
IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION 1

Near-Capacity Joint Source and Channel Coding of
Symbol Values from an Infinite Source Set Using

Elias Gamma Error Correction Codes
Tao Wang, Wenbo Zhang, Robert G. Maunder, and, Lajos Hanzo

Abstract—In this paper we propose a novel low-complexity
Joint Source and Channel Code (JSCC), which we refer to as the
Elias Gamma Error Correction (EGEC) code. Like the recently-
proposed Unary Error Correction (UEC) code, this facilitates
the practical near-capacity transmission of symbol values that
are randomly selected from a set having an infinite cardinality,
such as the set of all positive integers. However, in contrast to the
UEC code, our EGEC code is a universal code, facilitating the
transmission of symbol values that are randomly selected using
any monotonic probability distribution. When the source symbols
obey a particular zeta probability distribution, our EGEC scheme
is shown to offer a 3.4 dB gain over a UEC benchmarker,
when Quaternary Phase Shift Keying (QPSK) modulation is
employed for transmission over an uncorrelated narrowband
Rayleigh fading channel. In the case of another zeta probability
distribution, our EGEC scheme offers a 1.9 dB gain over a
Separate Source and Channel Coding (SSCC) benchmarker.

Index Terms—Source coding, channel coding, channel capacity,
iterative decoding.

I. INTRODUCTION

SHANNON’S source-channel separation theorem [1] states
that near-capacity communication is possible, when em-

ploying Separate Source and Channel Coding (SSCC). For
example, this may be achieved by combining a near-entropy
source code, such as an adaptive arithmetic code [2] or a
Lempel-Ziv code [3], with a near-capacity channel code, such
as a Low Density Parity Check (LDPC) code [4] or a turbo
code [5]. However, the source-channel separation theorem
relies upon a number of assumptions, which may not be valid
in practice [6]. For example, near-entropy adaptive arithmetic
coding or Lempel-Ziv coding requires both the transmitter and
receiver to accurately estimate the occurrence probability of
every value that is adopted by the symbols that the source
produces. However, the occurrence probability of rare symbol
values cannot be accurately estimated until a sufficiently
high number of symbols have been generated, imposing an
excessive latency which cannot be tolerated in many practical
applications. This problem becomes particularly severe, when

Manuscript received April 25, 2013; revised September 22 and November
19, 2013. The editor coordinating the review of this paper and approving it
for publication was V. Stankovic.

The authors are with Electronics and Computer Science, University of
Southampton, Hampshire, SO17 1BJ, UK (e-mail: {tw08r, wz4g11, rm,
lh}@ecs.soton.ac.uk).

The financial support of the EPSRC, Swindon UK under the grants
EP/J015520/1 and EP/L010550/1, that of the RCUK under the India-UK
Advanced Technology Centre (IU-ARC) as well as of the EU under the
CONCERTO project is gratefully acknowledged.

Digital Object Identifier 10.1109/TCOMM.2013.120213.130301

the symbol values are selected from a set having an infinite
cardinality, such as the set of all positive integers. Furthermore,
transmission errors may cause the estimated symbol prob-
abilities to become desynchronized between the transmitter
and receiver, potentially causing the excessive propagation of
decoding errors. These issues motivate the design of universal
codes, such as the Elias Gamma (EG) code [7]. These codes
facilitate the communication of symbols selected from infinite
sets, without requiring any knowledge of the corresponding
occurrence probabilities at either the transmitter or receiver.
Other examples of universal codes include the Elias delta
code [7], the Elias omega code [7], the Even-Rodeh code [8],
the Stout code [9] and the Fibonacci code [10]. Furthermore,
the exponential-Golomb code [11] is a parametrized universal
code, which has the EG code as a special case. Universal codes
are typically employed in multimedia codecs such as the H.264
video codec [11], where they are employed for encoding
the values of various symbols, such as motion vectors. Our
previous work [12, Figure 1] demonstrated that in H.264, these
symbol values are selected from a set having a cardinality
of approximately 1000. We also showed that these symbol
values obey Zipf’s law and may therefore be represented
using a zeta probability distribution [13]. However, some
residual redundancy remains in the source-coded bit-stream
when EG codes are employed for representing symbols that
are randomly selected from a zeta probability distribution,
hence imposing a certain capacity loss and preventing near-
capacity operation when SSCC is employed [12]. Furthermore,
SSCC is sensitive to transmission errors, with a single bit error
potentially causing the corruption of several video frames in
H.264, for example.

Motivated by this, various Joint Source and Channel Codes
(JSCCs) have been proposed for mitigating the impact of
transmission errors, as well as mitigating the capacity loss
that is imposed by residual redundancy, when employed for
representing symbols values that are selected from a set having
a low cardinality. However, all previous JSCCs suffer from an
excessive decoding complexity, when the cardinality of the
symbol value set is large, leading to an infinite complexity,
when the cardinality is infinite [12]. For example, the com-
plexity of Variable Length Error Correction (VLEC) codes
was characterized in [14] and found to increase rapidly with
the cardinality of the symbol value set. This motivated us to
propose the Unary Error Correction (UEC) code [12], which
is the first JSCC that has a low decoding complexity, when
employed to represent symbols values that are selected from a

0090-6778/13$31.00 c© 2013 IEEE

2 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

set having an infinite cardinality. When the channel’s Signal to
Noise Ratio (SNR) is sufficiently high, our UEC code facil-
itates reliable communication, without requiring any knowl-
edge of the symbol value occurrence probabilities at either
the transmitter or receiver. However, once the UEC decoder
has recovered a relatively-low number of source symbols, the
receiver may estimate the occurrence probabilities of the most
frequently occurring symbol values. This knowledge may then
be employed to exploit the remaining residual redundancy
for error correction, hence facilitating reliable communication
at near-capacity SNRs. However, the UEC code is based on
the unary code [15], which is not a universal code1. This
limits its employment to situations where the symbol values
have only particular probability distributions, including only a
limited subset of the zeta probability distributions. Therefore,
the employment of the UEC code is prevented in the case of
arbitrary probability distributions, since its average codeword
length may become infinite in these cases. Furthermore, for
some zeta probability distributions that are supported by the
UEC code, it may be outperformed by a corresponding SSCC
benchmarker, even though the latter imposes capacity loss
[16].

Against this background, this paper proposes a universal
JSCC for the near-capacity transmission of infinite-cardinality
symbol alphabets that are randomly selected using any arbi-
trary monotonic probability distribution. Owing to this, the
proposed JSCC has a much wider applicability than the UEC
of [12], facilitating its employment for the entire set of zeta
probability distributions. Like the UEC code of [12], the
proposed JSCC does not require any knowledge of the symbol
occurrence probabilities at either the transmitter or receiver,
when the channel SNR is sufficiently high. However, once the
receiver has estimated the occurrence probabilities of the most
frequently occurring symbol values, reliable communication
at near-capacity SNRs is facilitated. Rather than employing a
unary code as its basis, the proposed code is based upon the
universal EG code, hence we refer to it as the Elias Gamma
Error Correction (EGEC) code. As described in Section II,
the EGEC encoder decomposes each input symbol into two
sub-symbols, which are encoded separately by two distinct
sub-encoders. The first sub-encoder is referred to as the
EGEC(UEC) encoder, which operates in the same manner as
the UEC encoder of [12]. The second sub-encoder employs
a serial concatenation of a Fixed length Code (FLC) and
a Convolutional Code (CC) encoders, which we refer to as
the EGEC(FLC-CC) encoder. As described in Section III,
the EGEC decoder has corresponding sub-decoders, which
operate on the basis of the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm [17] and the Soft Bit Source Decoding (SBSD)
algorithm [18]. In Section IV, we propose a Unequal Error
Protection (UEP) scheme for optimizing the relative contribu-
tion of the two sub-codes to the encoding process, facilitating
near-capacity operation at a low decoder complexity. We will
demonstrate in Section V that if the source symbols obey
a particular zeta probability distribution, our EGEC scheme

1A universal code is a countably infinite prefix code set. When encoding
a symbol set following any monotonic probability distribution, the average
codeword length is bounded by a function of the entropy of the distribution
[7].

offers a 3.4 dB gain over a UEC benchmarker, when Quater-
nary Phase Shift Keying (QPSK) is employed for transmission
over an uncorrelated narrowband Rayleigh fading channel. For
another zeta probability distribution, our EGEC scheme will
be shown to offer a 1.9 dB gain over a SSCC benchmarker,
which we refer to as the Elias Gamma and Convolutional Code
(EG-CC) scheme. Additionally, we will consider a wide range
of other zeta probability distributions and will show that our
EGEC scheme is capable of offering gains over the relevant
benchmarkers in each case. Finally, we offer our conclusions
in Section VI.

