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Abstract—Due to the use of commodity software and hardware, while Minimum Bandwidth Regenerating (MBR) codes carry
crash-stop and Byzantine failures are likely to be more preslent out the minimization in the reverse order. The design of

in today's large-scale distributed storage systems. Regerating eqenerating codes have received much attention in recent
codes have been shown to be a more efficient way to disperse

information across multiple nodes and recover crash-stopdilures
in the literature. In this paper, we present the design of regn-
eration codes in conjunction with integrity check that allows
exact regeneration of failed nodes and data reconstructionn
presence of Byzantine failures. A progressive decoding miea-
nism is incorporated in both procedures to leverage compution
performed thus far. The fault-tolerance and security propeties

years [B]-[10]. Most notably, Raslgt al. proposed optimal
exact-Regenerating codes using a product-matrix reassstr
tion that recover exactly the same stored data of the faibeln
(and thus the name exact-regenerating) [10]. Existing work
assumes crash-stop behaviors of storage nodes. Howetler, wi
Byzantine failures, the stored data may be tampered regulti

of the schemes are also analyzed. in erroneous data reconstruction and regeneration.

Index Terms—Network storage, Regenerating code, Byzantine

failures, Reed.Solomon code. Erfor-detection code In this paper, we consider the problem of exact regeneration

for Byzantine fault tolerance in distributed storage netso
I. INTRODUCTION Two challenging issues arise when nodes may fail arbiyraril
First, we need to verify whether the regenerated or recon-

Storage is becoming a commodity due to the EMErgenGe cted data is correct. Second, efficient algorithms eeglad

of new storage media and the ever decreasing cost of COnvﬁ'f?aftincrementallyretrieve additional stored data and perform

tional storage devices. Reliability, on the other handtiooies data-reconstruction and regeneration when errors have bee

to pose challenges in the design of large-scale distribut& tected. Our work is inspired by [10] and makes the follain
systems such as data centers. Today’s data centers operate -ontributions:

on commodity hardware and software, where both crash-
stop and Byzantine failures (as a result of software bugs,
attacks) are likely the norm. To achieve persistent stqrage
common approach is to disperse information pertaining to a
data file (the message) across nodes in a network. For irstanc
with (n, k) maximum-distance-separable (MDS) codes such as
Reed-Solomon (RS) codes, data is encoded and stored across
n nodes and, an end user or a data collector can retrieve the
original data file by accessinany k of the storage nodes, a

process re_ferred to afata reconstruction . .. The rest of the paper is organized as follows. We give an
Upon failure of any storage node, data stored in the f.a'l Q/erview of regenerating codes and RS codes in Setfion I to

node. negds to be regenerated (recovered) to maintain Spare the readers with necessary background. The defsign o

functionality of the system. A straightforward way for dat (ror-correcting exact regenerating code for the MSR goint

recoverytlst:]o grstt retconjtructthth:z _lor(;gma(; da:'a and th_f d MBR points are presented in Section Il and Sedtidn 1V,
regetn]?rlate f. aaﬂ;s oret_g € balle fnt% & _qwelvfglr, Irésspectively. Analytical results on the fault toleranced an
wastetul to retrieve the entires: Symbools ot the original fiie, security properties of the proposed schemes are given in

{:St o recfcf)_vgratsmalllfra:cnon OI;hat store? n thedfa'lﬁ@ﬁ' Section[Y. Related work is briefly surveyed in Sectlod VI.
more efficient way is to use theegenerating codesvhic Finally, we conclude the paper in SectignVIl.

was introduced in the pioneer works by Dimakisal.in [I],
[2]. A tradeoff can be made between the storage overhead

and the repair bandwidth needed for regeneration. Minimum

Storage Regenerating (MSR) codes minimize first, the amountrye encoding process is the same as that giveliin [10] exbaptan
of data stored per node, and then the repair bandwid#plicit encoding matrix is given in this work.

o We present the detailed design of an exact-regenerating
code with error correction capabilﬁy.

o We devise a procedure that verifies the correctness of

regenerated/reconstructed data.

