes sent between measurement times t and t′, respectively, without precise symbol- and

phase-synchronization. The gray rectangle emphasizes themaximum overlapping area.

The resulting computation-transmitter structure is depicted in Fig. 3(a).

Remark 4:Notice that any nodek with Pk[t]/|Hk[m]|2 > Pmax for somem cannot invert

its channel under the power constraint, and therefore must be excluded from transmissions

associated with measurement timet ∈ T . One possibility to mitigate the problem is to scale

down all transmit powers by the same constant so that the power constraint is satisfied. Of course

this impacts the performance in noisy channels and requiressome degree of coordination. We

are not going to dwell on this point and assume in the following that the setK is chosen such

that each node can invert its own channel without violating the power constraint.

B. Computation Receiver

As mentioned before (see Remark 1), in order to avoid cumbersome notation and to simplify

the error analysis in the next section, we assume a perfect synchronization of signals from

different nodes at the FC. The reader however may easily verify that the proposed CoMAC

scheme based on a simple energy estimator is insensitive to the lack of synchronization provided

that a significant overlap of different signal frames is ensured as illustrated in Fig. 2 (i.e., a

coarse frame-synchronization). We also point out that the assumption of perfect synchronization

has been widely used when analyzing asynchronous CDMA systems (see [31] and references

therein).

1) Received Signal:With this assumption in hand, the W-MAC is a memoryless channel and

its output follows with (7) from (1) to (1 ≤ m ≤M, t ∈ T )

Y [m] =

K∑

k=1

√

Pk[t]Sk[m] +N [m] . (8)
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For any givent ∈ T , we arrange the symbols in a vectorY [t] := (Y [1], . . . , Y [M ])T ∈ C
M to

obtain the vector-valued W-MAC

Y [t] =

K∑

k=1

√

gϕ
(
ϕk(Xk[t])

)
Sk[t] +N [t] , (9)

whereN [t] := (N [1], . . . , N [M ])T ∈ CM denotes a stationary proper complex-valued white

Gaussian noise process, that isN [t] ∼ NC(0, σ
2
NIM), σ2

N ∈ (0,∞).

2) Signal Post-processing:The observation vector in (9) is a basis for estimating the desired

function valuef(X1[t], . . . , XK [t]). To this end, the receiver first computes the received sum-

energy given by

‖Y [t]‖22 =M

K∑

k=1

Pk[t] +

K∑

k=1

K∑

ℓ=1
ℓ 6=k

√

Pk[t]Pℓ[t]Sk[t]
HSℓ[t]

︸ ︷︷ ︸

=:∆1[t]∈R

+ 2
K∑

k=1

√

Pk[t] Re
{
Sk[t]

HN [t]
}

︸ ︷︷ ︸

=:∆2[t]∈R

+N [t]HN [t]
︸ ︷︷ ︸

=:∆3[t]∈R+

,

(10)

which can be expressed in a more compact way as

‖Y [t]‖22 =M
K∑

k=1

Pk[t] +∆[t] , (11)

where∆[t] := ∆1[t] + ∆2[t] + ∆3[t] ∈ R is the overall noise incorporating the three different

noise sources.

Before applying the post-processing function, the receiver must remove the influence of the

function gϕ, which is used to map the sensing range on the set of feasible transmit powers.

In other words, if∆[t] ≡ 0, then an application of the post-processing function must perfectly

reconstruct the sought function value, which is expected from any computation or transmission

scheme. Now an examination of (11) with (5) shows that givengϕ, ψ andϕk, k ∈ K, we need

to apply a functionhϕ : R → R to (11) such that

ψ
(

hϕ

(

M
∑

k∈K
gϕ
(
ϕk(xk[t])

)))

≡ ψ
(∑

k∈K
ϕk

(
xk[t]

))

≡ f
(
x[t]
)
∈ F(XK) . (12)

Thus, given some pre-processing and post-processing functions, we can compute any desired

function of the form (3) provided that∆[t] ≡ 0 and the pair(gϕ, hϕ) satisfies (12). The following

proposition provides a necessary and sufficient condition for the functions to fulfill (12).
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��������������

√· Wk[m]
gϕ

eiΘk[m]

1/Hk[m]

Pk[t]
ϕk

Xk[t]

(a)

‖ · ‖22 hϕ ψ
Y [t]

1

1/E
{
ψ
(

∆3[t]
αgeoM

)}

f̂(X[t])

2

−E
{
ψ
(

∆3[t]
αaritM

)}

(b)

Fig. 3. (a) Block diagram of the CoMAC computation-transmitter of sensor nodek ∈ K. (b) Block diagram of the CoMAC

computation-receiver for computing the arithemtic mean (switch position1) and the geometric mean (switch position2). Functions

hϕ andψ depend on the choice of the desired function and should be chosen according to the discussion in Section II-C and

Definition 5 or Definition 6. For brevity, standard radio components (e.g., modulator, demodulator, filters) are not depicted.

Proposition 1: Let K ≥ 2 be arbitrary. Then, (12) holds withf defined by (3) for some

givenψ, ϕ1, . . . , ϕK , if and only if gϕ andhϕ are affine functions withhϕ ≡ g−1
ϕ − c, where the

constantc ∈ R depends ongϕ.

Proof: The proof is deferred to Appendix A.

Examples of the data pre-processing functions and the signal post-processing functions for

the arithmetic mean and the geometric mean can be found in Section IV-B and Section IV-C,

respectively.

