
ar
X

iv
:1

10
8.

38
83

v1
 [

cs
.IT

]
19

 A
ug

 2
01

1

Exact Regenerating Codes for Byzantine Fault
Tolerance in Distributed Storage

Yunghsiang S. Han Rong Zheng Wai Ho Mow
Dept. of Electrical Engineering Dept. of Computer Science Dept. of Electrical and Electronic Engineering

National Taiwan Univ. of Sci. and Tech. University of Houston Hong Kong Univ. of Sci. and Tech.
Taiwan, R.O.C. Houston, TX Hong Kong

E-mail: yshan@mail.ntust.edu.tw E-mail: rzheng@uh.edu E-mail: eewhmow@ust.hk

Abstract—Due to the use of commodity software and hardware,
crash-stop and Byzantine failures are likely to be more prevalent
in today’s large-scale distributed storage systems. Regenerating
codes have been shown to be a more efficient way to disperse
information across multiple nodes and recover crash-stop failures
in the literature. In this paper, we present the design of regen-
eration codes in conjunction with integrity check that allows
exact regeneration of failed nodes and data reconstructionin
presence of Byzantine failures. A progressive decoding mecha-
nism is incorporated in both procedures to leverage computation
performed thus far. The fault-tolerance and security properties
of the schemes are also analyzed.

Index Terms—Network storage, Regenerating code, Byzantine
failures, Reed-Solomon code, Error-detection code

I. I NTRODUCTION

Storage is becoming a commodity due to the emergence
of new storage media and the ever decreasing cost of conven-
tional storage devices. Reliability, on the other hand, continues
to pose challenges in the design of large-scale distributed
systems such as data centers. Today’s data centers operate
on commodity hardware and software, where both crash-
stop and Byzantine failures (as a result of software bugs,
attacks) are likely the norm. To achieve persistent storage, one
common approach is to disperse information pertaining to a
data file (the message) across nodes in a network. For instance,
with (n, k) maximum-distance-separable (MDS) codes such as
Reed-Solomon (RS) codes, data is encoded and stored across
n nodes and, an end user or a data collector can retrieve the
original data file by accessingany k of the storage nodes, a
process referred to asdata reconstruction.

Upon failure of any storage node, data stored in the failed
node needs to be regenerated (recovered) to maintain the
functionality of the system. A straightforward way for data
recovery is to first reconstruct the original data and then
regenerate the data stored in the failed node. However, it is
wasteful to retrieve the entireB symbols of the original file,
just to recover a small fraction of that stored in the failed node.
A more efficient way is to use theregenerating codeswhich
was introduced in the pioneer works by Dimakiset al. in [1],
[2]. A tradeoff can be made between the storage overhead
and the repair bandwidth needed for regeneration. Minimum
Storage Regenerating (MSR) codes minimize first, the amount
of data stored per node, and then the repair bandwidth,

while Minimum Bandwidth Regenerating (MBR) codes carry
out the minimization in the reverse order. The design of
regenerating codes have received much attention in recent
years [3]–[10]. Most notably, Rashiet al. proposed optimal
exact-Regenerating codes using a product-matrix reconstruc-
tion that recover exactly the same stored data of the failed node
(and thus the name exact-regenerating) [10]. Existing work
assumes crash-stop behaviors of storage nodes. However, with
Byzantine failures, the stored data may be tampered resulting
in erroneous data reconstruction and regeneration.

In this paper, we consider the problem of exact regeneration
for Byzantine fault tolerance in distributed storage networks.
Two challenging issues arise when nodes may fail arbitrarily.
First, we need to verify whether the regenerated or recon-
structed data is correct. Second, efficient algorithms are needed
that incrementallyretrieve additional stored data and perform
data-reconstruction and regeneration when errors have been
detected. Our work is inspired by [10] and makes the following
new contributions:

• We present the detailed design of an exact-regenerating
code with error correction capability.1

• We devise a procedure that verifies the correctness of
regenerated/reconstructed data.

• We propose progressive decoding algorithms for data-
reconstruction and regeneration that leverages computa-
tion performed thus far.

The rest of the paper is organized as follows. We give an
overview of regenerating codes and RS codes in Section II to
prepare the readers with necessary background. The design of
error-correcting exact regenerating code for the MSR points
and MBR points are presented in Section III and Section IV,
respectively. Analytical results on the fault tolerance and
security properties of the proposed schemes are given in
Section V. Related work is briefly surveyed in Section VI.
Finally, we conclude the paper in Section VII.

1The encoding process is the same as that given in [10] except that an
explicit encoding matrix is given in this work.

1

http://arxiv.org/abs/1108.3883v1

2

II. PRELIMINARIES

A. Regenerating Codes

Regenerating codes achieve bandwidth efficiency in the
regeneration process by storing additional symbols in each
storage node or accessing more storage nodes. Letα be the
number of symbols over finite fieldGF (q) stored in each
storage node andβ ≤ α the number of symbols downloaded
from each storage during regeneration. To repair the stored
data in the failed node, a helper node accessesd surviving
nodes with the total repair bandwidthdβ. In general, the
total repair bandwidth is much less thanB. A regenerating
code can be used not only to regenerate coded data but also
to reconstruct the original data symbols. Let the number of
storage nodes ben. An [n, k, d] regenerating code requires
at leastk and d surviving nodes to ensure successful data-
reconstruction and regeneration [10], respectively. Clearly,
k ≤ d ≤ n− 1.

