
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014 41

Power Control and Asymptotic Throughput
Analysis for the Distributed Cognitive Uplink

Ehsan Nekouei, Student Member, IEEE, Hazer Inaltekin, Member, IEEE,
and Subhrakanti Dey, Senior Member, IEEE

Abstract—This paper studies optimum power control and sum-
rate scaling laws for the distributed cognitive uplink. It is first
shown that the optimum distributed power control policy is in
the form of a threshold based water-filling power control. Each
secondary user executes the derived power control policy in a
distributed fashion by using local knowledge of its direct and
interference channel gains such that the resulting aggregate (av-
erage) interference does not disrupt primary’s communication.
Then, the tight sum-rate scaling laws are derived as a function of
the number of secondary users N under the optimum distributed
power control policy. The fading models considered to derive
sum-rate scaling laws are general enough to include Rayleigh,
Rician and Nakagami fading models as special cases. When
transmissions of secondary users are limited by both transmission
and interference power constraints, it is shown that the secondary
network sum-rate scales according to 1

enh
log log (N), where

nh is a parameter obtained from the distribution of direct
channel power gains. For the case of transmissions limited only
by interference constraints, on the other hand, the secondary
network sum-rate scales according to 1

eγg
log (N), where γg

is a parameter obtained from the distribution of interference
channel power gains. These results indicate that the distributed
cognitive uplink is able to achieve throughput scaling behavior
similar to that of the centralized cognitive uplink up to a pre-log
multiplier 1

e
, whilst primary’s quality-of-service requirements are

met. The factor 1
e

can be interpreted as the cost of distributed
implementation of the cognitive uplink.

Index Terms—Cognitive radio, multiple access channels, power
control, throughput scaling, distributed algorithms.

I. INTRODUCTION

A. Background and Motivation

COGNITIVE radio technology has recently emerged as an
aspirant solution for the problem of spectrum scarcity

[1]-[3]. Unlike the traditional static command-and-control
approach, it provides a more dynamic means for spectrum
management and utilization. More specifically, cognitive radio
protocols such as those in IEEE 802.22 allow the cognitive
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users, alternatively called secondary users (SUs), to dynam-
ically share the underutilized frequency bands with primary
users (PUs) both in time and space under various forms of pri-
mary quality-of-service (QoS) protections [4]-[8]. In practice,
channel state information (CSI) is one of the main requisites
for successful implementation of such dynamic cognitive radio
protocols. However, its availability is often sidelined in most
previous works [9]-[19] by either assuming a centralized
band manager or perfect instantaneous CSI feedback between
primary and secondary networks.

For example, both interference management and resource
allocation tasks in cognitive radio networks heavily depend
on the availability of CSI at the secondary network. This
requirement is especially more pronounced for multiuser cog-
nitive radio networks. The assumption of the existence of
a centralized entity having global knowledge of CSI may
not be realistic in certain multiuser cognitive communication
scenarios, depending on the physical characteristics of wireless
channels, infrastructure limitations, number of SUs and etc.
In these cases, distributed utilization of CSI is the key for
successful implementation of cognitive radio protocols. To
this end, the current paper explores the design of optimum
distributed power control mechanisms for the cognitive uplink,
allowing each SU to adjust its transmission power level
based only on local knowledge of its CSI. It also investigates
multiuser diversity gains for the distributed cognitive uplink
by deriving tight sum-rate capacity scaling laws under the
optimum distributed power control mechanisms.

In the centralized uplink, the secondary base-station (SBS)
is primarily responsible for the power control task e.g., see
[10]-[13]. That is, it first acquires global knowledge of direct
(from SUs to the SBS) and interference (from SUs to PUs)
channel gains via a feedback mechanism, and then exploits this
knowledge to obtain the optimum transmission power level
for each SU by respecting primary QoS requirements. Finally,
the allocated transmission power levels are broadcasted to SUs
by the SBS at each fading block. Although required for the
centralized power control at the cognitive uplink per above
discussion, the assumption of availability of direct and inter-
ference channel gains at the SBS within the channel coherence
time can often be too restrictive for practical cognitive multiple
access networks consisting of large numbers of SUs.1 On
the other hand, unlike the centralized operation, SUs only
need to have local access to their direct and interference
channel gains in the distributed operating mode. Under the

1The terms cognitive uplink and cognitive multiple access network are used
interchangeably throughout the paper.
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assumption of uplink-downlink channel reciprocity (also used
in [22] for distributed primary multiple access networks), it
is easy for each SU to obtain local knowledge of its direct
and interference channel gains using pilot signals transmitted
periodically by the SBS and primary base-station (PBS)2.
These observations motivate the current paper, and lead to the
following research questions of interest here: (i) what is the
structure of optimum distributed power control mechanisms
for the cognitive uplink?, and (ii) what are the fundamental
throughput scaling laws of such decentralized cognitive mul-
tiple access networks under optimum power control subject to
various forms of power and interference constraints?

This paper provides important insights into these questions
by studying the optimum distributed power control mecha-
nisms for the cognitive uplink that enable SUs to accomplish
the power control task in a distributed fashion while the inter-
ference at the primary network is successfully regulated. More
importantly, we evaluate the performance of our distributed
power control mechanisms, in terms of the secondary network
sum-rate, as the number of SUs becomes large. Our results sig-
nify the fact that distributed cognitive multiple access networks
are capable of achieving throughput scaling behavior similar
to that of centralized cognitive multiple access networks.

B. Contributions

This paper has two main contributions to the cognitive
radio literature. First, we derive the structure of the optimum
distributed power control policy, maximizing the secondary
network sum-rate for two network types: (i) distributed
total power and interference limited (DTPIL) networks and
(ii) distributed interference limited (DIL) networks. In DT-
PIL networks, transmission powers of SUs are limited by a
constraint on the average total transmission power of SUs
and a constraint on the average interference power at the
PBS. To confine the collision level, a transmission probability
constraint is also considered for each SU. In DIL networks,
transmission powers of SUs are limited by a constraint on the
average interference power at the PBS as well as transmission
probability constraints. For each network type, we show that
the optimum distributed power control policy is in the form
of a threshold based water-filling power control with changing
water levels.

Secondly, we study the sum-rate scaling behavior of DTPIL
and DIL networks, under the optimum distributed power
control policy, when distributions of direct and interference
channel gains belong to a fairly large class of distribution
functions called class-C distributions. In DTPIL networks, it is
shown that the secondary network throughput scales according
to 1

enh
log log (N) when the transmission probability is set to

1
N for all SUs. Here, N is the number of SUs, and nh is
a parameter obtained from the distribution of direct channel
power gains. The choice of transmission probability adds an
extra dimension to the optimization problems studied in this
paper. To this end, we show that although 1

N may not be the

2SUs can obtain the knowledge of their interference channel gains by
overhearing primary’s transmission [20], [21]. For example, when the primary
network is operating at the time-division-duplex (TDD) mode, PBS transmits
pilot signals assisting primary users to estimate their channel gains. SUs can
use these pilot signals to estimate their interference channel gains.

optimum transmission probability selection for the secondary
network sum-rate maximization for finite values of N , it is
asymptotically optimum in the sense that the same throughput
scaling behavior holds even under the optimum transmission
probability selection.

Analogous results are also obtained for DIL networks.
In particular, it is shown that the secondary network sum-
rate scales according to 1

eγg
log (N) when the transmission

probability is set to 1
N for all SUs, and the optimum distributed

power control policy is employed. γg is a parameter obtained
from the distribution of interference channel power gains. It is
also shown that 1

N is the asymptotically optimum transmission
probability selection for DIL networks, too. Unlike the known
results for the Rayleigh fading model, our results here indicate
that the pre-log factor does indeed heavily depend on the
parameters of fading channel (direct and interference) distribu-
tions. From an engineering point of view, these results indicate
that the optimum distributed power control at the cognitive
uplink is capable of achieving aggregate data rates similar to
those achieved through a centralized scheduler up to a pre-
log multiplier 1

e [12]. Here, 1
e has the economic interpretation

of the cost of avoiding feedback signals between primary and
secondary networks. Our main results are summarized in Table
I. The fundamentally different throughput scaling laws for
the DTPIL and DIL network types also justify their separate
consideration and analysis.

II. RELATED WORK

This section briefly reviews the papers that are most relevant
to ours. In this paper, we are mainly motivated by exploiting
distributed techniques for optimum resource/power allocation
in the cognitive uplink and the corresponding sum-rate capac-
ity scaling via multiuser diversity.

Optimum allocation of transmission powers in a cognitive
radio setup has recently been investigated in [9]-[13]. In [9],
Ghasemi and Sousa showed that the optimum power control
maximizing the ergodic capacity of a point-to-point cognitive
radio link under average interference power constraints is in
the form of a water-filling power control policy with changing
water levels. In [10], this result was extended to the cognitive
uplink. Particularly, they showed that, under average trans-
mission power and average interference power constraints, the
optimum power allocation policy for a cognitive uplink is in
the form of an opportunistic water-filling power allocation
policy. That is, the SBS schedules the SU with the best
joint direct and interference channel state, and the scheduled
SU employs a water-filling power allocation policy for its
transmission.

Similar results have also been obtained by considering total
power and reduced CSI constraints in [11] and [12]. In [13],
Inaltekin and Hanly established the binary structure of the
optimum power control for the cognitive uplink operating
under interference limitations without successive interference
cancellation, i.e., see Section VI of [13]. They showed that the
set of transmitting SUs always corresponds to the ones having
better joint channel states. Although the single-user decoding
assumption in [13] simplifies the decoder, it complicates
the power optimization problem. The resulting optimization
problem, in contrast to the one in [9]-[12], is no longer convex.
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TABLE I
THROUGHPUT SCALING BEHAVIOR OF DISTRIBUTED COGNITIVE RADIO NETWORKS

Network Model
Transmission probability

pN = 1
N p�N

∗

Distributed Total Power And Interference Limited lim
N→∞

RN
†

log log(N) =
1

enh

‡ lim
N→∞

RN

log log(N) =
1

enh

Distributed Interference Limited lim
N→∞

RN

log(N) =
1

eγg

§ lim
N→∞

RN

log(N) =
1

eγg

∗p�N is the optimum transmission probability.
†RN is the secondary network sum-rate under the optimum distributed power control policy.
‡nh is parameter determined from the asymptotic tail behavior of the distribution of direct channel power gains.
§γg is a parameter determined from the behavior of the distribution of interference channel power gains around the origin.