C. Performance Metric

The performance of the CoMAC scheme is determined in terms ofthe function estimation

error defined as follows.

Definition 4 (Function Estimation Error):Let f ∈ F(XK) be the desired function continu-

ously extended ontoS ′, whereS ′ ⊆ S is an appropriate subset ofS.5 Furthermore, letf̂ be

a corresponding estimate at the FC,fmax := supx∈S′K f(x) and fmin := infx∈S′K f(x). Then,

E := (f̂(X)− f(X))/(fmax− fmin) is said to be thefunction estimation error(relative toS ′).

Practical systems tolerate estimation errors provided that they are small enough. This means

that |E| ≤ ǫ must be satisfied for some given application-dependent constant ǫ > 0. However,

in many applications, the requirement cannot be met permanently due to, for instance, some

random influences. In such cases, the main figure of merit is the outage probabilityP(|E| ≥ ǫ),

5
S

′ is introduced since it may be impossible to continuously extendf onto the entire sensing rangeS .
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which is the probability that the function estimation erroris larger than or equal toǫ > 0. It is

clear that the smaller the outage probability, the higher the computation accuracy.

IV. ERROR ANALYSIS

This section is devoted to the performance analysis of the proposed CoMAC scheme in the

presence of noise. First we show that, for sufficiently largevalues ofM , the distribution of

the computation noise∆[t] can be approximated by a normal distribution. Since the function

estimation error is strongly influenced by the post-processing function ψ, and with it on the

choice of the desired functionf , we confine our attention in subsequent subsections to two

special cases of great practical importance:arithmetic meanand geometric mean. Note that

these two functions are canonical representatives of the basic arithmetic operationssummation

and multiplication. For both cases, we define appropriate estimators by taking into account

statistical properties of the transformed overall noise∆[t] (transformed byhϕ andψ) and prove

some properties. Without loss of generality, we focus on an arbitrary but fixed measurement

time instancet ∈ T and therefore drop the time index for brevity.

A. Approximation of the Overall Error Distribution

The statistics of the overall noise in (11) play a key role when defining function estimators

and evaluating the performance of the proposed CoMAC scheme. Since an exact distribution of

∆ = ∆1 + ∆2 + ∆3 conditioned on the sensor readingsX = x is difficult to determine, we

focus on suitable asymptotic approximations.

To this end, let us first compute the first and second order statistical moments of∆1, ∆2 and

∆3. As far as∆1 is concerned, we have

∆1 =
K∑

k=1

K∑

ℓ=1
ℓ 6=k

M∑

m=1

√

PkPℓ S
∗
k [m]Sℓ[m] = 2

N∑

n=1

M∑

m=1

√

P̃n cos(Θ′
n[m])

︸ ︷︷ ︸

=:Zn[m]

, (13)

whereN := K(K−1)/2, P̃n := PkPℓ andΘ′
n[m] := (Θℓ[m]−Θk[m])mod2π the random phase

difference between nodesk and ℓ at sequence symbolm. The mapping(k, ℓ) 7→ n is obtained

by n = n(k, ℓ) = ℓ+(k−1)K−k(k+1)/2, k = 1, . . . , K−1 andℓ = k+1, . . . , K, respectively.
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By convolution of the densities ofΘℓ[m] andΘk[m], Θ′
n[m] is independent uniformly dis-

tributed over[0, 2π), for all n,m. Hence, the probability density of eachZn[m] in (13) is6

pZ(z) =
1

π
√
1− z2

1(−1,1)(z) , (14)

which is symmetric around zero. So∀n,m : E{Zn[m]} = 0 and

∀pX ∈ C0(XK) : E{∆1} = 2
N∑

n=1

M∑

m=1

E
{
P̃

1
2
n

}
E
{
Zn[m]

}
= 0 . (15)

Furthermore,

Var{∆1} = 4

N∑

n=1

M∑

m=1

E
{
P̃n

}
Var

{
Zn[m]

}
= 2M

N∑

n=1

E
{
P̃n

}
(16)

since∀m,n 6= n′ : Cov{Zn[m], Zn′[m]} = 0 and∀m,n : Var{Zn[m]} = 1/2, where the latter

can be concluded by considering (14). As for the second errorterm∆2, we have

∆2 = 2

K∑

k=1

√

Pk Re
{
SH

kN
}
= 2

K∑

k=1

2M∑

ℓ=1

√

Pk UkℓN
′
ℓ (17)

where for any oddℓ, Ukℓ := cos(Θk[m]), N ′
ℓ := Re{N [m]} and Ukℓ := sin(Θk[m]), N ′

ℓ :=

Im{N [m]}, for any evenℓ (m = 1, . . . ,M). Notice that∀ℓ : N ′
ℓ ∼ NR(0,

1
2
σ2
N ) and the

probability density function ofUkℓ is given by (14). BecauseN ′
ℓ andUkℓ are zero mean and

independent for allk, ℓ, it follows for the expectation value

∀pX ∈ C0(XK) : E{∆2} = 2
K∑

k=1

2M∑

ℓ=1

E
{√

Pk

}
E{Ukℓ}E{N ′

ℓ} = 0 . (18)

Arguing along similar lines as in the case of∆1, the variance of∆2 can be easily shown to be

Var{∆2} = 4
K∑

k=1

2M∑

ℓ=1

E{Pk}Var{Ukℓ}Var{N ′
ℓ} = 2Mσ2

N

K∑

k=1

E{Pk} . (19)

Since∆3 =
∑

m |N [m]|2 ∼ χ2
2M , we finally concludeE{∆3} =Mσ2

N and

Var{∆3} =Mσ4
N . (20)

Lemma 1:∆1, ∆2 and∆3 are mutually orthogonal (in the Hilbert space of random variables

with the inner product defined to be〈∆j, ∆j′〉 ≡ E{∆j∆j′}) for all pX ∈ C0(XK).