The main results given in [2], [3] are the so-called cut-set
bound on the repair bandwidth. It states that any regenerating
code must satisfy the following inequality:

B ≤

k−1
∑

i=0

min{α, (d− i)β} . (1)

Minimizing α in (1) results in a regenerating code with
minimum storage requirement; and minimizingβ results in
that with minimum repair bandwidth. It is impossible to have
minimum values both onα and β concurrently, and thus
there exists a tradeoff between storage and repair bandwidth.
The two extreme points in (1) are referred as the minimum
storage regeneration (MSR) and minimum bandwidth regen-
eration (MBR) points, respectively. The values ofα andβ for
MSR point can be obtained by first minimizingα and then
minimizing β:

α =
B

k

β =
B

k(k − d+ 1)
. (2)

Reversing the order of minimization we haveβ and α for
MBR as

β =
2B

k(2d− k + 1)

α =
2dB

k(2d− k + 1)
. (3)

As defined in [10], an[n, k, d] regenerating code with parame-
ters(α, β,B) is optimal if i) it satisfies the cut-set bound with
equality, and ii) neitherα andβ can be reduced unilaterally
without violating the cut-set bound. Clearly, both MSR and
MBR codes are optimal regenerating codes.

It has been proved that when designing[n, k, d] MSR or
MBR codes, it suffices to consider those withβ = 1 [10].
Throughout this paper, we assume thatβ = 1 for code design.

Hence (2) and (3) become

α = d− k + 1

B = k(d− k + 1) = kα (4)

and

α = d

B = kd− k(k − 1)/2 , (5)

respectively, whenβ = 1.
There are two ways to regenerate data for a failed node. If

the replacement data generated is exactly the same as those
stored in the failed node, we call it theexact regeneration.
If the replacement data generated is only to guarantee the
data-reconstruction and regeneration properties, it is called
functional regeneration. In practice, exact regeneration is more
desired since there is no need to inform each node in the
network regarding the replacement. Through this paper, we
only consider exact regeneration and design exact-regenerating
codes with error-correction capabilities.

B. Reed-Solomon codes

Since Reed-Solomon (RS) codes will be used in the design
of regenerating codes, we briefly describe the encoding and
decoding mechanisms of RS codes next.

RS codes are the most well-known error-correction codes.
They not only can recover data when nodes fail, but also can
guarantee recovery when a subset of nodes are Byzantine. RS
codes operate on symbols ofm bits, where all symbols are
from finite fieldGF (2m). An [n, d] RS code is a linear code,
with parametersn = 2m − 1 andn− d = 2t , wheren is the
total number of symbols in a codeword,d is the total number
of information symbols, andt is the symbol-error-correction
capability of the code.

Encoding: Let the sequence ofd information symbols
in GF (2m) be u = [u0, u1, . . . , ud−1] and u(x) be the
information polynomial ofu represented as2

u(x) = u0 + u1x+ · · ·+ ud−1x
d−1 .

The codeword polynomial,c(x), corresponding tou(x) can
be encoded as

c(x) = u(x)xn−d + (u(x)xn−d mod g(x)) , (6)

whereg(x) is a generator polynomial of the RS code. It is
well-known thatg(x) can be obtained as

g(x) = (x− ab)(x − ab+1) · · · (x− ab+2t−1)

= g0 + g1x+ g2x
2 + · · ·+ g2tx

2t , (7)

wherea is a generator (or a primitive element) inGF (2m), b
an arbitrary integer, andgi ∈ GF (2m). The RS code defined
by (6) is a systematic code, where the information symbols
u0, u1, . . . , ud−1 occur as coefficients (symbols) inc(x).

2We use polynomial and vectorized representations of information symbols,
codewords, received symbols and errors interchangeably inthis work.

3

Fig. 1. Block diagram of RS decoding. Above each block, the corresponding existing algorithms are indicated.

Another encoding method for RS codes is the encoder
proposed by Reed and Solomon [11], where the codeword
c corresponding to the information sequenceu is

c = [u(a0), u(a1), u(a2), · · · , u(an−1)] . (8)

Whenb = 1, the codes generated by (6) and (8) are identical.
In this work, we adopt the later encoding method.

Decoding: The decoding process of RS codes is more
complex. A complete description can be found in [12].

Let r(x) be the received polynomial andr(x) = c(x) +
e(x) + γ(x) = c(x) + λ(x), wheree(x) =

∑n−1
j=0 ejx

j is the
error polynomial,γ(x) =

∑n−1
j=0 γjx

j the erasure polynomial,

andλ(x) =
∑n−1

j=0 λjx
j = e(x)+ γ(x) the errata polynomial.

Note thatg(x) and (hence)c(x) haveαb, αb+1, . . . , αb+2t−1

as roots. This property is used to determine the error locations
and recover the information symbols.

The RS codes are optimal as it provides the largest separa-
tion among code words, and an[n, d] RS code can recover
from any v errors as long asv ≤ ⌊n−d−s

2 ⌋, where s is
the number of erasure (or irretrievable symbols). The basic
procedure of RS decoding is shown in Figure 1. The last
step in this figure is not necessary if a systematic RS code
is applied; otherwise, the last step of the decoding procedure
involves solving a set of linear equations, and can be made
efficient by the use of Vandermonde generator matrices [13].
The decoding that handles both error and erasure is called the
error-erasure decoding.

In GF (2m), addition is equivalent to bit-wise exclusive-
or (XOR), and multiplication is typically implemented with
multiplication tables or discrete logarithm tables. To reduce the
complexity of multiplication, Cauchy Reed-Solomon (CRS)
codes [14] have been proposed to use a different construction
of the generator matrix, and convert multiplications to XOR
operations for erasure. However, CRS codes incur the same
complexity as RS codes for error correction.

