
1

Outage Probability in Arbitrarily-Shaped Finite
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Abstract—This paper analyzes the outage performance in
finite wireless networks. Unlike most prior works, which either
assumed a specific network shape or considered a special location
of the reference receiver, we propose two general frameworks for
analytically computing the outage probability at any arbitrary
location of an arbitrarily-shaped finite wireless network: (i) a
moment generating function-based framework which is based on
the numerical inversion of the Laplace transform of a cumulative
distribution and (ii) a reference link power gain-based framework
which exploits the distribution of the fading power gain between
the reference transmitter and receiver. The outage probability
is spatially averaged over both the fading distribution and the
possible locations of the interferers. The boundary effects are ac-
curately accounted for using the probability distribution function
of the distance of a random node from the reference receiver.
For the case of the node locations modeled by a Binomial point
process and Nakagami-m fading channel, we demonstrate the use
of the proposed frameworks to evaluate the outage probability at
any location inside either a disk or polygon region. The analysis
illustrates the location dependent performance in finite wireless
networks and highlights the importance of accurately modeling
the boundary effects.

Index Terms—Finite wireless networks, outage probability,
Binomial point process, distance distributions, boundary effects.

I. INTRODUCTION

A. Motivation

Outage probability is an important performance metric
for wireless networks operating over fading channels [1].
It is commonly defined as the probability that the signal-
to-interference-plus-noise ratio (SINR) drops below a given
threshold. The analysis of the outage probability and inter-
ference in wireless networks has received much attention
recently [2]–[9]. For the sake of analytical convenience and
tractability, all the aforementioned studies and many references
therein assumed infinitely large wireless networks and often
used a homogeneous Poisson point process (PPP) as the under-
lying model for the spatial node distribution. A homogeneous
PPP is stationary i.e., the node distribution is invariant under
translation. This gives rise to location-independent perfor-
mance, i.e., statistically the network characteristics (such as
mean aggregate interference and average outage probability)
as seen from a node’s perspective are the same for all nodes.
Mathematical tools from stochastic geometry have been ap-
plied to obtain analytical expressions for the outage probability
in infinitely large wireless networks [1], [7], [8]. The outage
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analysis in infinite wireless networks has also been extended
to wireless networks with the Poisson cluster process [3],
[7], [10], as well as to coexisting networks sharing the same
frequency spectrum [11]–[14].

In practice, many real-world wireless networks comprise a
finite number of nodes distributed at random inside a given
finite region. The boundary effect of finite networks gives
rise to non-stationary location-dependent performance, i.e., the
nodes located close to the physical boundaries of the wireless
network experience different network characteristics (such as
mean aggregate interference and average outage probability) as
compared to the nodes located near the center of the network.
As a result, the modeling and performance analysis of finite
wireless networks requires different approaches as opposed
to infinite wireless networks. For example, when a finite
number of nodes are independently and uniformly distributed
(i.u.d.) inside a finite network, a Binomial point process (BPP),
rather than a PPP, provides an accurate model for the spatial
node distribution [15], [16]. Unlike infinite wireless networks,
deriving general results on the outage probability in finite
wireless networks is a very difficult task because the outage
performance depends strongly on the shape of the network
region as well as the location of the reference receiver. In this
work, we would like to investigate whether there exist general
frameworks that provide easy-to-follow procedures to derive
the outage probability at an arbitrary location in an arbitrarily-
shaped finite wireless network.

B. Related work

Since it is difficult to derive general results on the outage
probability in arbitrarily-shaped finite wireless networks, most
prior works focused on a specific shape (such as disk) and
computed the outage probability at a specific location (such
as the center of the network region). A few recent studies pre-
sented outage characterizations at the center of a BPP network
with more general shapes [15], [17], [18]. Specifically, the
analytical expression for the moment generating function of
the aggregate interference seen at the center of a BPP network
was presented in [17]. The results were extended for the case
of spatial multiplexing with the maximal ratio combining and
zero forcing schemes in [18]. Using the probability distribution
function (PDF) of the nearest neighbor in a BPP, a lower bound
on the outage probability at the center of the wireless network
for a simple path loss model was computed in [15]. The
exact closed-form outage probability in a class of networks
with isotropic node distribution (i.e., the node distribution
is invariant under rotation) was derived in [19]. For finite
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networks, the results in [19] can only be applied to very limited
cases preserving the isotropic node distribution, such as a
disk-shaped network. The outage probability at an arbitrary
location of an arbitrarily-shaped finite wireless network was
studied in [20]. This work focused on deriving closed-form
expressions for the conditional outage probability, which is
conditioned on the locations of all the interfering nodes in the
network. For the (unconditional) outage probability averaged
over the spatial distribution of nodes, the authors in [20]
presented the analytical result for the special case of an
annular-shaped network with the reference receiver at the
center. For other shapes and receiver locations, the authors
in [20] suggested the use of Monte Carlo simulations to
compute the outage probability. Therefore, it is still largely
an open research problem to find general frameworks for
deriving the outage probability at an arbitrary location of a
finite wireless network with an arbitrary shape.

C. Contributions

In this paper, we focus on the outage probability analysis for
a reference transmitter-receiver link in the presence of M in-
terferers and additive white Gaussian noise in a finite wireless
network. We present analytical frameworks for computing the
outage probability at an arbitrary location in an arbitrarily-
shaped finite wireless network. The outage probability is
spatially averaged over both the fading distribution and the
possible locations of the interferers. The spatial averaging
means that the outage probability is not tied to a particular
realization of the network and the channel conditions. Specif-
ically, we make the following contributions in the paper:
• We propose two general frameworks for the exact calcu-

lation of the outage probability in arbitrarily-shaped finite
wireless networks in which the reference receiver can be
located anywhere.

– The first framework, named the moment generating
function-based (MGF-based) framework, is based on
the numerical inversion of the Laplace transform
of the cumulative distribution function (CDF) of an
appropriately defined random variable (related to the
SINR at the reference receiver). It is inspired from
the mathematical techniques developed in [21], [22]
and is valid for any spatial node distribution and
any fading channel distribution. To the best of our
knowledge, this is the first time that such an approach
has been applied in the context of finite wireless
networks.

– The second framework, named the reference link
power gain-based (RLPG-based) framework, exploits
the distribution of the fading power gain between the
reference transmitter and receiver. It is based on the
combination and generalization of the frameworks
proposed in [17], [20] and is valid for any spatial
node distribution and a general class of fading chan-
nel distribution proposed in [23].

• In order to demonstrate the use of the proposed frame-
works, we consider the case where the nodes are inde-
pendently and uniformly distributed in the finite wireless

network, with node locations modeled by a uniform BPP.
The fading channels between all links are assumed to be
independently and identically distributed (i.i.d.) according
to a Nakagami-m distribution. We use the probability
distribution function of the distance of a random node
from the reference receiver in uniform BPP networks [16]
to accurately capture the boundary effects in the two
frameworks. A summary of the main outage probability
results in this paper is shown in Table I.

– We demonstrate the use of the two frameworks in
evaluating the outage probability for the important
case of a reference receiver located anywhere in
a disk region. We show that the known outage
probability results in the literature for the disk region
arise as special cases in our two frameworks.

– We further consider the case of an arbitrary located
reference receiver in a convex polygon region and
present an algorithm for accurately computing the
outage probability. This fundamentally extends the
prior work dealing with the outage probability anal-
ysis in finite wireless networks.