II. EGEC ENCODER

In this section, we introduce the EGEC encoder, which
is illustrated in Figure 1. In Section II-A, we discuss the
motivation for decomposing the input symbols into two sub-
symbols and describe the operation of the corresponding sym-
bol splitter in Figure 1, which is labeled S. The operation of
the EGEC(UEC) and EGEC(FLC-CC) encoders is described
in Sections II-B and II-C. Finally, Section II-D describes the
serial concatenation of the EGEC encoder with the Unity Rate
Code (URC) encoder and QPSK modulator of Figure 1.

A. Decomposition of symbols into pairs of sub-symbols

As shown in Figure 1, the EGEC encoder is designed
for representing a vector d = [di]

a
i=1 comprising a number

of symbols, which can be obtained as a realization of a
corresponding vector D = [Di]

a
i=1 comprising a number of

Independent and Identically Distributed (IID) Random Vari-
ables (RVs). Each RV Di adopts the symbol value d ∈ N1 with
probability Pr(Di = d) = P (d), where N1 = {1, 2, 3, . . .}
is the infinite-cardinality source set comprising all positive
integers.

In this paper, we focus our attention on symbol values that
are randomly selected from a zeta distribution [13], since the
parameters of multimedia codecs typically obey Zipf’s law
[12, Figure 1]. The zeta distribution is defined as

P (d) =
d−s

ζ(s)
, (1)

where ζ(s)=
∑

d∈N1
d−s is the Riemann zeta function and s >

1. In this case, p1 = Pr(Di = 1) = 1/ζ(s) and the symbol
entropy is given by

HD =
∑
d∈N1

H [P (d)] =
ln(ζ(s))

ln(2)
− sζ′(s)

ln(2)ζ(s)
, (2)

where we have H [p] = p log2(1/p) and ζ′(s) =
−
∑

d∈N1
ln(d)d−s is the derivative of the Riemann zeta

function.
As shown in Table I, source encoders such as unary

or EG encoders represent each symbol di in the vector d
using a corresponding binary codeword, namely Unary(di)
or EG(di), respectively. Note that for the convenience of our
ensuing discussions, the unary codewords shown in Table I are
the complements of those that are conventionally employed,
for example in [12, Table I]. The average codeword length is
given by

l =
∑
d∈N1

P (d)l(d), (3)

WANG et al.: NEAR-CAPACITY JOINT SOURCE AND CHANNEL CODING OF SYMBOL VALUES FROM AN INFINITE SOURCE SET USING ELIAS . . . 3

π1

modulator
QPSK

demodulator
QPSK

Trellis
encoder

z URC
encoder

π1

CC
encoder

URC
encoder

π5
w π4π3

π2

u

encoder

t FLC
encoder

Unary
S

d x y

v

EGEC(FLC-CC) encoder

EGEC(UEC) encoder

EGEC encoder

EGEC decoder

Trellis
decoder z̃a

URC
decoder

π−1
1

CC
decoder

URC
decoder

π−1
5

π3
w̃e

w̃a

ŷ

π4

π−1
4

Unary
decoder

t̂ FLC
decoder

π−1
2

x̂d̂
z̃e

EGEC(UEC) decoder

EGEC(FLC-CC) decoder

ṽaũe

ũa
π−1
3

ṽe

S−1

Fig. 1. Schematic of the EGEC code, when serially concatenated with URC and Gray-coded QPSK modulation schemes. Bold notation without a diacritic
is used to denote a symbol vector or a bit vector. A diacritical hat represents a reconstruction of the symbol or bit vector having the corresponding notation.
A diacritical tilde represents an LLR vector pertaining to the bit vector with the corresponding notation. A roman superscript ‘a’ is employed to denote an
a priori LLR vector, while ‘e’ is employed for extrinsic LLR vectors. Furthermore, {π1, . . . , π5} represent interleavers, while {π−1

1 , . . . , π−1
5 } represent

the corresponding deinterleavers. Puncturing may also be performed in π2 and π5, while the corresponding depuncturing operations take place in π−1
2 and

π−1
5 . Multiplexing and demultiplexing is performed in the crossed boxes.

TABLE I
THE FIRST TWELVE CODEWORDS OF VARIOUS SOURCE CODES.

di Unary(di) EG(di) xi Unary(xi) ti FLC(ti)

1 1 1 1 1 0
2 01 010 2 01 0 0
3 001 011 2 01 1 1
4 0001 00100 3 001 0 00
5 00001 00101 3 001 1 01
6 000001 00110 3 001 2 10
7 0000001 00111 3 001 3 11
8 00000001 0001000 4 0001 0 000
9 000000001 0001001 4 0001 1 001

10 0000000001 0001010 4 0001 2 010
11 00000000001 0001011 4 0001 3 011
12 000000000001 0001100 4 0001 4 100

where l(d) is the length of the dth codeword.
In the case of a unary code, the length of the codeword

Unary(di) is yielded by l(di) = di, giving an average
codeword length of

lUnary(di) =
ζ(s− 1)

ζ(s)
, (4)

when the source symbols obey the zeta distribution of (1).
However, the average unary codeword length l is only finite
for s > 2 and hence for p1 > 0.608. Despite this, we proposed
a JSCC scheme based on the unary code in [12], since its
codewords have a relatively simple structure, which can be
readily exploited for error correction. More specifically, the
structure of the unary codewords can be described by the UEC
trellis of [12], without requiring an infinite number of trellis
transitions and states.

By contrast, an EG codeword EG(di) has a length of
l(di) = 2�log2(di)� + 1. When the source symbols obey the

zeta distribution, the average codeword length becomes

lEG(di) = 1− 2ζ′(s)
ln(2)ζ(s)

− 2

ζ(s)

∑
x∈N1

x−sfrac(log2(x)), (5)

where the frac(·) operator yields the fractional part of the
operand, as in frac(3.4) = 0.4. Note that the average EG
codeword length l is finite for all zeta distributions, not just
those for which p1 > 0.608.

In this paper, we develop a trellis representation of the EG
code by observing that the codeword EG(di) is prefixed by a
unary codeword Unary(xi), where we have [7]

xi = �log2(di)�+ 1, (6)

as may be observed in Table I. Furthermore, the length of
the EG codeword’s remaining suffix FLC(ti) depends on the
selected unary codeword Unary(xi). More specifically, the
suffix FLC(ti) comprises (xi−1) bits, which form the binary
representation of the decimal value ti, where

ti = di − 2�log2(di)�. (7)

Inspired by this, the splitter S of Figure 1 decomposes each
symbol di in the vector d into two sub-symbols, namely into
xi and ti according to (6) and (7), where

di = 2xi−1 + ti. (8)

Each set of sub-symbols is concatenated to form the vectors
x = {xi}ai=1 and t = {ti}ai=1. For example, the vector d =
[6, 15, 1, 17, 2, 1, 1, 2] of a = 8 symbols yields the vector x =
[3, 4, 1, 5, 2, 1, 1, 2] of a = 8 sub-symbols and the vector t =
[2, 7, 0, 1, 0, 0, 0, 0] comprising a = 8 sub-symbols.

As shown in Figure 1, each sub-symbol xi in the vector
x is encoded by the EGEC(UEC) encoder of Section II-B,
while each sub-symbol ti in the vector t is encoded by the

4 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

EGEC(FLC-CC) encoder of Section II-C, in order to produce
the codewords Unary(xi) and FLC(ti), as exemplified in
Table I, respectively. Note that since the codewords Unary(xi)
and FLC(ti) collectively comprise the same number of bits as
the codeword EG(di), the proposed EGEC code produces the
same number of unary- and FLC-encoded bits as are produced
by an EG encoder. Therefore, since an EG code is a universal
code, so too is the proposed EGEC code, granting it a finite
average codeword length when the symbol values are selected
according to any monotonic probability distribution.

B. EGEC(UEC) encoder

As shown in Figure 1, the vector x = [xi]
a
i=1 is encoded

by the EGEC(UEC) encoder, which operates in the same way
as the UEC encoder of [12]. The vector of sub-symbols x can
be modeled as a realization of a vector of RVs X = [Xi]

a
i=1,

where each RV Xi adopts a symbol value from the set x ∈ N1

with a probability of Pr(Xi = x) = P (x). In the scenario
where the RV Di obeys the zeta distribution of (1), the RV
Xi will obey the distribution

P (x) =
1

ζ(s)

2x−1∑
d=2x−1

d−s, (9)

where the entropy of the RV Xi is given by

HX = log2[ζ(s)]−
1

ζ(s)

∑
x∈N1

(
2x−1∑

d=2x−1

d−s

)
log2

(
2x−1∑

d=2x−1

d−s

)
,

(10)
The sub-symbol vector x is forwarded to the unary encoder

of Figure 1, which represents each symbol xi in the vector
using the corresponding xi-bit unary codeword Unary(xi) of
Table I. When the sub-symbols in the vector x obey the zeta
distribution of (9), the average unary codeword length is given
by l1 = lUnary(xi), where we have

l1 =
∑
x∈N

P (x) · x

= 1− ζ′(s)
ln(2)ζ(s)

− 1

ζ(s)

∑
x∈N1

x−sfrac[log2(x)],

(11)

which is guaranteed to be finite, regardless of the value of s >
1. Note that (11) may be derived from (5) by observing that
lUnary(xi) = (lEG(di) + 1)/2, as shown in Table I. Following
this, the unary codewords are concatenated for generating the
b-bit vector y = [yj]

b
j=1 of Figure 1. For example, the vector

x = [3, 4, 1, 5, 2, 1, 1, 2] of a = 8 sub-symbols is represented
by the vector y = 0010001100001011101 of b = 19 bits.

