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Abstract

Crucial developments to the recently introduced signal-space approach for multiplexing multiple data

symbols using a single-radio switched antenna are presented. First, we introduce a general framework

for expressing the spatial multiplexing relation of the transmit signals only from the antenna scattering

parameters and the modulating reactive loading. This not only avoids tedious far-field calculations, but

more importantly provides an efficient and practical strategy for spatially multiplexing PSK signals of any

modulation order. The proposed approach allows ensuring a constant impedance matching at the input

of the driving antenna for all symbol combinations, and as importantly uses only passive reconfigurable

loads. This obviates the use of reconfigurable matching networks and active loads, respectively, thereby

overcoming stringent limitations of previous single-feed MIMO techniques in terms of complexity,

efficiency, and power consumption. The proposed approach is illustrated by the design of a realistic very

compact antenna system optimized for multiplexing QPSK signals. The results show that the proposed

approach can bring the MIMO benefits to the low-end user terminals at a reduced RF complexity.
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Index Terms

Beam-space MIMO, reduced-complexity MIMO, reconfigurable antenna, phase shift keying (PSK),

single-radio MIMO.

I. INTRODUCTION

Despite its advantageous impact on spectral efficiency, the implementation of the conven-

tional multi-input multi-output (MIMO) concept with multiple RF feeds in small and low-cost

communication devices is subject to several design challenges. First of all, the integration of

conventional MIMO architectures in small platforms adds complexity and cost constraints since

multiple radio frequency (RF) chains are required. Moreover, due to likely spurious emission and

imperfect filtering, extreme care should be taken in order to mitigate the self-interference among

the parallel RF chains. To overcome this limitation, several MIMO architectures with reduced RF

hardware complexity have been recently proposed in the literature such as antenna selection [1],

analogue antenna combining [2], time-division multiplexing [3], code-modulated path-sharing

[4] and spatial modulation [5]. However, most of the aforementioned techniques are applicable

only at the receiver side and do not support spatial multiplexing of independent signals with a

single RF front-end. Spatial modulation, though being an open-loop transmit technique, achieves

a logarithmic increase of the spectral efficiency with the number of transmit antennas compared

to the linear growth provided by spatial multiplexing. In fact, spatial multiplexing, unlike the

other MIMO modes such as diversity and power focusing (beam-forming), is often referred to

as the true MIMO mode.

To this end, the authors in [6] proposed the idea of mapping different symbols onto an

orthogonal set of angular basis functions in the beam-space domain of a single-feed switched

parasitic array. More precisely, it was assumed that the instantaneous radiation field of the antenna

system, Einst(θ,ϕ), can be expressed at any instant of time as a weighted sum of basis functions,

Bn(θ,ϕ), such that Einst(θ,ϕ) =
∑
snBn(θ,ϕ) where sn is an arbitrary complex data symbol
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from the signal constellation diagram. Therefore, in rich-scattering environments, decorrelation

between the channel coefficients is guaranteed and thereby the transmitted mixture of information

can be reliably decoded using a traditional MIMO receiver.

The second challenge is to maintain high radiation efficiency of the multiple antenna system,

which can be compromised by mutual coupling when packing different antenna elements in

small platforms. The isolation between a pair of coupled antennas is traditionally achieved by

creating an artificial reverse path to the coupling path, using for example a decoupling network

[7], [8]. However, such networks have negative impact on the bandwidth of the multiple antenna

system besides being complex and lossy. Remarkably, the efficiency issue is naturally addressed

by the novel single-feed MIMO concept. Indeed, unlike in conventional MIMO systems, here

mutual coupling is utilized as a controlled signal modulator, and do not entail any power loss.

Another challenge of conventional MIMO lies in maintaining independent and identically

distributed (i.i.d.) sub-channels. This is typically addressed by placing the multiple antennas far

enough from each other, a requirement that is not practical in real-life user terminals with strict

size constraints. In the single-feed MIMO, such sub-channels can be achieved by mapping the

data symbols onto an orthonormal set of basis functions. While the orthogonality is guaranteed

by the basis definition, the power balance is obtained by optimizing the variable reactive loading

of the antenna system and/or the antenna structure as detailed later.

Although the novel single-radio MIMO technique revolutionizes the RF chain in MIMO

transmission by reducing the RF hardware size and complexity while staying power efficient, its

advantages come with a number of limitations that do not exist in conventional MIMO systems.

First, the system is inherently narrowband since the reactive terminations that modulate the data

sub-streams are frequency dependent. Moreover, modern modulation schemes such as orthogonal

frequency-division multiplexing (OFDM) convert simple constant envelope modulations like PSK

into highly complex signal constellation diagrams, which are extremely difficult to emulate with

realistic single-radio MIMO hardware. Accordingly, the novel single-radio MIMO approach will
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find its way to several RF transceiver architectures like the ones used in wireless sensor nodes

as well as wireless modems supporting constant envelop signal formats.

Single-radio MIMO has been addressed in several previous publications such as [9]–[14].

In [9], by decomposing the radiation patterns of a compact switched parasitic antenna in the

far-field into a natural basis that inherently exists in the array factor itself, PSK modulation of

any order could be supported. The methodology was generalized in [10] using Gram-Schmidt

decomposition for constructing a set of orthogonal functions. Unfortunately, both [9] and [10] rely

on restrictive or unrealistic theoretical assumptions, such as requiring the consideration of ideal

dipole antennas not representative of modern mobile terminal antennas, while approximating their

far-field by 2D horizontal cuts for the modulating-loads calculations. In addition, switching the

reactive loading following the methods proposed previously results in large dynamic variation

of the driving antenna input impedance, hence low matching efficiency during most symbol

transmissions. This seriously undermines the interest in the novel single-radio MIMO approach

since the need for a symbol-rate dynamic matching network would offset the main benefit of

the single-radio MIMO system, namely, reduced RF hardware complexity.