This paper differs from above previous work in two im-
portant aspects. Firstly, we focus on the distributed cog-
nitive uplink in this paper, whereas [9]-[13] analyzed the
centralized power control with perfect or reduced CSI at the
SBS. The distributed operation requires contention control by
constraining channel access probabilities, which in turn makes
the studied power optimization problem here non-convex.
Secondly, similar to these previous work, our analysis in this
paper starts with the consideration of optimum power control
policies. However, different from them, we also investigate
multiuser diversity gains in the distributed cognitive uplink as
a function of the number of SUs.

Multiuser diversity gains for the centralized cognitive radio
networks with global knowledge of CSI at the SBS have also
been studied in the literature extensively, e.g., see [11], [14]-
[17], under various types of constraints on the transmission
powers of SUs. In [14], the authors established logarithmic
and double-logarithmic throughput scaling behavior of the
cognitive uplink for Rayleigh fading channels under joint peak
transmission and interference power constraints. These results
were extended to cognitive multiple access, cognitive broad-
cast and cognitive parallel access channels in [15]. The authors
in [11], different from [14] and [15], considered average power
limitations (both transmission and interference), and obtained
parallel ergodic sum-rate scaling results for cognitive multiple
access networks under optimum power control.

The main point of difference between this paper and above
previous work is the utilization of more practical distributed
approaches for the cognitive uplink here. Specifically, different
from them, SUs in our setup independently decide to transmit
(with power control) based on local knowledge of their CSI.
This provides a more practical framework to study multiuser
diversity in the cognitive uplink, but at the expense of a
more complicated optimum power control analysis (e.g., see
Appendix A) and the corresponding estimates on the tails of
joint channel states (e.g., see Appendices B and E).

In [16], the scheduling gain in a cognitive uplink was
considered for a hybrid scheduling policy under peak trans-
mission and interference power constraints. All SUs transmit
with the same fixed power level. Under this setup, it was
shown that the secondary network throughput scales logarith-
mically (as a function of the number of SUs) with a pre-
log factor depending on the number of PUs. Similar results

were extended to cognitive radio networks with multiple
antennas at the SBS and PBS in [17]. They showed that the
secondary network throughput scales logarithmically with a
pre-log factor depending on the operating modes (i.e, multiple
access versus broadcast) and the number of antennas at the
SBS and PBS.

Other related work also includes secondary network capac-
ity scaling in a multi-band setup such as [18] and [19]. In
[18], Wang et al. studied the multiuser and multi-spectrum
diversity gains for a cognitive broadcast network sharing
multiple orthogonal frequency bands with a primary network.
Assuming Rayleigh fading channels, they analytically derived
capacity expressions for the secondary network when the
transmission power at each band is limited by a constraint
on the peak interference power at the primary network.
For a similar setup in [18], the authors in [19] considered
N secondary transmitter-receiver pairs sharing M frequency
bands with a primary network. Under the optimum matching
of SUs with primary frequency bands, they derived a double-
logarithmic scaling law for the secondary network capacity for
Rayleigh fading channels. They also considered a contention-
free distributed scheduling algorithm in which SUs decide to
transmit (without any power control) if their received signal-
to-interference-plus-noise-ratio in a frequency band is greater
than a threshold level.

Unlike [16]-[19], this paper considers general fading models
including Rayleigh fading as a special case (i.e., see Table
II). Further, all sum-rate scaling laws are derived for the
contention-limited distributed cognitive uplink under optimum
allocation of transmission powers to SUs, rather than assuming
fixed transmission power levels as in [16]-[19]. The distributed
power control mechanisms are designed as such they provide
stringent QoS guarantees for the primary network under a
collision channel model. Hence, some parts of our analysis
in this paper are expected to find greater applicability to
extend multiuser diversity results derived for multi-band and
multi-antenna networks in [16]-[19] to fading models beyond
Rayleigh fading and to more practical distributed communi-
cation scenarios with optimum resource allocation.

It is also important to note that multiuser diversity gains in
distributed primary multiple access networks were also studied
in the literature, e.g., see [22]. However, these results are not
applicable to the cognitive uplink as they do not account for

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 08,2021 at 15:45:31 UTC from IEEE Xplore.  Restrictions apply. 



44 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014

the impact of SUs’ transmissions on the primary’s QoS. What
is needed in a cognitive setup is a more advanced distributed
power management mechanism that can harvest multiuser
diversity gains in both direct and interference channels simul-
taneously, whilst respecting primary’s QoS requirements. This
often results in solving non-convex optimization problems
as in Section IV, and using more complicated techniques to
obtain tail estimates of joint channel states as in Appendices
B and E.

Finally, the authors in [23], a precursor to the current paper,
studied the jointly optimum power allocation and scheduling
policies, maximizing individual data rates, in a distributed
cognitive uplink. They also studied the scaling behavior of
the secondary network aggregate data rate under optimum
resource allocation. The novelty of the current paper lies in
deriving the optimum distributed power control maximizing
the secondary network sum-rate, and the corresponding sum-
rate scaling behavior for different network types. The asymp-
totic optimality of the transmission probability per user being
chosen as 1

N is also an additional result that was not obtained
in [23].

The rest of the paper is organized as follows. Section
III describes our system model and modeling assumptions.
Section IV derives the optimum distributed power control
policies and their corresponding sum-rate scaling laws for
DTPIL and DIL networks. Section V presents our numerical
studies. Section VI concludes the paper.

III. SYSTEM MODEL

We consider a cognitive uplink in which N SUs communi-
cate with an SBS and simultaneously cause interference to a
PBS as depicted in Fig. 1. Let hi and gi represent the ith direct
and interference channel power gains, respectively. We con-
sider the classical ergodic block fading model [24] to model
the statistical variations of all direct and interference channel
gains. {hi}Ni=1 and {gi}Ni=1 are assumed to be collections of
i.i.d. random variables, with unit mean, distributed according
to distribution functions Fh and Fg , respectively. Fh can be
different than Fg . The random vectors h = [h1, h2, . . . , hN ]�

and g = [g1, g2, . . . , gN ]� are assumed to be independent
from each other. We assume that the uplink and downlink
channels are reciprocal and each SU has access to its direct and
interference channel gains by means of pilot training signals
periodically transmitted by the SBS and PBS (i.e., see [22],
[25] for similar assumptions in the primary multiple-access
networks). This type of channel reciprocity assumption is valid
for wireless networks where time-division-duplexing (TDD)
schemes are used. Note that due to various advantages of TDD
such as (i) flexibility in controlling asymmetric uplink and
downlink bandwidth (for wireless Internet services), (ii) more
efficient use of the spectrum and (iii) reduced complexity
of receiver design, TDD is the duplexing scheme of choice
for the majority of future WiMAX based broadband wireless
networks [29]. For similar reasons, TDD is expected to feature
alongside frequency-division-duplexing (FDD) in the LTE
based wireless networks as well. TDD transmission schemes
are also a part of IEEE standards for cognitive radio networks,
e.g., IEEE 802.22.

Definition 3.1: We say that the cumulative distribution
function (CDF) of a random variable X , denoted by FX ,
belongs to the class-C distributions if it satisfies the following
properties:

• FX (x) is continuous.
• FX(x) has a positive support, i.e., FX(x) = 0 for x ≤ 0.
• FX(x) is strictly increasing, i.e., FX(x1) < FX(x2) for

0 < x1 < x2.
• The tail function of FX(x) defined as 1−FX(x) decays

to zero double exponentially, i.e., there exist constants
α > 0, β > 0, n > 0, l ∈ R and a slowly varying
function H(x) satisfying H(x) = o (xn) as x → ∞
such that3

lim
x→∞

1− FX(x)

αxle(−βxn+H(x))
= 1. (1)

• FX(x) varies regularly around the origin, i.e., there exist
constants η > 0 and γ > 0 such that

lim
x↓0

FX(x)

ηxγ
= 1.

The class-C distribution functions comprise distribution
functions that behave polynomially around the origin and their
tail functions decay to zero double exponentially. This family
of distribution functions can be used to quantify and obtain
insights into the effects of fading model parameters on the
capacity of different wireless networks. We assume that the
CDFs of all fading power gains in this paper belong to the
class-C distributions. Table II illustrates the parameters charac-
terizing the behavior of the distribution of fading power gains
around zero and infinity for the commonly used fading models
in the literature. To avoid any confusion, these parameters are
represented by subscript h for direct channel gains and by
subscript g for interference channel gains in the rest of paper.

In what follows, a wireless channel is said to be a Rayleigh
fading channel if the channel magnitude gain is Rayleigh
distributed, or equivalently the channel power gain is expo-
nentially distributed. It is said to be Rician-K fading channel
if the channel magnitude gain is Rician distributed with a
Rician factor K . By a Nakagami-m distributed wireless fading
channel, we mean the channel magnitude gain is Nakagami-m
distributed, or equivalently the channel power gain is Gamma
distributed. Finally, a wireless fading channel is said to be
Weibull-c distributed if the channel magnitude gain is Weibull
distributed with a Weibull parameter c.4 Interested readers are
referred to [26], [27] and [28] for more details regarding fading
distributions.

Each SU exploits knowledge of its direct and interference
channel gains to locally perform the task of power allocation,
independent of other SUs without any feedback from the SBS.
A collision channel model is assumed for the resolution of
concurrent transmissions from SUs at the SBS. That is, if
more than one SUs transmit concurrently, data transmissions
from all of them collide, and the resulting throughput at the
SBS is set to zero. In the next section, we derive the structure
of the optimum distributed power control policy maximizing

3By p(x) = o (q(x)), we mean that p(x) and q(x) are two positive
functions such that limx→∞ p(x)

q(x)
= 0.