We propose progressive decoding algorithms for data-

reconstruction and regeneration that leverages computa-

tion performed thus far.
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[I. PRELIMINARIES Hence [[2) and[{3) become

A. Regenerating Codes a = d—k+1
Regenerating codes achieve bandwidth efficiency in the B = k(d-k+1)=ka (4)
regeneration process by storing additional symbols in eagnd
storage node or accessing more storage nodesc Le the
number of symbols over finite field/F'(¢) stored in each a = d
storage node ang@ < « the number of symbols downloaded B = kd—k(k-1)/2, (5)

from each storage during regeneration. To repair the stored
data in the failed node, a helper node acceskasirviving respectively, whert = 1.
nodes with the total repair bandwidi#)3. In general, the  There are two ways to regenerate data for a failed node. If
total repair bandwidth is much less th@h A regenerating the replacement data generated is exactly the same as those
code can be used not only to regenerate coded data but afswed in the failed node, we call it thexact regeneration
to reconstruct the original data symbols. Let the number tif the replacement data generated is only to guarantee the
storage nodes be. An [n, k,d] regenerating code requiresdata-reconstruction and regeneration properties, it lkeda
at leastk and d surviving nodes to ensure successful datdunctional regenerationin practice, exact regeneration is more
reconstruction and regeneration [[10], respectively. Bfea desired since there is no need to inform each node in the
E<d<n-1. network regarding the replacement. Through this paper, we
The main results given in[2][[3] are the so-called cut-s@nly consider exact regeneration and design exact-regéngr
bound on the repair bandwidth. It states that any regemeratcodes with error-correction capabilities.
code must satisfy the following inequality:
B. Reed-Solomon codes
Since Reed-Solomon (RS) codes will be used in the design
of regenerating codes, we briefly describe the encoding and
decoding mechanisms of RS codes next.
Minimizing « in (@) results in a regenerating code with RS codes are the most well-known error-correction codes.
minimum storage requirement; and minimiziggresults in They not only can recover data when nodes fail, but also can
that with minimum repair bandwidth. It is impossible to havguarantee recovery when a subset of nodes are Byzantine. RS
minimum values both oy and 8 concurrently, and thus codes operate on symbols of bits, where all symbols are
there exists a tradeoff between storage and repair barfdwidtom finite field GF'(2™). An [n,d] RS code is a linear code,
The two extreme points if1) are referred as the minimuwmith parameters = 2™ — 1 andn — d = 2t , wheren is the
storage regeneration (MSR) and minimum bandwidth regetotal number of symbols in a codewordjs the total number
eration (MBR) points, respectively. The valuescofind s for  of information symbols, and is the symbol-error-correction
MSR point can be obtained by first minimizing and then capability of the code.
minimizing : Encoding: Let the sequence of information symbols
in GF(2™) be w = [ug,u1,...,uq—1] and u(z) be the

k—1
B < Z min{a, (d — )8} . 1)
i=0

a = % information polynomial ofu represented gs
B u(z) = ug + urx + - +ug_ .
= - 2 0+ u1 d—1
h k(k—d+1) @ . .
The codeword polynomiak(x), corresponding ta:(x) can
Reversing the order of minimization we hayeand o for be encoded as
MBR as
.. c(x) = u(z)z" ¢ + (uw(x)z"? mod g(z)) , (6)
B = k(2d — k+ 1) where g(x) is a generator polynomial of the RS code. It is
2dB well-known thatg(z) can be obtained as
a = — . 3)
k(2d—k+1) g(z) = (x_ab)(x_ab+1)...(x_ab+2t—1)
As defined in[[10], arn, k, d] regenerating code with parame- = go+ g1z + g+ + gur® (7)

ters(«, 8, B) is optimal if i) it satisfies the cut-set bound with
equality, and ii) neithery and 5 can be reduced unilaterally
without violating the cut-set bound. Clearly, both MSR ang
MBR codes are optimal regenerating codes.

It has been proved that when designipg &, d] MSR or

MBR codes, '_t suffices to consider those with= 1 [Im] 2We use polynomial and vectorized representations of irdtion symbols,
Throughout this paper, we assume that 1 for code design. codewords, received symbols and errors interchangealtiyisnwork.

wherea is a generator (or a primitive element) @' (2™), b

n arbitrary integer, ang; € GF(2™). The RS code defined

y () is a systematic code, where the information symbols
up, u1, ..., uq—1 occur as coefficients (symbols) ifz).
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Fig. 1. Block diagram of RS decoding. Above each block, theesponding existing algorithms are indicated.

Another encoding method for RS codes is the encodand

proposed by Reed and Solomdnl[11], where the codeword B=ka=ala+1).
¢ corresponding to the information sequencés
We assume that the symbols in data are elements from
_ 0 1 2y n—1
e = [u(a®), u(a’), u(a®), -, u(@™ )] . ) GF(2m). Hence, the total data in bits is B bits for 3 = 1.
Whenb = 1, the codes generated Hy (6) ahdl (8) are identical. o .
In this work, we adopt the later encoding method. A. Verification for Data-Reconstruction
Decoding: The decoding process of RS codes is more gjnce we need to design codes with Byzantine fault toler-
complex. A complete description can be foundlinl[12].  ance itis necessary to perform integrity check after thgiai