– We show that the impact of boundary effects in
finite wireless networks is location dependent and
is enhanced by an increase in the m0 = m value
for Nakagami-m fading channels or an increase in
the path-loss exponent. We also show that due to
the boundary effects, the outage probability using
PPP model does not provide any meaningful bounds
for the outage probability in an arbitrarily-shaped
finite region. This highlights the importance of the
proposed frameworks, which allow accurate outage
probability computation for arbitrarily-shaped finite
wireless networks.

D. Notation and Paper Organization

The following notation is used in this paper. Pr(·) indicates
the probability measure and E{·} denotes the expectation
operator. i is the imaginary number and Re{·} denotes the real
part of a complex-valued number. |A| denotes the area of an
arbitrarily-shaped finite wireless network region A. Γ(x) =∫∞
0
tx−1 exp(−t)dt and Γ(a, x) =

∫∞
a
tx−1 exp(−t)dt are

the complete gamma function and incomplete upper gamma
functions, respectively [24]. 2F1 (·, ·, ·, ·) is the Gaussian or
ordinary hypergeometric function [24]. fZ(z) and FZ(z)
denotes the probability distribution function and the cumula-
tive distribution function of a random variable Z. LZ(s) =
LfZ(z)(s) = E{exp(−sZ)} denotes the Laplace transform
of the probability distribution function fZ(z). LFZ(z)(s) =
LfZ(z)(s)/s = LZ(s)/s denotes the Laplace transform of
the cumulative distribution function of the random variable
Z. Table II summarizes the main mathematical symbols and
random variables (RVs) used in this paper.

The remainder of the paper is organised as follows: The
system model and assumptions are presented in Section II.
The proposed general frameworks are described in detail in
Section III. For the case of the node locations modeled by
a Binomial point process and i.i.d. Nakagami-m fading chan-
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TABLE I
SUMMARY OF THE MAIN OUTAGE PROBABILITY RESULTS.

Equation Node
distribution Region Reference receiver

location Fading channels
M

G
F-

ba
se

d
Fr

am
ew

or
k (10) any any any any

(18) i.i.d. any any i.i.d.
(19) i.i.d. any any i.i.d. Nakagami-m

(19) & (25) i.u.d. disk any i.i.d. Nakagami-m
(19) & (32) i.u.d. polygon center i.i.d. Nakagami-m

R
L

PG
-b

as
ed

Fr
am

ew
or

k (16) any any any Reference link: (11) [23] & Interference links: any
(21) i.i.d. any any Reference link: (11) [23] & Interference links: i.i.d.
(22) i.i.d. any any i.i.d. Nakagami-m with integer m0 for the reference link

(22) & (27) i.u.d. disk any i.i.d. Nakagami-m with integer m0 for the reference link
(22) & (33) i.u.d. polygon center i.i.d. Nakagami-m with integer m0 for the reference link

TABLE II
SUMMARY OF THE MAIN MATHEMATICAL SYMBOLS.

Symbol Description

Sy
st

em
pa

ra
m

et
er

s

M Number of interfering nodes
A Arbitrarily-shaped finite region
W Radius of disk or circum-radius of a polygon
X0 Reference transmitter and its location
Y0 Reference receiver and its location
r0 Euclidean distance between X0 and Y0

P0 Transmit power for reference transmitter X0

Pi Transmit power for interferer Xi
α Path-loss exponent
m0 Nakagami-m fading parameter for reference link
m Nakagami-m fading parameter for interference links
N Additive white Gaussian noise (AWGN) power
ρ0 Signal-to-noise ratio
β SINR threshold
ε Outage probability

RV
s

Xi ith interfering node and its location
Ri Euclidean distance between Xi and Y0

G0 Power gain due to fading for the reference link
Gi Power gain due to fading for the ith interference link
I Aggregate interference
γ Signal-to-interference-plus-noise ratio (SINR)

nels, the evaluation of the proposed frameworks for arbitrarily-
shaped finite wireless networks is detailed in Section IV. The
outage probability analysis for the case of a reference receiver
located anywhere in a disk and a convex polygon is presented
in Section V and Section VI, respectively. The derived results
are used to study the outage probability in Section VII. Finally,
the paper is summarized in Section VIII.

II. PROBLEM FORMULATION AND SYSTEM MODEL
ASSUMPTIONS

Consider a wireless network with M + 2 nodes which are
located inside an arbitrarily-shaped finite region A ⊂ R2,
where R2 denotes the two-dimensional Euclidean domain. The
M+2 nodes consist of a reference transmitter X0, a reference
receiver Y0 and M interfering nodes. The M interfering nodes
are distributed at random within the region A. Throughout the
paper, we refer to Xi (i = 1, 2, . . .M) as both the random
location as well as the ith interfering node itself. The reference
receiver Y0 is not restricted to be located at the center of the
finite region but can be located anywhere inside the region
A. The reference transmitter X0 is assumed to be placed at
a given distance r0 from Y0. Let Ri (i = 1, 2, . . .M) denote
the Euclidean distance between the ith interferer Xi and the
reference receiver Y0.

We focus on the performance of the reference link compris-
ing the reference transmitter X0 and the reference receiver
Y0, in the presence of M interfering nodes and noise. We
consider a path-loss plus block-fading channel model. Let G0

represent the instantaneous power gain due to fading only for
the reference link and Gi represent the instantaneous power
gain due to fading only between Xi and Y0. The path-loss
function can be expressed as

l(r) = r−α, (1)

where r denotes the distance and α is the path-loss exponent,
which typically lies in the range 2 ≤ α ≤ 6 [25]. Note that the
path loss model in (1) is unbounded and has a singularity as
r → 0. The singularity can be avoided by using a bounded path
loss model [26]. Because we consider the network from an
outage perspective, the effect of the singularity in the bounded
path loss model is in fact negligible [27], as long as the SINR
threshold (defined in (4)) is not too small. Thus, for simplicity,
we can adopt the unbounded path-loss model for the purpose
of outage probability computation.

Let P0 and Pi denote the transmit powers for X0 and Xi,
respectively. The aggregate interference power at the reference
receiver Y0 is then given as

I =

M∑
i=1

PiGiR
−α
i . (2)

The instantaneous signal-to-interference-plus-noise ratio γ
at the reference receiver Y0 is given by

γ =
P0G0r

−α
0

N + I
=

G0

1
ρ0

+ I
P0r

−α
0

, (3)

where ρ0 = (P0r
−α
0 )/N is defined as the average signal-to-

noise ratio (SNR) and N is the additive white Gaussian noise
(AWGN) power.

We characterize the performance of the reference link in the
presence of the aggregate interference and AWGN by using
the outage probability. An outage is said to occur when the
SINR γ falls below a given SINR threshold β, i.e.,

ε = Pr(γ < β). (4)

We are interested in obtaining the average outage probability
in the arbitrarily-shaped finite wireless network after un-
conditioning with respect to the spatial node distribution and
the fading distribution. This is addressed in the next section.
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III. PROPOSED FRAMEWORKS

In this section, we propose two analytical frameworks to
compute the outage probability in arbitrarily-shaped finite
wireless network. The first framework, named the moment
generating function-based (MGF-based) framework, is in-
spired from [21], [22]. The basic principle of this framework
is the accurate numerical inversion of the Laplace transform
of the cumulative distribution function for an appropriately
defined random variable [21]. The second framework, named
the reference link power gain-based (RLPG-based) frame-
work, is based on the combination and generalization of the
frameworks proposed in [17], [20]. The basic principle of
this second framework is to find the cumulative distribution
function of the reference link’s fading power gain, which can
then be used to find the outage probability. These frameworks
are discussed in detail in the following subsections.