6Note that by the definitions, all the probability density functions and expected values in this section exists.
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GOLDENBAUM AND STAŃCZAK: ROBUST ANALOG FUNCTION COMPUTATION VIA MULTIPLE-ACCESS CHANNELS 17

Proof: Since the sensor readings, the sequence symbols and the noise are mutually indepen-

dent random variables with∀m : E{N [m]} = 0, a straightforward calculation of the covariances

between∆1 and∆2 as well as between∆2 and∆3 proves the lemma.

The above derivations show that∀pX ∈ C0(XK) : E{∆} = Mσ2
N , while, by Lemma 1, the

variance of∆ is the sum of the variances (16), (19) and (20). Thus,

σ2
∆ := Var{∆} = 2M

N∑

n=1

E
{
P̃n

}
+ 2Mσ2

N

K∑

k=1

E
{
Pk

}
+Mσ4

N (21)

and note that when conditioned onX = x, the variance in (21) yields

σ2
∆|x := E{(∆−Mσ2

N )
2|X = x} = 2M

N∑

n=1

p̃n + 2Mσ2
N

K∑

k=1

pk +Mσ4
N . (22)

As mentioned in the introduction to this section, we were notable to find out the exact

distribution of the overall noise∆, which includes various terms with different distributions.

However, since the number of summandsJ := K(K − 1)M/2 + 2KM + 2M in the definition

of ∆ is already relatively large for small values ofK andM , we argue that it is well-founded

to invoke the central limit theorem so as to approximate the conditional distribution by a normal

distribution. The following proposition proves the corresponding convergence asM → ∞.

Proposition 2: Let ∆|x be the overall noise according to (10) and (11) conditioned on the

sensor readingsX = x with E{∆ |X = x} = Mσ2
N , 0 < σ2

N < ∞, andσ2
∆|x as defined in

(22). Then, for any fixedK,Pmax <∞ and a compact setX , we have

∀x ∈ XK :
∆|x−Mσ2

N

σ∆|x

d−→ NR(0, 1) (23)

asM → ∞, where
d−→ denotes the convergence in distribution.

Proof: Since the sum terms of∆|x are neither identically distributed nor independent, the

convergence to a normal distribution is not clear. Let us therefore rearrange the sum to obtain:

∆|x = ∆1|x+∆2|x+∆3 =
N∑

n=1

M∑

m=1

√

p̃n cos(Θ
′
n[m]) + 2

K∑

k=1

2M∑

ℓ=1

√
pkUkℓN

′
ℓ +

M∑

m=1

|N [m]|2

=

M∑

m=1

[
N∑

n=1

√

p̃n cos(Θ
′
n[m]) +

K∑

k=1

(

Re{N [m]} cos(Θk[m]) · · ·

+ Im{N [m]} sin(Θk[m])
)

+ |N [m]|2
]

=

M∑

m=1

Λm .
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This makes clear thatΛm, m = 1, . . . ,M , are independent and identically distributed nondegen-

erate (i.e.,Var{Λ1} > 0) random variables. Moreover, for anyK,Pmax, σ
2
N <∞ and a compact

set X , E{Λ2
1 |X = x} = 2

(
∑N

n=1 p̃n + σ2
N

∑K
k=1 pk + σ4

N

)

is finite. Hence the proposition

follows from Theorem 3 in [37, p. 326] with (22) andE{∆ |X = x} =Mσ2
N .

Since Proposition 2 implies the uniform convergence of the sequence of distribution functions

associated with{∆|x}M∈N, we can conclude that the distribution of∆|x can be approximated

by a normal distribution provided thatM is sufficiently large. This is summarized in a corollary.

Corollary 1: If M is sufficiently large,∆|x is close to∆̃|x ∼ NR(Mσ2
N , σ

2
∆|x) in distribution.

We point out that determining the convergence rate is beyondthe scope of this paper, extensive

numerical experiments (see Section V) suggest that the approximation stated in Corollary 1 is

justified already for small values ofM and most cases of practical interest.

B. Arithmetic Mean Analysis

First, we define a suitablearithmetic meanestimator based on the observation of the channel

output energy‖Y ‖22 given by (11). Subsequently, we analyze the outage probability under the

proposed estimator.

Definition 5 (Arithmetic Mean Estimate):Let f be the desired function “arithmetic mean” and

let the expected valueE{ψ(∆3/(Mαarit))} be known to the FC. Then, givenM , the estimate

f̂M(X) of f(X) is defined to be

f̂M(X) := ψ
(
hϕ(‖Y ‖22)

)
− E

{
ψ
(
∆3/(αaritM)

)}
. (24)

AssumingM
∑

k gϕ(ϕk(xk)) =M
∑

k pk =: z andαarit :=
Pmax

smax−smin
, we have

• Data pre-processing: ∀k : ϕk(x) = x, gϕ(x) = αarit(x− smin), ϕmin = smin, ϕmax = smax,

• Signal post-processing: ψ(x) = x/K, x ∈ R, hϕ(z) = 1
Mαarit

z +Ksmin.

