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Abstract—We present improved constructions for Low-Density
Parity-Check Accumulate (LDPCA) codes, which are rate-
adaptive codes commonly used for distributed source coding
(DSC) applications. Our proposed constructions mirror the
traditional LDPCA approach; higher rate codes are obtained
by splitting the check nodes in the decoding graph of lower
rate codes, beginning with a lowest rate mother code. In a
departure from the uniform splitting strategy adopted by prior
LDPCA codes, however, the proposed constructions introduce
non-uniform splitting of the check nodes at higher rates. Codes
are designed by a global minimization of the average rate
gap between the code operating rates and the corresponding
theoretical lower bounds evaluated by density-evolution. In the
process of formulating the design framework, the paper also
contributes a formal definition of LDPCA codes.

Performance improvements provided by the proposed non-
uniform splitting strategy over the conventional uniform splitting
approach used in prior work are substantiated via density
evolution based analysis and DSC codec simulations. Optimized
designs for our proposed constructions yield codes with a lower
average rate gap than conventional designs and alleviate the
trade-off between the performance at different rates inherent
in conventional designs. A software implementation is provided
for the codec developed.

Index Terms—LDPCA codes, LDPC codes, distributed source
coding, code design.

I. INTRODUCTION

MERGING applications of battery-powered mobile de-

vices and sensor networks have motivated the develop-
ment of DSC techniques that exploit inter-dependency be-
tween sensor data at different nodes to reduce communication
requirements, thereby improving energy-efficiency and oper-
ating times [1]-[4].

Although information theoretic results for DSC appeared
nearly 40 years ago [5], [6], practical code constructions that
achieve close to promised performance have only been devel-
oped in the past decade. Most constructions, and the discussion
in this paper, restrict attention to the binary-input memoryless
side-informed coding scenario: a block x = [z1,22,...21]T
of L independent bits available at one terminal, the encoder,
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needs to be communicated to a second terminal, the decoder,
that has a priori information consisting of a corresponding
block of side information y = [y1,¥2,...ys]T, where! the
elements of Y are independent and for each 1 < ¢ < L,
Y, is (potentially) correlated with X; and independent of
Xwi d:ef [Xl,Xg, . ,Xifl, Xi+1,Xi+2, .. .XL]T. The en-
coder generates a vector of j bits p = [p1,p2,...p;|T
which is (noiselessly) sent to the decoder and using which
the decoder must recover x. The objective is to minimize the
rate v = (j/L) required per encoded bit by exploiting, in the
decoding process, the side information y that is available at
the decoder but not at the encoder. Practical side-informed
coding methods leverage channel coding techniques: y is
interpreted as the noisy output of a virtual channel with
input x and error correction decoding is used to recover
x at the decoder. DSC constructions have been developed
based on trellis codes [7], Turbo codes [8], and Low-Density
Parity-Check (LDPC) codes [9]. Information theoretic results
for side-informed coding imply that the conditional entropy
per symbol H(X|Y)/L is the minimum required rate (on
average). In the memoryless setting where the pairs of random
variables {(X;,Yi)}~, are drawn independently from the
same joint distribution pxy (x,y), the minimum required rate
becomes the conditional entropy H (X|Y).

To simplify practical implementations and handle the vary-
ing correlation (between X and Y) encountered in DSC ap-
plications, rate-adaptive DSC techniques have been developed
based on punctured Turbo codes [8], [10], [11], or using
an LDPC-Accumulate (LDPCA) construction [12] that builds
on LDPC codes. LDPCA codes, in particular, offer superior
performance for side-informed source coding and have been
adopted for several DSC applications such as distributed video
coding [13]-[16] and image authentication [17].

Previously reported LDPCA codes follow the framework
introduced in [12], [18]. Rate adaptivity is obtained by begin-
ning with an LDPC code at the lowest rate from which higher
rate codes are obtained by uniformly splitting a fraction of
the check nodes in the decoding graph to define additional
check nodes, which then define the additional bits to be
communicated from the encoder to the decoder for the higher
operating rate. Within this framework, optimized designs were
developed in [19]. An examination of the performance of these
previously reported codes (See results in Section IV), reveals

b}

'We adopt the standard notational convention where upper case letters
represent the random variables corresponding to their lower case counterparts,
both being bold when these are vectors. Elements of a vector are represented
by corresponding non-bold subscripted variables. The notation H for denoting
parity check matrices (with various superscripts) is the exception to the
notational convention.
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a performance trade-off between different rate regions. The
optimized designs in [19] exhibit good performance in the
low through mid rate regions but perform relatively poorly at
high rates. Other codes presented in [12] exhibit either similar
performance, or, if they do not exhibit the poor performance at
high rates, offer performance that is worse than the optimized
designs over the mid and low rate regions.

In this paper, we revisit the LDPCA code construction and
propose a method for alleviating the performance trade-off of
LDPCA codes in different rate regions. Specific contributions
of the work include: a) introduction of a non-uniform parti-
tioning in the process used to generate higher rate codes by
splitting a fraction of the check nodes in the decoding graph
of the lower rate code, b) extension of density evolution based
performance analysis to the proposed construction methodol-
0gy, c¢) introduction of a principled method for LDPCA code
design based on optimization of the average rate gap across
all operating rates, d) clear demonstration, through both
density evolution based analysis and actual code simulations,
of the trade-off between performance at different rates for
codes developed with the prior uniform splitting approach
and of the improvement offered by the proposed non-uniform
splitting methodology. In addition, the paper also provides a
formal definition of LDPCA codes and a codec implementation
based on the optimized designs, which we hope will support
further investigations in this area.