As shown in Figure 1, the vector of concatenated unary
codewords y is input to the trellis encoder of [12]. This
operates on the basis of a UEC trellis, such as the r1 = 4-state
trellis that is exemplified in Figure 2. This represents a special
case of the generalized r1-state UEC trellis of [12, Figure
3(a)], albeit with complemented values for yj owing to the
inversion of the unary codewords of Table I relative to those of
[12, Table I]. Each bit yj of the input bit sequence y = [yj]

b
j=1

forces the trellis encoder to traverse from its previous state
mj−1 ∈ {1, 2, . . . , r1} to its next state mj ∈ {1, 2, . . . , r1}, in

1/01

0/11

1/00

0/01

1/10

0/00

1/11

0/10

1

3

2

4

1

3

2

4

yj/zjmj−1 mj

Fig. 2. An r1 = 4-state n1 = 2-bit UEC trellis, where C = {01, 11}.

order of increasing bit-index j. Each next state mj is selected
from two legitimate alternatives, depending on the bit value
yj , according to

mj =

{
1 + odd(mj−1) if yj = 1
min[mj−1 + 2, r1 − odd(mj−1)] if yj = 0

,

(12)
where the number of possible states r1 has to be even and
the encoding process always begins from the state m0 = 1.
The function odd(·) yields 1, if the operand is odd or 0,
if it is even. In this way, the bit vector y identifies a path
through the trellis, which may be represented by a vector
m = [mj]

b
j=0 comprising (b + 1) state values. For example,

the bit vector y = 0010001100001011101 yields the path
m = [1, 3, 3, 2, 4, 4, 4, 1, 2, 4, 4, 4, 4, 1, 3, 2, 1, 2, 4, 1] through
the r1 = 4-state trellis of Figure 2. Following this, the trellis
encoder represents each bit yj in the vector y by an n1-bit
codeword zj . This is selected from the set of r1/2 codewords
C = {c1, c2, . . . , cr1/2} or from the complementary set
C = {c1, c2, . . . , cr1/2}, which is achieved according to

zj =

{
c�mj−1/2� if yj �= odd(mj−1)
c�mj−1/2� if yj = odd(mj−1)

. (13)

Following this, the selected codewords are concatenated
to obtain the bn1-bit vector z = [zk]

bn1

k=1 of Figure
1. For example, the vector y = 0010001100001011101
of b = 19 bits is represented by the vector z =
10001101111100010111111100101110010100 of bn1 = 38
bits, when employing the UEC trellis of Figure 2, which has
r1 = 4 states and the n1 = 2-bit codewords C = {01, 11}.
Note that the selection of the parameter r1 is discussed in
Section IV.

Note that UEC trellis encoder operates in a similar manner
to a CC encoder, but with some important differences, as
follows.

1) The UEC trellis encoder is specifically designed for
maintaining synchronization with the unary codewords
that are concatenated to form the bit vector y. More

WANG et al.: NEAR-CAPACITY JOINT SOURCE AND CHANNEL CODING OF SYMBOL VALUES FROM AN INFINITE SOURCE SET USING ELIAS . . . 5

specifically, the last bit yj in each unary codeword
Unary(xi) is guaranteed to induce a transition in the
state mj = 1 or state mj = 2, depending on whether
the corresponding symbol xi has an odd or even index
i. This is exploited by the UEC trellis decoder in order
to mitigate capacity loss, as described in Section III-A.
By contrast, in a generalized CC encoder, the last bit in
each unary codeword can potentially cause a transition
into any state, preventing synchronization.

2) The unary encoded bit vector y is guaranteed to termi-
nate the UEC trellis into state mb = 1 or state mb = 2,
depending on whether the length a of the symbol
vector x is odd or even. This may be exploited by the
UEC trellis decoder in order to assist its operation, as
described in Section III-A. By contrast, a generalized
CC encoder is not terminated by the unary encoded bit
vector y.

3) The UEC trellis is designed to obey symmetry and to
rely on complementary codewords, so that the binary
values in the vector z are equiprobable. As described in
[12], this is a necessary condition for avoiding capacity
loss. By contrast, CC encoders produce binary values
that are not guaranteed to be equiprobable, unless they
are specifically parametrized for this purpose.

Since the binary values in the vector z are equiprobable,
the average coding rate of the EGEC(UEC) encoder is given
by

Ro
1 =

HX

l1n1
. (14)

Here, we employ the roman superscript ‘o’ to indicate that this
coding rate relates to the outer code of a serial concatenation,
namely the EGEC(UEC) code shown in Figure 1.

C. EGEC(FLC-CC) encoder

As shown in Figure 1, the EGEC(FLC-CC) encoder requires
both t and x vectors, in order to perform FLC encoding. As
described in Section II-A, this is because each sub-symbol
ti in the vector t is mapped to an FLC codeword FLC(ti),
having the length (xi−1), where xi is the corresponding sub-
symbol in the vector x. When the sub-symbols in the vector x
obey the distribution of (9), the average FLC codeword length
is given by l2 = lFLC(ti), where we have

l2 =
∑
x∈N

P (x) · (x− 1)

= − ζ′(s)
ln(2)ζ(s)

− 1

ζ(s)

∑
x∈N1

x−sfrac[log2(x)],

(15)

which is guaranteed to be finite, regardless of the value of
s > 1.

Owing to the dependencies between t and x, we model
the sub-symbol vector t as a realization of a RV vector T =
[Ti]

a
i=1, where each RV Ti is dependent on the corresponding

RV Xi. By considering (1) and (8), the joint probability
Pr(Ti = t,Xi = x) = P (t, x) is given by

P (t, x) =
1

ζ(s)
(2x−1 + t)−s, (16)

where 0 ≤ t < 2x−1. Furthermore, the conditional probability
Pr(Ti = t|Xi = x) = P (t|x) is given by

P (t|x) = P (t, x)

P (x)
=

(2x−1 + t)−s

2x−1∑
d=2x−1

d−s

, (17)

where 0 ≤ t < 2x−1. Finally, the conditional entropy of the
RV Ti is given by

HT |X =
∑
x∈N1

2x−1−1∑
t=0

P (t, x) log2

(
1

P (t|x)

)
. (18)

The codewords FLC(ti) are concatenated to obtain the
(b − a)-bit vector u = [ue]

b−a
e=1 of Figure 1. For the example

of x = [3, 4, 1, 5, 2, 1, 1, 2] and t = [2, 7, 0, 1, 0, 0, 0, 0],
the combination x1 = 3 and t1 = 2 yields the codeword
FLC(t1) = 10, as shown in Table I. Similarly, x2 = 4 and
t2 = 7 yields FLC(t2) = 111, while x3 = 1 and t3 = 0 yields
an empty bit vector for FLC(t3). Completing this encoding
process and concatenating the resultant codewords yields the
vector u = 10111000100 of (b− a) = 11 bits. The bit vector
u is interleaved in the block π3 of Figure 1, in order to obtain
the vector v = [ve]

b−a
e=1. Note that the binary values in the

vectors u and v will not be equiprobable in general.
This motivates the employment of the r2-state n2-bit re-

cursive CC encoders of [12, Table II], since these produce
equiprobable binary values for the encoded bit vector w =

[wf]
n2(b−a)
f=1 of Figure 1. This is necessary because produc-

ing equiprobable binary values is a necessary condition for
avoiding capacity loss [12]. For example, if the r2 = 4-state
n2 = 2-bit recursive CC encoder of [12, Table II] is employed
for encoding the (b−a) = 11-bit vector v = 00101100110, the
n2(b− a) = 22-bit vector of w = 0000111000101011001010
is generated. The average coding rate of the EGEC(FLC-CC)
encoder is given by

Ro
2 =

HT |X
l2n2

. (19)

D. Integration of the EGEC encoder into a transmitter

Following EGEC encoding, the bit vectors z and w are
interleaved by π1 and π4, URC encoded using accumulators
[19] and then interleaved again by π2 and π5, as shown in
Figure 1. These URC encoders are recursive and have a coding
rate of unity, satisfying the corresponding conditions that are
sufficient for facilitating near-capacity operation [20], [21].
Alternatively, LDPC or turbo codes may be employed for
this purpose, although this implies a significantly increased
complexity. This is because turbo decoders employ the it-
erative operation of two component decoders, while LDPC
decoders employ the iterative operation of variable nodes and
check nodes. By contrast, URC codes comprise only a single
component, requiring no internal iterations. Note that the
lengths required for these interleavers and URC codes depend
on the particular sub-symbol values in the vector x. However,
these components can glean the required lengths from the
lengths of their respective input bit vectors. Puncturing may
also be performed within π2 and π5, in order to achieve the
desired throughput for the transmitter, as well as for UEP, as