A. Moment Generating Function-based (MGF-based) Frame-
work

In this framework, it is necessary to define a suitable random
variable. Substituting (3) into (4) and rearranging, we have

ε = Pr

(
1

ρ0G0
+

I

P0r
−α
0 G0

> β−1
)
. (5)

We define a random variable Z as

Z =
1

ρ0G0
+

I

P0r
−α
0 G0

. (6)

Hence, (5) can be re-written as

ε = Pr(Z > β−1) = 1− FZ(β−1). (7)

In general, it is not possible to obtain a closed-form solution
for FZ(β−1). Hence, we use numerical inversion of Laplace
transform to find FZ(β−1). The CDF of a random variable
Z is related to the Laplace transform of FZ(z) as FZ(z) =
1

2πi

∫ a+i∞
a−i∞ LFZ(z)(s) exp(sz)ds. Using the trapezoid rule, the

above integral can be discretized to get a series and then we
can truncate the infinite series to get a finite sum via the Euler
summation [28]. Finally, since LFZ(z)(s) = LZ(s)/s, (7) can
be approximated by

ε = 1−
2−B exp(A2 )

β−1

B∑
b=0

(
B

b

)C+b∑
c=0

(−1)c

Dc
Re

{
LZ (s)

s

}
,

(8)

where Dc = 2 (if c = 0) and Dc = 1 (if c = 1, 2, . . .),
s = (A+ i2πc)/(2β−1) and Re{·} denotes the real part. The
three parameters A, B and C control the estimation error. The
selection of the values for A, B and C for accurate numerical
inversion will be discussed later in Section VII-A.

Using the definition of the Laplace transform of the proba-
bility distribution of a random variable, we can express LZ(s)
as

LZ(s) = EG0,I

{
exp

(
−s
(

1

ρ0G0
+

I

P0r
−α
0 G0

))}
= EG0,Gi,Ri

{
exp

(
− s

ρ0G0

) M∏
i=1

exp

(
−sPiGiR−αi
P0r
−α
0 G0

)}
,

(9)

where EI{·} denotes the expectation with respect to the ag-
gregate interference and EGi,Ri{·} represents the expectation
with respect to Gi and Ri. Combining (8) and (9), we have
the general outage probability expression resulting from the
MGF-based framework as

ε =1−
2−B exp(A2 )

β−1

B∑
b=0

(
B

b

)C+b∑
c=0

(−1)c

Dc
× (10)

Re


EGi,Ri

{
exp

(
− s
ρ0G0

) M∏
i=1

exp
(
−sPiGiR−α

i

P0r
−α
0 G0

)}
s

 .

B. Reference Link Power Gain-based (RLPG-based) Frame-
work

As highlighted earlier, this framework relies on the cumu-
lative distribution function FG0

(g0) for the reference link’s
fading power gain G0. We adopt the following general model1

for the CDF [23]

FG0(g0) = 1−
∑
n∈N

exp(−ng0)
∑
k∈K

ankg
k
0 , (11)

where the finite sets N ,K ⊂ N (where N is the set of natural
number) and ank are the coefficients.

With the proper choice of ank, N and K, FG0(g0) can
represent different types of distributions for the power gain
due to fading [23]. For example, when N = {1}, K = {0}
and ank = 1, then FG0

(g0) = 1−exp(−g0) and consequently
fG0

(g0) reduces to the Exponential distribution, which corre-
sponds to the reference link undergoing Rayleigh fading [32].
Furthermore, if N = {m0}, K = {0, ...,m0 − 1} and ank =
mk0
k! , then FG0

(g0) = 1 − exp(−m0g0)
∑m0−1
k=0 mk

0g
k
0/k!

and consequently fG0
(g0) reduces to the Gamma distribu-

tion [33] which corresponds to the reference link experiencing
Nakagami-m fading.

We proceed by re-writing the outage probability in (4) as

ε = EI

Pr

 G0

1
ρ0

+ I
P0r

−α
0

< β

∣∣∣∣∣∣ I


= EI

{
Pr

(
G0 < β

(
1

ρ0
+

I

P0r
−α
0

)∣∣∣∣ I)} . (12)

Using FG0(g0) shown in (11), (12) can be written as

ε =EI

{
FG0

(
β

ρ0
+

β

P0r
−α
0

I

)}
=1−

∑
n∈N

exp

(
−n β

ρ0

)∑
k∈K

ank×

EI

{
exp

(
−n β

P0r
−α
0

I

)(
β

ρ0
+

β

P0r
−α
0

I

)k}
, (13)

where the aggregate interference I depends on the fad-
ing power gain distribution and the distance distribution.

1We note that it may be possible to consider other general classes of fading
channels [29]–[31], but this is outside the scope of this paper.
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Hence, (13) can be further expanded in terms of Gi
and Ri. First, we focus on the expansion of the term

exp
(
−n β

P0r
−α
0

I
)(

β
ρ0

+ β

P0r
−α
0

I
)k

. Based on the binomial
theorem [34] and using (2), we have

exp

(
−n β

P0r
−α
0

I

)(
β

ρ0
+

β

P0r
−α
0

I

)k
= exp

(
−n β

P0r
−α
0

M∑
i=1

PiGiR
−α
i

)
k∑
j=0

(
k

j

)
×

(
β

ρ0

)k−j (
β

P0r
−α
0

)j ( M∑
i=1

PiGiR
−α
i

)j
. (14)

Then, following the multinomial theorem [35], we can further

expand the term
(∑M

i=1 PiGiR
−α
i

)j
into

(
M∑
i=1

PiGiR
−α
i

)j

=
∑

t1+t2+...+tM=j

(
j

t1, t2, ..., tM

)
M∏
i=1

(
PiGiR

−α
i

)ti , (15)

where ti (i = 1, 2, ...M) is a non-negative integer and the
multinomial coefficient

(
j

t1,t2,...,tM

)
= j!

t1!t2!...tM ! .
Combining (14) and (15) and substituting back into (13),

we have the general outage probability expression resulting
from the RLPG-based framework as

ε =1−
∑
n∈N

exp

(
−n β

ρ0

)∑
k∈K

ank

k∑
j=0

(
k

j

)
×

(
β

ρ0

)k−j (
β

P0r
−α
0

)j ∑
t1+t2...+tM=j

(
j

t1, t2, ..., tM

)
×

EGi,Ri

{
exp

(
−n β

P0r
−α
0

M∑
i=1

PiGiR
−α
i

)
M∏
i=1

(
PiGiR

−α
i

)ti} .
(16)

Remark 1: The two general formulations in (10) and (16)
are valid for any spatial node distribution with a fixed number
of nodes in an arbitrarily-shaped finite wireless network and
any location of the reference receiver inside the arbitrarily-
shaped finite region. The MGF-based framework in (10) is
valid for any fading channel distribution. The RLPG-based
framework in (16) is valid for a general class of fading channel
distribution defined in (11). In general, the two formulations
cannot be expressed in closed-form. The evaluation of the
outage probability in (10) and (16) requires the knowledge of
the joint probability distribution function of the distance Ri
and the fading power gain Gi. For an arbitrary location of a
reference point inside an arbitrarily-shaped convex region, the
joint probability distribution function can be a complex piece-
wise function, which does not allow the outage probability
to be computed in a closed-form. However, it must be noted
that (10) and (16) give analytical expressions of the outage
probability for arbitrarily-shaped finite wireless networks in
a general setting, which has not been demonstrated in the
literature to date.

