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Abstract

In this paper, we analyze a multiple-input multiple-output (MIMO) interference channel where
nodes are randomly distributed on a plane as a spatial Poisson cluster point process. Each cluster uses
interference alignment (IA) to suppress intra-cluster interference but unlike most work on IA, we do
not neglect inter-cluster interference. We also connect the accuracy of channel state information to the
distance between the nodes, i.e. the quality of CSI degrades with increasing distance. Accounting for the
training and feedback overhead, we derive the transmission capacity of this MIMO IA ad hoc network
and then compare it to open-loop (interference-blind) spatial multiplexing. Finally, we present exemplary
system setups where spatial multiplexing outperforms IA due to the imperfect channel state information
or the non-aligned inter-cluster interference.

I. INTRODUCTION

Interference alignment (IA) achieves the degrees of freedom in the K-user MIMO interference
channel [2]. IA confines the interference to a subspace at each receiver such that an interference-
free subspace becomes available for the desired signal transmission. Except for blind IA tech-
niques [3], [4], which usually attain a lower multiplexing gain, IA requires cooperation between
the transmitting/receiving nodes using global channel state information (CSI) [5] or some form
of channel reciprocity. Although the impact of inaccurate CSI on the performance of IA has
been studied before [6], existence of non-cooperating nodes casting non-aligned interference has
been mostly ignored.

A. Background
In large networks, such as mobile ad hoc and cellular networks, IA will be used independently

in separate clusters and the nearby nodes that are not coordinating with any one cluster will cause
non-aligned interference at the receivers. There are three main reasons.

1) Number of antennas at each node is a limiting factor. It is shown in [2] that the number of
nodes that can cooperate through MIMO IA is limited by the number of antennas at each
node.

2) Overhead practically limits the cluster size. The overhead of IA grows super linearly with
the number of users [7], and hence it is likely that small groups of nodes will coordinate
to perform IA.
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3) More cooperation is not always better. Recently, [8] showed that because of inherent channel
uncertainty, there is a moderate cluster size above which spectral efficiency at best saturates,
and in many practical scenarios (e.g. when pilots are used for channel estimation), actually
decreases if more nodes join the cluster to cooperate.

In this case, single cluster analysis (e.g. DoF studies) does not capture the impact of interference
from the other nodes in the network and can lead to unrealistic cooperation gains which would
not be attainable if the inter-cluster interference was accounted for [8], [9]. Most work on the
performance of IA, however, is confined to single-cluster performance analysis (see [6], [10]–[12]
and references therein).

When dealing with large networks, a relevant metric of the system performance is the trans-
mission capacity [13], defined as the number of successful transmission per unit area, subject
to a constraint on outage probability. The transmission capacity, in contrast to other network-
wide system performance metrics such as transport capacity, generally leads to closed-form
expressions or tight bounds providing insight into the network design parameters [14]. To the
best of our knowledge, little prior work on the network-wide performance of MIMO IA systems
exists. In [15], the spatial distribution of nodes is taken into account for deriving the point-to-
point outage probability but the accuracy of the acquired CSI is ignored. By assuming perfect
CSI, however, as discussed in [6, Section V], the authors in [15] effectively favor IA over
other transmission techniques which either do not require CSI at the transmitters or are less
sensitive to CSI imperfections. Therefore, the goal of this paper is take into account both the
node distribution and the CSI uncertainty to better understand the performance of MIMO IA in
large decentralized networks.

B. Contributions
In this paper, we find the transmission capacity of a large ad hoc network where nodes

are partitioned into separate clusters each cooperating through IA. We assume a four-stage
transmission protocol. In the first stage, with a finite length training period, imperfect CSI
for the cross links is obtained through MMSE channel estimation. In the second stage, the
estimated CSI is fed back to the other nodes in the cluster during the feedback period. In the
third stage, the IA transmit/receive filters are computed. In the last stage, using the rest of the
finite-length channel block, the nodes communicate data using a cluster-wise slotted Aloha-like
channel access protocol where at random, all nodes in a cluster either transmit simultaneously or
turn off their transmission. MIMO IA, as discussed in this paper, requires synchronization and
coordination in each cluster and therefore a coordinated decision to transmit or not is reasonable.

Toward deriving the transmission capacity of this network, we first derive the exact point-to-
point outage probability at a typical receiver. Then, assuming fixed feedback overhead, we solve
for the optimum training period locally maximizing each cluster’s goodput. Next, we derive the
transmission capacity and compare it to a network with the same topology where only a single
transmit/receiver pair in each cluster utilizes spatial multiplexing at each time instant.

Our results indicate that the transmission technique of choice is a function of the node
density, the mobility of the nodes, the transmit power, and the characteristics of the underlying
communications medium. For example, in dense networks with high transmit power, spatial
multiplexing (SM) over an orthogonal channel access strategy such as time division multiple
access (TDMA) can outperform IA due to lower inter-cluster interference. Also, the signal-to-
noise-ratio (SNR) switching point between IA and TDMA+SM decreases with increasing density
and mobility. Our initial work in [1] only deals with point-to-point outage probability. This paper
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elaborates on the claims of [1], solves for the optimum training period, finds the corresponding
transmission capacity of the network, provides easier to compute bounds in several important
cases, and presents new simulation results.

C. Organization and Notation
The remainder of the paper is organized as follows. In Section II we present the system

model. In Section III we analyze the performance of intra-cluster MIMO IA through quantifying
point-to-point outage probability and the transmission capacity. In Section IV we derive parallel
performance metrics for the same network utilizing spatial multiplexing. We present numerical
results in Section V followed by concluding remarks in Section VI. Also, Tables I and II present
the notation used and the important symbols defined in this manuscript.