6 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

discussed in Section IV. While interleaving and URC encoding
are associated with one input bit per output bit, puncturing
within π2 and π5 are respectively associated with coding rates
of Ri

1 ≥ 1 and Ri
2 ≥ 1 input bits per output bit. Here,

we employ the roman superscript ‘i’ to indicate that these
coding rates relate to the inner codes of serial concatenations,
namely the two URC codes shown in Figure 1. Following URC
encoding, the multiplexer of Figure 1 appends the encoded bit
sequence derived from the EGEC(FLC-CC) encoder onto the
end of that derived from the EGEC(UEC) encoder. Following
this, M = 4-ary Gray-coded QPSK modulation may be
employed for transmission, as shown in Figure 1. Note that
other mapping schemes or a modulation scheme having a
higher order M can be employed instead, although this may
increase the complexity of the receiver, as we will discuss in
Section IV. The throughput of the transmitter is given by

η =
HD log2(M)

l1n1/Ri
1 + l2n2/Ri

2

. (20)

III. EGEC DECODER

In this section, we describe the operation of the EGEC de-
coder of Figure 1. The EGEC(UEC) decoder and EGEC(FLC-
CC) decoder are described in Sections III-A and III-B, re-
spectively. Following this, Section III-C discusses the serial
concatenation of the EGEC decoder with the URC decoder
and QPSK demodulator of Figure 1.

A. EGEC(UEC) decoder

As shown in Figure 1, the EGEC(UEC) decoder’s trellis
decoder is provided with a vector of a priori Logarithmic
Likelihood Ratios (LLRs) z̃a = [z̃ak]

bn1

k=1 that pertain to the
corresponding bits in the vector z. The trellis decoder operates
on the basis of the BCJR algorithm of [12, Section IV-A]. This
generates the vector of extrinsic LLRs z̃e = [z̃ek]

bn1

k=1, which
is provided for the next iteration of the concatenated URC
decoder’s operation. Following the completion of iterative
decoding, the trellis decoder may also be employed to generate
the vector of a posteriori LLRs ỹp = [ỹpj]

b
j=1 that pertain to

the corresponding bits in the vector y. The unary decoder of
Figure 1 sorts the values in this LLR vector in order to identify
the a number of bits in the vector y that are most likely to
have values of one. A hard decision vector ŷ = [ŷj]

b
j=1 is

then obtained by setting the value of these a bits to one and
the value of all other bits to zero. Here, the value of a is
assumed to be perfectly known to the receiver and may be
reliably conveyed by the transmitter using a small amount
of side information in practice. Finally, the bit vector ŷ can
be unary decoded in order to generate the sub-symbol vector
x̂ = [x̂i]

a
i=1 of Figure 1, which is guaranteed to comprise

a number of sub-symbols. This has the benefit of mitigating,
although not totally eliminating, the error propagation that may
occur owing to the variable lengths of the unary codewords.

Note that the trellis decoder’s BCJR algorithm has only
a modest complexity, since it may employ a low number
r1 of states. Furthermore, it facilitates error correction even
if the sub-symbol probability distribution P (x) is unknown,
provided that the channel SNR is sufficiently high, as we shall
demonstrate in Section V. However, once a sufficient number

URC Ri
2 = 1 2.9 dB

URC Ri
1 = 1 1.9 dB

EGEC(FLC-CC) n2 = 2

EGEC(UEC) n1 = 2

EEP EGEC

I(z̃e; z) or I(w̃e;w)

I
(z̃

a
;z
)
or

I
(w̃

a
;w

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Fig. 3. EXIT charts of the EEP EGEC scheme. Here, the symbols of d
obey a zeta distribution having p1 = 0.7967 and the codewords comprise
the numbers of bits n1 and n2. Furthermore, the punctured URC decoders
adopt the coding rates Ri

1 and Ri
1, for Gray-coded QPSK modulation onto

an uncorrelated narrowband Rayleigh fading channel having various Eb/N0.
The EXIT curves are provided for an EGEC(UEC) code having r1 = 4 states,
as well as for an EGEC(FLC-CC) code having xmax = 3.

of sub-symbol vectors x̂ has been recovered, the average unary
codeword length l1 and the sub-symbol probabilities P (x)
for x ≤ r1/2 − 1 may be heuristically estimated. When
decoding subsequent sub-symbol vectors, this information
may be exploited by the BCJR algorithm in order to facilitate
error correction at near-capacity SNRs [12, Section V]. Note
that this is made possible by the termination of the UEC trellis
and its synchronization with the unary codewords [12, Section
V], as described in Section II-B. Also note that the availability
of l1 and P (x) for x ≤ r1/2 − 1 is assumed throughout the
remainder of this paper, unless explicitly stated otherwise.

The transformation of z̃a into z̃e may be characterized
by plotting the inverted EGEC(UEC) EXtrinsic Information
Transfer (EXIT) curve in an EXIT chart [22], as exemplified
in Figure 3. Note that if UEC codewords comprising at least
n1 = 2 bits are employed, then the free distance dfree of
the UEC code will be at least two, and its EXIT curve will
reach the (1, 1) point at the top right corner of the EXIT chart
[23]. Reaching this point is important because in this case a
vanishingly low Bit Error Ratio (BER) may be attained. In
the scenario where the a priori LLR vector z̃a is modeled by
the transmission of z over a Binary Erasure Channel (BEC),
the EXIT chart area Ao

1 that is situated below the inverted
EGEC(UEC) EXIT curve of the demodulator is given by [12,
(14)]

Ao
1 = 1

l1n1

∑ r1
2 −1
x=1 H [P (x)] + 2

l1n1
H
[
1−

∑ r1
2 −1
x=1 P (x)

]
+ 1

l1n1
H
[
l1 − r1

2 +
∑r1/2−1

x=1 P (x)
(
r1
2 − x

)]
− 1

l1n1
H
[
l1 + 1− r1

2 +
∑r1/2−1

x=1 P (x)
(
r1
2 − 1− x

)]
.

(21)

WANG et al.: NEAR-CAPACITY JOINT SOURCE AND CHANNEL CODING OF SYMBOL VALUES FROM AN INFINITE SOURCE SET USING ELIAS . . . 7

B. EGEC(FLC-CC) decoder

As shown in Figure 1, the EGEC(FLC-CC) decoder it-
eratively exchanges extrinsic information between the CC
decoder and the FLC decoder. More specifically, the n2-
bit r2-state CC decoder employs the BCJR algorithm for
transforming the a priori LLR vectors ṽa = [ṽae]

b−a
e=1 and

w̃a = [w̃a
f]

n2(b−a)
f=1 into the extrinsic LLR vectors ṽe = [ṽee]

b−a
e=1

and w̃e = [w̃e
f]

n2(b−a)
f=1 . Here, the extrinsic LLR vector w̃e

is provided for the next iteration of the concatenated URC
decoder’s operation. Meanwhile, the extrinsic LLRs of ṽe are
deinterleaved π−1

3 , in order to obtain the a priori LLR vector
ũa = [ũa

e]
b−a
e=1. As shown in Figure 1, the a priori LLR vector

ũa is then forwarded to the FLC decoder, together with the
sub-symbol vector x̂, which is provided by the EGEC(UEC)
decoder. The sub-symbols of x̂ are employed for partitioning
the a priori LLR vector ũa into sub-vectors, where the ith sub-
vector comprises (x̂i−1) bits. Note that since x̂ is guaranteed
to contain a number of sub-symbols, the sum of the sub-vector
lengths is given by

∑a
i=1(x̂i − 1), which is guaranteed to be

equal to the length (b − a) of the LLR vector ũa. The FLC
decoder employs the SBSD algorithm of [18] to generate the
vector of extrinsic LLRs ũe = [ũe

e]
b−a
e=1. This is then interleaved

in the block π3 of Figure 1, in order to obtain the a priori
LLR vector ṽa for the next iteration of the CC decoder’s
operation. Following the completion of iterative decoding, the
FLC decoder may also be employed to generate the vector of
a sub-symbols t̂ = [t̂i]

a
i=1, as shown in Figure 1.