In the next section, in order to demonstrate the evaluation
and use of the proposed frameworks, we consider the case of
that the nodes are distributed at random inside an arbitrarily-
shaped finite wireless network according to a BPP and all
fading channels are i.i.d. Nakagami-m fading channels.

IV. OUTAGE PROBABILITY FOR BPP AND NAKAGAMI-m
FADING CHANNELS

In this section, we consider the scenario where:
A1. The M interfering nodes are independently and identi-

cally (i.i.d.) distributed at random inside an arbitrarily-
shaped finite wireless network, i.e. the nodes are dis-
tributed at random according to a general BPP [1, Defi-
nition 2.12].

A2. The fading channels are independently and identically
distributed (i.i.d.).

A3. The transmit powers P0 and Pi are normalized to unity.
A4. The fading channels follow a Nakagami-m distribution.

The Nakagami-m distribution is widely used in the liter-
ature to model the distribution of the signal envelopes in
various fading environments, such as the land-mobile and
indoor-mobile multipath propagation environments [25].
The parameter m, which lies in the range 1/2 to ∞,
describes the severity of the fading channel. Note that it is
not necessary for m to be an integer number only. When
m ≤ 1, the Nakagami-m distribution provides a close
approximation to the Nakagami-q (Hoyt) distribution with
parameter mapping m = ((1 + q2)2)/(2(1 + 2q4)).
Additionally, when m > 1, the Nakagami-m distribution
closely approximates the Nakagami-n (Rice) distribution
with parameter mapping m = ((1+n2)2)/(1+2n2) [25].
It is well known that m =∞ corresponds to the no-fading
case, m = 1 represents the special case of Rayleigh
fading and m = 1/2 represents that unilateral Gauss
distribution [25], which corresponds to the most severe
Nakagami-m fading.

A5. The nodes are distributed at random according to a
uniform BPP [1, Definition 2.11]. This means that the
nodes are independently and uniformly distributed (i.u.d.)
inside the arbitrarily-shaped finite wireless network.

As a consequence of assumptions A1 and A2, the joint
PDF of the distance Ri and the fading power gain Gi can
be decomposed into the individual PDFs, which are denoted
as fRi(ri) and fGi(gi), respectively. Due to assumption A1,
the distribution of Ri is the same for all i. Similarly, due to
assumption A2, the distribution of Gi is the same for all i as
well. Thus, we can drop the index i in Ri, Gi, fRi(ri) and
fGi(gi) and let fRi(ri) = fR(r) and fGi(gi) = fG(g).

Let fG0
(g0) denotes the PDF of fading power gain for

the reference link. From assumption A4, since the fading
coefficients for both the reference link and the interference
links are modeled using a Nakagami-m distribution, i.e.,
fG0

(g0) = fG(g), the distribution for the fading power gains
G0 and G can be modeled as a Gamma distribution with the
following PDF [33]

fG(g) =
gm−1mm

Γ(m)
exp(−mg). (17)
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Note that we will represent the Nakagami-m fading param-
eter for the reference and interfering links as m0 and m,
respectively. Even though the fading power gain distributions
are identical, we will still use m0 and m to distinguish
the reference link from the interference link for the sake of
analytical convenience.

A. MGF-based Framework

Using assumptions A1−A3, i.e., i.i.d. random nodes and
i.i.d. fading channels, the general outage probability expression
in (10) for the MGF-based framework can be simplified
to (18), shown at the top of the next page. Using assumption
A4 and substituting (17) in (18), the outage probability in (18)
can be expressed as (19), shown at the top of the next page,
where the expectation in (19) can be expressed as

EG,R

{
exp

(
−sGR−α

r−α0 G0

)}
=∫ rmax

0

mm

(
m+

r−αrα0 s

g0

)−m
fR(r)dr, (20)

where rmax denotes the maximum range of the random variable
R, which depends on the arbitrarily-shaped finite region A and
the location of the reference node. Note that m0 and m in (19)
can take any values (integer or non-integer).

B. RLPG-based Framework

Using assumptions A1−A3, i.e., i.i.d. random nodes and
i.i.d. fading channels, the general outage probability expres-
sion in (16) for the RLPG-based framework can be sim-
plified to (21), shown at the top of the next page, where
Ωti = exp (−nβrα0GR−α) (GR−α)

ti is defined for analytical
convenience.

Using assumption A4, the outage probability in (21) can
be expressed for the case of Nakagami-m fading with integer
m0 as (22), shown at the top of the next page, where the
expectation in (22) can be expressed using (17) as

EG,R {Ωti} =

∫ rmax

0

mm(r−α)tiΓ(m+ ti)

Γ(m) (m+ βrα0m0r−α)
m+ti

fR(r)dr,

(23)

where rmax is defined below (20).
Remark 2: For the RLPG-based framework, m0 is con-

strained to take integer values only, while m can take any
value. The restriction on m0 is because m0 − 1, as an upper
limit for the summation in (22), can only be integer. This is in
contrast with (19) where both m0 and m can take any (integer
or non-integer) value for the MGF-based framework.

Summarizing, (10) and (16) take the form of (19) and (22),
respectively, for M interfering nodes i.i.d. at random inside an
arbitrarily-shaped finite wireless network with i.i.d. Nakagami-
m fading channels.

C. Need for the Two Frameworks

The proposed two frameworks complement each other.
On one hand, as highlighted in Remark 2, the MGF-based
framework can be used in scenarios with non-integer m0

while the RLPG-based framework can only be used in sce-
narios with integer m0. On the other hand, the RLPG-based
framework is more capable of yielding closed-form analytical
expressions than the MGF-based framework. For the MGF-
based framework, the outage probability in (19) involves a
double integration (an integration with an expectation term in
the integrand). In general, it is not possible to obtain a closed-
form for the integration part in (19) because the expectation
term is raised to a power factor of M (M ≥ 2). However, in
certain cases, the expectation term can be expressed in closed-
form. For the RLPG-based framework, the outage probability
in (22) involves a single integration which admits closed-form
results in a much larger number of cases.

Note that both (19) and (22) require the knowledge of
the distance distribution fR(r), i.e. the PDF of the distance
of a random node from the reference receiver Y0, for their
evaluation. The distance distribution fR(r) is dependent on
the underlying random model for the node locations. For the
uniform BPP (assumption A5), which is considered in this
work, the distance distribution fR(r) is derived in [15] for the
special case when the reference receiver is located at the center
of a convex regular polygon. Recently, the result in [15] was
generalized in [16] for the case when the reference receiver
is located anywhere inside a convex regular polygon. It was
shown in [16] that for an arbitrary location of the reference
receiver inside convex regular polygon, the distance distribu-
tion fR(r) can be a complicated piece-wise function because
of the boundary effects. We note that the approach in [16]
is also applicable for arbitrarily-shaped convex polygons (see
Appendix A for details). Once fR(r) is given, both (19)
and (22) and can be accurately evaluated.

In the next two sections, we show how (19) and (22) can be
evaluated in disk and polygon regions, which are commonly
used in the literature for the modeling of wireless networks.
We also illustrate how the proposed frameworks can be applied
in the case of arbitrarily-shaped finite wireless networks with
arbitrary location of the reference receiver.