The paper is organized as follows. Section II provides a
formal description and definition of LDPCA codes. Section III
describes the proposed construction and design framework.
Results validating the benefits of the proposed designs and
benchmarking performance against other alternatives are pre-
sented in Section IV. Section V summarizes conclusions. The
appendix outlines key details of the differential evolution (DE)
procedure used for optimizing code designs.

I1I. LDPCA CODE CONSTRUCTION

The LDPCA encoder has three stages. The first stage is an
invertible linear transformation s = Hx of the source data
sequence x, where H is a L x L non-singular sparse binary
matrix (over GF'(2)). The second stage is a rate 1 accumulator

that takes the length L sequence s def [s1,52,...5.]T and
generates the length L sequence ¢ = [c1,¢a,...cp]T, where
¢i = ) j—1 8. The third stage permutes the sequence c,
using a permutation 7 of the indices [1,2,...L], to obtain
a sequence p = [p1,p2,...pr]T. The sequence p is then
transmitted progressively to the decoder, in sequence, with
the total number of transmitted bits determined by the decoder
feedback. s and c are referred to as syndrome and accumulated
syndrome sequences, respectively, or simply as syndromes
when context eliminates ambiguity. A discrete set of N
possible rates is enabled by the rate scalability, where the
integer parameter N is a factor of the block length L so that
M = L/N is an integer. The encoder first sends M syndromes
to the decoder and responds with M additional syndromes in
response to each decoder request for additional bits sent when
the decoder’s attempt to recover x based on already received
data fails. The process continues until decoding succeeds,
which is usually verified using a check sum of the source
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Algorithm 1 Computation of the permutation 7 from c to p
determining the LDPCA transmission order

Input: block-length L and rate scalability parameter N,
where N is a factor of L.
Output: A permutation 7 of the integers from 1 through L.
1: Initialize: I' < 1,u' < N,h « 1.t « 1,7 «
[N,2N,...,L — N, L]

2: while ¢ > h do
3 if I # v then o
t+1 ho,t+1 h ul—1
4 l <—lh,u h<—lhl + 45— )
5: A A R o R TER
6 < [m,u'™t +]0,N,2N,..., (L — N)]|
7 t<—t+2
8 end if
9: h<h+1
10: end while
Py
21
wom g
\é/ P4 2 —= D1, P2, "
= |Ps| B
5 = 'z
g & % t=— Feedback
= b7 §
e
s

Fig. 1: An example LDPCA encoder with block-length L = 8.

message that is independently communicated to the decoder,
resulting in a (negligible) overhead. The rate-adaptivity offers
the discrete set of N rates (1/N,2/N,--- (N — 1)/N,1).
The permutation 7 that maps c to p (specifically, pr, = ¢;) is
designed to ensure that for any number of transmitted bits,
the transmitted sequence represents a nearly uniform (and
regular) sampling of the accumulated syndrome sequence c.
Algorithm 1 summarizes the computation of the permutation
. The encoder is shown in Fig. 1 for a toy example with
L =8 N =4,and M = L/N = 2, where we have
™ =14,8,2,6,1,5,3,7] from Algorithm 1.

At rate 1, the decoder recovers the message by inverting the
permutation, accumulation, and the linear transformation (H)
steps performed at the encoder. For rates below 1, the decoding
is posed as an error correction decoding problem for recovery
of x from the noisy version y available at the decoder as
side-information and the encoded data p®) received from the
encoder. Specifically, let p*) = [p1, pa, ... pras]” denote the
sequence of bits received from the encoder (thus far), where
k denotes the number of requests received by the encoder
(starting with £ = 1 for the first transmission). p(k) is the
leading subsequence of kM bits from p. The decoder first
(partly) undoes the permutation and accumulation operations
performed by the encoder. Let #* = [ﬁik),frék), e ,ﬁ,i’j\zl]
denote the first kM entries in the permutation vector 7, sorted

in ascending-order, i.e., 1 < 7r§k) < ﬁék) e 7?,(5\2[ < L. Using
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Fig. 2: Decoding graph G(H*)) for the effective LDPC code
at rate (k/N).

7% and the received p¥), we obtain a subsequence c(¥) =
[Cﬁ_§k),cﬁ_gk) ...cﬁ’(ﬁ\){]T of the sequence c. ¢¥), in turn, can
~(k
l(k) déf Z?Tij(k) Sj = (Cﬁ_(k) — Cﬁ_(k)) for
J=T 4 i -1
l=1,2,...kM, where we introduce #" = 0 and so =0 to
simplify notation. Now, letting s*) = [s?k), s sMT we
see that s(*) = H(® x where H*) is a (kM) x L binary matrix
whose ' row is the sum of the rows ﬁ'l(f)l through ﬁl(k) of
H. The sparsity of H ensures that H*) is also sparse as long
as successive indices of subsequence (ﬁék), ﬂ’“), . fr,(ﬁv)[) are
not too far apart; the design of the permutation 7 ensures this

constraint is met.