III. E NCODING AND DECODING OFERROR-CORRECTING

EXACT-REGENERATINGCODES FOR THEMSR POINTS

In this section, we demonstrate how to perform error cor-
rection on MSR codes designed to handle Byzantine failures
by extending the code construction in [10]. It has been proved
in [10] that an MSR codeC ′ with parameters[n′, k′, d′] for
any 2k′ − 2 ≤ d′ ≤ n′ − 1 can be constructed from an MSR
codeC with parameters[n = n′ + i, k = k′ + i, d = d′ + i],
whered = 2k− 2 and i = d′ − 2k′ + 2. Furthermore, ifC is
linear, so isC ′. Hence, it is sufficient to design an MSR code
for d = 2k − 2. Whend = 2k − 2 we have

α = d− k + 1 = k − 1 = d/2

and

B = kα = α(α + 1) .

We assume that the symbols in data are elements from
GF (2m). Hence, the total data in bits ismB bits for β = 1.

A. Verification for Data-Reconstruction

Since we need to design codes with Byzantine fault toler-
ance it is necessary to perform integrity check after the original
data is reconstructed. Two common verification mechanisms
can be used: CRC and hash function. Both methods add
redundancy to the original data before they are encoded. Here
we adopt CRC since it is simple to implement and requires
less redundancy.

CRC uses a cyclic code (CRC code) such that each informa-
tion sequence can be verified using its generator polynomial
with degreer, where r is the redundant bits added to the
information sequence [12], [15]. The amount of errors that
can be detected by a CRC code is related to the number of
redundant bits. A CRC code withr redundant bitscannot
detect (1

2r)100% portion of errors or more. For example,
when r = 32, the mis-detection error probability is on the
order of 10−10. Since the size of original data is usually
large, the redundancy added by imposing a CRC code is
relatively small. For example, for a[100, 20, 38] MSR code
with α = 19, B = 19 × 20 = 380, we need to operate on
GF (211) such that the total bits for original data are4180. If
r = 32, then only0.77% redundancy is added. Hence, in the
following, we assume that the CRC checksum has been added
to the original data and the resultant size isB symbols.

B. Encoding

We arrange the information sequencem =
[m0,m1, . . . ,mB−1] into an information vectorU with
sizeα× d such that

uij =

{

uji = mk1
for i ≤ j ≤ α

u(j−α)i = mk2
for i+ α ≤ j ≤ 2α

,

wherek1 = (i − 1)(α + 1) − i(i + 1)/2 + j andk2 = (α +
1)(i − 1 + α/2) − i(i + 1)/2 + (j − α). Let U = [A1A2].
From the above construction,Aj ’s are symmetric matrix with
dimensionα× α for j = 1, 2.

In this encoding, each row of for the information vectorU
produces a codeword of lengthn. An [n, d = 2α] RS code is
adopted to construct the MSR code. In particular, for theith
row of U , the corresponding codeword is

[pi(a
0 = 1), pi(a

1), . . . , pi(a
n−1)] , (9)

4

wherepi(x) is a polynomial with all elements in theith row
of U as its coefficients, that is,pi(x) =

∑d−1
j=0 uijx

j , anda is
a generator ofGF (2m). In matrix form, we have

U ·G = C,

where

G =















1 1 · · · 1
a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...
(a0)d−1 (a1)d−1 · · · (an−1)d−1















,

andC is the codeword vector with dimension(α×n). Finally,
the ith column ofC is distributed to storage nodei for 1 ≤
i ≤ n.

The generator matrixG of the RS code can be reformulated
as

G =





































1 1 · · · 1
a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...
(a0)α−1 (a1)α−1 · · · (an−1)α−1

(a0)α1 (a1)α1 · · · (an−1)α1
(a0)αa0 (a1)αa1 · · · (an−1)αan−1

(a0)α(a0)2 (a1)α(a1)2 · · · (an−1)α(an−1)2

...
(a0)α(a0)α−1 (a1)α(a1)α−1 · · · (an−1)α(an−1)α−1





































=

[

Ḡ

Ḡ∆

]

,

where,Ḡ contains the firstα rows inG and∆ is a diagonal
matrix with (a0)α, (a1)α, (a2)α, . . . , (an−1)α as diagonal
elements. It is easy to see that theα symbols stored in storage
nodei is

U ·

[

gT
i

(ai−1)αgT
i

]

= A1g
T
i + (ai−1)αA2g

T
i ,

wheregT
i is the ith column inḠ.

A final remark is that each column inG can be generated
by knowing the index of the column and the generatora.
Therefore, each storage node does not need to store the entire
G to perform exact-regeneration.

C. Decoding for Data-Reconstruction

The generator polynomial of the RS code encoded by (9)
hasan−d, an−d−1, . . . , a as roots [12]. Without loss of gen-
erality, we assume that the data collector retrieves encoded
symbols from k storage nodesj0, j1, . . . , jk−1. First,
the information sequencem is recovered by the procedure
given in [10]. Note that the procedure in [10] requires that
(a0)α, (a1)α, (a2)α, . . . , (an−1)α all be distinct. This can
be guaranteed if this code is overGF (2m) for m ≥ ⌈log2 nα⌉.
If the recovered information sequence does not pass the
CRC, then we need to perform the error-erasure decoding.
In addition to the received encoded symbols fromk storage
nodes, the data collector needs to retrieve the encoded symbols
from d+2− k storage nodes of the remaining storage nodes.