Other key steps towards the realization of the single-radio MIMO concept were recently

reported in [11]–[13]. In [11], the derivation of the orthogonal basis functions from mirrored beam

patterns of a symmetric switched parasitic antenna was suggested, based on which the first fully-

operational single-radio MIMO system was designed in [12] and experimentally demonstrated

in [11]. Thereafter, the first integrated antenna solution for implementing the single-radio MIMO

concept in real small portable devices was presented in [13] where instead of a set of dipole and

monopole radiators, a compact multi-port built-in radiating structure was used. However, while

applying such an approach to BPSK signaling is straightforward, scaling to higher order PSK

modulation is not possible.

In this context, this work proposes an efficient single-radio MIMO strategy which enables

multiplexing higher order PSK data streams with a realistic single-feed reconfigurable antenna.
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This is achieved by reconsidering the signal-space multiplexing approach and viewing it as a

multi-layer analogue precoding. In the proposed approach, multiplexing of basis radiation patterns

is replaced with multiplexing of basis vectors as the basis vectors can be precisely obtained

without extracting complex far-field radiation patterns, so avoiding tedious far-field calculations

when deriving the multiplexing relation. The approach makes the use of only variable passive

loads for pattern reconfiguration, thereby reducing complexity, power consumption, and potential

stability issues. Moreover, the proposed approach ensures a constant input reflection coefficient

of the single-feed reconfigurable antenna independently of the two data streams, consequently

obviating the use of symbol-rate dynamic matching networks. The procedure is illustrated by an

antenna design example supporting the single-feed transmission of two QPSK data streams.

Notation: In the following, boldface lower-case and uppercase characters denote vectors and

matrices, respectively. The operators (·)∗, (·)T, and (·)H designate complex conjugate, transpose,

and complex conjugate transpose (Hermitian) operators, respectively. The notation IN indicates

an identity matrix of size N × N . (·)ij returns the {i, j} entry of the enclosed matrix and (·)i

returns the ith element of the enclosed vector whereas |·| returns the absolute value. The operator

∈ indicates that the (random) variable belongs to a certain set of numbers.

II. BACKGROUND AND THEORY

The main idea in the beam-space MIMO concept is to modulate some of the MIMO data

sub-streams directly onto the antenna far-field [6]. For this purpose, a reconfigurable antenna

should be devised such that its instantaneous radiation pattern is decomposable at any instant of

time as follows:

Einst(θ,ϕ, t) = s1(t)B1(θ,ϕ) + s2(t)B2(θ,ϕ) (1)

where B1(θ,ϕ) and B2(θ,ϕ) form an orthogonal basis in the beam-space domain of the antenna,

and s1(t) and s2(t) are independent complex symbols from the signal constellation diagram. In
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this case, as shown in Fig. 1, s1(t) and s2(t) are driven to different virtual antennas in the beam-

space domain of the reconfigurable antenna, modulating the orthogonal basis patterns. Under

rich scattering conditions, a receiver equipped with multiple independent antennas attached to

multiple independent RF chains may decode the transmitted mixture of signals by estimating

the receive antenna responses to the corresponding basis [11].

Here, we introduce a powerful multiplexing approach which makes the implementation of (1)

possible for any PSK modulation using a compact single-feed antenna with only passive loads

embedded. In the following, we start by briefly recalling theoretical background on multiport

antennas that are necessary for the new calculations. Then, the mathematical developments related

to the novel proposed methodology are described in detail.

A. Recall on Theory of Multiport Antennas

An N-port radiator can be fully described by an N-by-N scattering matrix S and N embedded

radiation patterns (also called active port patterns). Assuming a linear media, the scattering

RF ChainMapper

Control Signal

 2 , 

 1 , 

     inst 1 1 2 2, , ( ) , ( ) ,t s t s t      

2 ( )s t
1( )s t

Fig. 1. Symbolic representation of the beam-space MIMO concept. The orthogonal basis patterns ensure decorrelation of the
MIMO coefficients in a rich-scattered channel, and allows decoding the multiplexed symbols at the receiver.
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parameters are defined as

b = Sa (2)

where an = (a)n and bn = (b)n, n ∈ {0, 1, . . . , N−1}, are the incident and reflected power

waves at port n, respectively. Generally, the power waves can be defined so that a unit magnitude

corresponds to a unit power level of the incident and reflected waves, i.e.

Pinc,n = |an|2

Pref,n = |bn|2.
(3)

The embedded radiation pattern of port i, denoted by Ei(θ,ϕ), is defined as the radiation pattern

obtained when driving port i with a unit power level and terminating all other ports with a

reference impedance Z0 [15], namely, when ai = 1 W1/2 and an6=i = 0. Notice that the energy

absorbed inside the system or carried away from the system in reflected waves and absorbed

in terminating matched loads has been already considered in the definition of the embedded

pattern. In the following, we recall the analytical expressions of the beam-coupling coefficients

utilized later for defining a set of orthogonal basis vectors.

The total power incident onto the radiator is equal to the sum of the powers incident at the

individual ports, thus using (3)

Pinc,tot =
N−1∑
n=0

Pinc,n =
N−1∑
n=0

|an|2 = aHa. (4)

Similarly, the total power reflected back from the radiator is the sum of the powers reflected

back at the individual ports, thus using (2) and (3)

Pref,tot =
N−1∑
n=0

Pref,n =
N−1∑
n=0

|bn|2

= bHb = aHSHSa. (5)
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Further, the total radiated field can also be expressed by superposition as a linear combination

of the embedded patterns [16], i.e.

Etot(θ,ϕ) =
N−1∑
n=0

anEn(θ,ϕ) (6)

where the units of Etot(θ,ϕ) and En(θ,ϕ) are V/m and V/m/W1/2, respectively. From (6), the total

power radiated from the radiator is

Prad,tot =
1

2
η0

∫∫
Etot(θ,ϕ) · Etot

∗(θ,ϕ) dS

=
N−1∑
m=1

N−1∑
n=1

a∗n

[
1

2
η0

∫∫
Em(θ,ϕ) · En∗(θ,ϕ) dS

]
am

=
N−1∑
m=1

N−1∑
n=1

an
∗χnm am = aHXa (7)

where

χnm =
1

2
η0

∫∫
Em(θ,ϕ) · En∗(θ,ϕ)dS (8)

is defined as the beam-coupling coefficient between nth and mth embedded patterns [16], η0 is

the free-space characteristic admittance, and dS = r2sinθdθdϕ. It can be seen from (8) that

χnm = χmn
∗.