be used to obtain s

The matrix H(*) is interpreted as the parity check matrix for
an (L, L — kM) low density parity check (LDPC) [20], [21]
code, for which, the vector x lies in the coset uniquely iden-
tified by the syndrome s*) = H®)x. Using s*) the decoder
computes a symbol-by-symbol maximum (approximate) a
posteriori probability decoding X for x via belief propagation
on a modified decoding graph for the code illustrated in
Fig. 2. The graph, has two types of nodes: L variable nodes
corresponding to the L bits in x (depicted by circles), and kM
check nodes corresponding to the kM bits in the syndrome
s(¥) (depicted by squares). Edges in the graph are defined by
the kM x L parity check matrix H(*) for the LDPC code, an
edge connects the it check node and the ;™" variable node if
and only if i(f) = 1. We denote the decoding graph for the
LDPC code with parity check matrix H*) by G(H®)).

For our example code, the decoder starts with a low rate
of 1/4 and first receives p") = [p1, po], which after undoing
the permutation and summation provides c!) = [c4, cg] and
s(1, respectively. The decoder attempts decoding on the graph
of Fig. 3(a) that describes s(Y) = HWx. If decoding fails
at rate 1/4, the decoder requests additional bits and the
encoder sends [ps, ps]. Combining these with the previously
received information and again undoing the permutation and
summation, the decoder obtains p(?) = [p1, pa, p3, pa), ¢?) =
[ca, ¢4, c6, cg], and () = H®)x = [s§2),sé2),sg2),sf)] and
attempts decoding using the corresponding graph of Fig. 3(b).
If the decoding fails at rate 1/2 and also at the next rate of
3/4, the encoder sends all remaining bits in p to the decoder,
which then (cumulatively) has p®*) = gpl,pg, .,ps] =P
from which it recovers s = s = [s\* ,sé ,...,sgl)] and
then the data as x = H™!'s.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

(b) rate 1/2.

Fig. 3: Decoding %raph for our example LDPCA code at rate:
(a) 1/4, where sgl = 51+52+53+S54, sgl) = S5+S6+S7+Ss,
and (b) 1/2, where 552) = 81 + $9, séQ) = 83 + 84, ng) =

2
55 + s, and 5,7 = s7 + sg.

III. PROPOSED LDPCA CONSTRUCTION: CODE ANALYSIS
AND DESIGN

The LDPCA code is defined by the matrix H along with
the permutation 7 and its performance can be characterized
by analyzing the series of resulting LDPC codes at each of
the N rates. For symmetric virtual channels, the standard
LDPC analysis methodology of density evolution [22], [23]
applies, based on which we establish an objective function
for designing LDPCA codes.

Our designs consider scenarios where the side information
correlation py|x is modeled either as a binary symmetric
(BSC) or as a binary-input additive white Gaussian noise
(BIAWGN) channel [23]. To unify notation and description,
we use a common scalar channel degradation parameter q to
denote either the probability of bit error for the BSC setting or
the standard deviation of the noise for the BIAWGN setting.
The minimum required rate corresponding to the channel
degradation parameter ¢ is then designated by H (X |Y’; q). The
code performance at the rate (k/N) is quantified by estimat-
ing, via density evolution, the maximum channel parameter g;;
for which successful decoding is expected and evaluating the

rate gap gi dof (k/N)—H(X|Y;q;), where a smaller rate gap
is clearly desirable. The value ¢j is referred to as the threshold
of the LDPC code with parity check matrix H*) and in the
asymptotic regime of large block-lengths depends only on the
statistical distribution of edges in the decoding graph G(H*)).

Specifically, in G (H(”“)), let )\l(-k) and pgk) denote, the fraction
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of edges (out of the total edges in the graph) that emanate
from degree-7 variable and check nodes, respectively, where
the degree of a node is the number of edges connected to the
node. The edge-wise degree distribution for G(H(®)) can then
be summarized via the pair of polynomials (A(*)(z), p(*) (z)),
where \F) () = 3., /\Ek)xi_l, PP () = Sisy pgk)xi_l
and > .o, AR = D iso p!¥) = 1. For large enough block-
length, the decoding performance of LDPCA code at rate
(k/N) closely matches the average performance of an en-
semble of codes that share the same statistical distribution
of edges (A\¥)(x), p(¥) (x)) and density evolution [22] allows
quantification of this average performance via estimation of
the threshold g;.
We use the average gap

def 1 a
€
QA:N;%

across the operating rates of the code as a single numerical
figure of merit quantifying the performance of the LDPCA
code, and as a cost function for code design. This specific
choice allows for consistent comparison with previously re-
ported designs in [12], [19]. Note, however, that the design
framework we propose can also readily handle alternative
performance metrics, such as the worst-case gap.