Now, we prove two propositions to show that the arithmetic mean estimator of Definition 5

provides two most desired properties: unbiasedness and consistency. The resulting computation-

receiver is depicted in Fig. 3(b) with the switch in position1.

Proposition 3: The function value estimator of Definition 5 isunbiased, that is, we have

∀x ∈ XK : E{f̂M (X) |X = x} = f(x).
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Proof: With the definitions introduced in Section II-C and Definition 5 in mind, we can

write (24) asf̂M(X) = f(X) + 1
αaritKM

(∆−Mσ2
N ). From this, it follows thatE{f̂M(X) |X =

x} = f(x) + 1
αaritKM

(E{∆ |X = x} −Mσ2
N ) = f(x). So the proposition follows since∀x ∈

XK : E{∆ |X = x} = E{∆3} =Mσ2
N .

Proposition 4: Let K,Pmax, σ
2
N <∞ be arbitrary but fixed, and let{f̂M}M∈N be a sequence

of estimators (24). Then, the arithmetic mean estimatorf̂ of Definition 5 is consistent, that is

∀ǫ > 0 : limM→∞ P(|f̂M − f | ≥ ǫ) = 0.

Proof: Let c := 1/(αaritK) > 0 and ǫ > 0 be arbitrary and fixed. By the preceding proof,

we know thatEM := f̂M − f = c
M
(∆− E{∆3}). Hence, asE{∆} = E{∆3}, we obtain

P(|EM | ≥ ǫ) = P(E2
M ≥ ǫ2) = P

(
c2M−2(∆− E{∆3})2 ≥ ǫ2

)

≤ c2(Mǫ)−2
E
{
(∆− E{∆})2

}
= c2(Mǫ)−2

Var{∆} , (25)

where we used Markov’s inequality [37, p. 47] (also called Chebyshev’s inequality). By (21),

we have forK,Pmax, σ
2
N < ∞ that Var{∆} ∈ O(M) so that the right-hand side of the above

inequality goes to zero asM tends to infinity. Sinceǫ > 0 is arbitrary, this completes the proof.

Since the upper bound in (25) typically provides rather loose bounds for finite values ofM , we

cannot use it to approximate the outage probability. It turns out that a better approach is to invoke

Proposition 2 and approximateP(|E| ≥ ǫ) by using a transformed normal distribution. Note that

as fmax = supx∈SK f(x) = smax and fmin = supx∈SK f(x) = smin with f being continuously

extended ontoS, we have

E|x =
(
f̂M(x)− f(x)

)/
(smax− smin) = (∆|x−Mσ2

N )/α
′
arit , (26)

whereα′
arit :=MKPmax.

The Mann-Wald theorem [37, p. 356] guarantees that, for any real continuous mappingh =

h(x), one hash(Xn)
d→ h(X) wheneverXn

d→ X. We can therefore conclude from Corollary 1

that for sufficiently large values ofM , E|x in (26) can be approximated by a random variable

Ẽ|x ∼ NR(0,
σ2
∆|x

α′2
arit
) with conditional distribution functionPẼ(e|x) := P(Ẽ ≤ e|X = x) =

1
2
[1 + erf(

α′
arite

σ∆|x

√
2
)], e ∈ R.
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Since the absolute value is also continuous andP(|Ẽ| ≥ ǫ|X = x) = 1−PẼ(ǫ|x)+PẼ(−ǫ|x)
for any ǫ > 0, we obtain for sufficiently largeM ,

P(|E| ≥ ǫ) ≈ P(|Ẽ| ≥ ǫ) =

∫

XK

P(|Ẽ| ≥ ǫ |X = x)pX(x) dx

=

∫

XK

erfc
(
α′

aritǫ/(2σ
2
∆|x)

1
2

)
pX(x) dx , (27)

where we used the fact thaterf(−x) = − erf(x) for all x ∈ R.

C. Geometric Mean Analysis

As in the preceding subsection, we first define an estimator for the desired functiongeometric

meanincluding the required data pre-processing and signal post-processing functions.

Definition 6 (Geometric Mean Estimate):Let f be the desired function “geometric mean” as

defined in Section II-C, and let the expected valueE{ψ(∆3/αgeo)} be known to the FC (see

Lemma 2 below). Then, givenM , the estimatêfM(X) of f(X) is defined to be

f̂M(X) :=
ψ
(
hϕ(‖Y ‖22)

)

E
{
ψ
(
∆3/(αgeoM)

)} = f
(
X
) ψ

(
∆/(αgeoM)

)

E
{
ψ
(
∆3/(αgeoM)

)} . (28)

AssumingM
∑

k gϕ(ϕk(xk)) =M
∑

k pk =: z andαgeo :=
Pmax

loga(smax)−loga(s
′)

, we have

• Data pre-processing: If smin ≤ 0, choose an arbitrary but fixeds′ such that0 < s′ ≤ xmin <

smax and otherwises′ = smin. Then,∀k : ϕk(x) = loga(x), a > 1, ϕmin = loga(s
′) and

ϕmax = loga(smax), and∀k : gϕ(loga(x)) = αgeo(loga(x)− loga(s
′)).

• Signal post-processing: ψ(x) = ax/K , x ∈ R, hϕ(z) = 1
Mαgeo

z +K loga(s
′).