4The definition of the c parameter for Weibull fading channels is adapted
from [26].
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TABLE II
COMMON FADING CHANNEL MODELS AND THEIR PARAMETERS

Channel Model
Parameters

α l β n H(x) η γ

Rayleigh 1 0 1 1 0 1 1

Rician-K 1

2
√
πeK 4

√
K(K+1)

− 1
4 K + 1 1 2

√
K (K + 1)x K+1

eK 1

Nakagami-m mm−1

Γ(m) m− 1 m 1 0 mm−1

Γ(m) m

Weibull-c 1 0 Γ
c
2

(
1 + 2

c

)
c
2 0 Γ

c
2

(
1 + 2

c

)
c
2

Fig. 1. N SUs forming a cognitive uplink to the SBS and interfering with
signal reception at the PBS.

the secondary network sum-rate under the aforementioned
assumptions for two different network types: (i) distributed
total power and interference limited (DTPIL) networks, and
(ii) distributed interference limited (DIL) networks. After
obtaining the optimum distributed power control policy, we
also derive throughput scaling laws for these network types
when each SU controls its transmission power optimally.

IV. THE STRUCTURE OF THE OPTIMUM DISTRIBUTED

POWER CONTROL POLICY AND THROUGHPUT SCALING

LAWS

In this section, we will first present and solve the sum-
rate maximization problems in DTPIL and DIL networks.
Then, each problem will be followed by the corresponding
throughput scaling results along with detailed insights into the
observed throughput scaling behavior. All proofs are relegated
to the appendices for the sake of paper fluency. We start
our discussions by formulating the sum-rate maximization
problem for DTPIL networks.

A. Optimum Power Control and Throughput Scaling in DTPIL
Networks

In DTPIL networks, transmission powers of SUs are limited
by an average total transmission power constraint and a
constraint on the average total interference power of SUs at
the PBS, e.g., see [11], [30] and [31] for similar assumptions.
Transmission probabilities of SUs are also constrained to
avoid excessive collisions. The average interference power
constraint is considered to protect long-term QoS at the PBS
by keeping the average interference power of the secondary

network at the PBS below a predetermined level. The av-
erage total transmission power constraint confines the total
transmission power of the secondary network as the number
of SUs becomes large. Hence, our throughput scaling results
in DTPIL networks reveal the fundamental capacity scaling
limits of distributed cognitive radio uplinks in energy limited
communication scenarios.

We define the power allocation policy in DTPIL net-
works, PDTPIL (·, ·), as a mapping from R

2
+ to R+, where

PDTPIL (hi, gi) represents the transmission power of the ith
SU at the joint channel state (hi, gi). The power allocation
policy PDTPIL (·, ·) is designed such that the transmission
probability is equal to pN , pN ∈ (0, 1), for all SUs, i.e.,
Pr {PDTPIL (hi, gi) > 0} = pN for i ∈ {1, · · · , N}. Here,
pN can be considered as a design degree-of-freedom pa-
rameter helping us to keep the collision rate below some
certain level. Under these modeling assumptions, the sec-
ondary network sum-rate for a given power control policy
PDTPIL, RDTPIL (pN , N, PDTPIL), can be expressed as (2)
where h and g are two independent generic random variables
distributed according to Fh and Fg , respectively. Similarly, the
average total transmission power and the average interference
power at the PBS can be written as

Eh,g

[
N∑
i=1

PDTPIL (hi, gi)

]
= NEh,g [PDTPIL (h, g)]

and

Eh,g

[
N∑
i=1

giPDTPIL (hi, gi)

]
= NEh,g [gPDTPIL (h, g)]

respectively. In DTPIL networks, transmission powers of
SUs are allocated according to the solution of the following
functional optimization problem:

maximize
PDTPIL(h,g)≥0

RDTPIL (pN , N, PDTPIL)

subject to NEh,g [PDTPIL (h, g)] ≤ Pave

NEh,g [gPDTPIL (h, g)] ≤ Qave

Pr {PDTPIL (h, g) > 0} = pN

. (3)

The power optimization problem in (3) is not necessar-
ily convex due to the transmission probability constraint.
However, in the next theorem, we show that the optimum
power control policy solving (3) is in the form of a threshold
based water-filling power control when the number of SUs is
large enough. We prove Theorem 1 by obtaining the convex
relaxation of problem (3) first, and then showing that the
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RDTPIL (pN , N, PDTPIL) = Eh,g

⎡
⎣ N∑

i=1

log (1 + hiPDTPIL (hi, gi))
∏
j 	=i

1{PDTPIL(hj ,gj)=0}

⎤
⎦

= N (1− pN)N−1 Eh,g [log (1 + hPDTPIL (h, g))] . (2)

upper and lower bounds coincide with each other for N large
enough.

Theorem 1: Let P �
DTPIL (h, g) be the solution of (3). Then,

for pN = 1
N and N large enough, P �

DTPIL (h, g) is given by
(4) where λN and μN are power control parameters adjusted
such that the average total transmission power and the average
interference power constraints in (3) are met, and F−1

λN ,μN
is

the functional inverse of the CDF of hi

λN+μNgi
, which is shown

as FλN ,μN .
Proof: See Appendix A.

Theorem 1 pinpoints that the jointly optimum scheduling
and power control strategy is in the form of a threshold-
based water-filling power control policy. That is, the ith SU
first decides against or in favor of transmission by comparing
the value of its observed joint direct and interference channel
state hi

λN+μNgi
with the threshold value of F−1

λN ,μN

(
1− 1

N

)
.

Upon a positive decision in favor of transmission, it transmits
by using a water-filling power allocation policy, which is

embodied by the
(

1
λN+μNg − 1

h

)+
term in (4). We note that

the computation of λN and μN does not violate the distributed
operation. These power control parameters do not vary with
channel realizations, and can be computed off-line at each SU
by solving the dual problem associated with the optimization
problem (12) in Appendix A under the local statistical channel
knowledge. This computation needs to be performed only
once (for each N ) to initialize the communication. Only
global knowledge required here is N and pN , which can be
broadcasted by the SBS to SUs. The rest of the communication
proceeds in a distributed manner according to the result of
Theorem 1.

In the centralized case, direct and interference channel
gains of all SUs are available at the SBS, and in order to
maximize the secondary network sum-rate, the SBS schedules

the SU having the maximum of
{

hi

λN+μNgi

}N

i=1
[11]. The

scheduled SU employs a water-filling power allocation policy
with changing power levels. Hence, the multiuser diversity
gain with a centralized scheduler depends on the maximum of{

hi

λN+μNgi

}N

i=1
, which concentrates around F−1

λN ,μN

(
1− 1

N

)
as the number of SUs becomes large (i.e., see Lemma 2 in [12]
for more details). Based on this observation and Theorem 1,
we conclude that in DTPIL networks, the ith SU transmits
if the likelihood of its being the SU with the maximum

of
{

hi

λN+μNgi

}N

i=1
is high. Hence, throughput scaling laws

similar to those obtained in [11] and [12] are expected to hold
for DTPIL networks when pN = 1

N . Later, we show that this
choice of transmission probability is asymptotically optimal.
That is, the secondary network sum-rate under pN = 1

N serves
as an upper bound on aggregate communication rates that we
would otherwise achieve through other choices of pN when
N is large enough.

Under the collision channel model, the SBS can decode

the received signal successfully if and only if just one SU
transmits. Otherwise, a collision happens and no data is
delivered to the SBS. In our setup with pN = 1

N and
N large enough, this observation implies that the received
signal will be decoded successfully if and only if just the

SU with the maximum of
{

hi

λN+μNgi

}N

i=1
transmits. Let

X�
N (λN , μN) and X


N (λN , μN ) be the largest and the second
largest elements among the collection of i.i.d. random vari-
ables {Xi (λN , μN )}Ni=1, respectively, where Xi (λN , μN ) =

hi

λN+μNgi
. Let R�

DTPIL (pN , N) be the sum-rate in DTPIL
networks under the optimum distributed power control policy
with the transmission probability equal to pN . Then, Theorem
1 implies that, for pN = 1

N and N large enough, we have

R�
DTPIL

(
1

N
,N

)
= Eh,g [log (X

�
N (λN , μN )) 1AN ] , (5)

where AN is given by (6). In the next theorem, we derive the
scaling behavior of R�

DTPIL

(
1
N , N

)
.

Theorem 2: The secondary network sum-rate
R�

DTPIL

(
1
N , N

)
for pN = 1

N under the optimum distributed
power control policy scales according to

lim
N→∞

R�
DTPIL

(
1
N , N

)
log log (N)

=
1

enh
.

Proof: See Appendix B.
Theorem 2 formally establishes the double logarithmic

scaling behavior of the secondary network sum-rate for DTPIL
networks. Further, it shows that the pre-log multiplier in this
scaling behavior is equal to 1

enh
. nh is equal to 1 for Rayleigh,

Rician-K and Nakagami-m distributed direct channel gains,
and is equal to c

2 for Weibull-c distributed direct channel gains.
The result of Theorem 2 has the following intuitive explana-

tion. The event AN in (5) represents a successful transmission
event. For N large enough, Pr (AN ) represents the fraction of

time that only the SU with the maximum of
{

hi

λN+μNgi

}N

i=1
transmits. In Appendix B, we show that, for pN = 1

N ,
Pr (AN ) converges to 1

e as N becomes large. Hence, as the
number of SUs becomes large, the fraction of time that just
the best SU transmits is approximately equal to 1

e . Also, in
Appendix B, we show that log (X�

N (λN , μN )) term in (5)
scales according to 1

nh
log log (N). These observations suggest

that the secondary network sum-rate (under the optimum
distributed power control) scales according to 1

enh
log log (N)

as N becomes large. It should be noted that this is just an
intuitive explanation, a rigorous proof of which is provided in
Appendix B.

We also identify the second order determinants of
R�

DTPIL

(
1
N , N

)
in Appendix B. Formally, we show that it

can be expressed as (7). The first term in (7) converges
to 1

e log (Pave) as N becomes large. This finding displays
the logarithmic effect of the power constraint on the sec-
ondary sum-rate in DTPIL networks. The second term in (7)
gives rise to the scaling of secondary sum-rate according to
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P �
DTPIL (h, g) =

(
1

λN + μNg
− 1

h

)+

1{ h
λN+μNg>F−1

λN,μN
(1− 1

N )
}. (4)

AN =

{
X�

N (λN , μN ) > F−1
λN ,μN

(
1− 1

N

)
, X


N (λN , μN ) ≤ F−1
λN ,μN

(
1− 1

N

)}
. (6)

R�
DTPIL

(
1

N
,N

)
= log

(
1

λN

)
Pr (AN ) + Eh,g

[
log

(
X�

N

(
1,

μN

λN

))
1AN

]
. (7)

1
enh

log log(N).
So far, we have assumed that pN is equal to 1

N . One may
speculate that DTPIL networks may obtain a better throughput
scaling behavior if the transmission probability is optimally
adjusted, rather than to be set to 1

N . To investigate this idea,
we study the throughput scaling behavior of DTPIL networks
under the optimum transmission probability selection in the
next theorem.