The data collector then performs error-erasure decoding to
obtain C̃, the firstd columns of the codeword vector. Let̂G
be the firstd columns ofG. Then the recovered information
sequence can be obtained from

Ũ = C̃ · Ĝ−1, (10)

where Ĝ−1 is the inverse ofĜ and it always exists. If the
recovered information sequence passes the CRC, it is done;
otherwise, two more symbols need to be retrieved. The data
collector continues the decoding process until it successfully
recover the correct information sequence or no more storage
nodes can be accessed. In each step, the progressive decoding
that we proposed in [16] is applied to reduce the computation
complexity. Note that the RS code used is capable of correcting
up to ⌊(n− d)/2⌋ errors.

The decoding algorithm is summarized in Algorithm 1. Note
that, in practice, Algorithm 1 will be repeatedβ times for each
retrieved symbol whenβ > 1.

Algorithm 1: Decoding of MSR Codes for Data-
Reconstruction
begin

The data collector randomly choosesk storage nodes
and retrieves encoded data,Yα×k;
Perform the procedure given in [10] to recoverm̃;
if CRCTest(m̃) = SUCCESS then

return m̃;
else

Retrieved− k more encoded data from remaining
storage nodes and merge them intoYα×d;
i← d;
while i ≤ n− 2 do

i← i+ 2;
Retrieve two more encoded data from
remaining storage nodes and merge them into
Yα×i;
Perform progressive error-erasure decoding
on each row inY to recoverC̃;
Obtain Ũ by (10) and convert it tom̃;
if CRCTest(m̃) = SUCCESS then

return m̃;

return FAIL;

D. Verification for Regeneration

To verify whether the recovered data are the same as those
stored in the failed node, integrity check is needed. However,
such check should be performed based on information stored
on nodesother thanthe failed node. We consider two mech-
anisms for verification.

In this first scheme, each storage node keeps the CRC
checksums for the restn− 1 storage nodes. When the helper
accessesd surviving storage nodes, it also asks for the CRC
checksums for the failed node from them. Using the majority
vote on all receiving CRC checksums, the helper can obtain

5

the correct CRC checksum if no more than⌊(d − 1)/2⌋
accessed storage nodes are compromised. To see the storage
complexity of this scheme, let us take a numerical example.
Consider a [100, 20, 38] MSR code withα = 19, B =
4.18MB,β = 1000. The total bits stored in each node
is then 19 × 11 × 1000 = 209000 bits. If a 32-bit CRC
checksum is added to each storage node, the redundancy is
r(n − 1)/βαm = 32 × 99/209000 ≈ 1.5% and the extra
bandwidth for transmitting the CRC checksums is around
rd/βαm = 1216/418000 ≈ 0.3%. Hence, both redundancy
for storage and bandwidth are manageable for largeβ’s.

When β is small, we adopt an error-correcting code to
encode ther-bit CRC checksum. This can improve the storage
and bandwidth efficiency. First we select the operating finite
field GF (2m

′

) such that2m
′

≥ n− 1. Then an[n− 1, k′] RS
code withk′ = ⌈r/m′⌉ is used to encode the CRC checksum.
Note that this code is different from the RS code used for MSR
data regenerating. In encoding the CRC checksum of a storage
node inton − 1 symbols and distributing them to then − 1
other storage nodes, extra(n− 1)m′ bits are needed on each
storage node. When the helper accessesd storage nodes to
repair the failed nodei, these nodes also send out the symbols
associated with the CRC checksum for nodei. The helper
then can perform error-erasure decoding to recover the CRC
checksum. The maximum number of compromised storage
nodes among the accessedd nodes that can be handled by
this approach is⌊(d− k′)/2⌋ and the extra bandwidth isdm′.
Sincem′ is much smaller thann − 1 and r, the redundancy
for storage and bandwidth can be reduced.

E. Decoding for Regeneration

Let node i be the failed node to be recovered. During
regeneration, the helper accessess surviving storage nodes,
whered ≤ s ≤ n− 1. Without loss of generality, we assume
that the storage nodes accessed arej0, j1,. . ., js−1. Every
accessed node takes the inner product between itsα symbols
and

gi = [1, (ai−1)1, (ai−1)2, . . . , (ai−1)α−1] , (11)

where gi can be generated by indexi and the generator
a, and sends the resultant symbol to the helper. Since the
MSR code is a linear code, the resultant symbols transmitted,
yj0 , yj1 , yj2 , . . . , yjs−1

, can be decoded to the codewordc,
where

c = gi · (U ·G)

= (gi · U) ·G ,

if (n− s) + 2e < n− d+ 1, wheree is the number of errors
among thes resultant symbols. Multiplyingc by the inverse
of the firstd columns ofG, i.e., Ĝ−1, one can recover

gi · U

which is equivalent to

gi · [A1 A2] = [gi ·A1 gi · A2] .