The resulting computation-receiver is shown in Fig. 3(b) with the switch in position 2. As

mentioned, our estimator requires the knowledge ofE{ψ(∆3/(αgeoM))}, which is explicitly

given in part (i) of the following lemma. Part (ii) is used in the proof of Proposition 5.

Lemma 2:Let a > 1 be given and fixed, and letαgeo be as in Definition 6. Suppose that

σ2
N loge(a) < αgeoKM . Then

(i) λM := E
{
ψ
(
∆3/(αgeoM)

)}
=
(

αgeoKM

αgeoKM−σ2
N loge(a)

)M

(ii) lim
M→∞

λM = e
σ2
N loge(a)

αgeoK .

Proof: The proof is deferred to Appendix B.

We point out that the expected valueλM exists if σ2
N loge(a) < αgeoKM holds, which is

usually fulfilled in practical situations and therefore assumed in what follows. With the estimator
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of Definition 6, the fuction estimation error conditioned onthe sensor readingsX = x becomes

E|x =
1

γ(x)
Ξ |x− β(x) = β(x)

(
Ξ |x
λM

− 1

)

, (29)

where we used the following notation:fmax = smax, fmin = s′ (0 < s′ ≤ xmin), β(x) :=

f(x)/(smax− s′), γ(x) := λM/β(x) andΞ |x := ψ(∆|x/(αgeoM)).

Note that the estimator of Definition 6 is not necessarily unbiased but it offers the advantage

of a simple implementation in practical systems. In contrast, the estimator

f̂M(X) = ψ
(
hϕ(‖Y ‖22)

)
E
{
ψ
(
∆/(αgeoM)

)}−1
(30)

is unbiased but not applicable in practice, because in contrast to the expected value in (28)

dependsE
{
ψ
(
∆/(αgeoM)

)}
in (30) on the overall noise, and thus on the distribution of the

sensor readings, which is usually unknown at the FC.

Although the estimator is not unbiased, the following proposition shows that it is (weakly)

consistent, and therefore asymptotically unbiased.

Proposition 5: For any fixedK,Pmax, σ
2
N < ∞, the geometric mean estimator proposed in

Definition 6 isconsistent.

Proof: Let K,Pmax, σ
2
N < ∞ and ǫ > 0 be arbitrary and fixed. Let{f̂M}M∈N be the

sequence of estimators given by (28). We show that the outageprobability P(|E| ≥ ǫ) → 0 as

M → ∞. To this end, considerP(|E|x| ≥ ǫ) := P(|E| ≥ ǫ|X = x) for any x ∈ XK , and

note thatf(x) > 0, β(x) > 0, λM > 0 andΞx := Ξ |x > 0. By (29), we haveP(|E|x| ≥ ǫ) =

P(Ξx/λM ≥ 1 + ǫ/β(x)) + P(1 − Ξx/λM ≥ ǫ/β(x)). An application of Markov’s inequality

[37, p. 47] yields an upper bound on the first sum term:

P(Ξx/λM ≥ 1 + ǫ/β(x)) = P

(

loge

(
Ξx

λM

)

≥ loge
(
1 + ǫ/β(x)

))

≤ E{loge(Ξx)} − loge(λM)

loge
(
1 + ǫ/β(x)

) .

(31)

By (ii) of Lemma 2, we havelimM→∞ loge(λM) = loge(limM→∞ λM) =
σ2
N loge(a)

αgeoK
. By the

results on the distribution functions of random variables that are functions of other random

variables [37, pp. 239–240], we obtainE{loge(Ξx)} = loge(a)
K

E
{ ∆|x

αgeoM

}
=

σ2
N loge(a)

αgeoK
, where we

usedE{∆ |X = x} =Mσ2
N in the last step. Combining the results shows that the upper bound

in (31) tends to zero asM → ∞. As for P(1 − Ξx/λM ≥ ǫ/β(x)), note that we can focus

on ǫ/β(x) < 1 sinceΞx/λM > 0. With this in hand, we haveP(1 − Ξx/λM ≥ ǫ/β(x)) =

P(λM/Ξx ≥ 1/(1− ǫ/β(x))). Proceeding essentially along the same lines as above showsthat
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this probability goes to zero withM → ∞. Now, by compactness ofX and Theorem 3 or

Theorem 4 of [37, p. 188], we havelimM→∞ P(|E| ≥ ǫ) = limM→∞E{P(|EM | ≥ ǫ |X =

x)} = E{limM→∞ P(|E| ≥ ǫ |X = x)} → 0.

Remark 5:Notice that the proposition implies that the proposed geometric mean estimator

(28) is asymptotically unbiased, that is, we havelimM→∞ E{f̂(X) |X = x} = f(x). As a

consequence, the proposed estimator (28) is asymptotically equivalent to (30).

Unfortunately,P(|E| ≥ ǫ) cannot be exactly evaluated because we are not able to determine

the distribution function of|E| = |γ(X)−1Ξ − β(X)|. For this reason, as in the preceding

subsection, we approximate the distribution ofΞ |x by a transformed normal distribution since

in contrast to the arithmetic mean case dependsΞ |x nonlinearly on the conditioned overall noise

∆|x.

Lemma 3:Let K < ∞, X be compact andM sufficiently large. Then,Ξ |x can be ap-

proximated by a random variablẽΞ |x ∼ LN (µΞ , σ
2
Ξ|x), whereµΞ = σ2

N loge(a)/(αgeoK) and

σ2
Ξ|x = σ2

∆|x(loge(a))
2/(αgeoK)2, respectively.