II. SYSTEM MODEL

The spatial locations of the potential transmitters, Φ, are modeled as a planar Neyman-
Scott cluster point process [16]. In this process, the cluster centers are modeled by a parent
homogeneous Poisson point process (PPP) Φp of density λ̃p. Each parent point x ∈ Φp forms
the center of a cluster around which K daughter points are uniformly distributed in a circle of
radius R. The resulting process1 is a stationary point process of density Kλ̃p. We assume clusters
randomly access the channel with probability PA effectively reducing the density of this PPP to
λp =PAλ̃p. The receiver of a transmitter at x is denoted by x̂ and is assumed to be randomly
located at distance Dr from its transmitter forming an N ×N MIMO link. The receivers are not
part of the point process Φ. An instance of the nodes’ location is shown in Fig. 1.

In this paper, a typical transmitter (a transmitter chosen at random) is considered and its
performance is analyzed. This transmitter is typical in the sense that the performance of IA in
this node is a representative of the average performance of IA in the network [16], [17]. Since
the underlying point process is stationary, without loss of generality, it can be assumed that the
typical transmitter is at the origin2. Denote the cluster to which the transmitter at the origin
belongs by Ψo. The received signal at receiver x̂, x ∈ Ψo, is

yx̂ =
∑
z∈Ψo

√
gx̂zHx̂zFz s̃z + Ic + ux̂, (1)

where Ic =
∑

z∈Φ/Ψo

√
gx̂zHx̂zFz s̃z is the inter-cluster interference, gx̂z and Hx̂z represent the

pathloss and the matrix of channel coefficients between the transmitter z and the receiver x̂,
Fz is the precoder at transmitter z with the transmitted signal s̃z such that E{s̃∗z s̃z} = P ,
and ux̂ ∼ CN(0, NoI) is the additive white Gaussian noise. In this paper, it is assumed that
F∗zFz = I, because of tractability and the observation that the gain attained otherwise, such as
with the MMSE algorithm in [19] or the Max-SINR algorithm in [18], is limited and confined
to the low SNR regime where the inter-cluster interference is generally not dominant. In every
cluster, channel state information is estimated at the receivers as in [20] and conveyed to all
other nodes of the cluster using an error-free instantaneous feedback link. We propose to model
the uncertainty in the MIMO channels using a Gauss-Markov model of the form [21], [22]

Hx̂z =
√

1− β2
x̂zH

w
x̂z + βx̂zEx̂z x, z ∈ Ψo, (2)

1The parent points Φp will not be a part of the final point process.
2The whole point process can be translated so the randomly picked node is located at the origin.
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where Hw
x̂z is the estimated channel, Ex̂z represents the estimation error with i.i.d. terms dis-

tributed as CN(0, 1), and β2
x̂z is the normalized variance of the estimation error. It is assumed that

the channel is quasi-static block-fading such that H is constant for a block duration of length T
and then changes independently. Training, feedback, and data transmission are assumed to be all
orthogonal in time, in the same coherence time or frame T [23]. Hence, βx̂z is set to be related
to the average received SNR at each link, γx̂z, as [20, Section II.B]

β2
x̂z =

1

1 + Tt
N
γx̂z

=
1

1 + Tt
γogx̂z
N

, (3)

where γo = P
No

and Tt ≥ KN is the number of channel instances spent for training Hx̂z [10].
For analytical tractability, it is also assumed that Hw is used to construct the precoders/equalizers
and nodes effectively ignore the imperfection in CSI in their design.

III. INTRA-CLUSTER INTERFERENCE ALIGNMENT

At each cluster, a K-user system of IA is feasible if there exists a set of matrices W =
{Wẑ|z ∈ Ψ0} such that, given the received signal of (1), the following constraints are met [5]:{

rank (Wx̂Hx̂xFx) = Ns

Wx̂Hx̂zFz = 0 ∀z 6= x
∀x, z ∈ Ψo, (4)

where Wx̂ is the combining filter used at receiver x̂ and Ns is the number of interference-free
streams each transmitter can send to its receiver. The linear equalizer presented in [6] and the
projection matrix presented in [19, Section III.A] are examples of a possible receive filter in (4).
It is assumed that the IA precoders are designed using the alternating minimization algorithm
in [19, Section III.A] such that Fx is independent of Hx̂x for all x ∈ Ψ. Also, it is assumed
that the set of {N,Ns, K} constitutes a feasible IA system, which for the MIMO interference
channel requires that 2N − (K + 1)Ns ≥ 0.

A. Characterizing the SINR
From (4), interference at receiver x̂ is confined to an N −Ns dimensional subspace. Let [{·}]

represent horizontal concatenation of the elements in {·}. Then, as IA precoders/equalizers are
constructed using Hw as given by (2), the N×(K−1)Ns matrix of Jx̂ = [{Hw

x̂zFz|z 6= x, z ∈ Ψo}]
spans an N−Ns dimensional subspace. Let the singular value decomposition of Jx̂ be UJx̂ΣJx̂V

∗
Jx̂

and let the rows of Wx̂ be the columns of UJx̂ corresponding to zero singular values in ΣJx̂ .
As Wx̂ is independent of Hw

x̂xFx, it satisfies the conditions in (4) and is a valid zero-forcing
(ZF) equalizer for IA. Using this ZF receiver, the post-processing SINR of the nth stream at
receiver x̂ is

γIA
x̂,n=

gx̂x(1− β2
x̂x)h̃

∗
x̂xh̃x̂x

Ns
γo

+ gx̂xβ
2
x̂xẽ
∗
x̂xẽx̂x︸ ︷︷ ︸

Is

+
∑

z∈Ψo/x

gx̂zβ
2
x̂zẽ
∗
x̂zẽx̂z︸ ︷︷ ︸

Ie

+
∑

z∈Φ/Ψo

gx̂zh̃
∗
x̂zh̃x̂z︸ ︷︷ ︸

Ii

, (5)

where for all z ∈ Φ, h̃x̂z = (e∗nWx̂H
w
x̂zFz)

∗, ẽx̂z = (e∗nWx̂Ex̂zFz)
∗, and en is the nth column of

an Ns×Ns identity matrix. Note that Is represents the residual error from the direct link and, as
the distance between the transmitter and receiver is constant, its pathloss (and the error variance)
are not random variables and so it is separated from Ie to emphasize this point. Let the entries
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of Hx̂z and Ex̂z be i.i.d. Gaussian terms. As Wx̂ and Fz are unitary matrices independent of
Hx̂z and Ex̂z, due to the doubly unitarily invariance of the Gaussian distribution, h̃x̂z and ẽx̂z
will be column vectors of length Ns with i.i.d. Gaussian terms and independent of each other (as
Hx̂z and Ex̂z are independent of each other). Note that (5) is in fact independent of the stream
index n.