According to (8), the set of beam-coupling coefficients are typically obtained through te-

dious far-field calculations. This may increase the computational complexity associated with

the optimization procedure of single-radio MIMO systems. However, when the thermal losses

in the radiator materials are negligible, the knowledge of the scattering parameters suffices

for calculating the beam-coupling coefficients. Indeed, assuming negligible loss in the antenna

materials, energy conservation implies that the total radiated power is equal to the difference

between the total incident and reflected powers. Using (4), (5) and (7), this leads to

aHXa = aHa− aHSHSa. (9)
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Since (9) is valid for all complex a, it can be simply demonstrated that (see Appendix A)

X = I− SHS. (10)

Therefore, the beam-coupling coefficients between the embedded patterns of a lossless radiator

can be expressed in terms of the scattering parameters only,

χnm = −
N−1∑
p=0

Spn∗Spm, n 6= m (11)

thus eliminating the need for cumbersome far-field calculations. Similarly, the total power radi-

ated in the far-field region caused by a unit power incident on port n can also be derived as a

function of the scattering parameters,

Prad,n = χnn = 1−
N−1∑
p=0

|Spn|2. (12)

B. Reconfigurable Antennas with Mirrored Beam Patterns

Fig. 2(a) shows a single-feed reconfigurable antenna system comprising a symmetric three-port

radiator and two variable loads Z1 and Z2 connected to the radiator passive ports (also referred

to as control ports). The control ports can be either mounted on the main radiating structure

or on separate radiators parasitically coupled to the main radiator [11]–[13]. In this section, we

first briefly recall the analytic expressions of the antenna reflection coefficient and the antenna

radiated field in terms of the radiator parameters and the variable loads. This will allow us later

to define our set of orthogonal basis vectors for single-radio multiplexing.

Based on the approach in [17], the antenna system of Fig. 2(a) can be modeled by the signal

flow graph of Fig. 2(b) where

Γk = (Zk − Z0)/(Zk + Z0) k ∈ {1, 2} (13)

is the reflection coefficient at port k. For the sake of simplicity, the source impedance Z0 is
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Fig. 2. (a) A symmetric three-port antenna system. The central port is the active input, whereas the other two are control ports,
loaded by passive loads. The source and reference impedances are assumed to be identical. Note that the single-port structure
(i.e. when two control ports are terminated) is not generally symmetrical. (b) Equivalent signal flow of the radiator. The incident
and reflected power waves are denoted by ai and bi, respectively. Obviously by symmetry, S11 = S22 and S01 = S02 .

chosen to be equal to the reference impedance of the scattering parameters. Using Mason’s rule

[18], the total reflection coefficient at the central active RF input of this symmetrical structure

is derived as

Γtot = b0/a0 = S00 + S01 (`1 + `2) (14)

where

`1 = Γ1
b1

a0

= Γ1S01
1− Γ2 (S11 − S21)

1− S11 (Γ1 + Γ2) + Γ1Γ2 (S2
11 − S2

21)
(15a)

`2 = Γ2
b2

a0

= Γ2S01
1− Γ1 (S11 − S21)

1− S11 (Γ1 + Γ2) + Γ1Γ2 (S2
11 − S2

21)
. (15b)

Similarly, the antenna total radiated field when exciting the active port with a unit power can be

expressed as a linear combination of the three embedded patterns:

Eunit(θ,ϕ) = vinstET
emb (16)
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where

Eemb =

[
E0(θ,ϕ) E1(θ,ϕ) E2(θ,ϕ)

]
(17)

is the vector of the radiator embedded patterns, and

vinst =

[
1 `1 `2

]
(18)

is defined here as the unit instantaneous pattern vector. Let us emphasize here that all instanta-

neous radiation patterns as well as the three embedded patterns are complex vectorial angular

functions.

Due to the symmetry of the radiator, the permutation of the loads at the control ports will

mirror the antenna radiation pattern with respect to the plane of symmetry, while the total power

radiated in the far-field will remain constant. This feature is employed in the next section, where

the desired basis for single-radio MIMO transmission is defined.

C. Definition of Orthogonal Basis Vectors

As discussed at the beginning of Section II, the beam-space MIMO concept requires the

decomposition of the antenna instantaneous radiation pattern into proper weighted sum of orthog-

onal basis patterns. Here, we demonstrate that for the reconfigurable antenna system symbolically

represented in Fig. 2(a), the definition of angular functions B1 and B2 as

B1(θ,ϕ) =
E{ZII,ZI}

unit (θ,ϕ) + E{ZI,ZII}
unit (θ,ϕ)

2
(19a)

B2(θ,ϕ) =
E{ZII,ZI}

unit (θ,ϕ)− E{ZI,ZII}
unit (θ,ϕ)

2
(19b)

creates the desired orthogonal basis for decomposing the instantaneous radiation fields. In (19),

the superscript notation determines two distinct system states, namely

• State {ZI, ZII} where the loads ZI and ZII are connected to the ports 1 and 2, respectively,

i.e. Γ
{ZI,ZII}
1 = ΓI and Γ

{ZI,ZII}
2 = ΓII;
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• State {ZII, ZI} where the loads ZI and ZII are connected to the ports 2 and 1, respectively,

i.e. Γ
{ZII,ZI}
1 = ΓII and Γ

{ZII,ZI}
2 = ΓI.

In the following, we start by writing the analytical expressions of the basis patterns in terms of

the radiator embedded radiation patterns. Then, we show that B1 and B2 are orthogonal.