V. OUTAGE PROBABILITY IN A DISK REGION

Consider the scenario that the region A is a disk of radius
W , as shown in Fig. 1. The reference receiver is assumed to
be located at a distance d from the center of the disk. Then, the
distance distribution fR(r) can be exactly expressed as [16]

fR(r) =
1

|A|

{
2πr, 0 ≤ r ≤W − d;
2r arccos

(
r2+d2−W2

2dr

)
, W − d ≤ r ≤W + d;

(24)

Note that substituting d = 0 in (24) gives the distance
distribution for the special case that Y0 is located at the center
of the disk. Similarly, substituting d = W in (24) gives the
distance distribution for the special case that Y0 is located
anywhere on the circumference of the disk.

A. MGF-based Framework

Substituting (24) in (20), we find that the expectation has
a closed-form only for the first part of the range (0 ≤ r ≤
W − d) in (24). For the second-part of the range (W − d ≤
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ε = 1−
2−B exp(A2 )

β−1

B∑
b=0

(
B

b

)C+b∑
c=0

(−1)c

Dc
Re


EG0

{
exp

(
− s
ρ0G0

)(
EG,R

{
exp

(
−sGR−α

r−α0 G0

)})M}
s

 . (18)

ε = 1−
2−B exp(A

2
)

β−1

B∑
b=0

(
B

b

)
C+b∑
c=0

(−1)c

Dc
Re


∫∞

0
exp

(
− s
ρ0g0

)(
EG,R

{
exp

(
−sGR−α

r−α0 G0

)})M
g
m0−1
0 m

m0
0

Γ(m0)
exp(−m0g0)dg0

s

 .

(19)

ε = 1−
∑
n∈N

exp

(
−n β

ρ0

)∑
k∈K

ank

k∑
j=0

(
k

j

)(
β

ρ0

)k−j
(βrα0 )

j
∑

t1+t2...+tM=j

(
j

t1, t2, ..., tM

) M∏
i=1

EG,R {Ωti} . (21)

ε =1− exp

(
−m0

β

ρ0

)m0−1∑
k=0

mk
0

k!

k∑
j=0

(
k

j

)(
β

ρ0

)k−j
(βrα0 )

j
∑

t1+t2...+tM=j

(
j

t1, t2, ..., tM

) M∏
i=1

EG,R {Ωti} . (22)

EG,R

{
exp

(
−sGR−α

r−α0 G0

)}
= ϕ (2π,W − d) +

2mm

|A|

∫ W+d

W−d

(
m+

r−αrα0 s

g0

)−m
r arccos

(
r2 + d2 −W 2

2dr

)
dr. (25)

ϕ (θ, υ) =
θmmgm0 υ

2+αm

|A|(2 + αm) (rα0 s)
m 2F1

[
m,

2

α
+m, 1 +

2

α
+m,−g0mυ

α

rα0 s

]
. (26)

Y0

X0

d

r0
W

Fig. 1. Illustration of a finite wireless network with arbitrary location of
reference receiver Y0 in a disk region of radius W (+ = center of disk, • =
interfering node, N = reference receiver, � = reference transmitter).

r ≤W + d), the integration does not have a closed-form due
to the arccos(·) function. The result is shown in (25) at the
top of this page, where ϕ(·, ·) is defined in (26) also at the top
of this page. Substituting (25) in (19), the outage probability
can be numerically evaluated.

B. RLPG-based Framework

Substituting (24) in (23) and after some manipulations, we
get (27) shown at the top of the next page, where ψ(·, ·, ·) is
defined in (28) also at the top of the next page. In general, the
integration in (27) also does not have a closed-form due to the
arccos(·) function. It is possible to use the Gauss-Chebyshev
integration technique [36] in order to obtain an approximate
closed-form expression. However, in our investigations, we
found that a summation over a large number of terms (> 1000)
was required in our case for accurate evaluation. Hence, we do
not pursue approximations and instead directly substitute (27)
in (22) to obtain the outage probability.
Special case: For the case of the reference receiver Y0 located
at the center of the disk, d = 0. Substituting this value in (27)
and then substituting the result in (22), the final expression for
the outage probability simplifies to

εcenter = 1− exp

(
−m0β

ρ0

)m0−1∑
k=0

mk
0

k!

k∑
j=0

(
k

j

)(
β

ρ0

)k−j
×

(βrα0 )
j

∑
t1+t2...+tM=j

(
j

t1, t2, ..., tM

) M∏
i=1

ψ (2π,W, ti) , (29)
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EG,R {Ωti} =ψ (2π,W − d, ti) +
2mmΓ(m+ ti)

|A|Γ(m)

∫ W+d

W−d

(r−α)ti

(m+ βrα0m0r−α)
m+ti

r arccos

(
r2 + d2 −W 2

2dr

)
dr. (27)

ψ (θ, υ, τ) =
θmm (βrα0m0)

−m−τ
υ2+αmΓ(m+ τ)

|A|(2 + αm)Γ(m)
2F1

[
2

α
+m,m+ τ, 1 +

2

α
+m,− mυα

βrα0m0

]
. (28)

where ψ(·, ·, ·) is defined in (28).
Remark 3: The outage probability for a finite number of

nodes i.u.d. in a disk region has been widely considered in
the recent literature. Our proposed frameworks reproduce the
available outage results in the literature as special cases. For
the MGF-based framework, with m0 = 1, the result from (25)
is equivalent to the result in [17, eq.(24)]. For the RLPG-based
framework, with the reference receiver located at the center of
the network, (29) is identical to the result in [20, eq.(44)].

VI. OUTAGE PROBABILITY IN REGULAR POLYGONS AND
ARBITRARILY-SHAPED CONVEX POLYGONS

In this section, we illustrate the exact computation of
the outage probability in both regular and arbitrarily-shaped
convex polygon regions. We will consider the following two
cases (i) reference receiver Y0 located at the center of a regular
L-sided polygon and (ii) reference receiver Y0 located at an
arbitrary location in an arbitrarily-shaped region.

A. Center of Polygon

Consider the finite region A to be a regular L-sided convex
polygon which is inscribed in a circle of radius W . Then,
the area and the interior angle between two adjacent sides are
given by

|A| = 1

2
LW 2 sin

(
2π

L

)
, (30a)

θ =
π(L− 2)

L
. (30b)

In general, polygon regions are non-isotropic. Hence, there
is no single expression for the distance distribution fR(r) for
an arbitrary location of the reference receiver inside a convex
regular polygon. For the special case that the reference receiver
Y0 is located at the center of an L-sided convex regular
polygon, the distance distribution fR(r) can be expressed
as [15], [16]

fR(r) =
1

|A|

{
2πr, 0 ≤ r ≤W sin

(
θ
2

)
;

2πr − 2Lr∆, W sin
(
θ
2

)
≤ r ≤W ;

(31)

where ∆ = arccos

(
W sin ( θ2 )

r

)
. Using (31), we illustrate

the computation of the outage probability using the two
frameworks.
MGF-based Framework: Substituting (31) in (20) and after
some manipulations, we get (32) shown at the top of the next

page, where ϕ(·, ·) is defined in (26). Substituting (32) in (19),
the outage probability can be evaluated.
RLPG-based Framework: Substituting (31) in (23), and after
some manipulations, we get (33) shown at the top of the
next page, where ψ(·, ·, ·) is defined in (28). Substituting (33)
in (22), the outage probability can be evaluated.