B. Probability of Outage
In (5), since h̃∗x̂zh̃x̂z and ẽ∗x̂zẽx̂z are i.i.d. Γ(Ns, 1) random variables, we denote them both by

hx̂z for notational simplicity. Denote the typical transmitter at the origin by o. Considering a
transmitter at the origin is equivalent to conditioning on the existence of a point at the origin.
Since every point belongs to some cluster, conditioning on the existence of a point at the origin
equals the presence of a cluster with a daughter point at the origin. Since the parent point process
is a PPP, an additional cluster with a daughter point at the origin can be added to it without
changing the statistics of the other points of the process. Succinctly, the Palm probability of a
Neyman-Scott cluster process is Po = P ∗Ψo where ∗ denotes superposition [16]. This implies
that assuming a point of the cluster process at the origin equals the original point process Φ plus
an additional cluster which has a point at the origin. Also this additional cluster at the origin Ψo is
independent of the original process Φ. Since the tagged transmitter at origin does not contribute
to the interference at the receiver, it is convenient to use the reduced Palm probability denoted by
P!o instead of Palm probability. Reduced Palm probability is similar to Palm probability, except
that the point at the origin is not considered in the computation of the probability and hence
P!o = P ∗ {Ψo \ {o}}. From (5), the probability of success is therefore PIA

s (θ) = P!o(γIA
ô,n > θ),

where θ is the SINR threshold.

Theorem 1. For the system model described in Section II, the success probability when each
cluster uses IA is

PIA
s (θ) =

Ns−1∑
k=0

(−η)k

k!

dk

dsk
e−s

Ns
γo

(
Ttγo
N

+Dα
r

s+ Ttγo
N

+Dα
r

)Ns

L!o
Ie

(s)LIi(s)
∣∣∣
s=η

, (6)

where L!o
Ie

(s) and LIi(s) are Laplace transforms of intra and inter-cluster interference given by

L!o
Ie

(s) =
1

πR2

∫
B(o,R)

 1

πR2

∫
B(o,R)

(
Ttγo
N

+‖x−y−ô‖α

s+ Ttγo
N

+‖x−y−ô‖α

)Ns
dx

K−1

dy, (7)

LIi(s) =exp

(
− λp

∫
R2

1−

[
1

πR2

∫
B(o,R)

(
‖x−y‖α

s+‖x−y‖α

)Ns
dx

]K
dy

)
, (8)

where η = θ
gôo(1−β2

ôo)
.

Proof: See Appendix A.
Note that the integrals in (7) and (8) can be computed by switching to polar coordinates and

exchanging the order of differentiation and integration3. Although the probability of successful
transmission given by (6) is in closed-form, numerically computing it, especially for Ns >

3The integral in (7) is always finite since the domain of integration is a bounded set. The integral is (8) can be shown to be
finite using the fact that ‖x− y‖ ≥ ‖y‖ −R for the inner integral and 1− xm ≤ exp(−xm), m ≥ 1 for the outer integral.
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1 where differentiation is required, is not trivial. Lemma 1 provides bounds on the Laplace
transforms in (7) and (8) that are easily computable. Also, Lemma 2 can be used to avoid the
differentiation in (6) when Ns > 1.

Lemma 1. For K > 2

LIi(s) ≤ exp

(
−λps2/αΓ(KNs + 2/α)Γ(1− 2/α)

Γ(KNs)

)
(9)

L!o
Ie

(s) ≤ 1

2π

∫ 2π

θ=0

∫ 2R

x=0

hr(x)

(1 + sf(
√
x2 +D2

r − 2xDr cos(θ)))Ns(K−1)
dxdθ, (10)

where

hr(x) =

{
x
R2 I1− x2

4R2
(3/2, 1/2) x ≤ 2R

0 Otherwise
(11)

and Iy(a, b) is the regularized incomplete beta function.

Proof: See Appendix B.

Lemma 2. If η > (Ns − 1)/e, the success probability is bounded by

PIA
s ≤

Ns−1∑
k=0

ηk

k!
e−(η−k/e)Ns

γo Ee−(η−k/e)gôoβ2
ôohôoL!o

Ie
(η − k/e)LIi(η − k/e). (12)

Proof: See Appendix C.
For Ns > 1, unlike (6), (12) does not have a differentiation operator. Note that the condition

on Ns in Lemma 2 is equivalent to Ns < 1 + eθDαr
1−β2

ôo
which is true for practical Ns and typical

operating regime where θ � 1, Dr > 1, and β2
ôo � 1. Also, results from Lemma 1 can be used

to further simplify the expression in Lemma 2.

C. Optimizing the Training Period
For a given block fading of length T , the transmitters spend Tt ≥ KN channel instances for

training the links. We also assume a prefect analog feedback link where the receivers send the
trained channels over a period of Tf = K2N channel instances to the transmitters. In practice, the
transmitters select Tt to optimize some performance criteria. In this paper, we assume transmitters
use the goodput at each cluster defined as

T̂t = arg max
Tt

T −K2N − Tt

T
KNsP

IA
s (θ) log2(1 + θ)

s.t. KN ≤ Tt ≤ T −K2N,

(13)

where T−K2N−Tt
T

accounts for the transmission opportunities lost due to overhead, KNs is the
total number of streams in each cluster, and PIA

s (θ) log2(1+θ) is the rate multiplied by the times
the connection exists, i.e. SINR passes the threshold θ. Note that in (13), PIA

s (θ) is implicitly a
function of the training period Tt.
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For a given node mobility and hence a Doppler frequency fd ≈ 1
T