Let r(z) be the received polynomial andz) = c(z) +  data is reconstructed. Two common verification mechanisms
e(z) +(x) = c(z) + Ax), wheree(xr) = 35, ¢;z’ isthe can pe used: CRC and hash function. Both methods add
error polynomialyy(z) = Z;-Zol ;27 the erasure polynomial, redundancy to the original data before they are encoded Her
and\(x) = Z?;Ol M\jz? = e(x) + () the errata polynomial. we adopt CRC since it is simple to implement and requires

Note thatg(x) and (hence)(z) havea’, ottt ... obt2~1 less redundancy.
as roots. This property is used to determine the error logati CRC uses a cyclic code (CRC code) such that each informa-
and recover the information symbols. tion sequence can be verified using its generator polynomial

The RS codes are optimal as it provides the largest sepandth degreer, wherer is the redundant bits added to the
tion among code words, and dn,d] RS code can recoverinformation sequence [12][ [15]. The amount of errors that
from any v errors as long ay < |[2=2==|, wheres is can be detected by a CRC code is related to the number of
the number of erasure (or irretrievable symbols). The basidundant bits. A CRC code with redundant bitscannot
procedure of RS decoding is shown in Figlile 1. The lagetect (5-)100% portion of errors or more. For example,
step in this figure is not necessary if a systematic RS coddenr = 32, the mis-detection error probability is on the
is applied; otherwise, the last step of the decoding proeed@rder of 107!°. Since the size of original data is usually
involves solving a set of linear equations, and can be mal@ge, the redundancy added by imposing a CRC code is
efficient by the use of Vandermonde generator matrices [18¢latively small. For example, for 00,20, 38] MSR code
The decoding that handles both error and erasure is cakked With o = 19, B = 19 x 20 = 380, we need to operate on
error-erasure decoding. GF(2') such that the total bits for original data at&30. If

In GF(2™), addition is equivalent to bit-wise exclusive-r = 32, then only0.77% redundancy is added. Hence, in the
or (XOR), and multiplication is typically implemented withfollowing, we assume that the CRC checksum has been added
multiplication tables or discrete logarithm tables. Toueglthe to the original data and the resultant sizeAssymbols.
complexity of multiplication, Cauchy Reed-Solomon (CRS)
codes[[14] have been proposed to use a different construct® Encoding
of the generator matrix, and convert multiplications to XOR e arrange the information sequencen _

operations for erasure. However, CRS codes incur the sam{ao my mp_1] into an information vectorl with
. . I PR —
complexity as RS codes for error correction. size o x d such that
I11. ENCODING AND DECODING OFERROR-CORRECTING wis = fori < j<a
1 = =
EXACT-REGENERATING CODES FOR THEMSR POINTS Uij = { u(_J yi = n;k forita<j<2a °
J—a)t — 2 = =

In this section, we demonstrate how to perform error cor- _ » '
rection on MSR codes designed to handle Byzantine failurd§erek: = (i —1)(a + 1) —i(i + 1)/2+j andky = (o +
by extending the code construction in[10]. It has been pﬂové)(l —1+a/2)—ii + 1)_/2 + (J — a). Let U= [A_lA2]_-
in [10] that an MSR code”” with parametersn’, ', d'] for From the above constructiord,;’s are symmetric matrix with

any 2k’ —2 < d’ < n/ — 1 can be constructed from an MSRAIMensiona x a for j = 1,2. . .
codeC with parameter§n = n/ + i,k = k' +i,d = d + i, In this encoding, each row of for the information vectér

whered = 2k — 2 andi = d’ — 2k’ + 2. Furthermore, ifC is Produces a codeword of length An [n,d = 2a] RS code is

linear, so isC’. Hence, it is sufficient to design an MSR codé&dopted to construct the MSR code. In particular, for e
for d = 2k — 2. Whend = 2k — 2 we have row of U, the corresponding codeword is

a=d—k+1l=k-1=4d/2 [pi(a® =1),pi(a"),...,pi(a" )], 9)



wherep;(x) is a polynomial with all elements in thih row The data collector then performs error-erasure decoding to

of U as its coefficients, that ig;(z) = Y7_ u;;z7, anda is  obtainC, the firstd columns of the codeword vector. Lét

a generator of7F'(2™). In matrix form, we have be the firstd columns ofG. Then the recovered information
.G sequence can be obtained from
where U=C-G1, (10)
. . ) where G~ is the inverse ofG; and it always exists. If the
a0 ol an—1 recovered information sequence passes the CRC, it is done;
o (a0)?2 @)? o (an1)2 otherwise, two more symbols need to be retrieved. The data

g collector continues the decoding process until it succéigsf
: recover the correct information sequence or no more storage
(a®)?=1  (a)=t ... (anTl)dd nodes can be accessed. In each step, the progressive dgcodin
that we proposed iri [16] is applied to reduce the computation
complexity. Note that the RS code used is capable of congcti
up to | (n — d)/2] errors.