When the system state is changed, it is obvious from (13) that the reflection coefficients at the

control ports are permuted: Γ
{ZI,ZII}
1 = Γ

{ZII,ZI}
2 = ΓI and Γ

{ZI,ZII}
2 = Γ

{ZII,ZI}
1 = ΓII . Accordingly,

the coefficients defined by (15) are updated as follows:

`
{ZI,ZII}
1 = `

{ZII,ZI}
2

=
ΓIS01[1− ΓII(S11 − S21)]

1− S11(ΓI + ΓII) + ΓIΓII(S2
11 − S2

21)
(20a)

`
{ZI,ZII}
2 = `

{ZII,ZI}
1

=
ΓIIS01[1− ΓI(S11 − S21)]

1− S11(ΓI + ΓII) + ΓIΓII(S2
11 − S2

21)
(20b)

Using (16) and (20), the antenna total radiated fields for two given system states are derived as

E{ZI,ZII}
unit (θ,ϕ) = v

{ZI,ZII}
inst ET

emb (21a)

E{ZII,ZI}
unit (θ,ϕ) = v

{ZII,ZI}
inst ET

emb (21b)

where

v
{ZI,ZII}
inst =

[
1 `

{ZI,ZII}
1 `

{ZI,ZII}
2

]
(22a)

v
{ZII,ZI}
inst =

[
1 `

{ZI,ZII}
2 `

{ZI,ZII}
1

]
(22b)

are corresponding unit instantaneous pattern vectors. Since E2 is a mirrored version of E1 with

regard to the plane of symmetry, and E0 is symmetric with respect to the same plane, it can be
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inferred from (21) that E{ZII,ZI}
unit is a mirrored version of E{ZI,ZII}

unit regarding the plane of symmetry.

Now, using (19), (21) and (22), the basis functions are directly rewritten in terms of the three

embedded patterns as

B1(θ, ϕ) = v
{ZI,ZII}
B1 ET

emb (23a)

B2(θ, ϕ) = v
{ZI,ZII}
B2 ET

emb (23b)

where

v
{ZI,ZII}
B1 =

[
1 `

{ZI,ZII}
B1 `

{ZI,ZII}
B1

]
(24a)

v
{ZI,ZII}
B2 =

[
0 `

{ZI,ZII}
B2 −`{ZI,ZII}

B2

]
(24b)

are the basis vectors and

`
{ZI,ZII}
B1 =

`
{ZI,ZII}
1 + `

{ZI,ZII}
2

2

=
1
2
S01 [ΓI + ΓII − 2ΓIΓII (S11 − S21)]

1− S11 (ΓI + ΓII) + ΓIΓII (S2
11−S2

21)
(25a)

`
{ZI,ZII}
B2 =

`
{ZI,ZII}
2 − `{ZI,ZII}

1

2

=
1
2
S01 [ΓII − ΓI]

1− S11 (ΓI + ΓII) + ΓIΓII (S2
11−S2

21)
· (25b)

Now, the beam-coupling coefficient between B1 and B2 can be calculated using (8) as

χB1B2 =
η0

2

∫∫
B2(θ,ϕ) · B∗1(θ,ϕ)dS

=
η0

2

∫∫ [
v
{ZI,ZII}
B2 ET

emb

]
·
[
v
{ZI,ZII}
B1 ET

emb

]∗
dS

=
η0

2

∫∫
`
{ZI,ZII}
B2 [E1 − E2]
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·
[
E0 + `

{ZI,ZII}
B1 (E1 + E2)

]∗
dS

=
η0

2
`
{ZI,ZII}
B2 (χ01 − χ02)

+
η0

2
`
{ZI,ZII}
B2 `

{ZI,ZII}
B1

∗
(χ11−χ22+χ21−χ12). (26)

Since by symmetry of the radiator, χ01 = χ02, χ11 = χ22 and χ21 = χ12,

χB1B2 = 0 (27)

which concludes the demonstration by showing that B1 and B2 as defined in (19) form an

orthogonal basis. Moreover, we can show that the basis vectors are also orthogonal as their dot

product is zero:

v
{ZI,ZII}
B1 · v{ZI,ZII}

B2 = 0. (28)

It is worth noting that the orthogonality of B1 and B2 is valid regardless of the impedances

ZI and ZII (hereafter also called the basis impedances). However, their values affect the total

reflection coefficient at the single active port as well as the powers PB1 and PB2 radiated in

the far-field by the basis patterns. Since for open-loop MIMO operation, a balanced power

distribution between the multiple streams is ideally desired, here we define

r = PB1/PB2 (29)

as the power imbalance ratio between the basis patterns. We will show later in Section III the

importance of this factor in the design of single-radio MIMO systems. In general, the power

imbalance ratio is a function of all antenna input parameters, including the radiator embedded

patterns. However, as shown in Appendix B, the power imbalance can also be expressed in

terms of the scattering parameters and the basis impedances ZI and ZII as long as the ohmic

and dielectric losses in the radiator materials are negligible.

DRAFT April 20, 2022



POST-PRINT VERSION 15

D. Beam-Space Multiplexing Technique

In the previous section we proved the existence of a natural orthogonal basis for the single-feed

pattern-reconfigurable antenna system shown in Fig. 2(a). We follow here by demonstrating an

efficient approach that makes such an antenna system capable of multiplexing two data streams

of any modulation order.

The proposed technique consists in the proper selection of the set of the impedances Z1 and

Z2 at the control ports such that the antenna instantaneous radiated field satisfies (1) for any

combination of two data streams s1(t) and s2(t). In other words, for mapping each arbitrary

symbol combination of {s1,s2} from the considered signal constellation diagram on the basis

functions already defined in (23) and enabling single-radio spatial multiplexing, we need to find

the loading values Z{s1,s2}1 and Z{s1,s2}2 such that,

Einst(θ,ϕ,s1,s2) = s1B1(θ,ϕ) + s2B2(θ,ϕ)

=
[
s1v

{ZI,ZII}
B1 + s2v

{ZI,ZII}
B2

]
ET

emb. (30)

where Einst(θ,ϕ,s1,s2) is the antenna instantaneous radiated field for the symbol pair {s1,s2}. On

the other hand, Einst(θ,ϕ,s1,s2) can generally be written as the multiplication of the antenna total

radiated field for a unit power excitation Eunit(θ,ϕ,s1,s2) and the signal applied to the antenna

system at its single active input, which we define as sin(s1,s2), thus

Einst(θ,ϕ,s1,s2)=sin(s1, s2)E{Z
{s1,s2}
1 ,Z

{s1,s2}
2 }

unit (θ,ϕ)