Proof: The proof can be found in Appendix C.

With Lemma 3 in hand, we are now in a position to prove the main result of this section.

Proposition 6: Consider the proposed geometric mean estimator (28) and suppose thatE is

the corresponding function estimation error. LetµΞ and σ2
Ξ|x be given by Lemma 3, and let

β(x), γ(x) > 0 be as defined in (29). Then, forM sufficiently large, the outage probability

P(|E| ≥ ǫ), ǫ > 0, can be approximated by

P(|E| ≥ ǫ) ≈ P(|Ẽ| ≥ ǫ) =

∫

XK

P(|Ẽ| ≥ ǫ|X = x)pX(x) dx (32)

with

P(|Ẽ| ≥ ǫ|X = x) =







1
2

[

2 + erf
(

loge(ρ
−(x,ǫ))−µΞ√
2σΞ|x

)

− erf
(

loge(ρ
+(x,ǫ))−µΞ√
2σΞ|x

)]

, 0 < ǫ < β(x)

1
2
erfc

(
loge(ρ

+(x,ǫ))−µΞ√
2σΞ|x

)

, β(x) ≤ ǫ <∞
,

(33)

whereρ−(x, ǫ) := γ(x)(β(x)− ǫ) andρ+(x, ǫ) := γ(x)(β(x) + ǫ), respectively.

Proof: The proof is deferred to Appendix D.

In Section V-A, we choose a particular densitypX(x) and evaluate (32) numerically to indicate

the accuracy of the approximation for different network parameters.
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V. NUMERICAL EXAMPLES

The objective of this section is twofold. First, we show in Section V-A that the approximations

of Section IV are very accurate, and second, we compare in Section V-B the proposed analog

CoMAC scheme with a TDMA-based scheme to indicate the huge potential for performance

gains in typical sensor network operating points.

As a basis, we consider a classical environmental monitoring scenario in which the FC is

interested in the arithmetic mean or geometric mean of temperature measurements taken by

a number of sensor nodes distributed over some geographicalarea. We assume that all nodes

are equipped with a low-power temperature sensor supporting a typical sensing rangeS =

[−55 ◦C, 130 ◦C] [38].

A. Approximation Accuracy

To assess the accuracy of the approximated distributions, we consider two scenarios: one

where the FC estimates the arithmetic mean, and one where thegeometric mean is desired. We

compare (27) and (32) with Monte Carlo evaluations of the outage probabilityP(|E| ≥ ǫ) based

on 10 · 103 realizations. Note that for both simulation examples,Pmax andσ2
N have been chosen

in agreement with commercial IEEE 802.15.4 compliant sensor platforms [39].

Example 1 (Arithmetic Mean):Let M = 25, 50, 150, 250, the number of nodesK = M and

the sensor readings uniformly and i.i.d. inX = [1 ◦C, 30 ◦C] ⊂ S. The resulting experimental

data is depicted in Fig. 4(a).

The plots in Fig. 4(a) indicate that expression (27) accurately approximates the true outage

probability P(|E| ≥ ǫ) for all ǫ > 0, since already for relatively short sequence lengths,

differences between the analytical expression and the Monte Carlo simulations are negligible.

Furthermore, the plots numerically confirm the consistencystatement of Proposition 4, because

the probability curves tend to the ordinate axis with growing M .

Example 2 (Geometric Mean):Let S ′ := [s′, smax] = [0.5 ◦C, 130 ◦C] ⊂ S, a = 2, X =

[1 ◦C, 30 ◦C] ⊂ S ′ and all other simulation parameters as in Example 1.7 The resulting experi-

mental data is depicted in Fig. 4(b).

7Notice that the corresponding function estimation error relies on S
′ since desired function geometric mean can not be

continuously extended onto the entire sensing rangeS .
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Fig. 4. Monte Carlo evaluation of the outage probabilities (10 · 103 realizations) vs. analytical results for differentM = K.

Similar as for Example 1, the plots in Fig. 4(b) show that (32)with (33) approximates the true

outage probability sufficiently accurate, with a negligible deviation for short sequence lengths.

In Section IV-C, we mentioned that although the geometric mean estimator (28) is applicable in

practice, it has the drawback of only an asymptotic unbiasedness compared to the impractical

unbiased estimator (30). Nevertheless, besides a comparison of a Monte Carlo evaluation of

P(|E| ≥ ǫ) using (28) with the analytical result (33), the figure also contains a plot in which

(30) was used to quantify the drawback. The difference between (28) and (30) vanishes quickly

with increasingM , which confirms Proposition 5 and Remark 5.

Remark 6:Propositions 4 and 5 as well as Examples 1 and 2 demonstrate that the sequence

lengthM is the crucial design parameter, which determines the trade-off between computation

accuracy and computation throughput.

B. Comparisons with TDMA

The numerical examples in the preceding subsection indicate the general behavior of the

proposed analog computation architecture without concrete evidence regarding the computation

performance compared to standard multiple-access schemes. Therefore, we demonstrate in this

subsection the superiority of the proposed CoMAC architecture by a comparison with an ideal-

ized uncoded TDMA scheme. For TDMA, the individual nodes quantize their sensor readings

uniformly overS with Q ∈ N bit, followed by binary phase shift keying, such that each sensor
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has to transmit a bit stream of lengthQ to the FC.