ey

A. Proposed LDPCA Code Construction

The complete space of L x L sparse binary matrices H is
prohibitively large, practical designs explore a smaller region
of this space that is large enough to include good codes and
small enough to facilitate design. We restrict our attention to
code constructions that enable generation of {H" 1Y, from
the lowest rate mother code H("). Each row in H(") arises as
the sum of a selection of rows from H, when there is no
overlap between the non-zero entries in the selected rows,
the total number of edges in the decoding graph G(H) is

preserved in the decoding graphs {G (H(’“))};V;l. It follows
that under this non-overlapping constraint, the decoding
graph G(H™®)) can be viewed as arising from a splitting of
M check nodes in G(H®*~1) into two check nodes each in
G(H®)). Equivalently, H*) can be generated from H(*~1)
by identifying, based on the scheduling permutation 7, M
rows in H(*~1) designated for splitting and splitting each of
these rows in H*=1 into a pair of rows in H(k), where,
in the splitting process, the nonzero entries in a row in
H®*=1 are partitioned into the nonzero entries in the pair
of rows generated in H(*). The code is therefore constructed
by choosing the parity check matrix H() for the mother
code and progressively generating H®) from H®*~1) for
2 < k < N by splitting the rows as per the scheduling
order defined by the permutation 7. Flexibility in partitioning
of the nonzero entries in the process of splitting a row in
H®*=1 into a pair of rows in H¥) allows design choices
in the degree distributions at the different stages, which in
turn influences the performance at the corresponding rates.
We further simplify the code design by designing the mother
code HY) with a concentrated check-node degree distribution,
where check node degrees differ by at most one — a constraint
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under which performance extremely close to capacity has
been demonstrated with LDPC codes [24]. Preserving check-
node concentration across all rates (k/N) (1 < k < N)
motivates uniform splitting wherein when splitting a selected
row ¢~ in H® into two rows €7 and 67 in H*+1 non-zero
entries are partitioned equally (off by one, if necessary) and
randomly between e’ and 67, However, as we subsequently
demonstrate in Section IV, LDPCA codes constructed with
uniform splitting exhibit an inherent performance trade-off
between different rate regions. We alleviate this trade-off by
using non-uniform splitting.

After considering different non-uniform splitting options,
we adopt a strategy that is relatively simple yet offers good
performance. The strategy is motivated in part by observed
statistics of degree-distributions of non-adaptive LDPC codes.
Specifically, we note that good concentrated LDPC codes
designed for individual DSC rates, have variable and check
node degrees that are: (a) relatively large at low rates, with
average variable node degrees close to 6 at rates close to
0 and (b) small for high rates, taking on values of 2 or 3
when the rate approaches 1, which are the smallest degrees
that can be meaningfully used for belief-propagation. Because
the total number of edges remains constant in the LDPCA
graph, the non-uniform splitting must maintain the same
average degree as the uniform splitting. Non-uniform splitting,
however, allows introduction of degree 2 and 3 nodes at the
higher rates, offering an advantage, as we subsequently see.
Because previously designed LDPCA codes with (almost)
concentrated check-node degrees can offer good performance
at mid/low rates, uniform splitting is utilized for rates (k/N)
lower than a chosen upper bound (k,, /N ), where 2 < k,, < N
is an integer design parameter. At higher rates (k/N), with
k > k,, each split of a row in H® to generate two rows in
H(+1 is performed non-uniformly to create, in the resulting
pair, one low degree row with degree 2 or 3. A parameter
n in [0,1] controls the relative fractions of these degree 2
and 3 nodes. Specifically, of the total M rows in H*) to
be split into pairs during the process of generating H(*+1),
fractions 7 and (1 — 7)) are forced during the splitting process
to have rows of degree 2 and 3, respectively, as one of the
rows generated by the split, where 7 is another parameter
in the code design. That is, of the M rows H(*) designated
for splitting by the transmission order 7, nM are randomly
selected and each selected row ¢ is split into two rows e’
and 67 in H*+1)_ with €7 having degree 2 and 8 having
degree (wy (@) — 2) where wy(x) denotes the Hamming
weight of the binary vector x. Similarly, for the remaining
(1 — )M rows designated for splitting, each row o’ is split
into two rows €’ and 8" with degrees 3 and (wy (¢b) — 3),
respectively. For the splits into degree 2 (3) nodes, 2 (3) of
the nonzero entries of ¢ are randomly selected for allocation
to €. Algorithm 2 summarizes the procedure for generating
{H;}Y_, using HY), 7, k, and 7 and the splitting process
just outlined.

For our example code in Section II, each degree 8 check
node for the rate 1/4 code graph in Fig. 3(a) is split into two
degree 4 nodes to obtain the rate 1/2 code of Fig. 3(b). An
alternative rate 1/2 code shown in Fig. 4 is obtained by non-
uniform splitting, where each degree-8 node in Fig. 3(a) is
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Algorithm 2 Construct LDPCA code from the lowest rate
mother code using splitting

Input: HY 7 k.7
H: lowest rate mother code, T:
permutation vector determined by Alg. 1.

k, and 7: non-uniform splitting parameters

Output: The matrix H e o) defining the LDPCA
code (along with 7r)
1: repeat
2. for k< 2to N do
Construct the (kM) X
splitting rows of H(~1

Denote mt" row of H®) (H*-1) by H,(ji)

L matrix H® by

HEY)
3: d < [, where ﬁl(k) =

7#) is the vector of the first k
elements of 7 sorted in ascending order
H*-D ig vertically divided into M
sub-matrices, from each, split the dh
row into two rows
4: for i < 1 to M do
Split ng:g(i—l)-yd into two rows

(k) (k) .
Hk(i—l)er and Hk(i71)+d+1 (see details
in text)

Copy other rows from H*~1) into H®

(k) (k=1) ;
5: H]E}S_l)ﬂ — H((]]2 11))( 1)+ for1 <j<d
6: Hy o4 < B 1)-1)4j-1 for (d+1) <
J<k
7: end for

8: k+—k+1
9:  end for
10: until H®Y) is non-singular

Fig. 4: A decoding graph at rate 1/2 obtained via a non-
uniform splitting from Fig. 3(a), in contrast with the graph of
Fig. 3(b) obtained by uniform splitting.

split into two check nodes with degree 2 and 6, respectively.