Theorem 3: For each N ∈ N, let p�N be an optimum trans-
mission probability selection maximizing R�

DTPIL (pN , N),
i.e., p�N ∈ argmax0≤pN≤1 R

�
DTPIL (pN , N). Then,

lim
N→∞

R�
DTPIL (p

�
N , N)

log log (N)
=

1

enh
.

Proof: See Appendix C.
Theorem 3 indicates that the secondary network sum-

rate under the optimum transmission probability also scales
according to 1

enh
log log (N). Thus, the choice of transmission

probability as pN = 1
N is asymptotically optimal, and the

secondary network achieves the same throughput scaling under
p�N and pN = 1

N . However, it should be noted that the
optimum transmission probability might be different from
1
N for any finite N . Identical throughput scaling behavior
of DTPIL networks under p�N and pN = 1

N gives rise
to the following question: Does the optimum transmission
probability asymptotically behave as 1

N ? The next lemma
gives an affirmative answer to this question.

Lemma 1: For each N ∈ N, let p�N be an optimum
transmission probability selection in DTPIL networks. Then,
limN→∞ Np�N = 1.

Proof: See Appendix D.
Lemma 1 shows that the optimum transmission probability

in DTPIL networks should scale according to 1
N . This scaling

behavior of p�N can be intuitively considered as the origin
of identical throughput scaling behavior of DTPIL networks
under p�N and pN = 1

N (i.e., see Appendix D for more details).
Finally, it is instructive to compare the throughput scaling

laws obtained by using completely decentralized transmission
strategies with those obtained through a centralized scheduler.
In [12], it has been shown that the secondary network through-
put with a centralized scheduler (usually, the SBS) scales ac-
cording to 1

nh
log log (N) when the optimum power allocation

policy is employed. Hence, compared to the centralized case,
the factor 1

e here can be interpreted as the price of avoiding
feedback signals between primary and secondary networks,
which are the key parameters required by the centralized
scheduler to perform optimum power control and scheduling.
We note that the above results obtained for DTPIL networks

can be also extended to the individual power limited case using
the techniques in [12]. However, we skip these calculations for
the sake of brevity.

B. Optimum Power Control and Throughput Scaling in DIL
Networks

In this case, transmission powers of SUs are only lim-
ited by a constraint on the total average interference power
that SUs cause to the PBS (essentially, the average total
transmission power constraint is inactive, which can hap-
pen when there is a large amount of average transmission
power at disposal) and a transmission probability constraint.
We define the power allocation policy in DIL networks,
PDIL (·, ·), as a mapping from R

2
+ to R+, where PDIL (hi, gi)

denotes the transmission power of the ith SU at the joint
channel state (hi, gi). The power allocation policy in DIL
networks is designed such that the transmission probability
for all SUs is equal to pN , i.e., Pr {PDIL (hi, gi) > 0} =
pN for all i ∈ {1, · · · , N}. For a given power con-
trol policy PDIL, the secondary network sum-rate in DIL
networks can be expressed as RDIL (pN , N, PDIL) =
N (1− pN )

N−1
Eh,g [log (1 + hPDIL (h, g))]. In this case,

transmission powers of SUs are allocated according to the
solution of the following functional optimization problem:

maximize
PDIL(h,g)≥0

RDIL (pN , N, PDIL)

subject to NEh,g [gPDIL (h, g)] ≤ Qave

Pr {PDIL (h, g) > 0} = pN

. (8)

The next theorem establishes the structure of the optimum
power allocation policy in DIL networks. The proof of The-
orem 4 is similar to that of Theorem 1, and therefore, it is
skipped to avoid repetition.

Theorem 4: Let P �
DIL (h, g) be the solution of (8). Then,

for pN = 1
N and N large enough, we have

P �
DIL (h, g) =

(
1

μNg
− 1

h

)+

1{
h
g >F−1

h
g

(1− 1
N )

},

where μN is the power control parameter adjusted such that
the average interference power constraint in (8) is met with
equality, and F−1

h
g

is the functional inverse of the CDF of hi

gi
.

Theorem 4 implies that, for pN = 1
N and N large enough,

the optimum power allocation policy for the ith SU is to
transmit by using a water-filling power allocation policy if
its joint power and interference channel state, i.e., hi

gi
, is

greater than the threshold value of F−1
h
g

(
1− 1

N

)
. In the

centralized case, in order to maximize the secondary network
sum-rate, the SBS schedules the SU having the maximum
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of
{

hi

gi

}N

i=1
, and the scheduled SU employs a water-filling

power allocation policy, i.e., see [11] and [12]. Moreover, the
multiuser diversity gain with a centralized scheduler heavily

depends on the maximum of
{

hi

gi

}N

i=1
, and as the number of

SUs becomes large, the maximum of
{

hi

gi

}N

i=1
takes values

around F−1
h
g

(
1− 1

N

)
with high probability. In this regard,

Theorem 4 further shows that, in DIL networks, a SU transmits
with positive power if it has a high chance of being the SU

with the maximum of
{

hi

gi

}N

i=1
. Thus, we expect to observe

throughput scaling behavior similar to that observed with a
centralized scheduler, which is indeed the case as shown next.

Let Y �
N and Y 


N be the largest and the second largest
elements of the collection of random variables {Yi}Ni=1, where
Yi = hi

gi
. Also, let R�

DIL (pN , N) be the sum-rate in DIL
networks under the optimum distributed power control policy
with transmission probability equal to pN . Then, for pN = 1

N
and N large enough, we have

R�
DIL

(
1

N
,N

)
= Eh,g

[
log

(
Y �
N

μN

)
1BN

]
,

where BN is given by (9). The next theorem establishes the
sum-rate scaling behavior of DIL networks.

Theorem 5: The secondary network sum-rate R�
DIL

(
1
N , N

)
for pN = 1

N under the optimum distributed power control
policy scales according to

lim
N→∞

R�
DIL

(
1
N , N

)
log (N)

=
1

eγg
.

Proof: See Appendix E.
Theorem 5 reveals the logarithmic scaling behavior of the

secondary network sum-rate as a function of the number of
SUs in DIL networks. It also shows that the pre-log multiplier
in this scaling behavior is equal to 1

eγg
. The 1

e stems from

the probability of successful transmission, whereas 1
γg

term
stems from the throughput scaling behavior on the event of
successful transmission. γg is equal to 1 for Rayleigh and
Rician-K distributed interference channel gains, and is equal
to m and c

2 when interference channel gains are Nakagami-m
and Weibull-c distributed, respectively.

Our analysis in Appendix E also reveals some second order
effects on the secondary network throughput. In particular, we
show that R�

DIL

(
1
N , N

)
can be written as (10). It is shown

in Appendix E that μN converges to 1
Qave

as N grows large.
Hence, the first term in (10) converges to 1

e log (Qave) as N
becomes large, implying the logarithmic effect of Qave on the
secondary network sum-rate in DIL networks. Further, it is
also shown that the second term in (10) scales according to
1

eγg
log (N), signifying the logarithmic effect of the number

of SUs on the secondary network sum-rate in DIL networks.
It is also instructive to compare the result of Theorem 5 with

the throughput scaling behavior that can be obtained by means
of a centralized scheduler. The secondary network throughput
scales according to 1

γg
log (N) when the optimum transmis-

sion power control is performed by a centralized scheduler
[12]. This observation suggests that the throughput scaling
law obtained through distributed implementation differs from
that obtained in the centralized case only in the observed pre-
log factors. Similar to the previous case, 1

e can be interpreted

as the cost of decentralized implementation of the cognitive
uplink.

It might be hypothesized that the capacity scaling behavior
obtained in Theorem 5 can be improved if the optimum
transmission probability is employed instead of pN = 1

N . The
next theorem disproves this hypothesis.

Theorem 6: For each N ∈ N, let p�N be an optimum
transmission probability selection maximizing R�

DIL (pN , N),
i.e., p�N ∈ argmax0≤pN≤1 R

�
DIL (pN , N). Then,

lim
N→∞

R�
DIL (p�N , N)

log (N)
=

1

eγg
. (11)

Proof: See Appendix F.
Theorem 6 establishes the logarithmic throughput scaling

behavior of DIL networks under the optimum transmission
probability. Hence, the choice of pN = 1

N is asymptotically
optimal, and one cannot obtain better throughput scaling
by other choices of pN . In the next lemma, we study the
asymptotic behavior of the sequence of optimum transmission
probabilities in DIL networks as the number of SUs becomes
large.

Lemma 2: For each N ∈ N, let p�N be an optimum
transmission probability selection in DIL networks. Then,
limN→∞ Np�N = 1.

Proof: See Appendix G.
Lemma 2 indicates that the sequence of optimum transmis-

sion probabilities in DIL networks decays to zero at the rate of
1
N . In other words, 1

N serves as a good approximation for the
optimum transmission probability when N is large enough.