, the training period can be
written as a fraction of the total block length T , i.e. Tt = δT = δ 1

fd
. Therefore, the optimization

problem of (13) can be rewritten as

δ̂ = arg max
δ

(1− δ − fdK2N)KNsP
IA
s (θ) log2(1 + θ)

s.t. fdKN ≤ δ ≤ (1− fdK2N),
(14)

where

PIA
s =

Ns−1∑
k=0

(−η)k

k!

dk

dsk
e−s

Ns
γo

(
δγo
N

+ fdD
α
r

δγo
N

+ fd(s+Dα
r )

)Ns

L!o
Ie

(s, fd)LIi(s)
∣∣∣
s=η

,

η = θDrα(γoδ+NDrαfd)
γoδ

, L!o
Ie

(s, fd) = 1
πR2

∫
B(o,R)

[
1
πR2

∫
B(o,R)

δγo
N

+fd‖x−y−ô‖α
δγo
N

+fd(s+‖x−y−ô‖α)
dx

]K−1

dy , and LIi(s) is given

by (8).
With a convex relaxation on Tt (and therefore δ) to change its domain to the real numbers,

the optimization problem of (14) is convex and solvable with any of the numerical optimization
algorithms [24]. Note that, although complicated, the derivative of the objective function in (14)
w.r.t δ is computable and evaluating the objective function or its derivatives for any set of values
is possible. Next we provide approximate closed form solutions for some common cases.

1) Single stream from each transmitter: When Ns = 1, PIA
s in (14) simplifies to

PIA
s (Ns = 1) = e−η

Ns
γo

δγo
N

+ fdD
α
r

δγo
N

+ fd(η +Dα
r )

L!o
Ie

(η, fd)LIi(η). (15)

The highly non-linear dependency of (15) on δ can be converted into a polynomial one following
the Taylor expansion approximation method proposed in [25]. Let g(δ, fd) be the objective
function in (14). Rewrite g(δ, fd) as its Taylor series around fd = 0 (infinite block length and
hence perfect training) keeping all the other variables constant

δ̂ ≈ arg max
δ

g(δ, fd = 0) +
∂g

∂fd
|fd=0fd +

1

2

∂2g

∂f 2
d

|fd=0f
2
d

s.t. fdKN ≤ δ ≤ (1− fdK2N).

(16)

Simplifying the terms in (16) and removing the constant scaling coefficients from the optimization
problem yields

δ̂1 ≈ argmax
δ

− δ + C1
1

δ
+ C2

1

δ2

s.t. fdKN ≤ δ ≤ (1− fdK2N),

(17)

where C1 and C2 are given in Appendix D. Let δ1 be the relevant root of the first derivative of
(17). The optimum training period will be given by

T̂t,1 = min
(
max (KN, [δ1T ]) , T −K2N

)
. (18)

When Tt
N
gôoγo = Tt

N
γo
Dαr
� 1, which is true for high SNR, βôo ≈ 0 which implies that η ≈ θDα

r .
In this case, LIi(η) is a strictly positive function independent of Tt and (17) simplifies to

δ̂2 ≈ argmax
δ

− δ +D1
1

δ
+D2

1

δ2

s.t. fdKN ≤ δ ≤ (1− fdK2N),

(19)
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where D1 and D2 are given in Appendix E. Similar to T̂t,1, let δ2 be the relevant root of the
first derivative of (19). The optimum training period will be given by

T̂t,2 = min
(
max (KN, [δ2T ]) , T −K2N

)
. (20)

2) Greater than one stream from each transmitter: For Ns > 1, the same approach taken
to derive (18) and (20) can be used to approximately solve for the optimum training period.
Alternatively, bounds given in (9), (10), and Lemma 2 can be used to derive simpler (and less
accurate) results. We believe the involved expressions in this case do not provide additional
insight into the problem at this point and are not presented here.

D. Transmission Capacity
Let q(λp) = 1− PIA

s (θ) = ε. Accounting for overhead, the normalized transmission capacity
is

C(ε) =
T −K2N − T̂t

T
q−1(ε)K(1− ε). (21)

With the probability of successful transmission as given by (6), the exact expression of q−1(ε)
for general Ns is not analytically tractable. Next we give its exact expression for the case of
Ns = 1 and provide a bound for general Ns > 1.

1) Single stream from each transmitter: Using (6)

q(λp) = 1− e−η̂
Ns
γo

(
T̂tγo
N

+Dα
r

s+ T̂tγo
N

+Dα
r

)
L!o

Ie
(η̂)LIi(η̂) = ε, (22)

where η̂ = η|Tt=T̂t . Substituting (7) and (8) into (22) gives

q−1(ε) = λεp =

loge

 e
−η̂ Nsγo
1−ε

T̂tγo
N

+Dαr
T̂tγo
N

+η̂+Dαr

1
πR2

∫
B(o,R)

 1
πR2

∫
B(o,R)

(
T̂tγo
N

+‖x−y−ô‖α

η̂+
T̂tγo
N

+‖x−y−ô‖α

)Ns
dx

K−1

dy.


∫
R2

1−

[
1
πR2

∫
B(o,R)

(
‖x−y‖α

η̂+‖x−y‖α

)Ns
dx

]K
dy

, (23)

where T̂t is the optimum training period obtained earlier. Using (23), (21) can be computed.
2) Greater than one stream from each transmitter: When η̂ > (Ns − 1)/e, using Lemma 2

q(λp) ≥ 1−
Ns−1∑
k=0

η̂k

k!
e−(η̂−k/e)Ns

γo Ee−(η̂−k/e)gôoβ2
ôohôoL!o

Ie
(η̂ − k/e)LIi(η̂ − k/e). (24)

Note that the expression for the optimum training when Ns > 1 was not presented in Section
III-C2. Now, if η̂ � k/e for all k ∈ {0, . . . , Ns − 1}, η̂ − k/e ≈ η̂ and hence (24) equals

q(λp) ≥ 1−

(
Ns−1∑
k=0

η̂k

k!

)
e−η̂

Ns
γo Ee−η̂gôoβ2

ôohôoL!o
Ie

(η̂)LIi(η̂)

⇒ LIi(η̂) ≥ 1− ε(∑Ns−1
k=0

η̂k

k!