To ensure fairness between CoMAC and TDMA, with fixed degreesof freedom (e.g., band-

width, symbol duration), both schemes should induce the same costs per function value computa-

tion with respect to transmit energy and transmit time. Therefore, letT ∈ R++ be the common

symbol duration and letPTDMA ,k ∈ R++ denote the instantaneous TDMA transmit power on

nodek ∈ K. Then, the transmit times per function value areTCoMAC =MT andTTDMA = QKT ,

whereas the transmit energies can be written asECoMAC,k =MPkT andETDMA ,k = QPTDMA ,kT ,

respectively. Now, from the fairness conditionsTCoMAC = TTDMA andECoMAC,k = ETDMA ,k, for all

k ∈ K, it follows M = QK for the CoMAC sequence length andPTDMA ,k =
PkM
Q

= gϕ(ϕk(Xk))M
Q

,

k ∈ K, for the required instantaneous TDMA transmit powers.

In addition to fairness, requires an adequate comparison the determination of a common system

operating point, which can be done in terms of an average Signal-to-Noise Ratio (SNR). Assume

for simplicity that the sensed valuesXk are i.i.d. inX , for all k, such that the average received

TDMA-SNR per node can be defined as

SNRf :=
2ME{P1}
σ2
NQ

, (34)

which depends on the desired function.

Example 3 (Small Network Size):Let K = 25, Q = 10 bit, the sequence lengthM = QK,

and letPmax andσ2
N be chosen such thatSNRdB

f := 10 log10(SNRf ) ∈ {0, 2, 4, 6, 8, 10}. Further-

more, let the sensor readings be uniformly and i.i.d. inX = [5 ◦C, 30 ◦C] ⊂ S and let the desired

function be “arithmetic mean”. The corresponding simulation data is depicted in Fig. 5(a).

Example 4 (Medium Network Size):Let K = 250, the desired function be “geometric mean”

with S ′ = [1 ◦C, 130 ◦C] ⊂ S, a = 2 and let all other simulation parameters as in Example 4.

The corresponding simulation data is shown in Fig. 5(b).

Figures 5(a) and 5(b) indicate the huge potential of the proposed analog CoMAC scheme for

efficiently computing linear and nonlinear functions over the wireless channel. In both examples,

CoMAC entirely outperforms TDMA with respect to the computation accuracy for different

network parameters. It should be clear that the shown performance gains can be replaced by a

computation throughput gain.

Remark 7: It is important to emphasize that the shown performance gains are quite conser-

vative since the simulated TDMA scheme was idealized in manyways. For example, a realistic
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Fig. 5. CoMAC vs. TDMA: outage probabilities for quantization with Q = 10 bit (in the case of TDMA), sequence length

M = QK, andSNRdB
f = 0, 2, 4, 6, 8, 10 dB.

TDMA would require an established protocol stack with considerable amount of overhead

per frame (e.g., header, synchronization information, check sum) such that the overall TDMA

transmission time would extend toTTDMA = (Q+R)KT with a certainR ∈ N.

VI. CONCLUSION

In this paper, we proposed a simple analog scheme for efficiently computing functions of

the measurements in wireless sensor networks. The main ideaof the approach is to exploit the

natural superposition property of the wireless channel by letting nodes transmit simultaneously

to a fusion center. Applying an appropriate pre-processingfunction to each sensor reading prior

to transmission and a post-processing function to the signal received by the fusion center, which

is the superposition of the signals transmitted by the individual nodes, the approach allows the

analog computation of a huge set of linear and nonlinear functions over the channel. To relax

corresponding synchronization requirements, the nodes transmit some random sequences at a

transmit power that is proportional to the respective pre-processed sensor information. As a

consequence, only a coarse frame synchronization is required such that the scheme is robust

against synchronization errors on the symbol and phase level. The second essential part of the

scheme consists of an analog computation-receiver that is designed to appropriately estimate

desired function values from the post-processed received sum of transmit energies. Since the
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estimator has to be matched to the desired function, we considered two canonical function

examples and proposed corresponding estimators with good statistical properties.

Numerical comparisons with a standard TDMA have shown that the proposed analog computa-

tion scheme has the potential to achieve huge performance gains in terms of computation accuracy

or computation throughput. In addition to the weaker requirements regarding the synchronization

of sequences, the scheme needs no explicit protocol structure, which significantly reduces the

overhead. Computation schemes following the described design rule are therefore energy and

complexity efficient and can be easily implemented in practice. Finally, the hardware-effort is

reduced as well since energy consuming digital components (e.g., analog-to-digital converters,

registers) are not required. Note that the proposed computation scheme can be used as a building

block for more complex in-network processing tasks.