B. Arbitrarily-Shaped Convex Polygon Region

We consider an arbitrarily-shaped convex polygon region
as shown in Fig. 2, with side lengths S1 = S2 =

√
3W ,

S3 =
√

7− 3
√

3−
√

6W and S4 = W . Thus, the interior
angles formed at vertices V1, V2, V3 and V4 are π/2, π/4,
0.6173π and 0.6327π. Suppose that Y0 is located at the vertex
V2

2. Then, following the derivation in Appendix A, fR(r) can
be expressed as

fR(r) =
1

|A|


π
4 r, 0 ≤ r ≤

√
3W ;

0.3673πr − r arccos
(√

3W
r

)
−r arccos

(
1.6159W

r

)
,

√
3W ≤ r ≤ 2W ;

(34)

Using (34), we illustrate the computation of the outage prob-
ability using the two frameworks.
MGF-based Framework: Substituting (34) to (20), the expec-
tation can be expressed as (35), shown at the top of the next
page, where ϕ(·, ·) is defined in (26). Finally, the outage
probability for the case of the reference receiver located at
vertex V2 can be evaluated by substituting (35) in (19).
RLPG-based Framework: Substituting (34) in (23), the expec-
tation can be expressed as (36) shown at the top of the next
page, where ψ(·, ·, ·) is defined in (28). Finally, the outage
probability for the case of the reference receiver located at
vertex V2 can be evaluated by substituting (36) in (22).

Summarizing, the procedure for deriving the outage proba-
bility for i.u.d. nodes in an arbitrarily-shaped convex polygon
region with i.i.d. Nakagami-m fading channels is summarized
in Algorithm 1.

VII. NUMERICAL AND SIMULATION RESULTS

In this section, we first address the computational aspects
of the two frameworks. We then study the outage probability
performance of arbitrarily-shaped finite wireless networks and
discuss the boundary effects in finite wireless networks in
detail.

2The Y0 location at vertex V2 is chosen here for the sake of simplicity.
Later in Section VII, we also show results for an arbitrary location of Y0

inside the arbitrarily-shaped convex polygon region considered in Fig. 2.
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EG,R

{
exp

(
−sGR−α

r−α0 G0

)}
= ϕ (2π,W )− 2Lmm

|A|

∫ W

W sin ( θ2 )

(
m+

r−αrα0 s

g0

)−m
r arccos

(
W sin

(
θ
2

)
r

)
dr. (32)

EG,R {Ωti} = ψ (2π,W, ti)−
2LmmΓ(m+ ti)

|A|Γ(m)

∫ W

W sin ( θ2 )

(r−α)ti

(m+ βrα0m0r−α)
m+ti

r arccos

(
W sin

(
θ
2

)
r

)
dr. (33)

EG,R

{
exp

(
−sGR−α

r−α0 G0

)}
=ϕ (0.3673π, 2W )− ϕ

(
0.1173π,

√
3W
)

− mm

|A|

∫ 2W

√
3W

(
m+

r−αrα0 s

g0

)−m
r

(
arccos

(√
3W

r

)
+ arccos

(
1.6159W

r

))
dr. (35)

EG,R {Ωti} =ψ (0.3673π, 2W, ti)− ψ
(

0.1173π,
√

3W, ti

)
− mmΓ(m+ ti)

|A|Γ(m)

∫ 2W

√
3W

(r−α)ti

(m+ βrα0m0r−α)
m+ti

r

(
arccos

(√
3W

r

)
+ arccos

(
1.6159W

r

))
dr. (36)

Algorithm 1 Proposed Algorithm
Step 1: Choose the location of the reference receiver inside
the arbitrarily-shaped convex polygon region.
Step 2: Determine fR(r) based on the approach summarized
in Appendix A.
Step 3: Depending on the value of m0, select the appropriate
framework to calculate the outage probability.
if m0 is non-integer then

Use the MGF-based framework. Substitute fR(r) in (20)
and then (20) in (19) to compute the outage probability.

else
Use the RLPG-based framework. Substitute fR(r) in (23)
and then (23) in (22) to compute the outage probability.

end if

A. Computational Aspects of the Frameworks

In general, both frameworks require numerical evaluation of
integration, for which any standard mathematical package such
as Matlab or Mathematica can be used. It must be noted that
the numerical evaluation of single and double integrations is
standard and widely practiced in the wireless communications
literature [37].

For the MGF-based framework, the outage expressions
in (10), (18) and (19) are a summation over a finite number of
terms. The three parameters A, B and C (defined below (8))
control the estimation error. Following the well established
guidelines in [21], [28], in order to achieve an estimation
accuracy of 10−ζ (i.e., having the ζ − 1th decimal correct),
A, B and C have to at least equal ζ ln 10, 1.243ζ − 1, and
1.467ζ, respectively. For example, for the disk region, we set
A = 8 ln 10, B = 11, C = 14. This achieves stable numerical
inversion with an estimation error of 10−8.

x

y

V1 S1

V3

S4

V4

V2

S2

S3

B1

C2

B2

Y0

X0
r0

Fig. 2. Illustration of an arbitrary location of a reference receiver in an
arbitrarily-shaped finite wireless network, with side lengths S1 =

√
3W ,

S2 =
√
3W , S3 =

√
7− 3

√
3−
√
6W and S4 = W and vertices V1,

V2, V3 and V4. The areas B1 (shaded in horizontal lines), lines) and C2

(intersection of horizontal and diagonal lines) are defined in Appendix A
(• = interfering node, N = reference receiver, � = reference transmitter).

For the RLPG-based framework, if both m0 and M are
large, then the computation of all possible integer results for
ti in t1 + t2 + ...+ tM = j (j = 0, ...,m0 − 1) in (16), (21)
and (22) can be time-consuming. This is due to the fact that we
need to use M for loops to find the complete results. However,
when either m0 or M is a small number we can pre-compute
these results, as suggested in [20], and store them as a matrix
for use in computations.

B. Validation of the Proposed Two Frameworks

Fig. 3 plots the outage probability, ε, versus the distance
of the reference receiver from the center of disk, d, for
path-loss exponents α = 2, 3, 4, 6 and i.i.d. Rayleigh fading
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Fig. 3. Outage probability, ε, versus the distance of the reference receiver
from the center of disk, d, for M = 10 interferers i.u.d. in a disk of radius
W = 100, with reference link distance r0 = 5, path-loss exponents α =
2, 3, 4, 6, i.i.d. Rayleigh fading channels (m0 = m = 1), SINR threshold
β = 0 dB and SNR ρ0 = 20 dB.

channels. The solid lines are plotted using (22) and (27),
i.e., the RLPG-based framework. The dash lines are plotted
using (19) and (25), i.e., the MGF-based framework. For the
simulation results, we uniformly distribute the users inside a
disk region and average the results over 1 million simulation
runs. We can see that the results from both the frameworks
are the same and the curves overlap perfectly. In addition, we
can see that the simulation results match perfectly with the
our analytical results, which is to be expected since we are
evaluating the outage probability exactly. These comparisons
verify the accuracy of the proposed frameworks.