Note that the FLC decoder can recover the sub-symbol vec-
tor t̂ even if the conditional probabilities of (17) are unknown,
provided that the channel SNR is sufficiently high, as we shall
demonstrate in Section V. However, once a sufficient number
of sub-symbol vectors t̂ has been recovered, the conditional
probabilities P (t|x) can be heuristically estimated for all pairs
of t and x where x ≤ xmax. When decoding subsequent
sub-symbol vectors, this information may be exploited by the
SBSD algorithm in order to facilitate error correction at near-
capacity SNRs [12, Section V]. More specifically, the SBSD
algorithm can apply the conditional probabilities of (17) to
each of the a sub-vectors of ũa for which the corresponding
sub-symbols in x̂ do not exceed xmax. This improves the
reconstruction of the corresponding sub-symbols in t̂, as well
as providing extrinsic information for the corresponding LLRs
in ũe. Note that zero values are adopted by the LLRs in ũe

which correspond to sub-symbols in x̂ that do exceed xmax.
Also note that the availability of the conditional probabilities
P (t|x) for x ≤ xmax is assumed throughout the remainder of
this paper, unless explicitly stated otherwise.

The transformation of w̃a into w̃e using the iterative oper-
ation of the CC and FLC decoders may be characterized by
plotting the inverted EGEC(FLC-CC) EXIT curve in an EXIT
chart [22]. This is exemplified in Figure 3 for the scenario
where the CC and FLC decoders are operated, until iterative
decoding convergence is achieved. Note that if CC codewords
comprising at least n2 = 2 bits are employed, then the free
distance dfree of the CC code will be at least two, and the
EGEC(FLC-CC) EXIT curve will reach the (1, 1) point at the
top right corner of the EXIT chart [23]. In the case where the
a priori LLR vector w̃a is modeled by the transmission of w

over a BEC, the EXIT chart area that is situated below the
inverted EGEC(FLC-CC) EXIT curve is given by

Ao
2 = 1

n2

∑xmax

x=2

∑2x−1−1
t=0

H[P (t|x)]
x−1

(x−1)P (x)
l2

+ 1
n2

(
1−

∑xmax

x=2

∑2x−1−1
t=0

(x−1)P (x)
l2

)
.

(22)

C. Integration of EGEC decoder into a receiver

At the receiver of Figure 1, QPSK demodulation, demulti-
plexing, depuncturing as well as deinterleaving π−1

2 and π−1
3 ,

URC decoding as well as deinterleaving π−1
1 and π−1

4 is
performed before invoking the EGEC(UEC) and EGEC(FLC-
CC) decoders. Note that the receiver is required to employ
the same pseudo-random interleaver designs as the transmitter.
However, the entire set of interleavers can be generated
independently by both the transmitter and receiver using only a
single pseudo-random number generator seed. This seed may
be hard-coded into both the transmitter or receiver, or may
be reliably conveyed using only a very small amount of side
information. As shown in Figure 1, it is necessary to operate
the EGEC(UEC) decoder before the EGEC(FLC-CC) decoder,
since the former outputs the sub-symbol vector x̂, which is
required as an input to the latter. The extrinsic LLR vector
z̃e of Figure 1 may be iteratively exchanged with the serially
concatenated URC decoder. In-turn, the URC decoder may
also iteratively exchange extrinsic LLRs with the demodulator
[24], in order to avoid capacity loss, when a mapping scheme
other than Gray coding or a higher-order modulation scheme
is employed. Since the combination of the URC decoder and
the demodulator will also have an EXIT curve that reaches
the (1, 1) point at the top right corner of the EXIT chart
[25], iterative decoder convergence towards an approximation
of the Maximum Likelihood (ML) performance is facilitated
[26]. After completing the EGEC(UEC) decoding process, a
similar iterative operation is performed for the EGEC(FLC-
CC) decoder.

Following the completion of both the EGEC(UEC) and the
EGEC(FLC-CC) iterative decoding processes, the sub-symbol
vectors x̂ and t̂ are input to the sub-symbol recombination
block S−1 of Figure 1, which recomposes the symbol vector
d̂, according to (8). Observe that since the sub-symbol vectors
x̂ and t̂ are guaranteed to comprise a number of symbols, the
symbol vector d̂ will also comprise a number of symbols.

IV. NEAR-CAPACITY PERFORMANCE OF EGEC CODES

AND UEP DESIGN

Near-capacity operation is achieved, when reliable commu-
nication can be maintained at transmission throughputs η that
approach the Discrete-input Continuous-output Memoryless
Channel (DCMC) capacity C that is associated with M = 4
QPSK modulation and uncorrelated narrowband Rayleigh fad-
ing. This is facilitated, if the following conditions are satisfied
[20]:

1) The area Ao
1 beneath the inverted EGEC(UEC) EXIT

curve is required to approach the corresponding coding
rate Ro

1;
2) Likewise, the area Ao

2 beneath the inverted EGEC(FLC-
CC) EXIT curve is required to approach the correspond-
ing coding rate Ro

2;

8 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

EGEC(FLC-CC)

EGEC(UEC)

Ron

Aon

p1

R
o
n
or

A
o
n

10.90.80.70.60.5

1

0.8

0.6

0.4

0.2

0

Fig. 4. Plots of Ron and Aon that are obtained for the EGEC scheme, in
the case where the system input symbol values of d obey a zeta distribution
having the parameter p1. Here, Ro is the coding rate, Ao is the area beneath
the inverted EXIT curve and n is the codeword length of the corresponding
scheme. The value of Aon is provided for an EGEC(UEC) code having r1 =
4 states, as well as for an EGEC(FLC-CC) code having xmax = 3.

3) The URC EXIT curves are required to satisfy Ai
1 =

C/[Ri
1 log2(M)] and Ai

2 = C/[Ri
2 log2(M)].

If these three conditions are satisfied, then near-capacity
operation will be achieved when the shape of URC decoders’
EXIT curves are matched to those of the EGEC(UEC) and
EGEC(FLC-CC) decoders. This creates narrow, but marginally
open EXIT chart tunnels, which facilitate iterative decoding
convergence towards an approximation of the ML perfor-
mance.

When the RVs in the vector X obey the zeta distribution of
(9), Figure 4 suggests that the first two of the above-mentioned
conditions are satisfied. This figure plots the EGEC(UEC)
coding rate Ro

1 of (14) and the EGEC(FLC-CC) coding rate
Ro

2 of (19), when multiplied with the codeword lengths n1

and n2, respectively. Note that since the proposed EGEC code
is a universal code, its coding rates are non-zero, regardless
of the parameter value 0 < p1 < 1 employed for the zeta
distribution of (1). Furthermore, Figure 4 plots the product of
n1 and the EGEC(UEC) EXIT area Ao

1 of (21), for the case
where the trellis decoder employs r1 = 4 states. Likewise,
the product of n2 and the EGEC(FLC-CC) EXIT area Ao

2 of
(22) is plotted in Figure 4, for the case where xmax = 3 is
employed. Figure 4 shows that in all cases, the EXIT chart
areas Ao

1 and Ao
2 approach the corresponding coding rates

Ro
1 and Ro

2. Figure 5 plots the discrepancy between Ao
1n1

and Ro
1n1 as a function of the number of EGEC(UEC) states

r1, where the source symbols of d obey the zeta distribution
of (1) for various values for the parameter p1. Note that in
all the scenarios considered, the discrepancy becomes less
than 10−3 for r1 = 4, demonstrating that the EGEC(UEC)
code imposes only an insignificant amount of capacity loss.
Therefore, r1 = 4 represents an attractive trade-off between

p1

r1/2

A
o 1
n
1
−
R

o 1
n
1

654321

100

10−1

10−2

10−3

10−4

10−5

10−6

Fig. 5. The discrepancy between Ao
1n1 and Ro

1n1 that results when
EGEC(UEC) codes having various numbers of states r1 are employed to
encode symbol values having zeta distributions with the parameters p1 ∈
{0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.

p1

xmax

A
o 2
n
2
−
R

o 2
n
2

654321

100

10−1

10−2

10−3

10−4

10−5

10−6

Fig. 6. The discrepancy between Ao
2n2 and Ro

2n2 that results when
EGEC(FLC-CC) codes having various values for the parameter xmax are
employed to encode symbol values having zeta distributions with the param-
eters p1 ∈ {0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.

facilitating near-capacity operation and maintaining a low trel-
lis complexity. Similarly, the discrepancy between Ao

2n2 and
Ro

2n2 is plotted for the EGEC(FLC-CC) code as a function of
xmax in Figure 6, for zeta distributions having various values
for the parameter p1. Note that in all the scenarios considered,
the discrepancy is around 10−2 for xmax = 3, demonstrating
that the EGEC(FLC-CC) code imposes only an insignificant
amount of capacity loss. Therefore, xmax = 3 represents an
attractive trade-off between facilitating near-capacity operation

WANG et al.: NEAR-CAPACITY JOINT SOURCE AND CHANNEL CODING OF SYMBOL VALUES FROM AN INFINITE SOURCE SET USING ELIAS . . . 9

URC Ri
2 = 1.2767 2.4 dB

URC Ri
1 = 1.0385 2.4 dB

EGEC(FLC-CC) n2 = 3

EGEC(UEC) n1 = 2

UEP EGEC

I(z̃e; z) or I(w̃e;w)

I
(z̃

a
;z
)
or

I
(w̃

a
;w

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Fig. 7. EXIT charts of the UEP EGEC scheme. Here, the symbols of d
obey a zeta distribution having p1 = 0.7967 and the codewords comprise
the numbers of bits n1 and n2. Furthermore, the punctured URC decoders
adopt the coding rates Ri

1 and Ri
1, for Gray-coded QPSK modulation onto

an uncorrelated narrowband Rayleigh fading channel having various Eb/N0.
The EXIT curves are provided for an EGEC(UEC) code having r1 = 4 states,
as well as for an EGEC(FLC-CC) code having xmax = 3.

and maintaining a low computational complexity. Note that
unlike the EGEC(UEC), the EGEC(FLC-CC) EXIT chart area
Ao

2 is independent of the number of states r2 employed in the
CC. Finally, the third condition is satisfied by a punctured
URC code, as discussed in [20].