As a final remark before numerical results, we note that the
power optimization problems studied in (3) and (8) can also
be solved for the case of non-i.i.d. fading distributions, albeit
with a slight sacrifice from the distributed operation. In this
case, the power optimization problems cannot be decomposed
into smaller local optimization problems since SUs do not
know each other’s channel statistics. Hence, optimum power
allocation policies need to be computed by the SBS under
the statistical knowledge of direct and interference channel
gains, and the resulting policies need to be broadcasted to all
SUs. However, this computation is performed only once to
initialize the communication, and the rest of the operation
again proceeds in a distributed manner as above by using
the centrally computed power allocation policies. Further,
throughput scaling laws in the non-i.i.d. case can also be
derived for specific fading distributions as in [11], but deriving
general throughput scaling laws for arbitrary non-i.i.d. class-C
fading distributions is prohibitively hard and out of scope of
the current paper.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the sum-rate per-
formance of DTPIL and DIL networks as a function of the
number of SUs. We also compare their sum-rate scaling
behavior with that of orthogonal channel access networks,
i.e., time division multiple access (TDMA) and frequency
division multiple access (FDMA) networks. In the considered
orthogonal channel access schemes, the global CSI is not
available at the SBS either, and communication resources
(i.e., either time or frequency) are periodically allotted to SUs
regardless of their channel conditions.
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BN =

{
Y �
N > F−1

h
g

(
1− 1

N

)
, Y 


N ≤ F−1
h
g

(
1− 1

N

)}
. (9)

R�
DIL

(
1

N
,N

)
= log

(
1

μN

)
Pr (BN ) + Eh,g [log (Y

�
N ) 1BN ] . (10)
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Fig. 2. Secondary network throughput in DTPIL and orthogonal channel access networks as a function of the number of SUs for different communication
environments (a)-(c). Throughput in DTPIL networks as a function of the number of SUs for different choices of pN (d). Pave and Qave are set to 15dB
and 0dB, respectively.

In TDMA networks, time is divided into equal length time
slots, and a time slot is allocated to each SU. In FDMA
networks, the total frequency band is divided into narrow-band
frequency chunks, and each frequency chuck is allocated to a
SU. In orthogonal channel access networks, we assume that
SUs have access to their direct and interference channel gains,
and upon being scheduled for transmission, each SU adjusts
its transmission power level according to a single-user water-
filling power allocation policy based on the local knowledge of
its channel gains. The same average total transmission power
and average interference power constraints are considered for

DTPIL, DIL and orthogonal channel access networks.

Figures 2(a)-(c) demonstrate the sum-rate scaling behavior
of DTPIL and orthogonal channel access networks as a
function of the number of SUs. In these figures, Pave and
Qave are set to 15dB and 0dB, respectively. Similar qualitative
behavior continues to hold for other values of Pave and Qave.
In Figs. 2(a)-(c), pN is set to 1

N for DTPIL networks. Also,
identical fading models are considered for both DTPIL and
orthogonal channel access networks.

More specifically, in Fig. 2(a), direct channel gains are
distributed according to the Weibull-c fading model with
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c = 1.5 and interference channel gains are distributed ac-
cording to the Rayleigh fading model. In Fig. 2(b), direct
channel gains are Weibull-c distributed with c = 2.5 and
interference channel gains are Rayleigh distributed. As Fig.
2(a) and Fig. 2(b) show, the secondary network sum-rate
in DTPIL networks scales according to 2

ec log log (N) with
the number of SUs, i.e., 2

1.5e log log (N) for c = 1.5 and
2

2.5e log log (N) for c = 2.5, when direct channel gains
are Weibull-c distributed, a behavior predicted by Theorem
2. Also, closeness of the simulated data rates of DTPIL
networks to the curves of 2

1.5e log log (N) + 1
e log (Pave) and

2
2.5e log log (N) + 1

e log (Pave) in Fig. 2(a) and Fig. 2(b),
respectively, indicates the logarithmic effect of Pave on the
secondary network throughput in DTPIL networks.

In Fig. 2(c), direct channel gains are Rayleigh distributed
and interference channel gains are Weibull-c distributed with
c = 1.5. As Fig. 2(c) shows, the secondary network sum-rate
in DTPIL networks scales according to 1

e log log (N) when
direct channel gains are Rayleigh distributed, which is also in
accordance with Theorem 2. Also, proximity of simulated data
rates of DTPIL network to the 1

e log log (N) + 1
e log (Pave)

curve in this figure again shows the logarithmic effect of Pave

on the secondary network sum-rate in DTPIL networks.
Moreover, as Figs. 2(a)-(c) show, the secondary network

throughput in orthogonal channel access networks does not
scale with the number of SUs since SUs are scheduled for
transmission regardless of their channel gains, rather than
being scheduled opportunistically, in these networks. Fur-
thermore, DTPIL networks achieve much higher throughputs
when compared to those achieved by orthogonal channel
access networks, even with possibly suboptimal choice of
transmission probability (i.e., pN = 1

N ) for small numbers of
SUs. This is due to the fact that DTPIL networks can harvest
multiuser diversity gains, in a distributed fashion, without any
global knowledge of CSI at the SBS.

In Fig. 2(d), we demonstrate the secondary network
throughput scaling in DTPIL networks as a function of the
number of SUs when pN is set to 1

N , 1
4N and 1

10N . In this
figure, direct and interference channel gains are distributed
according to the Rayleigh fading model. As Fig. 2(d) shows,
the secondary network asymptotically achieves much higher
throughputs with pN = 1

N when compared to other choices
of pN that do not scale according to 1

N . This finding signifies
the importance of setting pN correctly to maximize secondary
network sum-rates in DTPIL networks.

Figure 3 shows the change of the secondary network sum-
rate in DIL and orthogonal channel access networks as a
function of the number of SUs for different communication
environments. In this figure, Qave is set to 0dB. Similar
qualitative behavior continues to hold for other values of Qave.
The transmission probability is set to 1

N for DIL networks. In
Fig. 3(a), direct channel gains are distributed according to the
Rayleigh fading model and interference channel gains are dis-
tributed according to the Weibull-c fading model with c = 1.5.
In Fig. 3(b), direct channel gains are Rayleigh distributed
and interference channel gains are Weibull-c distributed with
c = 2.5. From these figures, we can clearly observe that the
secondary network throughput scales according to 2

ec log(N)
as a function of the number of SUs when interference channel

gains are Weibull distributed with different values of c.
In Figs. 3(c) and 3(d), direct channel gains are Rayleigh

distributed and interference channel gains are Nakagami-m
distributed with m set to 0.5 and 1.2, respectively. As these
figures indicate, the secondary network throughput scales
according to 1

em log (N) with the number of SUs in DIL
networks for Nakagami-m distributed interference channel
gains. All simulated capacity curves in Fig. 3 concur with
the capacity scaling laws established in Theorem 5. We
know that pN = 1

N may not be the optimum choice of
transmission probability for N small enough, but from Fig. 3,
we still observe that DIL networks with pN = 1

N outperform
orthogonal channel access networks largely, in terms of the
sum-rate performance, even for small numbers of SUs.

In Fig. 4(a), we plot the normalized throughputs in DIL
networks as a function of the number of SUs to further
illustrate the accuracy of our scaling results. In this figure,
direct channel gains are Rayleigh distributed and interference
channel gains are Weibull-c distributed with c = 1.5, 2.5. As
Fig. 4(a) shows, the sum-rate in DIL networks scales according
to 2

ce log (N), which is in harmony with Theorem 5.
Figure 4(b) depicts the throughput scaling behavior of

DIL networks for different selections of the transmission
probability. In this figure, direct and interference channel gains
are Rayleigh distributed, and pN is set to 1

N , 1
4N and 1

10N . We
observe that the sum-rate performance of DIL networks under
pN = 1

N is asymptotically much higher when compared to
that of DIL networks under pN = 1

4N and pN = 1
10N . Similar

to DTPIL networks, this observation indicates the importance
of correct calibration of pN to maximize secondary network
sum-rates in DIL networks.

Figure 5 illustrates the throughput scaling behavior of
DTPIL and DIL networks, with the number of SUs, for
different values of Pave and Qave, respectively. Direct and
interference channel gains are distributed according to the
Rayleigh fading model in this figure. In Fig. 5(a), Qave is
set to zero dB. As Fig. 5(a) and Fig. 5(b) show, the secondary
network throughput increases with the number of SUs due
to multiuser diversity gains predicated by Theorems 2 and
5. Furthermore, as Pave or Qave increase, SUs transmit with
higher transmission powers which in turn results in higher
throughputs as shown in Fig. 5(a) and Fig. 5(b).

VI. CONCLUSIONS

In this paper, we have studied the optimum distributed
power control problem and the throughput scaling laws for
the distributed cognitive uplink. First, we have shown that
the optimum distributed power control policy for the cog-
nitive uplink is in the form of a threshold based water-
filling power control. The derived optimum distributed power
control policy maximizes the secondary network sum-rate
subject to transmission and interference power limitations,
whilst guaranteeing primary QoS requirements without any
feedback signals. Second, we have obtained tight throughput
scaling laws for the distributed cognitive uplink by considering
fading models general enough to include Rayleigh, Rician
and Nakagami fading as special cases. In particular, it has
been shown that the secondary network sum-rate, under the
optimum distributed power control policy, scales according
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Fig. 3. Secondary network throughput in DIL and orthogonal channel access networks as a function of the number of SUs for different communication
environments (a)-(d). Qave is set to 0dB.

to 1
enh

log log (N) when transmission powers of SUs are
limited by a total average transmission power constraint and
a constraint on the average interference power of SUs at the
PBS. Here, nh is a parameter obtained from the distribution
of direct channel power gains, and N is the number of SUs.
It has also been shown that the secondary network sum-rate,
under the optimum distributed power control policy, scales
according to 1

eγg
log (N) when transmission powers of SUs

are only limited by an average interference power constraint.
Here, γg is a parameter obtained from the distribution of inter-
ference channel power gains. Our throughput scaling results
demonstrate that the cognitive uplink operating according to
the derived optimum distributed power control policy is able to
harvest multiuser diversity gains, even in a distributed fashion
without any feedback between SUs and the SBS. The pre-log
multiplier 1

e is the cost of distributed implementation of the
cognitive uplink.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we form a new functional optimization
problem as follows

maximize
P̃ (h,g),W (h,g)

Eh,g

[
W (h, g) log

(
1 + hP̃ (h, g)

)]
subject to Eh,g

[
W (h, g) P̃ (h, g)

]
≤ Pave

N

Eh,g

[
W (h, g) gP̃ (h, g)