andC is the codeword vector with dimensida x n). Finally,
the ith column ofC' is distributed to storage nodefor 1 <

' S'I'ﬁé generator matri& of the RS code can be reformulated 'he decoding algorithm is summarized in Algorithin 1. Note
as that, in practice, Algorithri]1 will be repeatéttimes for each
- 1 1 1 ;1 retrieved symbol wherg > 1.
a0 al an—1
(a%)? (al)? (an™)? Algorithm 1: Decoding of MSR Codes for Data-
. Reconstruction
G = (a®)2~1 (a)et G begin
(Ez%))o‘alo Elal))aall o (agfll)a)anl,l The data collector randomly chooskstorage nodes
(a%)% (a0)2 @)%(al)? ... (an—1)@(qn—1)2 and retrieves encoded dafé,  j;
: Perform the procedure given in]10] to recoveér,
I (?O)a(ao)a,l (@)@l . (@l)een-t)et ] |f| Cﬁﬁ%%@ = SUCCESS then
= GGA , else o
- Retrieved — k more encoded data from remaining
where,G contains the firsty rows in G and A is a diagonal storage nodes and merge them iffo. 4;
matrix with (), (a')*, (a?)%,..., (a®1)* as diagonal i+ d;
elements. It is easy to see that thesymbols stored in storage while : <n — 2 do
nodei is i+ 2
T Retrieve two more encoded data from
U- { (ai—%i)o‘g;f } = Aig? + (a" N> Aqg?, ;Smaining storage nodes and merge them into
X1
whereg! is theith column inG. Perform progressive error-erasure decoding
A final remark is that each column i@ can be generated on each row inY” to recovercC;
by knowing the index of the column and the generator ObtainU by (10) and convert it tomn;
Therefore, each storage node does not need to store the entir if CRCTest(m) = SUCCESS then
G to perform exact-regeneration. | L return m;
C. Decoding for Data-Reconstruction L - retumn FAIL;
The generator polynomial of the RS code encoded[by (9)
hasa"~? a"~971 ... a as roots[[12]. Without loss of gen- o .
erality, we assume that the data collector retrieves entode- Verification for Regeneration
symbols from k storage nodesjo, ji,..., jrk—1- First, To verify whether the recovered data are the same as those

the information sequencen is recovered by the procedurestored in the failed node, integrity check is needed. Howeve
given in [10]. Note that the procedure in]10] requires thauch check should be performed based on information stored
(@), (at)®, (a?®)%,..., (a" 1)~ all be distinct. This can on nodesother thanthe failed node. We consider two mech-
be guaranteed if this code is V&' (2") for m > [log, na]. anisms for verification.

If the recovered information sequence does not pass thdn this first scheme, each storage node keeps the CRC
CRC, then we need to perform the error-erasure decodimtpecksums for the rest — 1 storage nodes. When the helper
In addition to the received encoded symbols frénstorage accesses surviving storage nodes, it also asks for the CRC
nodes, the data collector needs to retrieve the encodedadymlzhecksums for the failed node from them. Using the majority
from d 4+ 2 — k storage nodes of the remaining storage nodesmte on all receiving CRC checksums, the helper can obtain



the correct CRC checksum if no more thatd — 1)/2] Recall thatg, is the transpose ofth column of G, the first
accessed storage nodes are compromised. To see the stosag®evs in G. SinceA4;, for j = 1,2, are symmetric matrices,
complexity of this scheme, let us take a numerical exampl@, A;)” = A;g?. The a symbols stored in the failed node
Consider a [100, 20, 38] MSR code with = 19, B = can then be calculated as

4.18M B, = 1000. The total bits stored in each node

is then 19 x 11 x 1000 = 209000 bits. If a 32-bit CRC
checksum is added to each storage node, the redundancy is
r(n —1)/fam = 32 > 99/209000 ~ 1.5% and the extra  The progressive decoding procedurelinl [16] can be applied
bandwidth for transmitting the CRC checksums is aroung decodingy;,, Yir: Yjas-- - Uy, . First, the helper accesses
rd/pam = 1216/418000 ~ 0.3%. Hence, both redundancy ; storage nodes and decodgs, i, Yj...... Y, , 10