Recall thatgi is the transpose ofith column of Ḡ, the first
α rows inG. SinceAj , for j = 1, 2, are symmetric matrices,
(giAj)

T = Ajg
T
i . Theα symbols stored in the failed nodei

can then be calculated as

(giA1)
T + (ai−1)α(giA2)

T . (12)

The progressive decoding procedure in [16] can be applied
in decodingyj0 , yj1 , yj2 , . . . , yjs−1

. First, the helper accesses
d storage nodes and decodesyj0 , yj1 , yj2 , . . . , yjd−1

to
obtain c and α symbols by (12). Then, it verifies the CRC
checksum. If the CRC check is passed, the regeneration
is successful; otherwise, two more surviving storage nodes
need to be accessed. Then the helper decodes the received
yj0 , yj1 , yj2 , . . . , yjd+1

to obtainc and recoverα symbols.
The process repeats until sufficient number of correctly stored
data have been retrieved to recover the failed node. Again, in
practice, whenβ > 1, the decoding needs to be performed
β times to recoverβα symbols before verifying the CRC
checksum. The data regenerating algorithm is summarized in
Algorithm 2.

Algorithm 2: Decoding of MSR Codes for Regeneration

begin
Assume nodei is failed.
The helper randomly choosesd storage nodes;
Each chosen storage node combines its symbols as a
(β × α) matrix and multiply it bygi in (11);
The helper collects these resultant vectors as a
(β × d) matrix Y .
The helper obtains the CRC checksum for nodei;
i← d;
repeat

Perform progressive error-erasure decoding on
each row inY to recoverC̃ (error-erasure
decoding performsβ times);
M = C̃Ĝ−1, whereĜ−1 is the inverse of the
first d columns ofG;
Obtain theβα information symbols,s, from M
by the method given in (12);
if CRCTest(s) = SUCCESS then

return s;
else

i← i+ 2;
The helper accesses two more remaining
storage nodes;
Each chosen storage node combines its
symbols as a(β × α) matrix and multiply it
by gi given in (11);
The helper merges the resultant vectors into
Yβ×i;

until i ≥ n− 2;
return FAIL;

6

IV. ENCODING AND DECODING OFERROR-CORRECTING

EXACT-REGENERATINGCODES FOR THEMBR POINTS

In this section we demonstrate that by selecting the same RS
codes as that for MSR codes and designing a proper decoding
procedure, the MBR codes in [10] can be extended to handle
Byzantine failures. Since the verification procedure for MBR
codes is the same as that of MSR codes, it is omitted.

A. Encoding

Let the information sequencem = [m0,m1, . . . ,mB−1] be
arranged into an information vectorU with sizeα × d such
that

uij =







uji = mk1
for i ≤ j ≤ k

uji = mk2
for k + 1 ≤ i ≤ d, 1 ≤ j ≤ k

0 otherwise
,

wherek1 = (i− 1)(k+1)− i(i+1)/2+ j andk2 = (i− k−
1)k + k(k + 1)/2 + j. In matrix form, we have

U =

[

A1 AT
2

A2 0

]

, (13)

whereA1 is ak× k matrix,A2 a (d− k)× k matrix,0 is the
(d−k)× (d−k) zero matrix. BothA1 andA2 are symmetric.
It is clear thatU has a dimensiond× d (or α× d).

We apply an[n, d] RS code to encode each row ofU . Let
pi(x) be the polynomial with all elements inith row ofU as its
coefficients. That is,pi(x) =

∑d−1
j=0 uijx

j . The corresponding
codeword ofpi(x) is thus

[pi(a
0 = 1), pi(a

1), . . . , pi(a
n−1)] . (14)

Recall thata is a generator ofGF (2m). In matrix form, we
have

U ·G = C,

where

G =





























1 1 · · · 1
a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...
(a0)k−1 (a1)k−1 · · · (an−1)k−1

(a0)k (a1)k · · · (an−1)k

...
(a0)d−1 (a1)d−1 · · · (an−1)d−1





























,

andC is the codeword vector with dimension(α × n). G is
called the generator matrix of the[n, d] RS code.G can be
divided into two sub-matrices as

G =

[

Gk

B

]

,

where

Gk =















1 1 · · · 1
a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...
(a0)k−1 (a1)k−1 · · · (an−1)k−1















(15)

and

B =







(a0)k (a1)k · · · (an−1)k

...
(a0)d−1 (a1)d−1 · · · (an−1)d−1






.

Note thatGk is a generator matrix of the[n, k] RS code and it
will be used in the decoding process for data-reconstruction.

B. Decoding for Data-Reconstruction

The generator polynomial of the RS code encoded by (15)
hasan−k, an−k−1, . . . , a as roots [12]. Hence, the progressive
decoding scheme given in [16] can be applied to decode the
proposed code if there are errors in the retrieved data. Unlike
the decoding procedure given in III-C, where an[n, d] RS
decoder is applied, we need an[n, k] RS decoder for MBR
codes.

Without loss of generality, we assume that the data
collector retrieves encoded symbols froms storage nodes
j0, j1, . . . , js−1, k ≤ s ≤ n. Recall thatα = d in MBR.
Hence, the data collector receivesd vectors where each vector
has s symbols. Collecting the firstk vectors asYk and the
remainingd− k vectors asYd−k. From (13), we can view the
codewords in the lastd − k rows of C as being encoded by
Gk instead ofG. Hence, the decoding procedure of[n, k] RS
codes can be applied onYd−k to recover the codewords in the
last d − k rows of C. Let Ĝk be the firstk columns ofGk

and C̃d−k be the recovered codewords in the lastd− k rows
of C. A2 in U can be recovered as

Ã2 = C̃d−k · Ĝk

−1
. (16)

We then calculateÃT
2 · B and only keep thej0th, j1th, . . .,

js−1th columns of the resultant matrix asE, and subtractE
from Yk:

Y ′

k = Yk − E . (17)

Applying the RS decoding algorithm again onY ′

k we can
recoverA1 as

Ã1 = C̃k · Ĝk

−1
. (18)

CRC checksum is computed on the decoded information
sequence to verify the recovered data. If CRC is passed, the
data reconstruction is successful; otherwise the progressive
decoding procedure is applied, where two more storage nodes
need to be accessed from the remaining storage nodes in
each round until no further errors are detected. The data-
reconstruction algorithm is summarized in Algorithm 3.