]
≤ Qave

N

Eh,g [W (h, g)] = 1
N

0 ≤ W (h, g) ≤ 1

, (12)

where P̃ (h, g) is a mapping from R
2
+ to R+. For P̃ (h, g) =

P (h, g) and W (h, g) = 1{P (h,g)>0}, the optimization prob-
lem in (12) reduces to the one in (3). Thus, the optimal value
of (12) serves as an upper bound for the optimal value of
(3). Later, we show that this upper bound is achievable for
N large enough. Using the change of variable Π(h, g) =
P̃ (h, g)W (h, g), (12) can be transformed into the following
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Fig. 4. Normalized throughput in DIL networks as a function of number of SUs (a). Secondary network throughput as a function of the number of SUs for
different choices of pN (b). Qave is set to 0dB.
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Fig. 5. Throughput in DTPIL networks versus number of SUs for different values of Pave with Qave = 0 dB (a). Throughput in DIL networks versus
number of SUs for different values of Qave (b).

convex optimization problem:

maximize
Π(h,g),W (h,g)

Eh,g

[
W (h, g) log

(
1 + hΠ(h,g)

W (h,g)

)]
subject to Eh,g [Π (h, g)] ≤ Pave

N

Eh,g [gΠ(h, g)] ≤ Qave

N
Eh,g [W (h, g)] = 1

N
0 ≤ W (h, g) ≤ 1
Π (h, g) ≥ 0

. (13)

It can be shown that the objective function in (13) as
a function of Π and W is concave on R

2
+. The La-

grangian for (13) can be written as (14) where λN ≥
0, μN ≥ 0 and ηN are Lagrange multipliers associ-
ated with the average transmission power, average interfer-
ence power and transmission probability constraints, respec-
tively. Let Π� (h, g) and W � (h, g) be a pair of solutions
of (13). Let also let A =

{
(h, g) ∈ R

2
+ : Π� (h, g) > 0

}

and B =
{
(h, g) ∈ R

2
+ : W � (h, g) > 0

}
. Using gener-

alized Karush-Kuhn-Tucker (KKT) conditions [32], [33],
we have (15). This result implies that Π� (h, g) and
W � (h, g) satisfy the first order KKT conditions if and

only if Π� (h, g) =
(

1
λN+μNg − 1

h

)+
W � (h, g). We let

P̃ � (h, g) =
(

1
λN+μNg − 1

h

)+
. From KKT conditions, we

also need to have (16). Let f(x) = log (1 + x) + 1
1+x

(note that f(x) is a monotonically increasing function for
x ≥ 0), C =

{
(h, g) ∈ R

2
+ : W �(h, g) = 1

}
and D ={

(h, g) ∈ R
2
+ : 0 < W �(h, g) < 1

}
. First consider the case

ηN > 0. Using KKT conditions, we have h
λN+μNg ≥

1 + f−1 (1 + ηN ) on the set C. Similarly, on D, we
have h

λN+μNg = 1 + f−1 (1 + ηN ). Hence, the choice of
W �(h, g) as W �(h, g) = 1{ h

λN+μNg>1+f−1(1+ηN )
} + ε ·
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L (Π,W, λN , μN , ηN ) = W (h, g) log

(
1 +

hΠ(h, g)

W (h, g)

)
− λNΠ(h, g)− μNgΠ(h, g)− ηNW (h, g) . (14)

∂L (Π,W �, λN , μN , ηN )

∂Π(h, g)

∣∣∣
Π=Π�

=

⎛
⎝ h

1 + hΠ�(h,g)
W�(h,g)

− λN − μNg

⎞
⎠ 1B − (λN + μNg) 1Bc

{
= 0 Π� (h, g) > 0
≤ 0 Π� (h, g) = 0

. (15)

∂L (Π�,W, λN , μN , ηN )

∂W (h, g)

∣∣∣
W=W�

=

(
log
(
1 + hP̃ � (h, g)

)
+

1

1 + hP̃ � (h, g)
− 1− ηN

)
1A − ηN1Ac

⎧⎨
⎩

= 0 0 < W � (h, g) < 1
≤ 0 W � (h, g) = 0
≥ 0 W � (h, g) = 1

. (16)

1{ h
λN+μNg=1+f−1(1+ηN )

} for some ε ∈ (0, 1) satisfies the

KKT conditions. Since h and g have continuous distributions,
we can also write W �(h, g) = 1{ h

λN+μNg>1+f−1(1+ηN )
} with

probability one. We set ηN such that 1 + f−1 (1 + ηN ) =
F−1
λN ,μN

(
1− 1

N

)
to satisfy the constraint on Eh,g [W

� (h, g)].
We note that F−1

λN ,μN

(
1− 1

N

)
must be larger than 1 for

ηN > 0. Similar arguments show that W � (h, g) =
1{ h

λN+μNg>F−1
λN,μN

(1− 1
N )
} and F−1

λN ,μN

(
1− 1

N

) ≤ 1 for

ηN = 0. For ηN < 0, there does not exist any W � (h, g)
satisfying KKT conditions. Hence, combining all cases, we
conclude that Π� (h, g) and W � (h, g) can be chosen as
W � (h, g) = 1{ h

λN+μNg>F−1
λN,μN

(1− 1
N )
} and Π� (h, g) =

P̃ � (h, g)W � (h, g) with probability one. It is well known that
a one-to-one mapping of optimization variables to convert one
optimization problem to another preserves the solvability of
the KKT conditions. In other words, if the new variables solve
the KKT conditions of the transformed problem, the old vari-
ables solve the KKT conditions of the original problem. This
implies that P̃ � (h, g) = Π�(h,g)

W�(h,g) and W � (h, g) constitute a
solution for Problem (12). For λN > 0, we have

Pave = NEh,g

[(
1

λN + μNg
− 1

h

)+

W � (h, g)

]

≤ 1

λN
NEh,g [W

� (h, g)]

=
1

λN
.

Thus, we have λN ≤ 1
Pave

. Similarly, it can be shown
that μN ≤ 1

Qave
. Hence, we have F−1

λN ,μN

(
1− 1

N

) ≥
F−1

1
Pave

, 1
Qave

(
1− 1

N

) ≥ 1 for N large enough. This implies

that PDTPIL (h, g) = P̃ � (h, g)W � (h, g) is also a feasible
solution for (3) when N is large enough. For PDTPIL (h, g) =
P̃ � (h, g)W � (h, g), the value of objective function in (3) is
equal to the optimal value of (12), implying the upper bound
is achieved, which completes the proof.

APPENDIX B
THROUGHPUT SCALING IN DTPIL NETWORKS

In this appendix, we first establish some preliminary results.
Then, we use these results to prove Theorem 2. Lemma 3
below establishes the asymptotic behavior of F−1

λ,μ (x), which
is the functional inverse of the common CDF of joint channel
states hi

λ+μgi
, i = 1, 2, . . . , N , as x becomes close to one.

Lemma 3: Let Fλ,μ (x) be the common CDF of joint
channel states hi

λ+μgi
, i = 1, 2, . . . , N , where λ > 0

and μ ≥ 0 are constants. Then, as x becomes close
to one, its functional inverse F−1

λ,μ (x) scales according to

limx↑1
F−1

λ,μ(x)

1
λ

(
− 1

βh
log(1−x)

) 1
nh

= 1.

Proof: We only focus on the case where both λ and
μ are strictly positive. The proof of the remaining case in
which λ > 0 and μ = 0 is easier and follows along the
same lines. To prove the desired result, we first obtain the
asymptotic behavior of Fλ,μ (x) as x becomes large. Note
that Fλ,μ (x) is the CDF of the product of two independent
random variables, i.e., hi and 1

λ+μgi
, and the asymptotic

tail behavior for the product of two independent random
variables was studied in [34] for the case of H (x) = 0.
Since H (x) is not necessarily equal to zero for the class-
C distributions, i.e., see the Rician fading model in Table II,
we need to upper and lower bound the tail of Fλ,μ (x) by
using distribution functions with H (x) = 0. To this end,
we let h+ε and h−ε be two random variables, independent
of gi, with respective CDFs F+ε(x) and F−ε(x) satisfying
limx→∞

1−F+ε(x)

αhx
lhe−(βh−ε)xnh = limx→∞

1−F−ε(x)

αhx
lhe−(βh+ε)xnh = 1

for ε > 0 small enough.
Let F+ε,λ,μ (x) and F−ε,λ,μ (x) be the CDFs of h+ε

λ+μgi

and h−ε

λ+μgi
, respectively. Let also Fh(x) be the CDF of

hi. Observing that F+ε (x) ≤ Fh (x) ≤ F−ε (x) for x
large enough, we can upper and lower bound Fλ,μ(x)
as (17) for x large enough, where expectations are taken
over interference channel states. Using Theorem 3 in
[34], the asymptotic tail behavior of F+ε,λ,μ (x) can be
shown to satisfy lim

x→∞
1−F+ε,λ,μ(x)

Cxlh−nhγg e−(βh−ε)(λx)nh = 1, where

C = ηgαhΓ (γg + 1)
(

λ2

μ(βh−ε)nh

)γg (
1
λ

)nhγg+γg−lh and Γ (·)
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F+ε,λ,μ (x) = Egi [F+ε ((λ+ μgi)x)] ≤
Fλ,μ (x) = Egi [Fh ((λ+ μgi)x)] ≤ F−ε,λ,μ (x) = Egi [F−ε ((λ+ μgi)x)] . (17)

is the Gamma function [37]. This result implies that the func-
tional inverse F−1

+ε,λ,μ (x) of F+ε,λ,μ (x) behaves according to

lim
x↑1

F−1
+ε,λ,μ

(x)

1
λ

(
− 1

(βh−ε)
log(1−x)

) 1
nh

= 1 as x becomes

close to one. Following the same steps, we also

have lim
x↑1

F−1
−ε,λ,μ(x)

1
λ

(
− 1

(βh+ε)
log(1−x)

) 1
nh

= 1. Using (17),

F−1
λ,μ (x) can be upper and lower bounded as

F−1
−ε,λ,μ (x) ≤ F−1

λ,μ(x) ≤ F−1
+ε,λ,μ (x) for x close enough to

one. Since ε can be chosen arbitrarily close to zero, we have

limx↑1
F−1

λ,μ(x)

1
λ

(
− 1

βh
log(1−x)

) 1
nh

= 1 which completes the proof.

Next, by using Lemma 3, we establish the asymptotic
behavior for the extreme order statistic of the collection

of random variables
{

hi

λ+μgi

}N

i=1
. The derived convergence

behavior will be helpful for studying the asymptotic behavior
of λN , and in turn, for proving Theorem 2.