C. Importance of Having the Two Frameworks

As stated earlier in Remark 2, while both m0 and m can
take any (integer or non-integer) value in the MGF-based
framework, m0 is constrained to take integer values only
(while m can take any value) in the RLPG-based framework.
It is important to note that for small m0, using the RLPG-
based framework and interpolation for non-integer m0 values
either does not work or cannot provide accurate approximation
results. This is illustrated in Fig. 4 which plots the outage
probability, ε, versus the SNR, ρ0, for i.i.d. Nakagami-m
fading channels (m0 = m = 0.5, 1, 1.5, 2), path-loss exponent
α = 2.5 and the reference receiver located at the center
of the disk. The results for m0 = m = 0.5 and 1.5 are
plotted using the MGF-based framework ((19) and (25)).
The results for m0 = m = 1 and 2 are plotted using the
RLPG-based framework ((29)). For m0 = m = 1.5 we
also plot the arithmetic and the geometric means using the
outage probabilities for m0 = m = 1 and m0 = m = 2,
respectively. We can see that the arithmetic and geometric
means do not match the exact value of the outage probability,
which illustrates that the interpolation approach [38], [39] does
not work here. In addition, the result for m0 = m = 1 does
not provide a tight bound on the outage probability when
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0
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0
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Fig. 4. Outage probability, ε, versus the signal-to-noise ratio, ρ0, for i.i.d.
Nakagami-m fading channels and m0 = m = 0.5, 1, 1.5, 2, with M = 10
interferers i.u.d. in a disk of radius W = 100, reference link distance r0 = 5
and reference receiver located at the center of the network, path-loss exponent
α = 2.5 and SINR threshold β = 0 dB.

m0 = m < 1. These issues highlight the importance of having
the two frameworks, which together can handle any value of
m0.

Note that the error floor observed in all the curves in Fig. 4
is due to the fact that at high SNR, the interference term
dominates the noise term and causes the outage probability
to become nearly constant (the x−axis in Fig. 4 is the SNR,
which is defined below (3) and not the SINR, which is defined
in (3)).

D. Boundary Effects in a Disk Region

Fig. 3 shows that for the disk region the minimum value
of the outage probability occurs when the reference receiver
is located at the circumference. This is due to the boundary
effects. When the nodes are confined within a finite region, the
nodes located close to the physical boundaries of the region
experience different network characteristics, such as outage
probability, compared to the nodes located near the center of
the region. Note that the boundary effects are absent in PPP
networks which assume an infinite region. In the following,
we focus on the low outage probability regime and study the
impact of the system parameters on the boundary effects by
comparing the performance at the center and the boundary of
disk and polygon regions, respectively.

Fig. 5 plots the number of interfering nodes, M , that
the network can accommodate in order to meet a fixed low
outage probability constraint of ε = 0.05 versus the path-
loss exponent α for the two cases of the reference receiver
located at the center and the circumference of a disk region,
respectively, with radius W = 100, i.i.d. Nakagami-m fading
channels (m = 1, 2, 3), reference link distance r0 = 5, SINR
threshold β = 0 dB and SNR ρ0 = 20 dB. We can see
that as the path-loss exponent α increases the number of
interfering nodes increases for all the curves. This is because as
α increases, the total received power at the reference receiver
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Fig. 5. The number of interfering nodes M versus path-loss exponent α
in order to meet a fixed low outage probability constraint of ε = 0.05 for
the reference node located at the center and the circumference, respectively,
of a disk region with radius W = 100, i.i.d. Nakagami-m fading channels
(m = 1, 2, 3), reference link distance r0 = 5, SINR threshold β = 0 dB and
SNR ρ0 = 20 dB.

Y0 from all the interferers decreases more as compared to
the received power at Y0 from the desired transmitter X0.
In addition, as m0 = m increases, the number of interfering
nodes increases for all the curves. This is because as the the
fading becomes less severe, the received power at the reference
receiver Y0 from the desired transmitter X0 increases more
compared to the total received power from all the interferers.
Comparing the curves for the center and the circumference,
we can see that when Y0 is located at the center of the disk
region the network can only accommodate a small number of
interferers in order to meet the low outage constraint. However,
when Y0 is located at the circumference of the disk region,
the network can accommodate a larger number of interferers.
This is because the circumference location is most impacted
by the boundary effects and the reference receiver located
at the circumference can only experience interference from
certain surrounding regions inside the disk region. The figure
also shows that the two sets of curves for the center and the
circumference are not parallel, i.e., the impact of the boundary
effects varies with the channel conditions. This is further
explored in the next figure.

Fig. 6 plots the difference in the number of interferers
between the reference receiver located at the circumference
and the center of a disk region, versus the path-loss exponent
α for the scenario considered in Fig. 5. The figure shows
that for a fixed m0 = m, an increase in the path-loss
exponent enhances the impact of the boundary effects, e.g.,
for m0 = m = 1 the difference is 2 interferers for α = 2,
which grows to 14 interferers for α = 6. In addition, for a
fixed α, an increase in m0 = m also enhances the impact
of the boundary effects, e.g., for α = 4, the difference is 11
interferers for m0 = m = 1, which grows to 18 interferers for
m0 = m = 3. Note that the staircase nature of the curves in
Fig. 6 is due to the fact that the difference in the number of
the interferers can only take integer values.
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Fig. 6. The difference in the number of interferers between the reference
receiver located at the circumference and the center of a disk region, versus
the path-loss exponent α, with the same parameters as in Fig. 5.

E. Boundary Effects in Polygon Regions

Fig. 7 shows the number of interfering nodes M that the
network can accommodate in order to meet a fixed low outage
probability constraint of ε = 0.05 versus the number of sides L
for the two cases of the reference receiver located at the center
and a vertex of a L = 3, 4, 5, 6, 7, 8, 9-sided convex polygon
having a fixed area |A| = π1002, with i.i.d. Nakagami-m
fading channels (m0 = m = 3), path-loss exponent α = 2.5,
reference link distance r0 = 5, SINR threshold β = 0 dB and
SNR ρ0 = 20 dB. When the reference receiver is located at
the center of the polygon, the impact of the boundary effects is
negligible and the number of interferers that the network can
accommodate is 14, irrespective of the number of sides3. This
is consistent with the fact that we have considered a large-
scale finite network and the surrounding environment for the
reference receiver located at the center of the L-sided convex
polygon is quite the same, regardless of the number of sides.
When the reference receiver is located at a vertex of the L-
sided convex polygon, the number of interferers decreases as
the number of sides L increases. This shows that the impact
of the number of sides on the boundary effects depends on
the location of the reference receiver. We can see that for
L = 3 the network can accommodate the highest number of
interferers while meeting the low outage probability constraint
of ε = 0.05. This can be intuitively explained as follows. For
L = 3, since the area of the L-sided polygon is fixed, fR(r)
has the longest tail. In addition, the interior angle formed at
the vertex is the smallest. Consequently, the interfering nodes
are more likely to located further away from the reference
receiver located at a vertex, which leads to better performance
in terms of the number of interferers that the network can
accommodate. In addition, Fig. 7 shows that as L increases,
the difference in the number of interferers between the two
cases of the reference receiver located at the vertex and the

3For the case of the reference receiver located at the center of a disk region
(which can be regarded as a L = ∞-sided convex polygon) with the same
area, the number of interferers is also 14.
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Fig. 7. The number of interfering nodes M versus the number of sides L
in order to meet a fixed low outage probability constraint of ε = 0.05 for the
reference node located at the center and the corner, respectively, of a L-sided
polygon (L = 3, 4, 5, 6, 7, 8, 9) having a fixed area |A| = π1002, with i.i.d.
Nakagami-m fading channels (m0 = m = 3), path-loss exponent α = 2.5,
reference link distance r0 = 5, SINR threshold β = 0 dB and SNR ρ0 = 20
dB.

center decreases. This shows that the relative impact of the
boundary effects becomes less significant as the number of
sides increases.