Figure 4 shows that the areas beneath the EGEC(UEC)
and EGEC(FLC-CC) EXIT curves Ao

1 and Ao
2 are different

from each other in general. Owing to this, different areas
are required beneath the URC EXIT curves Ai

1 and Ai
2, so

that narrow but still open EXIT chart tunnels can be created
simultaneously for both the EGEC(UEC) and EGEC(FLC-CC)
codes. This can be achieved by employing different values
for the coding rates Ri

1 and Ri
2, hence exhibiting UEP. More

specifically, when decreasing one of these coding rates, the
other should be increased, in order to maintain the same
throughput η and facilitate a fair comparison with the Equal
Error Protection (EEP) scheme in which Ri

1 = Ri
2.

The advantages of UEP may be illustrated by comparing
Figures 3 and 7, which consider the scenario where the sym-
bols of d obey a zeta distribution having p1 = 0.7967. More
specifically, Figure 3 considers an EEP scheme having an
n1 = 2-bit EGEC(UEC) code and an n2 = 2-bit EGEC(FLC-
CC) code, as well as inner coding rates of Ri

1 = 1 and Ri
2 = 1,

which gives a throughput of η = 0.7620 bit/s/Hz. Observe in
Figure 3 that an open EXIT chart tunnel is created by the
EGEC(UEC) code at an Eb/N0 of 1.9 dB, but by contrast
this is not facilitated until reaching an Eb/N0 of 2.9 dB
for the EGEC(FLC-CC) code. Let us now consider an UEP
scheme, which employs an n1 = 2-bit EGEC(UEC) code and
an n2 = 3-bit EGEC(FLC-CC) code, as well as inner coding
rates of Ri

1 = 1.0385 and Ri
2 = 1.2767, in order to achieve the

same throughput of η = 0.7620 bit/s/Hz. Observe in Figure 7
that this scheme can simultaneously create open EXIT chart
tunnels for both the EGEC(UEC) code and the EGEC(FLC-

CC) code at an Eb/N0 of 2.4 dB, offering 0.5 dB of gain over
the EEP scheme.

In general, an UEP scheme can be designed by appropri-
ately choosing n1, n2, R1 and R2 for ensuring that the desired
throughput η is achieved and the two EXIT chart tunnels
become marginally open at the same Eb/N0 value. Here, we
recommend the value of n1 = n2 = 2 for the codeword
lengths when possible, while the value of n2 = 3 whenever
necessary to achieve the desired throughput η.

Table II provides parametrizations for both EEP and UEP
EGEC schemes, designed for transmitting symbols that obey
the zeta distribution of (1). We parametrize the zeta distri-
bution using p1 ∈ {0.9000, 0.7967, 0.6940, 0.6000}, which
represents a wide selection of the p1 values shown in Figure
4. Here, p1 = 0.7967 is chosen for consistency with [12],
while p1 = 0.6940 is chosen because it is the specific value
where Ro

1 and Ro
2 are equal to each other. The EGEC(UEC)

scheme adopts the n1 = 2-bit r1 = 4-state UEC trellis of
[12, Figure 3(b)], while the EGEC(FLC-CC) scheme adopts
xmax = 3, as well as the r2 = 4-state recursive CC of [12,
Table II] having either n2 = 2-bit codewords or n2 = 3-
bit codewords, as appropriate. As discussed above, we select
r1 = 4 UEC states, since this is sufficiently high for imposing
only an insignificant amount of capacity loss, while r2 = 4
CC states were selected, because having a higher number of
states was found to be detrimental in [12].

Table II also characterizes the complexity of the EEP and
UEP EGEC schemes. Here, the complexity is quantified by
the average number of Add, Compare and Select (ACS)
operations performed per decoding iteration and per symbol
in the vector d. This is justified, since the EGEC(UEC) trellis
decoder, the EGEC(FLC-CC) decoder and the URC decoder
operate entirely on the basis of addition, subtraction and max∗

operations, while all other components in Figure 1 may be
considered to have a relatively insignificant complexity [16],
[18]. As in [16], we assume that each max∗ operation may be
completed using five ACS operations, while the addition and
subtraction operations each require a single ACS operation.
As shown in Table II, the complexity tends to increase as
the zeta distribution parameter p1 is reduced, which is due
to the resultant increases in the average codeword lengths l1
and l2. Furthermore, since the UEC EGEC schemes employ
n2 = 3-bit EGEC(FLC-CC) codes, they are associated with
a higher complexity than the corresponding EEP schemes,
which employ shorter n2 = 2-bit codes.

Table II provides the Eb/N0 values, where the DCMC
capacity C becomes equal to the throughput η of each scheme
considered. These Eb/N0 values represent capacity bounds,
above which it is theoretically possible to achieve reliable
communication, provided that the scheme facilitates near-
capacity operation. Furthermore, the specific Eb/N0 values,
where we have Ai = Ao are provided for each scheme
considered in Table II. These area bounds represent the lowest
Eb/N0 values, where it is theoretically possible to create an
open EXIT chart tunnel, provided that the EGEC and URC
EXIT function have shapes that match each other. Note that
the discrepancy between the capacity bound and the area
bound of each scheme represents capacity loss. For each
of the UEP schemes considered, the capacity loss is less

10 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

TABLE II
OUTER CODING RATE Ro , INNER CODING RATE Ri AND THROUGHPUT η FOR THREE SCHEMES WITH DIFFERENT p1 VALUES.

p1 Scheme n r Ro Ao Ri η
Eb/N0 [dB]

for C = η
Eb/N0 [dB]
for Ai = Ao

Eb/N0 [dB]
for open
tunnel

Complexity

0.9
EGEC

EEP
UEC 2 4 0.2378 0.2378

1.0578

0.5272 0.01

2.4 3.9 267
FLC-CC 2 4 0.3609 0.3636

UEP
UEC 2 4 0.2378 0.2378 1.1251 0.1 1.0 286

FLC-CC 3 4 0.2406 0.2424 1
UEC 2 4 0.2636 0.2682 1 0.1 1.5 250

EG-CC 2 4 0.2492 0.3247 1.0578 1.6 2.4 257

0.7967
EGEC

EEP
UEC 2 4 0.3721 0.3721

1

0.7620 0.84

1.6 2.9 338
FLC-CC 2 4 0.4229 0.4283

UEP
UEC 2 4 0.3721 0.3721 1.0385 0.9 2.4 379

FLC-CC 3 4 0.2820 0.2855 1.2767
UEC 2 4 0.3810 0.4041 1 1.3 2.5 331

EG-CC 2 4 0.3810 0.4410 1 2.0 3.0 322

0.6940
EGEC EEP

UEC 2 4 0.4533 0.4535
1

0.9066 1.43
1.5 2.5 431

FLC-CC 2 4 0.4533 0.4599
UEC 2 4 0.3112 0.3654 1.4565 2.7 4.5 614

EG-CC 2 4 0.4533 0.4877 1 2.0 3.0 410

0.6
EGEC EEP

UEC 2 4 0.4906 0.4910
1

0.9690 1.69
1.8 2.8 547

FLC-CC 2 4 0.4699 0.4766
EG-CC 2 4 0.4845 0.4998 1 2.0 3.0 522

than 0.1 dB, demonstrating that the proposed EGEC scheme
facilitates near-capacity operation. Finally, Table II provides
the tunnel bound of each scheme, which quantifies the lowest
Eb/N0 value, where an open EXIT chart tunnel can be created
upon employing a two-state accumulator for the URC code.
Note that in all cases, our experiments revealed that two-
state URC codes facilitate the creation of open tunnels at
lower Eb/N0 values than four- or eight-state URCs, as well
as having a lower decoding complexity. The proposed EGEC
schemes facilitate reliable communication at Eb/N0 values
that exceed the corresponding tunnel bound, provided that the
symbol vector d comprises a sufficiently high number a of
symbols.

Note that the capacity loss analysis of this section relies
upon (21) and (22), which are specific to the scenario where
the LLRs of z̃a, ũa, ṽa and w̃a adopt distributions that may be
modeled by transmission over a BEC. However, the authors of
[20] showed that the area beneath an EXIT curve is not signif-
icantly affected by the LLR distribution. Indeed, the results of
Section V demonstrate that the proposed EGEC code is also
capacity-approaching when the LLR distribution corresponds
to communication over an uncorrelated narrowband Rayleigh
fading channel.