for storage and bandwidth are manageable for lafge obtain ¢ and a symbols by [IR). Then, it verifies the CRC
When 3 is small, we adopt an error-correcting code t@necksum. If the CRC check is passed, the regeneration
encode the-bit CRC checksum. This can improve the storagg gy ccessful; otherwise, two more surviving storage nodes
and bandwidth efficiency. First we select the operating€inibeeq 1o be accessed. Then the helper decodes the received
field GF'(2") such tha™ >n—1. Thenann —~LKIRS . =) 0 1o obtaine and recovern symbols.
code with+” = [r/m’] is used to encode the CRC checksunhe process repeats until sufficient number of correctlesto
Note that this code is different from the RS code used for MSigy4 have been retrieved to recover the failed node. Again, i
data rggeneratlng. In encoding Fhe_CRC checksum OfaStor?ﬁJSctice, when3 > 1, the decoding needs to be performed
node inton — 1 symbols and distributing them to the—1 3 imes to recover3a symbols before verifying the CRC

other storage nodes, extfa — 1)m’ bits are needed on eachcpecksum. The data regenerating algorithm is summarized in
storage node. When the helper accessestorage nodes to Algorithm 2.

repair the failed nodé these nodes also send out the symbols
associated with the CRC checksum for nadeThe helper
then can perform error-erasure decoding to recover the CRAIgorithm 2: Decoding of MSR Codes for Regeneration
checksum. The maximum number of compromised storagebegin

nodes among the accessédodes that can be handled by Assume nodé is failed.

this approach ig(d — k') /2] and the extra bandwidth i&mn’. The helper randomly choosésstorage nodes;

Sincem’ is much smaller tham — 1 andr, the redundancy Each chosen storage node combines its symbols as a
for storage and bandwidth can be reduced. (8 x ) matrix and multiply it byg, in (I1);

The helper collects these resultant vectors as a

(8 x d) matrixY.

The helper obtains the CRC checksum for nede

(9:41)" + (@71 (g; 42)" . (12)

E. Decoding for Regeneration
Let nodei be the failed node to be recovered. During

regeneration, the helper accessesurviving storage nodes, i 4 d;
whered < s < n — 1. Without loss of generality, we assume repeat _ _
that the storage nodes accessed @teji,..., js—1. Every Perform progressive error-erasure decoding on

accessed node takes the inner product betweem $gmbols
and

g, =[1,(a N (a1, ...

where g, can be generated by index and the generator

a, and sends the resultant symbol to the helper. Since the
MSR code is a linear code, the resultant symbols transmitted
Yior Yjrs Yjar---» Yj._., CAN be decoded to the codeward
where

(@ hH1, (11)

c = g;-U-G)
if (n—s)+2e<n—d+1, wheree is the number of errors

among thes resultant symbols. Multiplying: by the inverse
of the firstd columns ofG, i.e., G~1, one can recover

each row inY” to recoverC (error-erasure
decoding performg times);
M = CG~, whereG~! is the inverse of the
first d columns ofG;
Obtain theSa information symbolss, from M
by the method given il {12);

if CRCTest(s) =SUCCESS then

| return s;
else
1414 2;
The helper accesses two more remaining
storage nodes;

Each chosen storage node combines its
symbols as 45 x «) matrix and multiply it
by g, given in [11);
The helper merges the resultant vectors into

Ysxis

g9;,-U until i >n —2;
| return FAIL;

which is equivalent to

gi[A1 A2l =1[g;- A1 g;- As] .




IV. ENCODING AND DECODING OFERROR-CORRECTING
EXACT-REGENERATING CODES FOR THEMBR POINTS

and
(an—l)k

In this section we demonstrate that by selecting the same RS B —

codes as that for MSR codes and designing a proper decoding
procedure, the MBR codes in [10] can be extended to handle

(QO)dfl (al)dfl (anfl)dfl

Byzantine failures. Since the verification procedure for B Note thatG, is a generator matrix of thie:, k] RS code and it

codes is the same as that of MSR codes, it is omitted.

A. Encoding

Let the information sequene@ = [mg, m1,...,mp_1] be
arranged into an information vectdf with size o x d such
that

Uj; = My, fori<j <k
Ujj = Uji = My fork—FlSZSd,lS]Sk s
0 otherwise

wherek; = (i —1)(k+1)—i(i+1)/24+jandks = (i — k —
1)k + k(k+1)/2+ j. In matrix form, we have

[ A AT
=[5 %]

where4; is ak x k matrix, A, a (d — k) x k matrix, 0 is the

(13)

(d—k) x (d—k) zero matrix. BothA; and A, are symmetric.

It is clear thatU has a dimensiod x d (or « x d).