B. Degree Distributions for Proposed LDPCA codes

The splitting process used to obtain H® from H® in
Algorithm 2, can be mirrored in analysis to infer degree distri-
butions (A (), p(¥) () for the effective LDPC code at rate
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k/N from the degree distributions (A\*~1 (), p*~1)(z)) for
the effective LDPC code at rate (k—1)/N. Applylng this pro-
cess recursively, the code parameters (A\(V) (z ) M (g ) 7, ku)s
yield all the degree distributions {(A%) (), p®) (z))}N_,.

To proceed with the analysis, we introduce the node-
wise degree distributions for the decoding graph G(H®))
summarized by the pair of polynomials (A (z),T'®)(x)),
where A (z) = 3., AP zi T (2) = Sisa F(k):r and
Agk) (ng)) indicates the fraction of variable (check) nodes that
have degree-i in G(H(®)). One can readily convert between
the node-wise and edge-wise degree distributions [23, pp. 79].

Because variable node degrees remain unchanged in the
splitting process used to generate H®) from H*~1D  we
readily see that A (z) = A¥*~D(z). To obtain T'*)(x)
from T(*~1) (), note that H*) is generated from H*~1) by
splitting M rows, equivalently, a fraction 1/(k—1) of the total
rows. To obtain T'*) (), we first rewrite I'*~1)(z) as

F(k_l)(x) _ Q(k—l) ((E) + 6(1@—1) ({E), 2)

where Ok D(z) = 2. ,0F Vg and Qt-D(z) =
Y oiso ngfl)aji. Q=1 (z) describes the part of the degree
distribution corresponding to the check nodes selected for
splitting and G(k_l)(x) the degree distribution corresponding
to the remaining check nodes. In the splitting process, because
we use concentrated mother codes and use k, > (N/2),
i.e., we split non-uniformly only for rates larger than 1/2,
the rows selected for splitting have degrees greater than or
equal to the maximum degree for the rows not selected.
Therefore, Q(*~1)(z) can be readily obtained by accumulating
a fraction 1/(k — 1) of the edges represented in T(*~1)(z)
proceeding in order from the highest degree edges toward
lower degree edges. In this process, we are assured that the
minimum polynomial exponent in Q(k_l)(a:) is no smaller
than the maximum polynomial exponent in ©*~1)(z), and
QD) = X, Y = 1/(k - 1),

Now we can write

) (z) = E

(6% V@) + ¢ V@), 3
where Q(*~1)(z) describes the contribution, to the degree
distribution I'(*) (), of the 2M nodes generated by splitting
the M nodes described by Q=1 (z) and the normalizing
factor (k — 1)/k accounts for the fact that each split node
generates two nodes and ensures I'(*) (1) = D isa 1"( ) =1,
For k < k,, we use uniform splitting and Q=1 (z) can be
written as [18]:

QR (2) = 200D (22) 427 QD (2%)+272QF D (?),

“)
where Q.(gkfl)(a:) and ngfl)(x), respectively, represents
the polynomial terms within Q=1 (z) with even and odd
degrees, and Q1 (z) o V) + o V(z). The
check nodes described by Q.(gkfl)(a:) and ngfl)(a:), respec-
tively, are described by ZQ.(gkfl)(x%) and (a:%ngfl)(x%) +
23 (22)) after splitting.

For k£ > k,, non-uniform splitting is used, and the new



YU and SHARMA: IMPROVED LOW-DENSITY PARITY CHECK ACCUMULATE (LDPCA) CODES

nodes are described by

Q(k—1>($):n<9(’“‘1)(x)+ 1 2>

2 E—1"

Q-1 1
+(1—n)< xg(x)+,€_1a:3). 5)

The first term in (5) can be seen by recalling that M7 check
nodes are split into 2Mn new check nodes, Mn of which
are degree 2 nodes and described by (n/(k — 1))2?, and the
remaining M7 nodes are described by nQ*~1)(z)/2%. The
second term in (5) can be similarly interpreted for the splits
generating degree 3 nodes.

The overall parameterization for the LDPCA code can be
further compacted by using the fact that the mother code is
concentrated and has rate 7 = 1/N to obtain the check-node
degree distribution p(!)(x) = (1 — p)ai~! + pa’, where [23]
j =1/ (r o \V(@)dz), j = i, and p = (j = ) +1)/j.
Putting together the steps developed in this subsection, the
degree distributions {(A®)(z), p®)(2))}_, can be obtained
from (A (z), ky,n).

We note that our analysis in this subsection builds upon
and extends the analysis presented by Varodayan in [18],
which addressed only the uniform splitting used in prior code
designs.