= sin(s1, s2)v
{Z{s1,s2}1 ,Z

{s1,s2}
2 }

inst ET
emb (31)

where according to (18)

v
{Z{s1,s2}1 ,Z

{s1,s2}
2 }

inst =

[
1 `
{Z{s1,s2}1 ,Z

{s1,s2}
2 }

1 `
{Z{s1,s2}1 ,Z

{s1,s2}
2 }

2

]
. (32)

Combining (30) and (31), the far-field terms disappear from the equation that allows finding the
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unknown loads Z{s1,s2}1 and Z{s1,s2}2 , thereby dispensing with cumbersome calculation of the far-

field radiation patterns and replacing multiplexing of basis radiation patterns with multiplexing

of basis vectors:

sin(s1, s2)v
{Z{s1,s2}1 ,Z

{s1,s2}
2 }

inst = s1v
{ZI,ZII}
B1 +s2v

{ZI,ZII}
B2 (33)

or using (24) and (32),

sin(s1, s2)


1

`
{Z{s1,s2}1 ,Z

{s1,s2}
2 }

1

`
{Z{s1,s2}1 ,Z

{s1,s2}
2 }

2

=s1


1

`
{ZI,ZII}
B1

`
{ZI,ZII}
B1

+s2


0

`
{ZI,ZII}
B2

−`{ZI,ZII}
B2

. (34)

It is easily seen that a necessary condition for satisfying (34) is sin(s1,s2) = s1. This reveals an

important practical aspect of the proposed approach: the single active port of the antenna system

must be excited with one of the two data streams. In this case, (34) reduces to a system of two

equations, allowing finding unique solutions for the unknowns Z{s1,s2}1 and Z{s1,s2}2 as functions

of the radiator scattering parameters, the basis impedances ZI and ZII, and the symbols pair s1

and s2, `
{Z{s1,s2}1 ,Z

{s1,s2}
2 }

1

`
{Z{s1,s2}1 ,Z

{s1,s2}
2 }

2

= `
{ZI,ZII}
B1

1

1

+
s2

s1

`
{ZI,ZII}
B2

 1

−1

. (35)

However, as seen in (35), the multiplexing relation only depends on the ratio of s2 and s1 and

not on their individual values. In other words, the same load pair is required for transmitting

any symbol pair {s1,s2} having the same ratio:

sr =
s2

s1

. (36)
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As a result, we simplify the notation in (35), replacing the superscript {s1,s2} with {sr}:`
{Z{sr}1 ,Z

{sr}
2 }

1

`
{Z{sr}1 ,Z

{sr}
2 }

2

 = `
{ZI,ZII}
B1

1

1

+ sr`
{ZI,ZII}
B2

 1

−1

 (37)

where Z{sr}1 and Z{sr}2 are the unknowns and using (15)

`
{Z{sr}1 ,Z

{sr}
2 }

1 =
Γ
{sr}
1 S01

[
1− Γ

{sr}
2 (S11 − S21)

]
1−S11

(
Γ
{sr}
1 +Γ

{sr}
2

)
+Γ

{sr}
1 Γ

{sr}
2 (S2

11−S2
21)

(38a)

`
{Z{sr}1 ,Z

{sr}
2 }

2 =
Γ
{sr}
2 S01

[
1− Γ

{sr}
1 (S11 − S21)

]
1−S11

(
Γ
{sr}
1 +Γ

{sr}
2

)
+Γ

{sr}
1 Γ

{sr}
2 (S2

11−S2
21)
· (38b)

After some mathematical manipulations on (37), (38) and (25), the loads Z{sr}1 and Z
{sr}
2 can

directly be found by solving the following equations,

Γ
{sr}
1 =

ΓII (1+sr)+ΓI (1−sr)−2ΓIΓII(S11−S21)

2− [ΓI (1 + sr) + ΓII (1− sr)] (S11 − S21)
(39a)

Γ
{sr}
2 =

ΓII (1−sr)+ΓI (1+sr)−2ΓIΓII(S11−S21)

2− [ΓI (1− sr) + ΓII (1 + sr)] (S11 − S21)
. (39b)

E. Discussion and Implementation

Equation (39) shows that the control load pair required for single-radio multiplexing of the

symbol pair {s1,s2} depend on their symbol combination ratio sr. This demands a distinct load

pair at the control ports for each possible symbol combination ratio of the considered modulation.

For instance, in the case of an M-PSK modulation scheme, since there are M different values of

sr, M distinct load values are required at each control port for enabling the proposed single-radio

multiplexing. On the other hand, it is seen from (39) that altering the polarity of the combination

ratio (i.e. sr → −sr) swaps the loads at the control ports (i.e. Γ
{sr}
1 ↔ Γ

{sr}
2 ). This implies that in

the case of rotationally symmetric constellations exactly the same set of load values is required

at both control ports.
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In the special case of BPSK signaling, the symbol combination ratio is either +1 or −1, i.e.

sr = ±1. Using (39) it can be seen that the control load values Z{±1}
1 and Z

{±1}
2 are identical

to the basis impedances (i.e. the ones used when defining the basis functions),

Γ
{+1}
1 = Γ

{−1}
2 = ΓII (40a)

Γ
{+1}
2 = Γ

{−1}
1 = ΓI· (40b)

This is in full agreement with the results from the earlier work [11] (where a technique limited to

the BPSK signaling cases was presented) and demonstrates the validity of our proposed approach

at least while dealing with BPSK modulation scheme.

As mentioned in the introduction, one of the main practical limitations of previous art is

related to the large dynamic variation of the antenna system input impedance associated with

the control loads reconfiguration. By contrast, the technique proposed here provides a constant

impedance matching for all possible symbol combinations of s1 and s2. Using (14), (37) and

(25), the total reflection coefficient at the active port becomes

Γ
{Z{sr}1 ,Z

{sr}
2 }

tot =S00+S01

[
`
{Z{sr}1 ,Z

{sr}
2 }

1 + `
{Z{sr}1 ,Z

{sr}
2 }

2

]
=S00+S01

[
2`
{ZI,ZII}
B1

]
(41)

=S00+S01

[
`
{ZI,ZII}
1 + `

{ZI,ZII}
2

]
=S00+

S2
01 [ΓI + ΓII − 2ΓIΓII (S11−S21)]

1−S11 (ΓI+ΓII)+ΓIΓII (S2
11−S2

21)

which remains constant regardless of the symbol combination ratio sr. This is of great practical

importance as no external reconfigurable matching network at the active port is required.