We apply an[n,d] RS code to encode each row Gf Let
pi(z) be the polynomial with all elements ith row of U as its
coefficients. That isp;(x) =
codeword ofp;(z) is thus

[pi(a® =1),pi(a"),....pi(a™ )] . (14)

Recall thata is a generator of7F'(2"). In matrix form, we
have

U-G=C¢,
where
[ 1 1 1 i
a® al a™ !
(GO)Q (al)Q (an—l)Q
G = (ao)k_l (al)k—l (an—l)k—l )
(a())k (al)k (anfl)k
(GO)d—l (al)d—l (an—l)d—l

and C' is the codeword vector with dimensidn x n). G is
called the generator matrix of the,d] RS code.G can be
divided into two sub-matrices as

_ | Gk
o=[ 3]
where
1 1 1
aO al anfl
Gk _ (aO)Q (a1)2 (an—l 2 (15)

>°9-5 uija’. The corresponding

will be used in the decoding process for data-reconstractio

B. Decoding for Data-Reconstruction

The generator polynomial of the RS code encoded by (15)
hasa™*,a" %=1 ... a as roots[[1R]. Hence, the progressive
decoding scheme given ih [16] can be applied to decode the
proposed code if there are errors in the retrieved datakenli
the decoding procedure given [n_1MI-C, where and] RS
decoder is applied, we need &m k] RS decoder for MBR
codes.

Without loss of generality, we assume that the data
collector retrieves encoded symbols fromstorage nodes
4o, Jis--+s Js—1, kB < s < n. Recall thatae = d in MBR.
Hence, the data collector receivésectors where each vector
has s symbols. Collecting the firsk vectors asY;, and the
remainingd — k vectors asty_. From [13), we can view the
codewords in the last — k£ rows of C' as being encoded by
Gy, instead ofG. Hence, the decoding procedure[of k] RS
codes can be applied arn,_, to recover the codewords in the
last d — k rows of C. Let G}, be the firstk columns ofG),
andC,_;, be the recovered codewords in the ldst & rows
of C. Ay in U can be recovered as

Ay =Cuy- Gy (16)
We then calculated? - B and only keep thgoth, jith, ...,
js—1th columns of the resultant matrix ds, and subtracty
from Y}:

Y=Y, - E . (17)

Applying the RS decoding algorithm again dff we can
recoverA; as

A =Gy Gy (18)

CRC checksum is computed on the decoded information
sequence to verify the recovered data. If CRC is passed, the
data reconstruction is successful; otherwise the progeess
decoding procedure is applied, where two more storage nodes
need to be accessed from the remaining storage nodes in
each round until no further errors are detected. The data-
reconstruction algorithm is summarized in Algorithin 3.

C. Decoding for Regeneration

Decoding for regeneration with MBR is very similar to that
with MSR. After obtainingg; - U, we take its transposition.
SinceU is symmetric, we hav&” = U and

Ut-gl =U-g! .

CRC check is performed on affa symbols. If the CRC
check is passed, thBa symbols are the data stored in the
failed node; otherwise, the progressive decoding proeetdur
applied.



TABLE |
EVALUATION OF MSRAND MBR CODES

| I MSR code I MBR code [l
Data-reconstruction Regeneration Data-reconstruction Regeneration
Fault-tolerant capability against erasures n—k n—d n—k n—d
! !
Fault-tolerant capacity against Byzantine faulls | nod | min{| 224 |, [2=E |} ol min{| 24 | [ 9=E |}

2
Security strength under forgery attack min{k, ["=227} — 1 | min{d, [2=Z27} — 1 [| min{k, [2=FF2]} — 1 | min{d, [>=22]} -1

Redundancy ratio on storage (bits) — (”ﬁ’% m Fam
Redundancy ratio on bandwidth (bits) . gz{; = Bﬂ": . 57—’2; = ’”T:L
wherek’ = | .77 | andm’ = [logy(n — 1)]
Algorithm 3: Decoding of MBR Codes for Data- Crash-stop failure:Crash-stop failures can be viewed as
Reconstruction erasure in the codeword. Since at ledshodes need to be
begin available for data-reconstruction, it is easy to show that t
The data collector randomly choosestorage nodes maximum number of crash-stop failures that can be tolerated
and retrieves encoded dafg;; in data-reconstruction is — k. For regeneratiord nodes need
i+ d; to be accessed. Thus, the fault-tolerant capability-igl. Note
repeat that since live nodes all contain correct data, CRC checksum
Perform progressive error-erasure decoding on is also correct.
lastd — k rows inY to recoverC' (error-erasure Byzantine failure:In general, in RS codes, two additional
decoding performs — k times); correct code fragments are needed to correct one erroneous
CalculateA, via (18); code fragments. However, in the case of data regeneration,
CalculateA, - B and obtainy;, via (17); the capability of the helper to obtain the correct CRC check-
Perform progressive error-erasure decodingryn  sum also matters. In the analysis, we assume that the error-
to recover the firsk rows in codeword vector correction code is used in the process to obtain the correct
(error-erasure decoding perforrhgimes); CRC checksum. Data regeneration will fail if the helper aznn
CalculateA; via (I8); : obtain the correct CRC checksum even when the number of
Recover the information sequensdrom A; and  failed nodes is less than the maximum number of faults the
Ag; RS code can handle. Hence, we must take the minimum of
if CRCTest(s) = SUCCESS then the capability of the RS code (in MBR and MSR) and the
| return s; capability to recover the correct CRC checksum. Thus, with
else MSR and MBR code,[25¢] and [25%] erroneous nodes
! <_.Z+2' can be tolerated in data reconstruction. On the other hand,
Retngv_e two more encoded data from . _the fault-tolerant capacity of MSR and MBR code for data
remaining storage nodes and merge them into . T ined 1 der’
s regeneration are botth{LTJ, |55 J}
until 7 >n — 2; B. Security Strength
L return FAIL; In analyzing the security strength, we consider forgery
attacks, where polluters][9], a type of Byzantine attackieys
to disrupt the data-reconstruction and regenerating |ggobg
V. ANALYSIS forging data cooperatively. In other words, collusion aigon