Lemma 4: Let X�
N (λ, μ) = max1≤i≤N

hi

λ+μgi
for λ > 0

and μ ≥ 0. Then, X�
N (λ,μ)(

1
βh

log(N)
) 1

nh

i.p.−−→ 1
λ as N tends to infinity,

where i.p. stands for convergence in probability.
Proof: Let Fλ,μ be the CDF of hi

λ+μgi
as in Lemma

3. Using Lemma 2 in [12], the concentration behavior of
X�

N (λ, μ) can be given as (18) for all ε > 0 small enough.
Using Lemma 3 above and (18), we have (19) which implies
the convergence of X�

N (λ,μ)(
1

βh
log(N)

) 1
nh

to 1
λ in probability.

In the next lemma, we show that λN converges to 1
Pave

as N
becomes large. This lemma will be used to quantify the effect
of the average total power constraint Pave on the secondary
network throughput in DTPIL networks.

Lemma 5: Let λN be one of the power control parameters
in DTPIL networks, as described in (4). Then, limN→∞ λN =
1

Pave
.
Proof: First, we show lim infN→∞ λN > 0. To ob-

tain a contradiction, we assume that λN can be arbitrarily
close to zero as N becomes large. This implies that for
all ε > 0, we can find a subsequence of N , Nj , such
that λNj ≤ ε for all Nj large enough. Let X�

N (λ, μ) =
max1≤i≤N

hi

λ+μgi
(as in Lemma 4), h�

N = max1≤i≤N hi and
IN = argmax1≤i≤N

hi

λN+μNgi
. Let also PDTPIL

N (h, g) =∑N
i=1

(
1

λN+μNgi
− 1

hi

)+
1{ hi

λN+μNgi
>F−1

λN,μN
(1− 1

N )
} be the

instantaneous total power consumed by the secondary net-
work. Then, the average power consumption, for all Nj large
enough, can be lower bounded as (20) where (a) follows
from observing that μN ≤ NpN

Qave
and pN = 1

N in this

case. Using Lemma 4, we have
X�

Nj
(ε, 1

Qave
)(

1
βh

log(Nj)
) 1

nh

i.p.−−→ 1
ε and

h�
Nj(

1
βh

log(Nj)
) 1

nh

i.p.−−→ 1 as Nj tends to infinity.

Also, it is easy to see that
1{

X�
Nj
(λNj

,μNj )>F−1
λNj

,μNj

(
1− 1

Nj

)} i.d.−−→ Bern
(
1− 1

e

)
as

Nj tends to infinity, where Bern (p) denotes a 0-1 Bernoulli
random variable with mean p, and i.d. stands for convergence
in distribution. Hence, by using Slutsky’s Theorem [35],
we have (21). Applying Fatou’s Lemma to (20), we obtain
lim infNj→∞ Eh,g

[
PDTPIL
Nj

(h, g)
]

≥ 1
ε

(
1− 1

e

)
, which

implies that the average power consumption can be made
arbitrarily large, violating the power constraint, for ε small
enough and Nj large enough. Thus, lim infN→∞ λN > 0.

Now, by using the fact that λN cannot be arbitrarily close to
zero, we show that limN→∞ λN = 1

Pave
. Note that λN ≤ 1

Pave

for pN = 1
N , which implies that lim supN→∞ λN ≤ 1

Pave
.

Hence, showing that lim infN→∞ λN ≥ 1
Pave

will conclude
the proof. To this end, the average total power consumed by
the secondary network can be lower bounded as (22) where
(a) follows from observing that λF−1

λ,μ (x) = F−1
1,μλ

(x), and

(b) follows from observing that μN ≤ 1
Qave

and F−1
λ,μ (x)

decreases with increasing values of μ. Using (22), λN can
be lower bounded as (23). Using Lemma 3 and the fact
that λN cannot be arbitrarily close to zero, we have

lim
N→∞

F−1

1, 1
λNQave

(1− 1
N )

(
1

βh
log(N)

) 1
nh

= 1, which implies

(
F−1

1, 1
λNQave

(1− 1
N )−λN

)+

h�
N

i.p.−−→ 1 as N tends to infinity.

Let SN=
∑N

i=11
{

hi

1+
μN
λN

gi
>F−1

1,
μN
λN

(1− 1
N )

}. SN has a Binomial

distribution with parameters N and 1
N . Hence, using Poisson

approximation for Binomial distributions, we conclude
that SN converges in distribution to Po (1), where Po (p)
represents a Poisson random variable with mean p. Using
Slutsky’s Theorem, we have (24) as N grows large. Applying
Fatou’s Lemma to (23), we have lim infN→∞ λN ≥ 1

Pave
.

Now, we are ready to prove Theorem 2 by utilizing above
auxiliary results. Note that the sum-rate under the optimum
distributed power control in DTPIL networks for pN = 1

N
can be written as (25). Note that Pr (AN ) can be written
as (26). Hence, we have limN→∞ Pr (AN ) = 1

e by the
selection of transmission probabilities. This gives us the loga-
rithmic effect of Pave on the secondary network throughput
since λN converges to 1

Pave
. Using Lemma 4, we have

log
(
X�

N

(
1,

μN
λN

))
log log(N)

i.p.−−→ 1
nh

as N tends to infinity since λN is
bounded away from zero and μN ≤ 1

Qave
. Also, we have 1AN

converging in distribution to Bern
(
1
e

)
as N tends to infinity.

As a result, applying Slutsky’s Theorem, we conclude that
log
(
X�

N

(
1,

μN
λN

))
log log(N) 1AN

i.d.−−→ 1
nh

Bern
(
1
e

)
. This final result almost

completes the proof of Theorem 2 up to a slight technicality.
That is, convergence in distribution does not always imply
convergence in mean [36].
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lim
N→∞

Pr
{
F−1
λ,μ

(
1−N ε−1

) ≤ X�
N (λ, μ) ≤ F−1

λ,μ

(
1−N−ε−1

)}
= 1. (18)

lim
N→∞

Pr

⎧⎪⎨
⎪⎩

1

λ
(1− ε)

1
nh ≤ X�

N (λ, μ)(
1
βh

log (N)
) 1

nh

≤ 1

λ
(1 + ε)

1
nh

⎫⎪⎬
⎪⎭ = 1. (19)

Eh,g

[
PDTPIL
Nj

(h, g)
]

= Eh,g

⎡
⎣ Nj∑

i=1

(
1

λNj + μNjgi
− 1

hi

)+

1{
hi

λNj
+μNj

gi
>F−1

λNj
,μNj

(
1− 1

Nj

)}
⎤
⎦

≥ Eh,g

[
1

hINj

(
X�

Nj

(
λNj , μNj

)− 1
)+

1{
X�

Nj
(λNj

,μNj )>F−1
λNj

,μNj

(
1− 1

Nj

)}
]

(a)

≥ Eh,g

[
1

h�
Nj

(
X�

Nj

(
ε,

1

Qave

)
− 1

)+

1{
X�

Nj
(λNj

,μNj )>F−1
λNj

,μNj

(
1− 1

Nj

)}
]
. (20)

1

h�
Nj

(
X�

Nj

(
ε,

1

Qave

)
− 1

)+

1{
X�

Nj
(λNj

,μNj )>F−1
λNj

,μNj

(
1− 1

Nj

)} i.d.−−→ 1

ε
Bern

(
1− 1

e

)
. (21)

Pave = Eh,g

[
N∑
i=1

(
1

λN + μNgi
− 1

hi

)+

1{ hi
λN+μNgi

>F−1
λN,μN

(1− 1
N )
}
]

(a)
=

1

λN
Eh,g

⎡
⎢⎣ N∑

i=1

(
1

1 + μN

λN
gi

− λN

hi

)+

1{
hi

1+
μN
λN

gi
>F−1

1,
μN
λN

(1− 1
N )

}
⎤
⎥⎦

(b)

≥ 1

λN
Eh,g

⎡
⎢⎢⎢⎣

N∑
i=1

(
F−1
1, 1

λNQave

(
1− 1

N

)− λN

)+

hi
1{

hi

1+
μN
λN

gi
>F−1

1,
μN
λN

(1− 1
N )

}
⎤
⎥⎥⎥⎦

≥ 1

λN
Eh,g

⎡
⎢⎢⎢⎣
(
F−1
1, 1

λNQave

(
1− 1

N

)− λN

)+

h�
N

N∑
i=1

1{
hi

1+
μN
λN

gi
>F−1

1,
μN
λN

(1− 1
N )

}
⎤
⎥⎥⎥⎦ . (22)

λN ≥ 1

Pave
Eh,g

⎡
⎢⎢⎢⎣
(
F−1
1, 1

λNQave

(
1− 1

N

)− λN

)+

h�
N

N∑
i=1

1{
hi

1+
μN
λN

gi
>F−1

1,
μN
λN

(1− 1
N )

}
⎤
⎥⎥⎥⎦ . (23)

(
F−1
1, 1

λNQave

(
1− 1

N

)− λN

)+

h�
N

N∑
i=1

1{
hi

1+
μN
λN

gi
>F−1

1,
μN
λN

(1− 1
N )

} i.d.−−→ Po (1) . (24)

R�
DTPIL

(
1

N
,N

)
= log

(
1

λN

)
Pr (AN ) + Eh,g

[
log

(
X�

N

(
1,

μN

λN

))
1AN

]
. (25)

Pr (AN ) =

N∑
i=1

Pr

{
Xi (λN , μN ) > F−1

λN ,μN

(
1− 1

N

)}∏
j 	=i

Pr

{
Xj (λN , μN ) ≤ F−1

λN ,μN

(
1− 1

N

)}
. (26)
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To show that convergence in mean does also hold

in our case, we let X̂N

(
1, μN

λN

)
=

log
(
X�

N

(
1,

μN
λN

))
log log(N) 1AN .