We have so far shown that a reconfigurable antenna composed of a symmetric three-port

radiator and two variable loads is capable of transmitting two symbol streams of any modulation

scheme. Fig. 3 depicts an antenna system solution based on the proposed approach. The inputs
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Port 1Z2

3-Port Radiator

Integrated to

Device Platform

Port 2

Plane of Symmetry

Port 0

IF/RF
Loads Control 

System

x1(t) x2(t)

s1(t)

{sr} Z1

Control Signal

sr = x2(t)/x1(t)

s2(t) = sr s1(t)

{sr}

Fig. 3. Symbolic representation of the proposed system capable of multiplexing two input symbol streams. x1(t) and x2(t)
are the data streams in the baseband domain. IF: intermediate frequency.

to the system consist of two streams of symbols in the baseband domain x1(t) and x2(t). The

first stream x1(t) is upconverted to s1(t) and fed into the antenna central active port. Unlike

the classical MIMO, the second stream x2(t) does not leave the digital signal processing (DSP)

unit. A loads control system provides the control signal for reconfiguring the variable loads at

the control ports according to the ratio of two symbols in the baseband domain x1(t) and x2(t).

By doing this, two data streams, i.e. the real s1(t) and the virtual s2 (t) = s1 (t)x2 (t)/x1 (t),

are independently mapped onto each basis pattern in the beam-space domain.

F. Passive Loading Constraint

For the sake of completeness, all the derivations so far considered the utilization of complex-

valued impedances at the control ports. However, the use of a load with non-negligible positive

real part degrades the radiation efficiency of the antenna system, while employing active loads

would drastically increase the implementation complexity and also potentially lead to stability
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issues. In this context, it is desirable to analyze the proposed approach when constrained to only

purely imaginary load solutions which are more attractive for realistic applications.

The condition of purely imaginary loads at the control ports (i.e. Z{sr}1 = jX
{sr}
1 and Z{sr}2 =

jX
{sr}
2 ) is equivalent to ∣∣∣Γ{sr}1

∣∣∣ =
∣∣∣Γ{sr}2

∣∣∣ = 1 (42)

for all possible symbol combination ratios sr. This implies that according to (40) the basis

impedances are also purely imaginary, i.e. ZI = jXI and ZII = jXII. Applying (42) to (39), ΓI

and ΓII must simultaneously satisfy two following equations:

1− |∆|2

1 + |∆|2
1− |sr|2

2 |sr|
sin
[

1
2
(ϑΓI − ϑΓII)

]
sinϑsr

= (43a)

cos
[

1
2
(ϑΓI − ϑΓII)

]
− 2 |∆|

1 + |∆|2
cos
[
ϑ∆ + 1

2
(ϑΓI + ϑΓII)

]
1− |∆|2

1 + |∆|2
1− |sr|2

2 |sr|
sin
[

1
2
(ϑΓI − ϑΓII)

]
− sinϑsr

= (43b)

cos
[

1
2
(ϑΓI − ϑΓII)

]
− 2 |∆|

1 + |∆|2
cos
[
ϑ∆ + 1

2
(ϑΓI + ϑΓII)

]
where for the sake of compactness, we denoted ΓI = exp(jϑΓI), ΓII = exp(jϑΓII), sr =

|sr| exp (jϑsr) and S11 − S21 = |∆| exp (jϑ∆). In general, such a solution for ΓI and ΓII does

not exist. However, for the particular case |sr| = 1, namely for PSK modulation, both equations

in (43) become equivalent:

cos
[

1
2
(ϑΓI−ϑΓII)

]
− 2 |∆|

1+|∆|2
cos
[
ϑ∆+ 1

2
(ϑΓI+ϑΓII)

]
=0. (44)

This equation provides a bijective mapping between the basis reactances XI and XII. In other

words, each imaginary impedance jXI is paired with a unique imaginary impedance jXII.

Accordingly, other reactances X
{sr}
1 and X

{sr}
2 for the considered PSK modulation scheme

are calculated using (39). These results are of significant practical importance: the proposed
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technique still allows the single-radio multiplexing of higher order PSK data streams with a

single reconfigurable antenna when (i) only the use of purely reactive loads is permitted, and

(ii) no reconfigurable impedance matching circuit is utilized.

Applying the reactive load condition in (44) to (41), the total reflection coefficient at the active

port can be expressed in terms of the scattering parameters only,

Γ
{Z{sr}1 ,Z

{sr}
2 }

tot =S00+S2
01

2(S11 − S21)∗

1−(S11−S21)∗(S11+S21)
. (45)

Similarly, it can be demonstrated that satisfying the passive loading constraint also removes the

dependency of the basis power imbalance ratio on the basis loads (see Appendix B). Therefore,

having the reactance XI as a free parameter, we can optimize the antenna system according to

a specific criterion in terms of the basis power imbalance ratio and the total efficiency.

III. DESIGN PROCEDURE AND ANTENNA EXAMPLE

In this section, we illustrate the proposed approach by designing a compact antenna system

which is capable of transmitting two QPSK data streams using a single RF chain. The antenna

is designed on the small platform of a hypothetical USB dongle, modeled by a 1.6-mm-thick

FR4 substrate of 20 mm × 45 mm with a dielectric constant of 4.4. The substrate area is very

small, about 0.0625λ2 at the design frequency of 2.5 GHz. In the following, the step-by-step

design procedure is fully described and the simulation results demonstrating the efficiency of

the approach are presented.

As a first step, a symmetric three-port radiator such as the one depicted in Fig. 3 should

be designed according to the physical requirements of the desired application. Fig. 4 shows

the designed radiating structure, printed on the FR4 substrate, with an axis of symmetry in yz-

plane. The central port is considered as the only active port for the connection to the single

RF module. The two lateral ports are the control ones, which will be terminated with purely

imaginary reconfigurable loads whose values are calculated using the developed formulation.
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ws ls

Port 0

Port 1

Port 2
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θ 

Fig. 4. Designed compact symmetric three-port radiator. ls = 45 mm, ws = 20 mm, le = 16.5 mm, we = 4 mm.