polluters are considered. We want to determine the minimum
In this section, we provide an analytical study of th@umber of polluters to forge the data in data-reconstractio
fault-tolerant capability, security strength, and steraand and regeneration. The security strength is therefore ose le

bandwidth efficiency of the proposed schemes. the number. Forgery in data regeneration is useful when an
attacker only has access to a small set of nodes but throegh th

A. Fault-tolerant capability data regeneration process “pollutes” the data on otheagtor
nodes and thus ultimately leads to valid but erroneous data-

In analyzing the fault-tolerant capability, we consideotw .
. : . reconstruction.
types of failures, namely crash-stop failures and Byzantin . . :
In data-reconstruction, for worst case analysis, we censid

failures. Nodes are assumed to fail independently (as @upo . o
in a coordinated fashion). In both cases, the fault-tolEraﬁnqe security strength such that only one row.ofs modified]

capacity is measured by the maximum number of failures thatp e 1o symmetry irt7, most of the time, making changes on a rowin
the system can handle to remain functional. results in changes on several rows simultaneously.



Let the polluters bey, j1, - - ., jo—1, Who can collude to forge m’ = [log,(n — 1)]. Since each storage node must store the
the information symbols. Suppose thais the forged row in encoded CRC symbols for other- 1 storage nodes, the extra
U. Lety = y+u, whereuw is the real information symbols in storage required for it ign — 1)m’ bits. The encoded data
the row of U. Then, according to the RS encoding procedursymbols stored in each storage nodelisn bits.

we have The helper must obtain the correct CRC checksum for the
failed node to verify the correctness of the recovered data.
Thed storage nodes accessed need to provide their stored data
wherec is the 0rigina| data storage in storage nodes ansl associated with the CRC checksum of the failed node to the
the modified data must be made by the polluters. Let the nufiglper. Since each piece hag bits, the total extra bandwidth
ber of nonzero symbols in is k. Itis clear thath > n—d+1, IS dm'. The total bandwidth to repair théx symbols stored
wheren — d+1 is the minimum Hamming distance of the RSN the failed node is3md.

code, sincev must be a codeword. For worst-case considera-Table[]l summarizes the quantitative results of fault-tater
tion, we assume that = n — d + 1. In order to successfully capability, security strength, and redundancy ratio of &R
forge information symbols, the attacker must compromiged MBR codes.

some storage nodes and make them to store the corresponding

encoded symbols iyG, the codeword corresponding to the VI. RELATED WORK

forged information symbols. If the attacker compromiges . . . .

storage nodes, then when the data collector happens tosac eg{egengratlng cpdes were introduced in the pioneer works
these compromised storage nodes, according to the decogng'mak's et al. in m’. @. In Fhes.e works, the so-calle.d.
procedure, the attack can forge the data successfully.Heet ut-set bound was derived which is the fundamental limit

attacker compromisé < % storage nodes. According the or designing regenerating codes. In these works, the data-
decoding procedure, when—b = n — d+ 1 — b < | 254 | reconstruction and regeneration problems were formulased
) - — 2 1

where LnT_dJ is the error-correction capability of the RS2 multicast network coding proble_m. From the cut-set bounds
code, the decoding algorithm still has chance to decode ttﬁ%tween t_he source and the destmatlon_, the parameters of th
received vector toyG. Taking the smallest value df we regenerating codes were shown to satlﬂ_ly (@), Wh'Ch reveals
have b — (n,gﬁw' Hence, the security strength for data!he tradeoff be_tW(_een storage and repair bandV\_ndth. Those
reconstruction isnin{k, [n,zdﬁ]} — 1in MSR codes. Since pargmeters satisfying the cut-set bound with equality \aése
the [n, k] RS code is used in decoding for MBR codes, thgerlved. . . L