C. Code Design for LDPCA Codes

For an LDPCA code described by the parameters
(MM (2), ky,n), the analysis procedure of the preceding sec-
tion yields the degree distributions {(A*)(z), p® (x))}2_,,
which used with density evolution [22] provide the rate gaps
{ gk}sz_l1 and in turn and the average gap g4. We formulate the
LDPCA code design problem as a search for code parameters
minimizing the average gap, i.e.,

D (@), k2, n*) = (6)

argmin  ga.
(A (@), ku,m)

A global optimization strategy is necessary because the
optimization problem in (6) is non-convex with an objective
function that must be numerically evaluated. We perform our
search by first generating candidates for (k,,7n) over the
permissible ranges for these parameters using combination of
gridding and random generation. For each candidate choice
of the parameters (k,,7), to search for a degree distribution
A () that minimizes the average gap g4, we employ the
differential evolution (DE) [25] global optimization technique,
which has proven to be useful in designing LDPC codes [24],
[26]. Problem specific considerations for DE are summarized
in the appendix.

After a good set of parameter values (A\(V*(z), k%, n*) are
determined, first the parity check matrix H() is generated
for the mother code using the progressive edge growth [27]
algorithm which is a greedy approach to generate LDPC parity
check matrices that avoids undesirable short length cycles
in the decoding graph. Then, using the permutation 7 from
Algorithm 1 and the parameters (k},n*) in Algorithm 2, we
obtain the matrix H that defines the LDPCA code (along with
).
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IV. RESULTS

To illustrate the benefit of the proposed LDPCA code
constructions, we benchmark their performance against alter-
native constructions using density evolution analysis of the
designed degree distributions and Monte Carlo simulations of
the actual codec. We consider the BSC and BIAWGN virtual
channels. The latter channel model is commonly employed
for practical distributed source coding applications where the
side-information y at the receiver is continuous-valued, though
the input x is binary (See, for example [28], [29]). For the
BSC correlation channel, the channel degradation parameter
is the cross-over probability ¢ = py|x(0[1) = py|x(1]|0),
and H(X|Y;q) = —qlogyq — (1 — g)logy(1 — q). The
BIAWGN channel is represented as ¥ = (2X — 1) + Z,
where Z ~ N(0,q?) is the additive white Gaussian noise
and ¢ is the standard deviation of Z. Then, H(X|Y;q) =1—
C(q), where C(q) = — [ ¢q(x) logy ¢q(x)dz — % log, (2meq?)
is the capacity for the BIAWGN channel, with ¢,(z) =

_(z+1)? _(e—1?
L e 2 4e 20 |,

8mwq?

A. Parameter Selections for Code Design

To facilitate comparisons with previously reported results
n [12], [19], we selected the rate scalability parameter N =
66. We first generate a set of candidate values for k, in the
range 40 < k, < 65 and 7 in the interval 0 < n < 1;
the latter by combining a coarse grid corresponding to n =
0.25,0.50,0.75 with a set of randomly generated candidates.
Next, random values are generated for the average variable-
node degree A\ (see Appendix for definition) in the range
3 < X < 6. This range has been found to be adequate in
prior work on LDPC code design [18], [26], [28]. For the DE
procedure, a population size of N, = 48 and a differential
mixing parameter F' = 1/2 are used. Initial candidates are
generated with maximum polynomial exponent Dy = 33
and D,, = 6 non-zero terms. Iterations terminate when the
average gap falls below a threshold of 7' = 0.02 or after
a maximum iteration count of 50. To accelerate the DE step,
instead of the average gap, we use the sum of gaps at the subset
of rates (k/N) for k € {5, 10,20, 30, 40,45, 50, 55, 58, 62}.

From the parameters (A(V)*(z),k*, n*) obtained via the
optimization process, we design an actual LDPCA code matrix
H using a value of M = 249, resulting in an overall
code block-length of L = NM = 16434. These values
are also chosen for compatibility with prior designs [12],
[19] against which we benchmark the code’s performance. To
highlight the impact of the proposed nonuniform splitting, we
include in our benchmarking, designs and codes constrained
to the conventional uniform splitting but obtained with our
methodology by setting k,, = (N + 1). Additional parameters
for these alternative designs are introduced subsequently as
required.

B. Designs for the BSC Channel

Using the proposed method, for the BSC channel, we
obtain an optimized set of LDPCA code parameters given by
AD* () = 011662 + 0.2212% 4 0.27322° 4 0.22322%* +
0.122223! +0.043932, n* = 0.5 and k} = 49. This parameter
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set is designated NU to indicate that it is obtained with the
proposed nonuniform splitting strategy.