Table I shows the possible symbol combination ratios of two QPSK signals, where [b1b2 b3b4]T

is the input vector of bits modulated into [x1 x2]T. There are four distinct symbol combination

ratios, thus four system states are sufficient for transmitting the two QPSK data streams. In

each system state, the control ports are terminated with two distinct load values. However, since

QPSK is a rotationally symmetric modulation scheme (see Section II-E), the same set of four

reactance values can be used at each port: the first two reactance values associated with the

States 1 and 2 are identical to the basis reactances XI and XII, and the other two related to the

States 3 and 4 are obtained using (39) when sr = ±j.

The scattering parameters and the embedded radiated fields of the three-port system are

extracted from electromagnetic full-wave simulation, here using Ansys HFSS. The resulting

scattering matrix at the design frequency is given by

S =


0.24 + j0.19 −0.13 + j0.47 −0.13 + j0.47

−0.13 + j0.47 0.46− j0.27 0.14 + j0.13

−0.13 + j0.47 0.14 + j0.13 0.46− j0.27


and used to find the pairs of the basis reactances XI and XII using (44), ensuring that the

reactive load condition in (42) is satisfied. Then, for each combination ratio the required control
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TABLE I
TWO QPSK SYMBOLS COMBINATIONS

[b1b2 b3b4]T [x1 x2]T sr System State

[00 00]T [e−
j3π
4 e−

j3π
4 ]T +1 2

[00 01]T [e−
j3π
4 e+

j3π
4 ]T −j 4

[00 11]T [e−
j3π
4 e+

jπ
4 ]T −1 1

[00 10]T [e−
j3π
4 e−

jπ
4 ]T +j 3

[01 00]T [e+
j3π
4 e−

j3π
4 ]T +j 3

[01 01]T [e+
j3π
4 e+

j3π
4 ]T +1 2

[01 11]T [e+
j3π
4 e+

jπ
4 ]T −j 4

[01 10]T [e+
j3π
4 e−

jπ
4 ]T −1 1

[11 00]T [e+
jπ
4 e−

j3π
4 ]T −1 1

[11 01]T [e+
jπ
4 e+

j3π
4 ]T +j 3

[11 11]T [e+
jπ
4 e+

jπ
4 ]T +1 2

[11 10]T [e+
jπ
4 e−

jπ
4 ]T −j 4

[10 00]T [e−
jπ
4 e−

j3π
4 ]T −j 4

[10 01]T [e−
jπ
4 e+

j3π
4 ]T −1 1

[10 11]T [e−
jπ
4 e+

jπ
4 ]T +j 3

[10 10]T [e−
jπ
4 e−

jπ
4 ]T +1 2

impedances are obtained using (39). As stated in Section II-F, XI is a free parameter of the

antenna system. Therefore, as shown in Fig. 5, the other three reactive loads required for QPSK

signaling can be represented as a function of XI. The optimal set of reactive impedances might

be selected regarding the availability and the practical realization of the reactive loads. For any

arbitrary set of the obtained reactances, the total reflection coefficient at the active port can be

calculated using (45). A return loss of 10.4 dB is achieved thanks to the optimization of the

three-port radiator.

The antenna embedded radiated fields extracted from the full-wave simulation are then used

for calculating the power radiated by the basis patterns using (55). A power imbalance ratio

of 1.04 between the basis patterns is obtained, showing that the designed antenna system is

capable of creating nearly balanced basis patterns due to the optimization of the radiator. It is

worth noting that far-field calculations of the power imbalance ratio for the designed antenna

April 20, 2022 DRAFT



24 IEEE TRANSACTIONS ON COMMUNICATIONS

−200 −100 0 100 200 300
−500

−400

−300

−200

−100

0

100

200

300

400

500

XI = X
{−1}
1 = X

{+1}
2 (Ω)

R
ea
ct
iv
e
L
oa

d
s(
Ω
)

 

 

XII = X
{+1}
1 = X

{−1}
2

X
{+j}
1 = X

{−j}
2

X
{−j}
1 = X

{+j}
2

Fig. 5. Required reactive loads as a function of XI for QPSK beam-space multiplexing.

were carried out here as the utilized substrate is quite lossy (with a loss tangent of 0.02) and the

antenna is of compact dimensions. However, when the loss in the radiator materials is negligible,

the power imbalance ratio can be directly calculated in terms of the radiator scattering parameters

(see (56) and (54) in Appendix B).

To provide some insight into the multiplexing performance of the designed antenna system,

we computed the system capacity under QPSK signaling based on the full-wave simulation

results for an arbitrary set of reactance values (i.e. the set associated with XI = −100 Ω). Two

QPSK signals are simultaneously transmitted over two orthogonal basis patterns while assuming

a Kronecker narrowband flat-fading channel [19]. The transmitted signals then received using

two uncorrelated and uncoupled antenna elements in an open-loop MIMO operation. Thus the

channel transfer function can be written as

Hch = HwR1/2
T (46)

where the elements of the matrix Hw ∈ C2×2 are independent and identically distributed (i.i.d)
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complex Gaussian random variables with zero mean and unit variance. Since the basis patterns

are defined when exciting the active port with a unit power, the transmit covariance matrix RT

is obtained as

RT = Pin

 PB1 χB1B2

χB2B1 PB2

 = Pin diag [PB1 ,PB2 ] (47)

where Pin is the input power. As shown in Fig. 6, the channel capacity of the designed beam-

space MIMO system in higher signal to noise ratio (SNR) converges to that of an ideal 2×2

classical MIMO system having an identity transmit correlation matrix. The discrepancy between

the curves in the low-SNR region is due to the total efficiency of the designed antenna. A total

efficiency of 56% at the working frequency is obtained which is mainly due to the dielectric

loss in the substrate. For the sake of comparison, Fig. 6 also shows the capacity curve of a

single-input single-output (SISO) system having the same transmit total efficiency. We can thus

conclude that proposed multiplexing approach performs as expected.