The regeneration codes with parameters satisfying the cut-

security strength for them becomesgn{k, ["‘T’“”]} -1 , X
Next we investigate the forgery attack on regeneratiorcéinSet boqn_d _W'th equahty were proposed IE [30 [4]. [ [3] a
erministic construction of the generating codes with

computing the CRC checksum is a linear operation, thereolgt
putng P — 1 was presented. In[4], the network coding approach was

no need for the attacker to break the CRC checksum for tﬂg q desi h . d Both .
failed node. It only needs to make the forged data with albzef4OPted to design the generating codes. Both constructions

redundant bits. Hence, the security strength for regeioeratacmeved functional regeneration but exact regeneration.
is min{d, [2=4£2]} — 1. Exact regeneration was considered [n [5]-[7]. [0 [5], a
It can be 02bserve that CRC does not increase the secufigA e algorithm was proposed to search for exact—re_gﬁ' gra
strength in forgery attack. By using hash value, the securf/SR codes withd = n —1; however, no systematic con-
strength can be increased since the operation to obtain hagHction method was provided. 1nl[6], the MSR codes with
value is non-linear. In this case, the attacker not only aee,lél =2d=n N 1 were constructed by using the concept of
to obtain the original information data but also can forgsma|nterference ahgnme_nt, ‘,’Vh'Ch was borrowed frc_)m the cdntex
value. Hence, the security strength can be increased tastt |©f wireless communications. A drawback of this approach is

k—1in data-reconstruction and at leaist 1 for regeneratioff. that it operates on a finite field with a large size. [l [7], the
authors provided an explicit method to construct the MBR

C. Redundancy Ratios on Storage and Bandwidth codes withd = n — 1. No computation is required for

CRC checksums incur additional overhead in storage alffSe codes during the regeneration of a failed node. Bxplic
bandwidth consumption. The redundancy incurred for datsonstruction of the MSR codes witlh = k + 1 was also
construction is- bits, the size of CRC checksum. Each inforProvided; however, these codes can perform exact regéorerat
mation sequence is appended with the exthits such that it NIy for a subset of failed storage nodes. S
can be verified after reconstruction. The number of inforamat " [17], the authors proved that exact regeneration is im-
bits ismka — r for MSR codes andn(kd — k(k — 1)/2) —r  POSSible for MSR codes witfn, k,d < 2k — 3] when = 1.
for MBR codes, respectively. For regeneration, we assurk@sed on interference alignment approach, a code coristiuct
that the[n — 1, '] RS code is used to distribute the encode@f@s provided for MSR codes with = d +1, k, d > 2k — 1].

CRC symbols ton — 1 storage nodes, wheig = | = | and !N [10], the explicit constructions for optimal MSR codesttwi
" [n,k,d > 2k — 2] and optimal MBR codes were proposed.

4For regeneration, the security strengthrisx{d, min{k’, [ £=5+21}} - The construction was based on the product of tow matrices:
1 =d — 1 sincek’ is usually less tham. information matrix and encoding matrix. The information

yG = (g +u)G =9G +uG =v +c, (29)



matrix (or its submatrices) is symmetric in order to haveceéxa [8]
regeneration property.

The problem of security on regenerating codes were co
sidered in [[8], [[9]. In [8], the authors considered the secu-
rity problem against eavesdropping and adversarial atack!10l
during the regeneration process. They derived upper bounds
on the maximum amount of information that can be storéti]
safely. An explicit code construction was given fbe=n — 1
in the bandwidth-limited regime. The problem of Byzantinélz]
fault tolerance for regenerating codes was considered]in [R3]
The authors studied the resilience of regenerating codahwh
support multi-repairs. By using collaboration among newr,;
comers (helpers), upper bounds on the resilience capatity o
regenerating codes were derived. Even though our work aﬁg
deals with the Byzantine failures, it does not need to havé
multiple helpers to recover the failures. [16]

The progressive decoding technology for distributed gtera
was first introduced i [16]. The scheme retrieved just ehoug
data from surviving storage nodes to recover the origingl]
data in the presence of crash-stop and Byzantine failures.
The decoding was performs incrementally such that both
communication and computation cost are minimized.

VII. CONCLUSIONS

In this paper, we considered the problem of exact regen-
eration with error correction capability for Byzantine fau
tolerance in distributed storage networks. We showed the
Reed-Solomon codes combined with CRC checksum can be
used for both data-reconstruction and regenerating,ziegli
MSR and MBR in the later case. Progressive decoding can
be applied in both applications to reduce the computation
complexity in presence of erroneous data. Analysis on thk fa
tolerance, security, storage and bandwidth overhead stiais
the proposed schemes are effective without incurring toolmu
overhead.
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