We benchmark the code against four other LDPCA code
designs. The first of these is the code in [19], which represents
the best reported previous design, and has a mother code
degree distribution AV (z) = 0.071112z 4 0.23814322% +
0.182737x3 + 0.0737952° 4 0.079317z* 4 0.354896 2. We
label this code as U[0.15,0.75] since the code uses uniform
splitting and explicitly optimizes for two rates 0.15 and 0.75.
Following the methodology in [19], i.e., minimizing the gap
at two code rates, we also use our proposed design procedure
to design two alternative LDPCA codes that conform to the
conventional uniform splitting: U[0.1,0.7] which minimizes
the sum of the gap at the two rates r = 0.1,0.7 and has
A (z) = 0.0987z + 0.2322z° + 0.1816z* + 0.04782° +
0.0688z 4 0.3711232, and U[0.1,0.9] which minimizes the
sum of the gap at the two rates r = 0.1,0.9, with A\!(z) =
0.1471z + 0.464222 + 0.11022® + 0.0222%° + 0.05752%° +
0.199232. To specifically highlight the benefit of the proposed
nonuniform splitting, we also obtain a series of degree distri-
butions by starting with the mother code degree distribution
in [19] and using the proposed nonuniform splitting procedure
(instead of the conventional uniform splitting used in [19]);
NU[0.15,0.75] represents this design. In our density evolu-
tion performance comparisons, we also include the predicted
performance for non-adaptive LDPC code designs (designated
LDPC-NA) obtained with the method described in [26].

LDPCA codes generated using the optimized design param-
eters were also experimentally evaluated using Monte-Carlo
simulations and compared against existing LDPCA codes. The
simulations were conducted with the channel degradation pa-
rameter ¢ chosen to sample the conditional entropy H(X|Y; q)
in uniform steps of size 0.05 over the range from 0 to 1.
For each choice of ¢, Ns = 200 pairs® (x,y) of data and
side-information vectors, each matching the code block-length
L = 16434, were generated where the z;’s were iid with
p(z; = 1) = p(a; = 0) = (1/2) and the corresponding
side information was obtained as y = x + z where z was
chosen as an iid binary vector with p(z; = 1) = ¢. For each
generated data vector x, the LDPCA codec was simulated
and the number of M -bit blocks sent from the encoder to the
decoder for successful recovery® was recorded. Aggregating
the data recorded over the simulations, the average rate 7 over
the N; = 200 simulations was computed. The corresponding
gap 7 — H(X|Y; q) to the lower-bound was used to assess the
effectiveness of code. For codes corresponding to the designs
already presented, we re-use the corresponding designations
NU and U[0.15,0.75], where the first is based on the proposed
non-uniform splitting design and the second is the previously
best reported code from [19]. In addition, we include three
codes U2-4, U3 and U2-21 from [12] obtained via uniform
splitting of the mother codes with node-wise degree distri-
butions A'(z) = 0.32% 4 0.42% + 0.3z, A'(x) = 23, and

2Because of the relatively large block-length L, 200 simulations suffice.
The estimated standard deviation of the average gap over the Ng = 200
simulations is only 0.00091 bits.

3A 32 bit cyclic redundancy check (CRC) is used to identify successful
decoding. The resulting 0.002 bit overhead, although negligible, is included
in our computed rate 7.
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Al(z) = 0.3162% +0.41523 4 0.12827 +0.0692°% 4 0.02219 +
0.05222L, respectively.

For the proposed design, and the alternative designs, Table I
lists the average gap ga and Fig. 5 plots the rate gaps at
the different operational rates, where results are included for
both the density evolution analysis and for the actual codec.
Several observations can be made from these results. First, the
values in Table I show that the proposed NU design offers a
significant improvement over the best reported previous design
U[0.15,0.75]. Compared with U[0.15,0.75], NU reduces the
average rate gap by 35%. The plots in Figs. 5(a) and 5(b)
reveal that NU maintains a low rate gap at all operating rates,
which offers a significant improvement over U[0.15,0.75]
at high rates (r > 0.7), while matching the performance
of U[0.15,0.75] at lower rates. The two additional designs
U[0.1,0.7] and U[0.1,0.9] illustrate that the performance
trade-off between the different rates appears intrinsic to the
uniform splitting design: for U[0.1,0.7] performance deterio-
rates rapidly at rates > 0.7 and whereas U[0.1,0.9] offers
more uniform performance across rates, the performance is
markedly poorer than NU across the entire rate region. Finally
the results for the NU[0.15,0.75] design obtained using the
proposed splitting methodology but using the mother code
degree distribution corresponding to U[0.15,0.75] (from [19])
also offer good performance, which though worse than the
optimized NU design is better than the performance obtained
with any of the designs obtained with uniform splitting. The
performance of the codecs U2-4, U3 and U2-21 is markedly
worse than the proposed NU codec design; though these
codes do not exhibit an exaggerated decline in performance
at high rates, their performance across the entire rate region
is poorer. Overall, the proposed NU designs incorporating
non-uniform splitting of the check nodes in the process of
developing higher rate codes from lower rate codes offer
a significant improvement over codes constructed using the
previously reported methodology using uniform splitting alone.