V. PERFORMANCE COMPARISON WITH THE

BENCHMARKERS

In this section, we compare the proposed EEP and UEP
EGEC schemes to the UEC and EG-CC benchmarkers of [12].
Table II provides parametrizations for these benchmarkers,
which offer the same throughput η as our EGEC schemes.
Here, the UEC benchmarker adopts the n = 2-bit r = 4-state
UEC trellis of [12, Figure 3(b)], since this is recommended
in [16]. Furthermore, the UEC is serially-concatenated with a
URC, for the sake of facilitating iterative decoding. While the
proposed EGEC schemes and the UEC benchmarker consti-
tute examples of JSCCs, the EG-CC benchmarker represents
SSCC. More specifically, the EG-CC benchmarker employs
an EG code for source coding, while an iteratively-decoded
serial-concatenation of a CC and a URC is employed for

separate channel coding. Here, we select the n = 2-bit r = 4-
state CC of [12, Table II], since higher numbers of states were
found to be detrimental in [12]. As in the proposed EGEC
schemes, the UEC and EG-CC benchmarkers employ two-
state accumulators for their URCs, since these were found to
yield open EXIT chart tunnels at the lowest Eb/N0 values.
Note that the UEC and EG-CC benchmarkers offer fair and
natural comparisons with the proposed EGEC schemes, since
they all employ simple unary, FLC or EG codewords, as
well as UEC or CC trellises having four states. Furthermore,
EG codes and CCs are employed in numerous multimedia
transmission standards, such as H.264 [11] and DVB-T [27].

Figure 8 characterizes the Symbol Error Ratio (SER) perfor-
mance of the schemes parametrized in Table II. We consider
the transmission of source symbol vectors d comprising a =
2 · 104 symbols, which we found to be typical of the number
of EG-encoded symbols that appear in a H.264 slice [11].
Therefore, the SER performance of Figure 8 may be consid-
ered to be achievable, without imposing any additional latency
in multimedia applications. We employed QPSK modulation
for transmission over an uncorrelated narrowband Rayleigh
fading channel, since this is representative of transmission
over realistic wireless channels and because this facilitates
direct comparison with the results of [12], [16]. In the re-
ceivers, iterative decoding was continued until convergence
was achieved.

As shown in Figure 8, the proposed EGEC schemes fa-
cilitate reliable communication within 1.2 dB of the capacity
bound and consistently offer the best SER performance for
each of the p1 values considered. This consistency is a key
benefit of the proposed EGEC scheme, because while it offers
only a small gain over the best of the two benchmarkers
in each case, the performance of these benchmarkers is
particularly inconsistent. More explicitly, while the proposed
EGEC scheme offers only a marginal gain over the UEC
benchmarker for p1 ∈ {0.9, 0.7967}, this gain becomes 3.4 dB
for p1 = 0.6940, owing to the severe puncturing that the
UEC scheme requires in this case [16]. Furthermore, the
UEC benchmarker cannot be invoked for p1 = 0.6, since

WANG et al.: NEAR-CAPACITY JOINT SOURCE AND CHANNEL CODING OF SYMBOL VALUES FROM AN INFINITE SOURCE SET USING ELIAS . . . 11

No probs
With probs

EG-CC
UEC

EEP EGEC
UEP EGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

76543210-1-2

100

10−1

10−2

10−3

10−4

(a) p1 = 0.9

No probs
With probs

EG-CC
UEC

EEP EGEC
UEP EGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

76543210-1-2

100

10−1

10−2

10−3

10−4

(b) p1 = 0.7967

No probs
With probs

EG-CC
UEC

EEP EGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

76543210-1-2

100

10−1

10−2

10−3

10−4

(c) p1 = 0.6940

No probs
With probs

EG-CC
EEP EGEC

C
ap

ac
it
y
b
ou

n
d

Eb/N0 [dB]

S
E
R

76543210-1-2

100

10−1

10−2

10−3

10−4

(d) p1 = 0.6

Fig. 8. The SER performance that is obtained following the achievement of iterative decoding convergence in the EGEC scheme of Figure 1, as well as in the
UEC and EG-CC benchmarkers of [12], when transmitting frames comprising a = 2 · 104 symbols using QPSK modulation over an uncorrelated narrowband
Rayleigh fading channel. The plots labeled ‘With probs’ and ‘No probs’ indicate the SER performance that is achievable when the source distribution P (d)
is known and unknown to the receiver, respectively.

the average unary codeword length lUnary(di) becomes infinite
in this case. Similarly, while the proposed EGEC scheme
offers only a marginal gain over the EG-CC benchmarker of
p1 ∈ {0.6940, 0.6}, this gain becomes 1.9 dB for p1 = 0.9
and 0.8 dB for p1 = 0.7967, as shown in Figure 8.

The complexity of the proposed EGEC schemes is com-
pared to that of the benchmarkers in Table II. For each p1 value
considered, it can be seen that the complexity of the various
schemes is similar, demonstrating that the gains offered by
the proposed EGEC schemes are not accrued at the cost
of a significantly increased complexity. Instead, these gains
may be attributed to the EGEC schemes’ avoidance of the
capacity loss suffered by the EG-CC benchmarker, as well as

due to avoiding the UEC scheme’s requirement for excessive
puncturing, when p1 = 0.6940.

Note that the UEP EGEC schemes offer superior SER
performance over the EEP schemes, as shown in Figure 8. The
stair-case shaped SER performance of the EEP schemes may
be attributed to the opening of the EGEC(UEC) EXIT chart
tunnel at a lower Eb/N0 value than the EGEC(FLC-CC) EXIT
chart tunnel, as shown in Table II. At Eb/N0 values where the
EGEC(UEC) EXIT chart tunnel is open, but the EGEC(FLC-
CC) EXIT chart tunnel is closed, symbols having a value of
di = 1 are typically correctly decoded, since these symbols are
conveyed without using any EGEC(FLC-CC)-encoded bits.
By contrast, symbols having values of di > 1 are typically

12 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

incorrectly decoded in this case, owing to transmission errors
affecting their corresponding EGEC(FLC-CC)-encoded bits.

A similar phenomenon may be observed for the EG-CC
benchmarker, increasing the SER as the Eb/N0 value is
increased towards the threshold value, where the EXIT chart
tunnel becomes open. More specifically, at very low Eb/N0

values, the information received over the channel is associated
with a very low confidence and hence the iterative decoding
process is dominated by the a priori knowledge that the
symbol value di = 1 is most likely. This causes a value of
1 to be selected for all symbols in the vector d̂, resulting in
an SER of (1 − p1). As the Eb/N0 value is increased, the
information received over the channel has a greater influence
on the iterative decoding process, causing values other than
unity to be increasingly selected for some symbols in d̂.
However, these non-unity values are typically allocated to
the wrong symbols, owing to the loss of synchronization that
is caused by the frequent occurrence of decoding errors at
Eb/N0 values below the threshold. This effect occurs more
frequently as the Eb/N0 value is further increased towards
the threshold value, causing the SER to increase, as shown in
Figure 8. By contrast, for Eb/N0 values above the threshold,
the decoding errors are mitigated and the SER reduces rapidly.

Note that throughout the discussion above, it is assumed that
the receiver of the proposed EGEC scheme has knowledge
of the average unary codeword length l1. Furthermore, we
assume knowledge of the sub-symbol probabilities P (x) for
x ≤ r1/2 − 1, as well as the conditional sub-symbol prob-
abilities P (t|x) for all pairs of t and x where x ≤ xmax.
These probabilities can be calculated with knowledge of P (d)
for d ≤ 2max(xmax,r1/2−1) − 1. Since we employ r1 = 4 and
xmax = 3, the SER results presented above may be obtained
with knowledge of only the first seven symbol probabilities
P (d), as well as l1. However, Figure 8 shows that when the
channel SNR is sufficiently high, the proposed EGEC receiver
facilitates a low SER, even if it does not have access to this
information. This may be exploited to recover a sufficient
number of symbol vectors d̂, in order to heuristically estimate
the small amount of required information, facilitating the near-
capacity communication of subsequent symbol vectors.

VI. CONCLUSIONS

In this paper we have proposed novel EGEC codes for the
near-capacity transmission of symbol values that are randomly
selected from a source set having an infinite cardinality. In
contrast to the UEC code previously proposed for the same
purpose, our EGEC code is a universal code, facilitating the
transmission of symbol values that are randomly selected
using any mototonic probability distribution. When the source
symbols obey a particular zeta probability distribution, our
EGEC scheme was shown to offer a 3.4 dB gain over a
UEC benchmarker, when QPSK modulation is employed for
transmission over an uncorrelated narrowband Rayleigh fading
channel. In the case of another zeta probability distribution,
our EGEC scheme was shown to offer a 1.9 dB gain over a
SSCC benchmarker. Furthermore, we considered a wide range
of zeta probability distributions and our EGEC scheme was
found to offer gains over the relevant benchmarkers in each
case.