APPENDIX

A. Proof of Proposition 1

Let g′ϕ :=Mgϕ andh′ϕ := 1/Mhϕ so that we have to show thath′ϕ(
∑

k g
′
ϕ(ξk)) =

∑

k ξk with

ξk ∈ [ϕmin, ϕmax],k ∈ K, holds if and only ifgϕ andhϕ are affine functions. The “⇐” direction is

trivial, while the other direction is shown by contradiction. Supposeg′ϕ is bijective and continuous

but not affine. Then there exist two points(ξ1, . . . , ξK) and (ξ̃1, . . . , ξ̃K) in [ϕmin, ϕmax]
K with

∑

k ξk 6=
∑

k ξ̃k but
∑

k g
′
ϕ(ξk) =

∑

k g
′
ϕ(ξ̃k). By the last equation, we have

∑

k ξk = h′ϕ
(∑

k g
′
ϕ(ξk)

)
= h′ϕ

(∑

k g
′
ϕ(ξ̃k)

)
=
∑

k ξ̃k ,

which however contradicts
∑

k ξk 6=
∑

k ξ̃k. Hence,g′ϕ is affine and so isgϕ. Moreover, we have

hϕ(
∑

k g
′
ϕ(ξk)) = hϕ(Mgϕ(

∑

k ξk) + c̃) for somec̃ ∈ R, from which we conclude thathϕ is an

affine function as well withhϕ ≡ g−1
ϕ − c and some constantc ∈ R that depends ongϕ.

B. Proof of Lemma 2

Since∆3 ∼ χ2
2M , the probability density of∆3 is p∆3(x) =

1
σ2M
N Γ (M)

xM−1 e−x/σ2
N 1[0,∞)(x),

whereΓ (z) with Re{z} > 0 is used to denote the Gamma function. Hence, one obtains

E
{
ψ
(

∆3

αgeoM

)}
= 1

σ2M
N Γ (M)

∫ ∞

0

xM−1 exp
(

−
(

αgeoKM−σ2
N loge(a)

σ2
NαgeoKM

)

x
)

dx. (35)

Now assumeσ2
N loge(a) < αgeoKM and note thatΓ (z) =

∫∞
0
xz−1 e−x dx = kz

∫∞
0
xz−1 e−kx dx,

Re{z} > 0, which holds for anyRe{k} > 0 [40]. So substituting this into (35) with an
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appropriately chosenk proves (i). As for (ii), ifσ2
N loge(a) < αgeoKM , then it follows from (i)

that limM→∞

(
αgeoKM

αgeoKM−σ2
N loge(a)

)M

= limM→∞(1 + u
M
)−M = e−u, whereu := −σ2

N loge(a)

αgeoK
.

C. Proof of Lemma 3

Let X be an arbitrary compact set andK < ∞ any fixed natural number. By Section

II-C and Definition 6, we know thatΞ |x = ψ( ∆|x
αgeoM

) = a
1

αgeoKM
∆|x

, K,αgeo > 0, a > 1.

Since ψ is continuous and strictly increasing,PΞ(ξ|x) = P(Ξ ≤ ξ|X = x) = P(∆ ≤
αgeoKM loga(ξ)|X = x) = P∆(αgeoKM loga(ξ)|x), ξ > 0. Thus, bearing in mind Corollary 1,

we can conclude that, asM sufficiently large,∆|x can be approximated by a random variable

∆̃|x ∼ NR(Mσ2
N , σ

2
∆|x). An immediate consequence of this is that for sufficiently large values

of M , the distribution function of∆|x can be approximated byP∆̃(δ|x) = 1
2
+ 1

2
erf
( δ−Mσ2

N√
2σ∆|x

)

(i.e.,P∆(δ|x) ≈ P∆̃(δ|x)). Moreover, forM large enough, the Mann-Wald theorem [37, p. 356]

impliesPΞ(ξ|x) ≈ PΞ̃(ξ|x) = P∆̃(αgeoKM loga(ξ)|x), where (ξ ∈ R++)

P∆̃(αgeoKM loga(ξ)|x) =
1

2
+

1

2
erf

(

αgeoKM loge(ξ)− σ2
NM loge(a)√

2 loge(a)σ∆|x

)

. (36)

Note that (36) describes the distribution function of a log-normally distributed random variable

with parametersσ
2
N loge(a)

αgeoK
=: µΞ and

( loge(a)
αgeoKM

σ∆|x
)2

=: σ2
Ξ|x. ThusΞ |x is approximated by a

random variableΞ̃ |x ∼ LN (µΞ , σ
2
Ξ|x).

D. Proof of Proposition 6

Note that it is sufficient to show (33). Because|E|x| = |γ(x)−1Ξ |x− β(x)| is continuous in

Ξ |x, Lemma 3 and the Mann-Wald theorem allow for the approximation of |Ξ |x| by |Ẽ|x| =
|γ(x)−1Ξ̃|x − β(x)|, where the probability distribution function of̃Ξ|x ∼ LN (µΞ , σ

2
Ξ|x) is

given by (36). Since0 < β(x), γ(x) <∞, we haveP(|E| ≥ ǫ|X = x) ≈ P(|Ẽ| ≥ ǫ|X = x) =

1− P(−ǫ < Ẽ < ǫ|X = x) = 1− P(−ǫ < γ(x)−1Ξ̃ − β(x) < ǫ|X = x) which leads to

P(|Ẽ| ≥ ǫ|X = x) =







1− PΞ̃

(
ρ+(x, ǫ)|x

)
+ PΞ̃

(
ρ−(x, ǫ)|x

)
, 0 < ǫ < β(x)

1− PΞ̃

(
ρ+(x, ǫ)|x

)
, β(x) ≤ ǫ <∞

(37)

whereρ+(x, ǫ) := γ(x)(β(x)+ ǫ) andρ−(x, ǫ) := γ(x)(β(x)− ǫ). Inserting the right-hand side

of (36) into expression (37) and usingerfc(x) = 1− erf(x), for all x ∈ R, shows (33) and thus

completes the proof.
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