C. Decoding for Regeneration

Decoding for regeneration with MBR is very similar to that
with MSR. After obtaininggi · U , we take its transposition.
SinceU is symmetric, we haveUT = U and

UT · gTi = U · gTi .

CRC check is performed on allβα symbols. If the CRC
check is passed, theβα symbols are the data stored in the
failed node; otherwise, the progressive decoding procedure is
applied.

7

TABLE I
EVALUATION OF MSR AND MBR CODES

MSR code MBR code

Data-reconstruction Regeneration Data-reconstruction Regeneration
Fault-tolerant capability against erasures n− k n− d n− k n− d

Fault-tolerant capacity against Byzantine faults ⌊n−d
2

⌋ min{⌊n−d
2

⌋, ⌊ d−k′

2
⌋} ⌊n−k

2
⌋ min{⌊n−d

2
⌋, ⌊ d−k′

2
⌋}

Security strength under forgery attack min{k, ⌈n−d+2
2

⌉} − 1 min{d, ⌈n−d+2
2

⌉} − 1 min{k, ⌈n−k+2
2

⌉} − 1 min{d, ⌈n−d+2
2

⌉} − 1

Redundancy ratio on storage (bits) r
mkα−r

(n−1)m′

βαm
r

m(kd−k(k−1)/2)−r
(n−1)m′

βαm

Redundancy ratio on bandwidth (bits) · dm′

βmd
= m′

βm
· dm′

βmd
= m′

βm

wherek′ = ⌊ r
m′

⌋ andm′ = ⌈log2(n− 1)⌉

Algorithm 3: Decoding of MBR Codes for Data-
Reconstruction
begin

The data collector randomly choosesk storage nodes
and retrieves encoded data,Yd×k;
i← d;
repeat

Perform progressive error-erasure decoding on
last d− k rows in Y to recoverC̃ (error-erasure
decoding performsd− k times);
CalculateÃ2 via (16);
CalculateÃ2 · B and obtainY ′

k via (17);
Perform progressive error-erasure decoding onY ′

k

to recover the firstk rows in codeword vector
(error-erasure decoding performsk times);
CalculateÃ1 via (18);
Recover the information sequences from Ã1 and
Ã2;
if CRCTest(s) = SUCCESS then

return s;
else

i← i+ 2;
Retrieve two more encoded data from
remaining storage nodes and merge them into
Yd×i;

until i ≥ n− 2;
return FAIL;

V. A NALYSIS

In this section, we provide an analytical study of the
fault-tolerant capability, security strength, and storage and
bandwidth efficiency of the proposed schemes.

A. Fault-tolerant capability

In analyzing the fault-tolerant capability, we consider two
types of failures, namely crash-stop failures and Byzantine
failures. Nodes are assumed to fail independently (as opposed
in a coordinated fashion). In both cases, the fault-tolerant
capacity is measured by the maximum number of failures that
the system can handle to remain functional.

Crash-stop failure:Crash-stop failures can be viewed as
erasure in the codeword. Since at leastk nodes need to be
available for data-reconstruction, it is easy to show that the
maximum number of crash-stop failures that can be tolerated
in data-reconstruction isn−k. For regeneration,d nodes need
to be accessed. Thus, the fault-tolerant capability isn−d. Note
that since live nodes all contain correct data, CRC checksum
is also correct.

Byzantine failure:In general, in RS codes, two additional
correct code fragments are needed to correct one erroneous
code fragments. However, in the case of data regeneration,
the capability of the helper to obtain the correct CRC check-
sum also matters. In the analysis, we assume that the error-
correction code is used in the process to obtain the correct
CRC checksum. Data regeneration will fail if the helper cannot
obtain the correct CRC checksum even when the number of
failed nodes is less than the maximum number of faults the
RS code can handle. Hence, we must take the minimum of
the capability of the RS code (in MBR and MSR) and the
capability to recover the correct CRC checksum. Thus, with
MSR and MBR code,⌊n−d

2 ⌋ and ⌊n−k
2 ⌋ erroneous nodes

can be tolerated in data reconstruction. On the other hand,
the fault-tolerant capacity of MSR and MBR code for data
regeneration are bothmin

{

⌊n−d
2 ⌋, ⌊

d−k′

2 ⌋
}

.

B. Security Strength

In analyzing the security strength, we consider forgery
attacks, where polluters [9], a type of Byzantine attackers, try
to disrupt the data-reconstruction and regenerating process by
forging data cooperatively. In other words, collusion among
polluters are considered. We want to determine the minimum
number of polluters to forge the data in data-reconstruction
and regeneration. The security strength is therefore one less
the number. Forgery in data regeneration is useful when an
attacker only has access to a small set of nodes but through the
data regeneration process “pollutes” the data on other storage
nodes and thus ultimately leads to valid but erroneous data-
reconstruction.

In data-reconstruction, for worst case analysis, we consider
the security strength such that only one row ofU is modified.3

3Due to symmetry inU , most of the time, making changes on a row inU

results in changes on several rows simultaneously.