REFERENCES

[1] C. E. Shannon, Mathematical Theory of Communication. University of
Illinois Press, 1963.

[2] B. Ryabko and J. Rissanen, “Fast adaptive arithmetic code for large
alphabet sources with asymmetrical distributions,” in Proc. 2002 IEEE
Int. Symp. Inform. Theory, p. 319.

[3] J. Ziv and A. Lempel, “Compression of indivdual sequences via variable-
rate coding,” IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 530–536, Sep.
1978.

[4] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance
of low density parity check codes,” Electron. Lett., vol. 32, no. 18, pp.
457–458, Aug. 1996.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes (1),” in Proc. 1993
IEEE Int. Conf. on Communications, vol. 2, pp. 1064–1070.

[6] L. Hanzo, R. G. Maunder, J. Wang, and L.-L. Yang, Near-Capacity
Variable Length Coding. Wiley, 2010. Available: http://eprints.ecs.soton.
ac.uk/20911

[7] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Trans. Inf. Theory, vol. 21, no. 2, pp. 194–203, Mar. 1975.

[8] S. Even and M. Rodeh, “Economical encoding of commas between
strings,” Commun. ACM, vol. 21, no. 4, pp. 315–317, 1978. Available:
http://dblp.uni-trier.de/db/journals/cacm/cacm21.html#EvenR78;http:
//doi.acm.org/10.1145/359460.359480;http://www.bibsonomy.org/
bibtex/255477367a17c860a3e8543febfb75cc7/dblp

[9] Q. F. Stout, “Improved prefix encodings of the natural numbers
(corresp.),” IEEE Trans. Inf. Theory, vol. 26, no. 5, pp. 607–609, 1980.
Available: http://dblp.uni-trier.de/db/journals/tit/tit26.html#Stout80;http:
//doi.ieeecomputersociety.org/10.1109/TIT.1980.1056237;http://www.
bibsonomy.org/bibtex/2d76e21d35c99cb9963ecbcd237b3fc16/dblp

[10] A. S. Fraenkel and S. T. Klein, “Robust universal complete
codes for transmission and compression,” Discrete Applied
Mathematics, vol. 64, no. 1, pp. 31–55, 1996. Available:
http://dblp.uni-trier.de/db/journals/dam/dam64.html#FraenkelK96;http:
//dx.doi.org/10.1016/0166-218X(93)00116-H;http://www.bibsonomy.
org/bibtex/2ca088a7d65bf1449bd409f80cb4b7a51/dblp

[11] Advanced video coding for generic audiovisual services, ITU-T Std.
H.264, Mar. 2005.

[12] R. G. Maunder, W. Zhang, T. Wang, and L. Hanzo, “A unary error
correction code for the near-capacity joint source and channel coding
of symbol values from an infinite set,” IEEE Trans. Commun., 2013 (in
press). Available: http://eprints.soton.ac.uk/341736/.

[13] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate Discrete Distri-
butions. John Wiley & Sons, 2005.

[14] R. G. Maunder and L. Hanzo, “Genetic algorithm aided design of
component codes for irregular variable length coding,” IEEE Trans.
Commun., vol. 57, no. 5, pp. 1290–1297, May 2009. Available: http:
//eprints.ecs.soton.ac.uk/14470

[15] R. Gallager and D. van Voorhis, “Optimal source codes for geometrically
distributed integer alphabets,” IEEE Trans. Inf. Theory, vol. 21, no. 2,
pp. 228–230, Mar. 1975.

[16] W. Zhang, R. G. Maunder, and L. Hanzo, “On the complex-
ity of unary error correction codes for the near-capacity trans-
mission of symbol values from an infinite set,” in Proc. 2013
IEEE Wireless Communications and Networking Conference. Available:
http://eprints.soton.ac.uk/344059/.

[17] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimising symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, pp. 284–287, Mar. 1974.

[18] M. Adrat, R. Vary, and J. Spittka, “Iterative source-channel decoder
using extrinsic information from softbit-source decoding,” in Proc.
2001 IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, pp. 2653–2656.

[19] D. Divsalar, S. Dolinar, and F. Pollara, “Serial concatenated trellis
coded modulation with rate-1 inner code,” in Proc. 2000 IEEE Global
Telecommunications Conference, vol. 2, pp. 777–782.

[20] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information
transfer functions: model and erasure channel properties,” IEEE Trans.
Inf. Theory, vol. 50, no. 11, pp. 2657–2673, Nov. 2004.

[21] J. Kliewer, A. Huebner, and D. J. Costello, “On the achievable extrinsic
information of inner decoders in serial concatenation,” in Proc. 2006
IEEE Int. Symp. Inform. Theory, pp. 2680–2684.

[22] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–
1737, Oct. 2001.

WANG et al.: NEAR-CAPACITY JOINT SOURCE AND CHANNEL CODING OF SYMBOL VALUES FROM AN INFINITE SOURCE SET USING ELIAS . . . 13

[23] J. Kliewer, N. Görtz, and A. Mertins, “Iterative source-channel decoding
with Markov random field source models,” IEEE Trans. Signal Process.,
vol. 54, no. 10, pp. 3688–3701, Oct. 2006.

[24] M. Tuchler, “Convergence prediction for iterative decoding of threefold
concatenated systems,” in Proc. 2002 IEEE Global Telecommunications
Conference, vol. 2, pp. 1358–1362.

[25] R. Maunder and L. Hanzo, “Iterative decoding convergence and termina-
tion of serially concatenated codes,” IEEE Trans. Veh. Technol., vol. 59,
no. 1, pp. 216–224, Jan. 2010.

[26] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for ‘turbo-
like’ codes,” in Proc. 1998 Allerton Conf. on Communications, Control
and Computing, pp. 201–210.

[27] Digital Video Broadcasting (DVB): Framing structure, channel coding
and modulation for digital terrestrial television, ETSI Std. EN 300 744.

Tao Wang received the B.S. degree in information
engineering from the University of Science and
Technology of Beijing (USTB), Beijing, China, in
2006. He received M.Sc. degree in communication
from University of Southampton, Southampton, U.K
in 2008. He is currently working toward the Ph.D.
degree with the Communications Research Group,
Electronics and Computer Science, University of
Southampton, Southampton, UK. His current re-
search interests include joint source/channel coding
and distributed video coding.

Wenbo Zhang received the M.E. degree in Informa-
tion and Communication Engineering from the Uni-
versity of Beijing University of Posts and Telecom-
munications (BUPT), Beijing, China, in 2011. He
is currently working toward the Ph.D. degree with
the Communications Research Group, Electronics
and Computer Science, University of Southampton,
Southampton, UK. His current research interests
include joint source/channel coding and variable
length coding.

Robert G. Maunder (http://users.ecs.soton.ac.uk/
rm) has studied with Electronics and Computer Sci-
ence, University of Southampton, UK, since October
2000. He was awarded a first class honors BEng in
Electronic Engineering in July 2003, as well as a
PhD in Wireless Communications and a lectureship
in December 2007. Rob’s research interests include
joint source/channel coding, iterative decoding, ir-
regular coding and modulation techniques. He has
published a number of IEEE papers in these areas.

Lajos Hanzo (http://www-mobile.ecs.soton.ac.uk)
FREng, FIEEE, FIET, Fellow of EURASIP, DSc
received his degree in electronics in 1976 and
his doctorate in 1983. In 2009 he was awarded
the honorary doctorate “Doctor Honoris Causa” by
the Technical University of Budapest. During his
35-year career in telecommunications he has held
various research and academic posts in Hungary,
Germany and the UK. Since 1986 he has been with
the School of Electronics and Computer Science,
University of Southampton, UK, where he holds

the chair in telecommunications. He has successfully supervised 80 Ph.D.
students, co-authored 20 John Wiley/IEEE Press books on mobile radio
communications totalling in excess of 10 000 pages, coauthored 1300+
research entries at IEEE Xplore, acted both as TPC and General Chair of
IEEE conferences, presented keynote lectures and has been awarded a number
of distinctions. Currently he is directing a 100-strong academic research team,
working on a range of research projects in the field of wireless multimedia
communications sponsored by industry, the Engineering and Physical Sciences
Research Council (EPSRC) UK, the European IST Programme and the Mobile
Virtual Centre of Excellence (VCE), UK. He is an enthusiastic supporter of
industrial and academic liaison and he offers a range of industrial courses. He
is also a Governor of the IEEE VTS. During 2008 - 2012 he was the Editor-in-
Chief of the IEEE Press and a Chaired Professor also at Tsinghua University,
Beijing. His research is funded by the European Research Council’s Senior
Research Fellow Grant. For further information on research in progress and
associated publications please refer to http://www-mobile.ecs.soton.ac.uk