According to Table I, the ratio of the second and first symbol streams sr determines the

system state and consequently the states of the control loads. When the ratio sr remains constant

during the symbol transition, the states of the control loads are not altered and no pattern

reconfigurability occurs. As the transmission concept includes a pulse shaping filter in the path

of the first datastream s1, i.e. the one directly fed to the single RF chain, the beam-space MIMO

system can practically fulfill required spectral mask constraints. On the other side, during other

symbol transitions (i.e. when sr changes), the control signal switches the states of the control

loads and the antenna instantaneous radiation pattern is altered. In such symbol transitions,

improper transition between the states of the control loads may give rise to bandwidth expansion

of transmitted signals [13]. One potential solution might lie in controlling the transition among

different states of the control loads. A more detailed study on this issue is an important topic of

further investigation, but is out of the scope of the present contribution.
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Fig. 6. Channel capacity of the antenna system as a function of the transmit SNR under QPSK signaling when XI = −100 Ω.
The simulation was performed based on Monte-Carlo method (see [20]) for an input of 10000 uniformly distributed QPSK
symbols where 10000 channel realizations were used. Pulse shaping is not included.

IV. CONCLUSION

An efficient approach for multiplexing two PSK data streams of any modulation order via

a single RF chain and a single reconfigurable antenna has been described. The approach not

only provides a constant impedance response over all the operational states, but also uses purely

imaginary loads at the control ports. Moreover, it replaces the multiplexing of basis patterns with

the multiplexing of basis vectors. The theory and design method were successfully illustrated by

the first example of a realistic compact single-radio antenna capable of transmitting two QPSK

data streams with passive loads and constant input impedance. These results constitute a crucial

step towards MIMO with simpler and cheaper RF hardware for real-life wireless terminals.

Future work in this very promising field should be directed towards the issue of the out-of-band

radiation associated with transient behavior of the embedded reconfigurable elements.
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APPENDIX A

PROOF OF (10)

Let first rewrite (9) as

aHUa = 0 (48)

where U = X + SHS − I is an N -by-N matrix. Therefore, we obtain that

N−1∑
m=0

a∗m(Ua)m =
N−1∑
m=0

N−1∑
n=0

a∗mUmnan = 0. (49)

Let am = δrm, which is 1 only for index r and zero elsewhere. Then,

aHUa = Urr = 0. (50)

Therefore, the diagonal elements of the matrix U are zero.

On the other hand, letting am = δsm + δtm, we have

aHUa = Ust + Uts = 0. (51)

Therefore, the matrix U is anti-symmetric. However, letting am = jδsm + δtm, we obtain that

aHUa = −jUst + jUts = 0. (52)

Thus the off-diagonal elements are anti-symmetric and equal, hence zero.

APPENDIX B

CALCULATION OF POWER RADIATED BY BASIS PATTERNS

The total power radiated in the far-field by the basis patterns defined in (23) can be obtained

using (8),

PB1 = χB1B1 =
η0

2

∫∫
|B1(θ,ϕ)|2dS=

η0

2

∫∫ ∣∣∣v{ZI,ZII}
B1 ET

emb

∣∣∣2dS
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=
η0

2

∫∫ ∣∣∣E0(θ,ϕ) + `
{ZI,ZII}
B1 [E1(θ,ϕ) + E2(θ,ϕ)]

∣∣∣2dS
= PE0 +

∣∣∣`{ZI,ZII}
B1

∣∣∣2 (PE1 + PE2 + χ12 + χ21)

+ `
{ZI,ZII}
B1 (χ01 + χ02) + `

{ZI,ZII}
B1

∗
(χ10 + χ20)

= PE0 + 2
∣∣∣`{ZI,ZII}
B1

∣∣∣2 (PE1 + χ21)

+ 4Re
{
`
{ZI,ZII}
B1 χ01

}
(53a)

PB2 = χB2B2 =
η0

2

∫∫
|B2(θ,ϕ)|2dS=

η0

2

∫∫ ∣∣∣v{ZI,ZII}
B2 ET

emb

∣∣∣2dS
=
η0

2

∫∫ ∣∣∣`{ZI,ZII}
B2 [E1(θ,ϕ)− E2(θ,ϕ)]

∣∣∣2dS
=
∣∣∣`{ZI,ZII}
B2

∣∣∣2 (PE1 + PE2 − χ12 − χ21)

= 2
∣∣∣`{ZI,ZII}
B2

∣∣∣2 (PE1 − χ21) . (53b)

When the basis reactances XI and XII satisfy the reactive load condition in (44), using (25)

it can be shown that

`
{ZI,ZII}
B1 =

S01(S11 − S21)∗

1−(S11−S21)∗(S11+S21)
(54a)

∣∣∣`{ZI,ZII}
B2

∣∣∣2 =

∣∣∣∣ S01

1−(S11−S21)∗(S11+S21)

∣∣∣∣2 . (54b)

Therefore, the dependency of PB1 and PB2 on the basis reactances XI and XII is removed, i.e.

PB1 = PE0 +2

∣∣∣∣ S01(S11 − S21)∗

1−(S11−S21)∗(S11+S21)

∣∣∣∣2(PE1 +χ21)

+ 4Re

{
S01(S11 − S21)∗

1−(S11−S21)∗(S11+S21)
χ01

}
(55a)

PB2 = 2

∣∣∣∣ S01

1−(S11−S21)∗(S11+S21)

∣∣∣∣2 (PE1 − χ21) . (55b)
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On the other hand, if the losses in the metallic and dielectric materials of the antenna are

negligible (namely, the three-port radiating structure is lossless), thanks to (11) and (12), PB1

and PB2 can be expressed in terms of only the S-parameters and the basis impedances ZI and

ZII at the control ports, i.e.

PB1 = 1−
2∑

n=0

|Sn0|2 − 4Re

{
`
{ZI,ZII}
B1

2∑
n=0

S∗n0Sn1

}

+2
∣∣∣`{ZI,ZII}
B1

∣∣∣2[1−
2∑

n=0

|Sn1|2−
2∑

n=0

S∗n2Sn1

]
(56a)

PB2 = 2
∣∣∣`{ZI,ZII}
B2

∣∣∣2[1−
2∑

n=0

|Sn1|2+
2∑

n=0

S∗n2Sn1

]
. (56b)
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