8

Let the polluters bej0, j1, . . . , jv−1, who can collude to forge
the information symbols. Suppose thaty is the forged row in
U . Let ỹ = y+u, whereu is the real information symbols in
the row ofU . Then, according to the RS encoding procedure,
we have

yG = (ỹ + u)G = ỹG+ uG = v + c, (19)

wherec is the original data storage in storage nodes andv is
the modified data must be made by the polluters. Let the num-
ber of nonzero symbols inv is h. It is clear thath ≥ n−d+1,
wheren−d+1 is the minimum Hamming distance of the RS
code, sincev must be a codeword. For worst-case considera-
tion, we assume thath = n− d+ 1. In order to successfully
forge information symbols, the attacker must compromise
some storage nodes and make them to store the corresponding
encoded symbols inyG, the codeword corresponding to the
forged information symbols. If the attacker compromisesk
storage nodes, then when the data collector happens to access
these compromised storage nodes, according to the decoding
procedure, the attack can forge the data successfully. Let the
attacker compromiseb < k storage nodes. According the
decoding procedure, whenh − b = n − d + 1 − b ≤ ⌊n−d

2 ⌋,
where ⌊n−d

2 ⌋ is the error-correction capability of the RS
code, the decoding algorithm still has chance to decode the
received vector toyG. Taking the smallest value ofb we
have b = ⌈n−d+2

2 ⌉. Hence, the security strength for data-
reconstruction ismin{k, ⌈n−d+2

2 ⌉} − 1 in MSR codes. Since
the [n, k] RS code is used in decoding for MBR codes, the
security strength for them becomesmin{k, ⌈n−k+2

2 ⌉} − 1.
Next we investigate the forgery attack on regeneration. Since

computing the CRC checksum is a linear operation, there is
no need for the attacker to break the CRC checksum for the
failed node. It only needs to make the forged data with all zero
redundant bits. Hence, the security strength for regeneration
is min{d, ⌈n−d+2

2 ⌉} − 1.
It can be observe that CRC does not increase the security

strength in forgery attack. By using hash value, the security
strength can be increased since the operation to obtain hash
value is non-linear. In this case, the attacker not only needs
to obtain the original information data but also can forge hash
value. Hence, the security strength can be increased to at least
k−1 in data-reconstruction and at leastd−1 for regeneration.4

C. Redundancy Ratios on Storage and Bandwidth

CRC checksums incur additional overhead in storage and
bandwidth consumption. The redundancy incurred for data-
construction isr bits, the size of CRC checksum. Each infor-
mation sequence is appended with the extrar bits such that it
can be verified after reconstruction. The number of information
bits ismkα− r for MSR codes andm(kd− k(k− 1)/2)− r
for MBR codes, respectively. For regeneration, we assume
that the[n− 1, k′] RS code is used to distribute the encoded
CRC symbols ton − 1 storage nodes, wherek′ = ⌊ r

m′
⌋ and

4For regeneration, the security strength ismax{d,min{k′, ⌈ d−k′+2
2

⌉}}−
1 = d− 1 sincek′ is usually less thand.

m′ = ⌈log2(n − 1)⌉. Since each storage node must store the
encoded CRC symbols for othern−1 storage nodes, the extra
storage required for it is(n − 1)m′ bits. The encoded data
symbols stored in each storage node isβαm bits.

The helper must obtain the correct CRC checksum for the
failed node to verify the correctness of the recovered data.
Thed storage nodes accessed need to provide their stored data
associated with the CRC checksum of the failed node to the
helper. Since each piece hasm′ bits, the total extra bandwidth
is dm′. The total bandwidth to repair theβα symbols stored
in the failed node isβmd.

Table I summarizes the quantitative results of fault-tolerate
capability, security strength, and redundancy ratio of theMSR
and MBR codes.

VI. RELATED WORK

Regenerating codes were introduced in the pioneer works
by Dimakis et al. in [1], [2]. In these works, the so-called
cut-set bound was derived which is the fundamental limit
for designing regenerating codes. In these works, the data-
reconstruction and regeneration problems were formulatedas
a multicast network coding problem. From the cut-set bounds
between the source and the destination, the parameters of the
regenerating codes were shown to satisfy (1), which reveals
the tradeoff between storage and repair bandwidth. Those
parameters satisfying the cut-set bound with equality werealso
derived.

The regeneration codes with parameters satisfying the cut-
set bound with equality were proposed in [3], [4]. In [3] a
deterministic construction of the generating codes withd =
n− 1 was presented. In [4], the network coding approach was
adopted to design the generating codes. Both constructions
achieved functional regeneration but exact regeneration.

Exact regeneration was considered in [5]–[7]. In [5], a
search algorithm was proposed to search for exact-regenerating
MSR codes withd = n − 1; however, no systematic con-
struction method was provided. In [6], the MSR codes with
k = 2, d = n − 1 were constructed by using the concept of
interference alignment, which was borrowed from the context
of wireless communications. A drawback of this approach is
that it operates on a finite field with a large size. In [7], the
authors provided an explicit method to construct the MBR
codes with d = n − 1. No computation is required for
these codes during the regeneration of a failed node. Explicit
construction of the MSR codes withd = k + 1 was also
provided; however, these codes can perform exact regeneration
only for a subset of failed storage nodes.

In [17], the authors proved that exact regeneration is im-
possible for MSR codes with[n, k, d < 2k − 3] whenβ = 1.
Based on interference alignment approach, a code construction
was provided for MSR codes with[n = d+1, k, d ≥ 2k− 1].
In [10], the explicit constructions for optimal MSR codes with
[n, k, d ≥ 2k − 2] and optimal MBR codes were proposed.
The construction was based on the product of tow matrices:
information matrix and encoding matrix. The information

9

matrix (or its submatrices) is symmetric in order to have exact-
regeneration property.