)
e−η̂

Ns
γo Ee−η̂gôoβ2

ôohôoL!o
Ie(η̂)
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⇒ λεp ≤
loge

(
1

1−ε

(∑Ns−1
k=0

η̂k

k!

)
e−η̂

Ns
γo Ee−η̂gôoβ2

ôohôoL!o
Ie

(η̂)
)

∫
R2

1−

[
1
πR2

∫
B(o,R)

(
‖x−y‖α

η̂+‖x−y‖α

)Ns
dx

]K
dy

. (25)

To simplify the integrations in (25), one could also use the bound given by (10) for L!o
Ie

(η̂) or
use a similar approach taken to obtain (9) to find an appropriate bound for the denominator of
(25).

IV. SPATIAL MULTIPLEXING

An alternative strategy to IA is spatial multiplexing with an orthogonal multiple access
technique, e.g. TDMA. We analyze open-loop spatial multiplexing where at each cluster only
a single transmit/receiver pair communicate N streams without precoding. In short, we refer to
TDMA+SM as SM. For a fair comparison with IA, we assume a similar CSI imperfection as in
(2). Therefore, the signal at a typical receiver can be written as

yx̂=gx̂x

(√
(1−β2

x̂x)gx̂xH
w
x̂x+βx̂xEx̂x

)
s̃x+Ic+ux̂,

where Ic is defined in (1) with the difference that each cluster only has a single transmitter.
In this case, the point process of the transmitters simplifies to the Poisson point process of the
parent points. When βx̂x = 0, after a zero-forcing receiver based on Hx̂x, the SINR of the nth
stream at a typical receiver can be written as

γSM
x̂,n =

gx̂x

e∗n (Hw
x̂x)
−1

(
N
γo

IN +
∑

z∈Φ/Ψo

gx̂zHx̂zH∗x̂z

)(
(Hw

x̂x)
−1)∗ en , (26)

where we have assumed the interference values from different transmitters are independent. The
probability of success is given by [26]

PSM
s (θ) = P!o(γSM

x̂,n > θ) = exp

(
−λpθ

2
αD2

rJ− θDα
r

N

γo

)
, (27)

where J =
πΓ(N+ 2

α)Γ(1− 2
α)

Γ(N)
. With imperfect CSI, we assume the receivers compute their zero-

forcing receivers based on the estimated channel values and ignore the estimation error. Then,
the denominator of (26) will have an additional term of gx̂xβ2

x̂xEx̂xE
∗
x̂x inside the parenthesis. As

the channel estimation error is independent of the estimated channel and the transmitter/receiver
distance is fixed to Dr, this additional term is effectively increasing the noise spectral density
from No to No + Pgx̂xβ

2
x̂x. As the numerator of (26) also changes to gx̂x (1− β2

x̂x), in case of
imperfect CSI as in (2), the probability of success at a typical receiver for any of the streams
changes from (27) to

PSM
s (θ) = P!o(γSM

x̂,n > θ) = exp

(
−λpθ̃

2
αD2

rJ− θ̃Dα
r

NÑo

P

)
, (28)

where θ̃ = θ
1−β2

x̂x
and Ño = No + Pgx̂xβ

2
x̂x.
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A. Optimum Training Period
Similar to the IA case, each node selects a training period that optimizes its own (its own clus-

ter’s) goodput. Unlike IA, however, here the minimum training period for each transmit/receive
pair is N and no resources are spent for feedback. Hence

T̂ SM
t = argmax

Tt

T − Tt

T
NPSM

s (θ) log2(1 + θ)

s.t. N ≤ Tt ≤ T.

(29)

It is possible to show that the optimization problem of (29), after a convex relaxation on Tt, is
also a convex problem and any of the numerical optimization algorithms [24] can be used to
solve for the optimum T̂ SM

t . Nevertheless, similar to the optimization problem of (14), we first
replace the objective function of (29) with its second order Taylor expansion around fd = 0
(infinite block length and hence perfect training) holding all the other variables constant, and
then obtain an approximate closed-form solution for T̂ SM

t

δ̂SM = argmax
δSM

(1− δ)NPSM
s (θ) log2(1 + θ)

s.t. N ≤ Tt ≤ T.
(30)

Removing the constant coefficients and simplifying the terms, the new optimization problem
derived from the 2nd order Taylor series expansion of the objective function in (30) is

δ̂SM ≈ argmax
δ

− δ +B1
1

δ
+B2

1

δ2

s.t. fdN ≤ δ ≤ 1,
(31)

where B1 and B2 are given in Appendix F. Similar to the IA case, let δ3 be the relevant root of
the first derivative of (31). The optimum training period will be given by

T̂ SM
t = min (max (N, [δ3T ]) , T ) . (32)

B. Transmission Capacity
For a given block length T , accounting for overhead, the normalized transmission capacity is

c(ε) =
T − T̂ SM

t

T
Nλεp(1− ε). (33)

Using (28), λεp is found as

λεp =
N

θ̃2/αD2
rJ

(
log

(
1

1− ε

)
− θ̃Dα

r NÑo

P

)
, (34)

where in computing θ̃ and Ño, the optimum training period, T̂ SM
t , is used.
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V. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we present numerical examples demonstrating both the accuracy of the devel-
oped theory for analyzing large IA networks and the effectiveness of such analysis in discovering
operating regimes where IA outperforms other transmission schemes. For simplicity, we focus
on the case of K = 3, N = 2, and Ns = 1. To further reduce the number of involved variables,
we set R to Dc=0.5λ0.5

p (average distance between the cluster centers) and set Dr to R
5

. In this
way, by increasing Dc, all the nodes move away from each other. We set No to 1 and unless
otherwise stated, it is also assumed that all the clusters are transmitting simultaneously. In the
forthcoming discussions, perfect channel estimation corresponds to very large values of Tt where
β is assumed to be 0 and the worst channel estimation corresponds to assigning the least number
of channel instances required for training the cross links in an IA cluster, i.e. Tt = KN . Note
that for perfect CSI, (38) and (7) are both equal to 1.