C. Designs for the BIAWGN Channel

For the BIAWGN channel, the optimized code parame-
ters obtained by using the proposed design procedure are:
AD*(2) = 0.10792 + 0.289822 + 0.21742° + 0.0448212 +
0.0058z1% + 0.3342232, n* = 0.765 and k; = 48. Using
this design, an LDPCA code parity check matrix H was also
obtained. Following a procedure similar to the one described
in Section IV-B for the BSC setting, the performance of the
design was analyzed by density evolution and of the code
by simulations. For these evaluations, the channel degrada-
tion parameter g, which now represents the noise standard
deviation, varied over the range corresponding to signal to
noise ratios from 6.98 dB to —11.44 dB. For benchmarking
purposes, similar evaluations were also performed for two
designs and codes (each) obtained via uniform splitting, the
U[0.15,0.75] code from [19] and U[0.1,0.7], designed for
the BIAWGN channel to minimize the sum of gaps at two
rates 0.1 and 0.7, having the mother code degree distribution
A (z) = 0.1135z + 0.336122 + 0.19472% + 0.0979z% +
0.062922° + 0.1948232. Table II and Figure 6 summarize the
results obtained for these codes, combining results from both
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TABLE 1. Average gap ga for the different code designs: (a) predicted values from density evolution, (b) from Monte Carlo

simulations using actual codec.

(a) Density evolution

Code NU NUJ[0.15,0.75] | U[0.15,0.75] | U[0.1,0.7] | U[0.1,0.9] | LDPC-NA
ga | 0.0398 0.0425 0.0615 0.0574 0.0638 0.0144
(b) Actual codec
Code NU NU[0.15,0.75] | U[0.15,0.75] | U2-4 u3 U2-21
ga | 0.0483 0.0536 0.0683 0.0816 | 0.0936 | 0.0696
TABLE 1II. Average gap ga for the different code designs APPENDIX

under BIAWGN channel. (DE): predicted values from density
evolution; (MC): from Monte Carlo simulations using actual
codec.

Code NU | U[0.1,0.7] | U[0.15,0.75]
ga (DE) [ 0.0272 | 0.0463 0.0583
ga (MC) | 0.0405 | 0.0561 0.0666

density evolution and simulations in a single table/graph for
succinct presentation.

The observed trends in the results are similar to the BSC
channel setting. Compared with U[0.1,0.7] and U[0.15, 0.75],
the proposed NU code offers improved performance at high
rates while maintaining comparable performance in low and
mid rate regions demonstrating clearly the advantage of
the proposed nonuniform splitting strategy. Also, U[0.1,0.7],
which is explicitly designed for BIAWGN, outperforms
U[0.15,0.75] which is designed for BSC channel.

V. CONCLUSION

An improved construction of LDPC-Accumulate (LDPCA)
codes for rate-adaptive distributed source coding is proposed.
Analysis and simulation results demonstrate that the pro-
posed construction alleviates the trade-off in the performance
between different rates inherent in previous constructions.
LDPCA codes designed using the proposed constructions
and design methodology outperform prior designs and, in
particular, offer a significant improvement in the performance
at high rates without compromising performance at low rates.
A software implementation of the codec is provided®.
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Differential evolution is an iterative procedure. The I*” itera-

tion, or generation, has a pool of alternative candidate variable-
node degree distributions {7/(z)} 1{\7:61, where N, represents the
number of candidates, which is constant through the iterations.
To obtain the population for the (I+1)*" generation, using the
“DE/best/2/bin” variant of DE cited in [25] for its beneficial
behavior, we generate a set of N, candidate mutants,

A0 = Thae) £ P (0 0) + 74 0) = o) =)
where 7/ (), 7}, (), 7}, (x) and 7/ (z) are four distinct ran-
dom selections from {7!(x)}N¢,, 7l (x) denotes the distri-
bution among {7/ (z)}°, that minimizes the average gap g,
and F' > 0 is the non-negative differential mixing parameter.

By selecting between each candidate and its mutant the one
that offers the smaller average gap, the (I + 1) generation is
then obtained as

() {%}(x» if 9.7 (2), kusn) < ga(r} (@), ko)
! 7H(z), otherwise

(®)
fori=1,2,...N..

Constraints and modifications are introduced for DE process
to ensure stability and a concentrated check-node degree
distribution for the mother code. To maintain concentration
over a fixed set of adjacent degrees during the DE itera-
tions, we structure the search for the mother code variable-
degree distribution A(M*(z) as a series of DE searches,
where each search is constrained to a fixed value for the
average variable-node degree, which can be shown [26] to
be A =1/ (fol AD)(x)dx ). The discussion in Section III-B
(second paragraph from the end) indicates that fixing the
variable-node degree \ also results in a fixed value for the
concentrated check-node distribution p(!)(x), both of which
also remain unchanged in the mutation process in (7), ensuring
that concentration is maintained for p")(z). To preserve this
fixed concentrated check-node degree distribution during the
search, our implementation also eliminates the cross-over
step in the original formulation of DE [25]. Also, candidate
mutations in (7) are screened to ensure all coefficients are
nonnegative and the LDPC stability constraint [26] is met.
Initial candidate degree distributions {7} (x)}¥*, are randomly
generated matching the average variable-node degree A\ with
each 7} (z) constrained to a maximum polynomial exponent
Dmax and at most D, non-zero terms. Dy.x and D, are
additional parameters defining the search process.
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Fig. 5: Performance of the LDPCA code designs for the BSC
channel evaluated via: (a) Density evolution based analysis and
(b) Monte-Carlo simulations of actual codec with block-length
L = 16434. Fig. 5(a) plots the gaps gy, to the theoretical lower
bound at rate (k/N). Fig. 5(b) plots the gap between the aver-
age operational code rate 7 and the lower bound H (X1Y’; q)
for a simulation with channel degradation parameter g. See
text for identifying the code labels for additional details.
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