It is enough to show that the collection of random

variables
{
X̂N

(
1, μN

λN

)}∞

N=1
is uniformly integrable, i.e.,

lim
C′→∞

sup
N≥1

Eh,g

[∣∣∣X̂N

(
1, μN

λN

)∣∣∣ 1{∣∣∣X̂N

(
1,

μN
λN

)∣∣∣≥C′
}
]

= 0

to conclude the proof. We can upper bound the ran-

dom variable
log
(
X�

N

(
1,

μN
λN

))
log log(N) 1AN as

log
(
X�

N

(
1,

μN
λN

))
log log(N) 1AN ≤

log
(
X�

N

(
1,

μN
λN

))
log log(N) 1{

X�
N

(
1,

μN
λN

)
≥1
}. Using proof techniques sim-

ilar to those used in the proof of Lemma 3 in [12], it

can be shown that

{
log
(
X�

N

(
1,

μN
λN

))
log log(N) 1{

X�
N

(
1,

μN
λN

)
≥1
}
}∞

N=1

is

uniformly integrable, which implies the uniform integrability

of

{
log
(
X�

N

(
1,

μN
λN

))
log log(N) 1AN

}∞

N=1

.

APPENDIX C
PROOF OF THEOREM 3

Note that R�
DTPIL (p

�
N , N) ≥ R�

DTPIL

(
1
N , N

)
.

Hence, it is enough to show that
lim sup
N→∞

R�
DTPIL(p

�
N ,N)

log log(N) ≤ 1
enh

. To this end, let

X̃N =
log(X�

N (λN ,μN ))
log log(N) , where X�

N (λ, μ) is defined as
in Lemma 4. For all ε > 0, we have (27).

As in the proof of Theorem 2, we

have X̃N1{X�
N (λN ,μN )≥1}

i.p.−−→ 1
nh

and

1{∣∣∣X̃N− 1
nh

∣∣∣>ε
} i.p.−−→ 0 as N tends to infinity.

Hence, X̃N1{X�
N (λN ,μN )≥1}1{∣∣∣X̃N− 1

nh

∣∣∣>ε
} converges

to zero in probability. Using techniques similar
to those used in the proof of Theorem 2, it
can also be shown that the collection of random

variables

{
X̃N1{X�

N (λN ,μN )≥1}1{∣∣∣X̃N− 1
nh

∣∣∣>ε
}
}∞

N=1
is uniformly integrable, which implies that

limN→∞ Eh,g

[
X̃N1{X�

N (λN ,μN )≥1}1{∣∣∣X̃N− 1
nh

>
∣∣∣ε}
]
= 0.

For N large enough, Pr (AN ) can be upper bounded as

Pr (AN ) = Np�N (1− p�N )N−1

(a)

≤
(
1− 1

N

)N−1

,

where (a) follows from the fact that Np�N (1− p�N )
N−1 is

maximized at p�N = 1
N . Hence,

lim sup
N→∞

R�
DTPIL (p

�
N , N)

log log (N)
≤ 1

enh
+

ε

e
,

which completes the proof since ε is arbitrary.

APPENDIX D
PROOF OF LEMMA 1

Assume that a is a limit point of the sequence aN = Np�N ,
where N ≥ 1. We only consider the case a ∈ (0,∞). For
a = 0, it can be shown that the probability of successful
transmission, and hence the secondary network throughput,
goes to zero due to lack of enough transmission attempts.
For a = ∞, the probability of successful transmission, and

hence the secondary network throughput, goes to zero due to
excessive simultaneous transmission attempts.

Let Nj be a subsequence of N such that limNj→∞ aNj = a.
As argued in the proof of Theorem 2, it can be shown that
the probability of successful transmission on this subsequence
converges to a

ea , i.e., limNj→∞ Pr
(
ANj

)
= a

ea . Hence, using
techniques similar to those employed in the proof of Theorem

2, we can further show that limNj→∞
R�

DTPIL

(
p�
Nj

,Nj

)
log log(Nj)

=
a

eanh
, which is maximized at a = 1. This implies that p�N

must be chosen such that limN→∞ Np�N = 1 to obtain optimal
secondary network throughput scaling behavior.

APPENDIX E
THROUGHPUT SCALING IN DIL NETWORKS

To obtain the throughput scaling behavior in DIL networks,
we will first provide a preliminary lemma establishing the
convergence behavior of μN . This lemma will also be helpful
to study the effect of average total interference power, Qave,
on the secondary network throughput in DIL networks.

Lemma 6: Let μN be the power control parameter in DIL
networks, as stated in Theorem 4. Then, limN→∞ μN = 1

Qave
.

Proof: First, we show that μN is upper bounded by 1
Qave

for all N . To this end, we have

Qave = Eh,g

⎡
⎢⎣ N∑

i=1

gi

(
1

μNgi
− 1

hi

)+

1{
hi
gi

>F−1
h
g

(1− 1
N )

}
⎤
⎥⎦

≤ Eh,g

⎡
⎢⎣ N∑

i=1

1

μN
1{

hi
gi

>F−1
h
g

(1− 1
N )

}
⎤
⎥⎦

=
1

μN
,

which implies that μN ≤ 1
Qave

. Hence, to complete the proof,
it is enough to show that lim infN→∞ μN ≥ 1

Qave
. We can

lower bound μN as (28). Since μN is bounded above by 1
Qave

and F−1
h
g

(
1− 1

N

)
tends to infinity as N grows large, (28)

implies that lim infN→∞ μN = 1
Qave

.
Now, we are ready to prove Theorem 5. The sum-rate under

the optimum distributed power control in DIL networks can
be written as (29).

It is easy to see that limN→∞ Pr (BN ) = 1
e . Thus, the first

term on the right-hand side of (29) converges to 1
e log (Qave)

as N tends to infinity, which indicates the logarithmic effect
of the average interference power constraint, Qave, on the
secondary network sum-rate in DIL networks. It can also be
shown that log(Y �

N )
log(N)

i.p.−−→ 1
γg

(i.e., see Lemma 8 in [12]) and

1BN

i.d.−−→ Bern
(
1
e

)
as N tends to infinity. Therefore, using

Slutsky’s theorem, we have log(Y �
N )

log(N) 1BN

i.d.−−→ Bern
(
1
e

)
as

N grows large. Since convergence in distribution does not
always imply convergence in mean, we need to show that

the collection of random variables
{

log(Y �
N )

log(N) 1BN

}∞

N=1
is uni-

formly integrable. For N large enough, we have log(Y �
N )

log(N) 1BN ≤
log(Y �

N )
log(N) 1{Y �

N≥1}. Using Lemma 8 in [12], we conclude that{
log(Y �

N )
log(N) 1{Y �

N≥1}
}∞

N=1
is uniformly integrable, which im-
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R�
DTPIL (p

�
N , N)

log log (N)
= Eh,g

[
X̃N1AN1

{∣∣∣X̃N− 1
nh

∣∣∣>ε
}
]
+ Eh,g

[
X̃N1AN1

{∣∣∣X̃N− 1
nh

∣∣∣≤ε
}
]

≤ Eh,g

[
X̃N1{X�

N (λN ,μN )≥1}1{∣∣∣X̃N− 1
nh

∣∣∣>ε
}
]
+

(
1

nh
+ ε

)
Pr (AN ) . (27)

μN =
1

Qave
Eh,g

⎡
⎢⎣ N∑

i=1

(
1− giμN

hi

)+

1{
hi
gi

>F−1
h
g

(1− 1
N )

}
⎤
⎥⎦

≥ 1

Qave
− μN

Qave
NEh1,g1

⎡
⎢⎣ g1
h1

1{
h1
g1

>F−1
h
g

(1− 1
N )

}
⎤
⎥⎦

≥ 1

Qave
− μN

QaveF
−1
h
g

(
1− 1

N

) . (28)

R�
DIL

(
1

N
,N

)
= log

(
1

μN

)
Pr (BN ) + Eh,g [log (Y

�
N ) 1BN ] . (29)

plies uniform integrability of
{

log(Y �
N )

log(N) 1BN

}∞

N=1
. Hence, we

have limN→∞ Eh,g

[
log(Y �

N )
log(N) 1BN

]
= 1

eγg
, which concludes

the proof.

APPENDIX F
PROOF OF THEOREM 6

Since R�
DIL (p

�
N , N) ≥ R�

DIL

(
1
N , N

)
, we have

lim infN→∞
R�

DIL(p
�
N ,N)

log(N) ≥ 1
eγg

. To show the other direction,

let ỸN =
log

(
Y �
N

μN

)
log(N) . For all ε > 0, we have (30).

Recall from the proof of Theorem 5 that Y �
N

log(N) converges

in probability to 1
γg

. This implies that ỸN1{Y �
N≥μN}

i.p.−−→ 1
γg

and 1{∣∣∣ỸN− 1
γg

∣∣∣>ε
} i.p.−−→ 0 as N tends to infinity. Thus,

ỸN1{Y �
N≥μN}1{∣∣∣ỸN− 1

γg

∣∣∣>ε
} converges in probability to

0. Using techniques similar to those used in the proof
of Theorem 5, we can show that the collection of

random variables

{
ỸN1{Y �

N≥μN}1{∣∣∣ỸN− 1
γg

∣∣∣>ε
}
}∞

N=1
is uniformly integrable. This implies that

limN→∞ Eh,g

[
ỸN1{Y �

N≥μN}1{∣∣∣ỸN− 1
γg

∣∣∣>ε
}
]
= 0.

For N large enough, Pr (BN ) can be upper bounded as

Pr (BN) = Np�N (1− p�N )
N−1

≤
(
1− 1

N

)N−1

.

Hence, lim supN→∞
R�

DIL(p
�
N ,N)

log(N) ≤ 1
eγg

+ ε
e which completes

the proof since ε is arbitrary.

APPENDIX G
PROOF OF LEMMA 2

The proof of this lemma is similar to the proof of Lemma
1. Assume that a is a limit point of the sequence aN = Np�N ,
N ≥ 1, and let Nj be a subsequence of N achieving a. For

a = 0, it can be shown that the probability of successful
transmission, and hence the secondary network throughput,
goes to zero due to lack of enough transmission attempts.
For a = ∞, the probability of successful transmission, and
hence the secondary network throughput, goes to zero due to
excessive simultaneous transmission attempts.

For a ∈ (0,∞), as argued in the proof of Theorem 5,
it can be shown that the probability of successful trans-
mission on Nj converges to a

ea , which, in turn, leads to

limNj→∞
R�

DIL

(
p�
Nj

,Nj

)
log(Nj)

= a
eanh

. Since a
eanh

is maximized
at a = 1, we have limN→∞ Np�N = 1.
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