Probability of successful transmission with perfect CSI Assume perfect channel state
information and γo = 30 dB. PIA

s and PSM
s given by (6) and (27) as a function of the SINR

threshold for three values of the average distance between the cluster centers in shown in Fig.
2. As can be seen, for very dense networks, SM outperforms IA which can be explained by
the reduced inter-cluster interference due to only a single transmit/receiver pair being active at
each cluster. In addition, for moderately dense networks, IA outperforms SM only at high θ
which highlights the nonlinear nature of such comparisons. For very low node density, IA has
better performance than SM when the increased distance between transmit/receive pairs does
not enforce a zero probability of successful transmission.

Probability of successful transmission with imperfect CSI Now assume the worst channel
estimation error variance for IA with the same γo = 30 dB. The questions of interest are i) how
much the performance of IA will be affected by introducing the imperfect CSI and ii) how does
the relative performance between IA and SM change in this scenario. For the same values of Dc

and θ as in Fig. 2, the probabilities of successful transmission for IA and SM when the training
period is lowered to KN = 6 is shown in Fig. 3. PIA

s and PSM
s remain relatively unchanged for

dense networks but are reduced for moderate and high node densities. Compared to the perfect
CSI case, SM now outperforms IA for a larger range of θ for moderate node densities. Also, IA
has lost most of its advantages at moderate node densities (from maximum of 0.1 to 0.06) and
the gap between IA and SM has decreased for the widely dispersed network. As a reference,
the error of (6) when Tt = 6 compared with numerical results for the curves shown in Fig. 3,
in the worst case, is less than 0.0035.

Optimum training period Again, assume γo = 30 dB. The optimum training period as
obtained using (18) and (32) for IA and SM together with the corresponding optimum values
found through numerically optimizing (13) and (29) for θ = 20 dB and two values of cluster
radius (and hence average cluster center distance) as a function of total frame length, T , is shown
in Fig. 4. As can be seen, (18) and (32) can be used to accurately find the optimum training
period for a wide range of node density and total frame length. As expected, IA requires more
training than SM but surprisingly, the ratio of the optimum training periods between the two
transmission techniques seems to be a constant value independent of the total block length, T ,
which requires further analysis not in the scope of this work. Also, as the Taylor expansions
used to derive (4) and (18) are at T =∞, small inaccuracies at small frame lengths is expected.
Moreover, the numerical errors in numerically calculating the integrals of the coefficients in (18)
become harder to confine as R (and hence the integration ranges) increases which explains the
deviation of the results obtained using (18) from the true optimum points for R=5.
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Transmission capacity Now fix the SINR threshold in (23) and (34) to θ = 17 dB and fix the
maximum tolerable outage probability to ε = 0.1. The maximum cluster density, λεP , as given
by (23) and (34) and the corresponding transmission capacities given by (22) and (33) for two
values of cluster radius, R, and two values of the total block length, T , as a function of transmit
SNR, γo, are shown in Fig. 5 and Fig. 6. Note that for R = 5 only T = 200 curves are shown as
T = 1000 curves were not conveying any new observations. Also, for both IA and SM, optimum
training periods are used to compute the transmission capacity. As seen in Fig. 5, except for
the high SNR values, increasing T allows for a better channel estimate at the receivers and
consequently each receiver can tolerate more inter-cluster interference and hence a large cluster
density. Also as the radius of each cluster increases, the channel estimation errors increase and
the maximum tolerable cluster density decreases. Although by increasing T , the crossing point
between IA and SM for λεP shifts to a lower SNR value, the corresponding crossing point for
the transmission capacity shifts to higher SNR values which highlights the tradeoff between
a higher obtainable throughput by increasing K in each cluster and the accompanying higher
accumulated non-aligned interference at each receiver due to the imperfect CSI estimation.

VI. CONCLUSION

In this paper, we obtained an expression for the probability of successful transmission in
a clustered MIMO IA network when the communication takes place over a Rayleigh fading
quasi-static block-fading channel of a finite length and the impact of channel estimation on the
accuracy of the obtained CSI is taken into account. We formulated an optimization of the training
period length and explicitly solved it for the case of a single stream from each transmitter. We
then presented the exact transmission capacity for the same case of a single stream from each
transmitter and also provided an upper bound for the general case. Through simulations, we
showed that probability of successful transmission and transmission capacity of TDMA+SM can
be higher than IA in dense networks or when the mobility of the nodes is high.

Our analyses in this paper were based on a generic IA filter design approach where the only
goal of the transmitters is to align the interference without optimizing the direct links. Any
such variations of the IA algorithm can potentially increase the gains of IA but quantifying
such transmission techniques are out of the scope of this work. Moreover, we assumed a perfect
analog feedback link for IA where only the minimum required channel resources are used to
relay the exact estimated channel values at the receivers to the rest of the nodes in each cluster.
By using the results of [10], it is possible to include the analog feedback analysis but doing so
would result in more involved expressions not benefiting the current scope of this work. Other
optimization problems, such as optimizing the SINR threshold for the maximum tolerable outage
probability, can be readily defined using the results of this paper.

APPENDIX A
PROOF OF THEOREM 1

Since hôo∼Γ(Ns, 1), its complementary cumulative distribution function is F (x) = Γ(Ns,x)
Γ(Ns)

=

e−x
∑Ns−1

k=0
xk

k!
. Hence,

PIA
s (θ) = P!o

(
gôo(1− β2

ôo)hôo
Ns
γo

+ Is + Ie + Ii
> θ

)
= P!o

(
hôo > η

(
Ns

γo

+ Is + Ie + Ii

))
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(a)
=

Ns−1∑
k=0

ηk

k!
E!o

[(
Ns

γo

+ Is + Ie + Ii

)k
e−η(

Ns
γo

+Is+Ie+Ii)

]
(35)

(b)
=

Ns−1∑
k=0

(−η)k

k!

dk

dsk
E!oe−s(

Ns
γo

+Is+Ie+Ii)
∣∣∣
s=η

, (36)

where (a) follows from distribution of hôo and (b) from the derivative property of the Laplace
transform. Since Is, Ie, and Ii in (5) are all independent, (36) equals