The problem of security on regenerating codes were con-
sidered in [8], [9]. In [8], the authors considered the secu-
rity problem against eavesdropping and adversarial attackers
during the regeneration process. They derived upper bounds
on the maximum amount of information that can be stored
safely. An explicit code construction was given ford = n− 1
in the bandwidth-limited regime. The problem of Byzantine
fault tolerance for regenerating codes was considered in [9].
The authors studied the resilience of regenerating codes which
support multi-repairs. By using collaboration among new-
comers (helpers), upper bounds on the resilience capacity of
regenerating codes were derived. Even though our work also
deals with the Byzantine failures, it does not need to have
multiple helpers to recover the failures.

The progressive decoding technology for distributed storage
was first introduced in [16]. The scheme retrieved just enough
data from surviving storage nodes to recover the original
data in the presence of crash-stop and Byzantine failures.
The decoding was performs incrementally such that both
communication and computation cost are minimized.

VII. C ONCLUSIONS

In this paper, we considered the problem of exact regen-
eration with error correction capability for Byzantine fault
tolerance in distributed storage networks. We showed the
Reed-Solomon codes combined with CRC checksum can be
used for both data-reconstruction and regenerating, realizing
MSR and MBR in the later case. Progressive decoding can
be applied in both applications to reduce the computation
complexity in presence of erroneous data. Analysis on the fault
tolerance, security, storage and bandwidth overhead showsthat
the proposed schemes are effective without incurring too much
overhead.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” inProc. of 26th IEEE
International Conference on Computer Communications (INFOCOM),
Anchorage, Alaska, May 2007, pp. 2000–2008.

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran, “Network coding for distributed storage systems,”IEEE Trans.
Inform. Theory, vol. 56, pp. 4539 – 4551, September 2010.

[3] Y. Wu, A. G. Dimakis, and K. Ramchandran, “Deterministicregen-
erating codes for distributed storage,” inProc. of 45th Annual Aller-
ton Conference on Control, Computing, and Communication, Urbana-
Champaign, Illinois, September 2007.

[4] Y. Wu, “Existence and construction of capacity-achieving network codes
for distributed storage,”IEEE Journal on Selected Areas in Communi-
cations, vol. 28, pp. 277 – 288, February 2010.

[5] D. F. Cullina, “Searching for minimum storage regenerating codes,”
California Institute of Technology Senior Thesis, 2009.

[6] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” inProc. IEEE International
Symposium on Information Theory, Seoul, Korea, July 2009, pp. 2276–
2280.

[7] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit
construction of optimal exact regenerating codes for distributed storage,”
in Proc. of 47th Annual Allerton Conference on Control, Computing,
and Communication, Urbana-Champaign, Illinois, September 2009, pp.
1243–1249.

[8] S. Pawar, S. E. Rouayheb, and K. Ramchandran, “Securing dynamic dis-
tributed storage systems against eavesdropping and adversarial attacks,”
arXiv:1009.2556v2 [cs.IT] 27 Apr 2011, 2011.

[9] F. Oggier and A. Datta, “Byzantine fault tolerance of regenerating
codes,” arXiv:1106.2275v1 [cs.DC] 12 Jun 2011, 2011.

[10] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction,” arXiv:1005.4178v2 [cs.IT] 20 Jan 2011, 2011.

[11] I. S. Reed and G. Solomon, “Polynomial codes over certain finite field,”
J. Soc. Indust. and Appl. Math.(SIAM), vol. 8 (2), pp. 300 – 304, 1960.

[12] T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

[13] H. William, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C: The art of scientific computing. Cambridge university
press New York, NY, USA, 1988.

[14] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zucker-
man, “An XOR-based erasure-resilient coding scheme,” ICSITechnical
Report TR-95-048, 1995.

[15] I. S. Reed and X. Chen,Error-Control Coding for Data Networks.
Boston, MA: Kluwer Academic, 1999.

[16] Y. S. Han, S. Omiwade, and R. Zheng, “Survivable distributed storage
with progressive decoding,” inProc. of the 29th Conference of the IEEE
Communications Society (Infocom ’10)(Mini-conference), San Diego,
CA, March 15-19 2010.

[17] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,“Interfer-
ence alignment in regenerating codes for distributed storage: Necessity
and code constructions,” arXiv:1005.1634v2[cs.IT] 13 Sep2010, 2010.

http://arxiv.org/abs/1009.2556
http://arxiv.org/abs/1106.2275
http://arxiv.org/abs/1005.4178
http://arxiv.org/abs/1005.1634

	I Introduction
	II Preliminaries
	II-A Regenerating Codes
	II-B Reed-Solomon codes

	III Encoding and Decoding of Error-Correcting Exact-Regenerating Codes for the MSR Points
	III-A Verification for Data-Reconstruction
	III-B Encoding
	III-C Decoding for Data-Reconstruction
	III-D Verification for Regeneration
	III-E Decoding for Regeneration

	IV Encoding and Decoding of Error-Correcting Exact-Regenerating Codes for the MBR Points
	IV-A Encoding
	IV-B Decoding for Data-Reconstruction
	IV-C Decoding for Regeneration

	V Analysis
	V-A Fault-tolerant capability
	V-B Security Strength
	V-C Redundancy Ratios on Storage and Bandwidth

	VI Related Work
	VII Conclusions
	References