F. Outage Probability in an Arbitrarily-shaped Convex Region

Fig. 8 plots the outage probability, ε, versus the SNR,
ρ0, with arbitrary locations of the reference receiver in the
arbitrarily-shaped finite region (|A| = 13143) defined in
Fig. 2, i.i.d. Rayleigh fading channels (m0 = m = 1) and
path-loss exponent α = 2.5. We consider and compare the
following cases for the reference receiver located at: (i) vertex
V2 at (173.2, 0) (ii) vertex V3 at (50.73, 122.474) (iii) mid
point of side S2 at (111.97, 61.24) and (iv) intersection point
of the diagonals at (33.4, 80.7). For comparison, we also plot
the outage probability assuming a PPP node distribution with
a node density λ = 10/13143 = 7.6086 × 10−4 using the
result from [6], which is given below

ε = 1− exp

(
− β

ρ0

)
exp

(
−λπr20β

2
α

2π

α
csc

(
2π

α

))
. (37)

At high SNR, the error floor observed in all the curves
is because of the same reasons as explained before. We
can see that the outage probabilities for the four cases are
completely different as the location of the reference receiver
and consequently the boundary effects are different in each
case. The outage probability is the highest for case (iv) as
this location is well inside the region and is less impacted by
the boundary effects. The outage probability is the lowest for
case (i) as the interior angle formed at V2 vertex is the smaller
than that at vertex V3. Thus, interferers are more likely to be
located further away from the reference receiver located at
V2 vertex. We can see that the PPP result, which does not
take boundary effects into account, is completely different
from the four cases considered and provides an extremely
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Fig. 8. Outage probability, ε, versus the signal-to-noise ratio, ρ0, with
arbitrary locations of the reference receiver inside the arbitrarily-shaped finite
region defined in Fig. 2 having area |A| = 13143, M = 10 interferers, i.i.d.
Rayleigh fading channels (m0 = m = 1), path-loss exponent α = 2.5 and
SINR threshold β = 0 dB. For the PPP node distribution, the node density
is λ = 10/13143 = 7.6086× 10−4 (which is the same as for the BPP).

loose upper bound for the outage probability. This re-iterates
the importance of the proposed frameworks, which allow the
outage probability at any arbitrary location of a finite wireless
network with arbitrary shape to be exactly determined.

VIII. CONCLUSION

In this paper, we have proposed two general frameworks
for analytically computing the outage probability when a
finite number of nodes are distributed at random inside an
arbitrarily-shaped finite wireless network. For the case that the
random nodes are independently and uniformly distributed and
the fading channels are identically, independently distributed
following the Nakagami-m distribution, we have demonstrated
the use of the frameworks to analytically compute the outage
probability at any arbitrary location inside the finite wireless
network. The probability distribution function of a random
node from the reference receiver plays a key part in our
frameworks and enables the accurate modeling of the boundary
effects. We have presented an algorithm to accurately compute
the outage probability in a finite wireless network with an
arbitrary shape. We have also analyzed the impact of the fading
channel and the shape of the region on the boundary effects.

APPENDIX A
DERIVATION OF THE DISTANCE DISTRIBUTION fR(r)

In this appendix, we summarize the derivation of the dis-
tance distribution results using the procedure in [16].

For the uniform BPP, the CDF FR(r) of the distance be-
tween a randomly located node and an arbitrary reference point
located inside a regular convex polygon was derived in [16].
Using this result, the PDF of the Euclidean distance between
the arbitrary reference point and its ith neighbor node is
obtained, generalizing the result in [15]. The approach in [16]
is also applicable for arbitrarily-shaped convex polygons. In
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this paper, we adapt the procedure in [16] to obtain the PDF
fR(r) for an arbitrary location of the reference receiver inside
an arbitrarily-shaped finite wireless network. The main steps
of the procedure are summarized below.

Step 1: Consider a convex4 polygon with L sides. Let S`
and V` (` = 1, 2, . . . , L) denote the sides and the vertices,
which are numbered in an anti-clockwise direction.

Step 2: Using the property of uniform BPP the CDF FR(r),
which is the probability that the distance between an i.u.d.
node and the reference receiver is less than or equal to r, is
given by

FR(r) =
|D(Y0; r) ∩ A|

|A|
=
O(Y0; r)

|A|
, (38)

where D(Y0; r) is a disk region centered at Y0 with radius
r and O(Y0; r) is the overlap area between D(Y0; r) and the
network region, respectively.

Step 3: In order to find the area of overlap region O(Y0; r),
the approach in [16] is to first find the circular segment areas
formed outside the sides (denoted as B` for side `) and the
corner overlap areas between two circular segments at a vertex
(denoted as C` for vertex `), and then subtract from the area
of the disk. Thus, (38) can be expressed as

FR(r) =
1

|A|

(
πr2 −

∑
`

B` +
∑
`

C`

)
. (39)

Taking the derivative of (39), we have

fR(r) =
1

|A|

(
2πr −

∑
`

∂B`
∂r

+
∑
`

∂C`
∂r

)
, (40)

where ∂/∂r denotes the derivative. Note that ∂B`
∂r and ∂C`

∂r
depend on the radius r and location of Y0. Following [16],
they can be expressed as

∂B`
∂r

= 2r arccos
(pS`
r

)
, (41)

∂C`
∂r

= r
(
−π + δ` + arccos

(pS`
r

)
+ arccos

(pS`−1

r

))
,

(42)

where pS` denotes the perpendicular distance from Y0 to the
side S`, δ` represents the interior angle at vertex V` and the
notation S`. Note that for ` = 1, S`−1 = SL.

Step 4: In order to find the perpendicular distances pS` ,
establish a Cartesian coordinate system. For arbitrarily-shaped
finite regions, without loss of generality, the origin can be
placed at vertex V1. For regular convex polygons, the origin
can be placed at the center of the polygon to exploit the
rotational symmetry [16].

Following the steps above, and substituting the values, the
distance distribution fR(r) can be derived. This is illustrated
in detail in the next subsection for the case of the reference
receiver located at vertex V2 in Fig. 2. The remaining distance
distribution results used in Section VII can be similarly
derived, but are not included here for brevity.

4All the interior angles are less than π radians.

A. Reference Receiver Located at Vertex V2 in Fig. 2

Consider the arbitrarily-shaped region shown in Fig. 2, with
reference receiver located at vertex V2.

For 0 ≤ r ≤
√

3W , the disk region D(Y0; r) is limited
by sides S1 and S2 and vertex V2, i.e., there are two circular
segment areas outside S1 and S2, which are denoted by B1

and B2. Also there is a corner overlap area between them,
which is denoted by C2. Hence for this range, fR(r) =
1
|A|
(
2πr − ∂B1

∂r −
∂B2

∂r + ∂C2

∂r

)
.

For
√

3W ≤ r ≤ 2W , the disk region D(Y0; r) is limited
by all four sides and three vertices V1, V2 and V3, i.e., there
are four circular segments formed outside all sides and three
corner overlaps between them. Hence for this range, fR(r) =

1
|A|

(
2πr −

4∑̀
=1

∂B`
∂r +

3∑̀
=1

∂Ci
∂r

)
.

For r > 2W , the disk region covers the whole region
in Fig. 2 which results in FR(r) = 1 and fR(r) = 0.
Consequently, in this case, fR(r) is a piece-wise function with
two ranges only. Using (41) and (42), and simplifying, we
get (34) which is used in the generation of the results in Fig. 8.
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