PIA
s (θ) =

Ns−1∑
k=0

(−η)k

k!

dk

dsk
e−s

Ns
γo Ee−sIsE!oe−sIeE!oe−sIi

∣∣∣
s=η

=
Ns−1∑
k=0

(−η)k

k!

dk

dsk
e−s

Ns
γo Ee−sgôoβ2

ôohôoL!o
Ie

(s)LIi(s)
∣∣∣
s=η

, (37)

where L!o
Ie

(s) is the Laplace transform of the intra-cluster interference w.r.t the reduced Palm mea-
sure and LIi(s) is the Laplace transform of the inter-cluster interference. Since hôo ∼ Γ(Ns, 1),
using (3),

Ee−sgôoβ2
ôohôo =

(
Ttγo
N

+Dα
r

s+ Ttγo
N

+Dα
r

)Ns

. (38)

We now evaluate L!o
Ie

(s)

L!o
Ie

(s) = E!o

[
e
−s

∑
z∈Ψo

gôzβ
2
ôzhôz

]
= E!o

[∏
z∈Ψo

e−sgôzβ
2
ôzhôz

]
(a)
= E!o

[∏
z∈Ψo

(
1

1 + sgôzβ2
ôz

)Ns]

= E!o

∏
z∈Ψo

(
Ttγo
N

+ ‖z − ô‖α

s+ Ttγo
N

+ ‖z − ô‖α

)Ns
 , (39)

where (a) follows from the Laplace transform of hôz and in the last step ‖x‖−α was substituted for
the path loss. Observe that (39) is the probability generating functional (PGF) of the representative
cluster Ψo w.r.t its reduced Palm probability. We now use the following result from [17, Lemma
1] which we state for completeness. For any function f(x) : R2 → R+,

E!o
∏
x∈Ψo

f(x) =
1

πR2

∫
A=B(o,R)

(
1

πR2

∫
A=B(o,R)

f(x− y)dx

)K−1

dy. (40)

Using (40), (39) equals

L!o
Ie

(s) =
1

πR2

∫
B(o,R)

 1

πR2

∫
B(o,R)

(
Ttγo
N

+‖x−y−ô‖α

s+ Ttγo
N

+‖x−y−ô‖α

)Ns
dx

K−1

dy. (41)
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We now focus on LIi(s)

LIi(s) = E!o
[
e−s

∑
x∈Φ gôxhôx

]
= E!o

[∏
x∈Φ

(
1

1 + s‖x− ô‖−α

)Ns]
(a)
= exp

(
− λp

∫
R2

1−

[
1

πR2

∫
B(o,R)

(
‖x−y‖α

s+‖x−y‖α

)Ns
dx

]K
dy

)
, (42)

where (a) follows from (43) which characterizes the PGF of a Poisson cluster process [16]

E
∏
x∈Φ

f(x)=exp

− λp ∫
R2

1−

(
1

πR2

∫
B(o,R)

f(x− y)dx

)K
dy

. (43)

Note that in (41), x and y vary within a cluster, while in (42), y varies over the whole plane.
Also, in (41), the interference is only from the other K−1 transmitters in the cluster and hence
the exponent of K− 1, while in (42), the interference is from all the K transmitters at each
cluster and hence the exponent of K.

APPENDIX B
PROOF OF LEMMA 1

Define the following PDF

fp(x) =

{
1

πR2 x ∈ B(o,R)
0 Otherwise . (44)

Now, using (44)

LIi(s) = exp

(
−λp

∫
R2

1−
[

1

πR2

∫
B(o,R)

Eh[e−sh‖x−y‖
−α

]dx

]K
dy

)

= exp

(
−λp

∫
R2

1−
[∫

R2

Eh[e−sh‖x−y‖
−α

]fp(x)dx

]K
dy

)
. (45)

Therefore, the inner integral in (45) can be seen as the expectation of Eh[e−sh‖x−y‖
−α

] w.r.t fp(x).
Using Jensen’s inequality, as (Ex[z])K ≤ Ex[zK ] for K > 2, it follows from (45) that

LIi(s) ≤ exp

(
−λp

∫
R2

1−
∫
R2

fp(x)Eh[e−sh‖x−y‖
−α

]Kdxdy

)
(a)
= exp

(
−λp

∫
R2

∫
R2

(
1−

(
‖x− y‖α

s+ ‖x− y‖α

)KNs)
fp(x)dxdy

)

= exp

(
−λp

∫
R2

fp(x)

∫
R2

(
1−

(
‖y′‖α

s+ ‖y′‖α

)KNs)
dy′dx

)

= exp

(
−λps2/αΓ(KNs + 2/α)Γ(1− 2/α)

Γ(KNs)

∫
R2

fp(x)dx

)
= exp

(
−λps2/αΓ(KNs + 2/α)Γ(1− 2/α)

Γ(KNs)

)
,



15

where (a) follows from h ∼ Γ(Ns, 1). Similarly for L!o
Ie

L!o
Ie

(s) =
1

πR2

∫
B(o,R)

 1

πR2

∫
B(o,R)

Eh[e−shf(‖x−y−ô‖)]dx


K−1

dy

(a)

≤ Ex,y
[(
Eh[e−shf(‖x−y−ô‖)]

)K−1
]
, (46)

where f(x) = 1

‖x‖α+
Ttγo
N

, x and y are two points independently and uniformly distributed in

B(o,R), and (a) follows from the Jensen’s inequality. Evaluating the expectation w.r.t h, (46)
equals

L!o
Ie

(s) ≤ E
[

1

(1 + sf(‖x− y − ô‖))Ns(K−1)

]
. (47)

Let (r, θ) be the polar representation of x− y, where x and y are two points independently and
uniformly distributed on B(o, r). Then θ ∼ U(0, 2π) and from [27] the PDF of r is given by
(11). Note that (11) equals I

1− x2

4R2
(3/2, 1/2) = 2

π

(
arcsin(

√
1− x2/4R2)− x

2R

√
1− x2/4R2

)
.

Without loss of generality, we can assume that ô = (Dr, 0). Then (47) simplifies to (10).

APPENDIX C
PROOF OF LEMMA 2

From (35) we have

PIA
s =

Ns−1∑
k=0

ηk

k!
E!o

[(
Ns

γo

+ Is + Ie + Ii

)k
e−η(

Ns
γo

+Is+Ie+Ii)

]

=
Ns−1∑
k=0

ηk

k!
E!o

[(
Ns

γo

+ Is + Ie + Ii

)k
e−( ke+η− k

e )(
Ns
γo

+Is+Ie+Ii)

]
(a)

≤
Ns−1∑
k=0

ηk

k!
E!o
[
e−(η− ke )(

Ns
γo

+Is+Ie+Ii)
]

=
Ns−1∑
k=0

ηk

k!
e−(η−k/e)Ns

γo Ee−(η−k/e)IsE!oe−(η−k/e)IeEe−(η−k/e)Ii , (48)

where (a) follows from the observation xke−
k
e
x ≤ 1 for x > 0 and the proof follows by

comparing (48) to (37) and making the necessary change of variables.

APPENDIX D
COEFFICIENTS OF (17)

C1 =
θDα

r fdN

2γ4
o

(
− 2θD2α

r fdKNγo (A4Kλpγo + 1)

+ 2γ2
o

(
−A1fd(K − 1)N +Kγo

(
fdK

2N − 1
))

−Dα
r γ

2
o

(
2 + 2A4Kλpγo + fdN

(
2 +K(K + 1) (θ − 2)− 2A4K

3λpγo

))
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− θD3α
r fdN(1 +Kλpγo(2A4 + (A5 + A4(2 + A4Kλp))γo))

)
,

C2 =
N2θDr

αfd
2

2γ4
o

(
2γ2

oDr
α + θDr

3α − 2A1γ
2
o − 2Kγ2

oDr
α + 2A1Kγ

2
o

+K2γ2
oθDr

α + 2KγoθDr
2α +Kγ2

oθDr
α

+KλpθDr
3α
(
A4

2Kγ2
oλp + 2A4Kγ

2
oDr

−α + 2A4γo + 2A3γ
2
o + A5γ

2
o

) )
,

where

A1 =
1

πR2

∫
B(o,R)

1

πR2

∫
B(o,R)

‖x−y−ô‖αdxdy, A2 = ‖x−y‖α + θDα
r ,

A3 =

∫
R2

 1

πR2

∫
B(o,R)

‖x−y‖α

(A2)3 dx

 1

πR2

∫
B(o,R)

‖x−y‖α

A2

dx

K−1

dy,

A4 =

∫
R2

 1

πR2

∫
B(o,R)

‖x−y‖α

(A2)2 dx

 1

πR2

∫
B(o,R)

‖x−y‖α

A2

dx

K−1

dy,

A5 = (K − 1)

∫
R2

 1

πR2

∫
B(o,R)

‖x−y‖α

(A2)2 dx

2 1

πR2

∫
B(o,R)

‖x−y‖α

A2

dx

K−2

dy.

APPENDIX E
COEFFICIENTS OF (19)

D1 =
fdθD

α
r

γo
N

(
−K+

fd
γo
N

(
K3Nγo

N
−Dα

r (θ+1)− θD
α
r

2
(K−1)(K+2)−(K−1)A1

))
,

D2 =
f 2
d θD

α
r(

γo
N

)2

(
Dα

r (θ + 1) +
θDα

r

2
(K − 1)(K + 2) + (K − 1)A1

)
,

where A1 is given in Appendix D.

APPENDIX F
COEFFICIENTS OF (31)

B1 = −B2 −
Dα
r fd
γ2

oα

(
NαθDα

r +Nγoαθ + 2Jγoθ
2
αD2

rλp

)
,

B2 =
D2α
r f

2
d

2γ4
oα

2

((
αNθ (γo +Dα

r ) + 2γoJθ
2
αD2

rλp

)2

− 2γ2
oαJθ

2
αD2

rλp (2/α− 1)

)
,

where J is defined in (27).
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TABLE I
NOTATION USED IN THIS PAPER

Symbol Explanation

a & A a is a vector and A is a matrix
A∗, AT , & A−1 Conjugate transpose, transpose, and inverse of A

An×m A is a matrix of dimension n×m
A(n,m) Element on the nth row and mth column of A

rank (A) Rank of A

[a] Closest integer to a
IN & 0a×b N ×N identity matrix and a× b matrix of all zeros
B(o,R) The disk of radius R centered on the origin
P!o The reduced Palm probability measure
Ai,j vs. A When Ai,j correspond to i and j nodes, A is a generic random variable i.i.d. to the specific ones

TABLE II
IMPORTANT SYMBOLS DEFINED IN THIS PAPER

PA Channel access probability of each cluster
Φp Spatial locations of the cluster centers with density λ̃p

K Number of transmit/receive pairs in each cluster
N Number of antennas at each node
Ns Number of streams from each transmitter
Φ The spatial locations of the potential transmitters with density Kλ̃p

Ψo The cluster to which the transmitter at the origin belongs by
λp Density of the active transmitters (equals PAλ̃p)
Dr Distance of a receiver from its corresponding transmitter
Dc Average distance between the cluster centers
R Radius of each cluster
β2
x̂z & gx̂z Variance of the channel estimation error and pathloss for the link between transmitter z and receiver x̂
T , fd, Tt, & Tf Length of the constant channel block, Doppler frequency (fd ≈ 1

T
), training period, and feedback period

θ SINR threshold for successful transmission
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Fig. 1. An instance of the transmitter’s distribution when the number of transmitters per cluster is K = 3.
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Fig. 2. The probability of successful transmission for IA and TDMA+SM as a function of the SINR threshold for some values
of the average distance between the cluster centers Dc with perfect CSI.
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Fig. 3. PIA
s and PSM

s as a function of the SINR threshold for some values of the average distance between the cluster centers
Dc with the smallest training period of Tt = 6.
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