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Spread Spectrum Codes for
Continuous-Phase Modulated Systems

Gaurav Thakur∗

Abstract—We study the theoretical performance of a combined
approach to demodulation and decoding of binary continuous-
phase modulated signals under repetition-like codes. This tech-
nique is motivated by a need to transmit packetized or framed
data bursts in high noise regimes where many powerful, short-
length codes are ineffective. In channels with strong noise, we
mathematically study the asymptotic bit error rates of this
combined approach and quantify the performance improvement
over performing demodulation and decoding separately as
the code rate increases. In this context, we also discuss a
simple variant of repetition coding involving pseudorandom
code words, based on direct-sequence spread spectrum methods,
that preserves the spectral density of the encoded signal in
order to maintain resistance to narrowband interference. We
describe numerical simulations that demonstrate the advantages
of this approach as an inner code which can be used underneath
modern coding schemes in high noise environments.

Keywords: continuous phase modulation, random codes, bit
error rates, asymptotic bounds

I. INTRODUCTION

The traditional approach to designing a communications
system, dating back to Shannon’s time, was to treat coding
and modulation as separate procedures that can each be
studied and optimized individually. However, from a signal
detection viewpoint, it is more natural to think of them as
a single, unified process. This principle was first exploited
by Ungerboeck with the method of trellis-coded modulation
(TCM) [23], [30], which sparked considerable activity in the
development of such schemes, known as waveform coding
or coded modulation [1], [2]. TCM has seen widespread
use in applications such as phone-line modems and many
other waveform coding approaches have also been proposed,
based on variations of TCM [33] as well as other types of
waveforms such as wavelet elements [13], [15] or principal
components [20]. Many modern implementations use a
combination of the approaches and iterate decoding and
demodulation in order to be compatible with interleavers
[19], [22].

In this paper, we study a binary continuous-phase
modulation (CPM), packetized communications system
in an environment with high noise and/or strong narrowband
interference (NBI) at unknown frequencies. We are interested
in noise regimes where the raw, symbol error rate (SER) is
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very high, such as 0.3 or higher. In such environments, many
forms of modern, powerful forward error correction (FEC)
such as short-length turbo or other convolutional-based
codes either have a minimal or negative effect on error rates
compared to weak codes such as simple repetition codes
[25, p. 464-465], or have long block lengths that are not
suitable for use with short data frames. For these reasons,
we examine CPM based on a simple (N, 1) repetition code
in an additive Gaussian white noise channel. Demodulating
the resulting signal on a single-symbol basis is generally not
optimal, but is often done in practice due to other constraints
such as the presence of an interleaver in the system. On
the other hand, if we consider the resulting signal as a
waveform code and combine the decoding and demodulation
into a single correlation classifier, we would expect to
get a significant improvement in the bit error rate (BER).
The main goal of this paper is to mathematically analyze
this improvement as the rate N increases, and to precisely
quantify the difference in BERs between the approaches.

The paper establishes asymptotic bounds that compare
the performance of demodulating this waveform code on
a single-codeword basis with that of demodulation on a
single-symbol basis, followed by a hard-decision decoder
to unravel the block code. For a fixed and sufficiently high
noise power σ2, as the code redundancy N → ∞, we
quantify the differences in the error probabilities between
the combined and separated demodulation approaches under
both coherent and noncoherent demodulation methods. This
type of result is different from most asymptotic performance
bounds in the coding theory literature, which let σ2 → 0
for fixed code rates N [25, Ch. 8], but it gives insight into
the nature of the code at high noise levels. In numerical
simulations, we find that the combined approach can drive
down the error rates by an order-of-magnitude over the
separated approach. Similar techniques for increasing the
distances between CPM waveforms and reducing BERs
with such a combined approach have been studied in
previous works (e.g. [10], [12], [21]), but only numerically
for specific block codes at fixed rates, as opposed to the
asymptotic, theoretical results we develop in this paper.
Our results justify the use of repetition-like CPM waveform
codes for remote command channels and other applications
where the background noise is strong and small packet
sizes prevent the use of long-length codes, but where we
also have a lot of room to reduce the data rate using FEC.
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Once the error rate has been reduced to an acceptable level,
around 10−2 or 10−3, this simple waveform code can be
concatenated by more powerful FEC methods that take over
and bring it down further.

In this context, we also discuss a technique called “spread
coding” to preserve the spectral density of the encoded
signal and avoid periodicities that result in spectral spikes.
This approach is simply a version of direct-sequence spread
spectrum (DSSS) methods and consists of encoding the data
stream with a predetermined sequence of length-N code
words. These code words are known at both the transmitter
and receiver ends and can be generated in a variety of ways,
such as pseudorandomly or by a maximum-length shift
register. DSSS allows a signal to maintain a flat spectral
density and increases the robustness of the system to NBI
([1], [14], [16]), in contrast to using a straight repetition
code or by simply reducing the symbol rate, and is important
in situations where interference mitigation techniques such
as frequency-hopping are not usable. However, in contrast to
standard implementations and uses of DSSS [16], [17], we
think of spread coding as an FEC method and study its effect
on reducing the BER. In comparison with more sophisticated
waveform or block coding schemes, the DSSS-based spread
coding has the advantage of being compatible with existing,
uncoded CPM systems using standard hardware on the
transmitter side, and the short block lengths are compatible
with small packets and result in high speed, low complexity
demodulation algorithms at the receiver end.

This paper is organized as follows. Section II discusses
the communication system and the rationale for our design
choices in more detail. The main theoretical results of the
paper are stated and described in Section III. In Section
IV, we run some simulations that confirm and extend these
results numerically and discuss comparisons with other cod-
ing schemes under similar noise environments. Appendix
A reviews some background material on statistical signal
classification, and the proofs of the theorems in Section III
are developed in Appendix B.

II. SYSTEM DESCRIPTION

Continuous-phase modulation is an effective transmission
mechanism in bandwidth- or power-limited environments.
It maintains a constant power envelope and can thus be
used with nonlinear amplifiers. It is also relatively robust to
local oscillator drift at the transmitter and is well suited for
carrier tracking algorithms that can mitigate this. However,
the optimal demodulator structure at the receiver is relatively
complex due to the need to account for the memory in the
modulation. We follow the treatment in [25, p. 185-201] and
consider a real-valued, binary CPM signal at a known carrier
frequency that the receiver picks up. If B = {bk}−∞≤k≤L
is a sequence of binary symbols to be modulated, then the

CPM signal has the form

sB(t) =

√
2E

T
cos

(
2π

(
θ + ωct+

h

2
×

N∑
k=−∞

(2bk − 1)

ˆ t

−∞
F (s− kT )ds

))
, (II.1)

where E is the signal energy, T is the time interval for one
symbol, ωc is the carrier frequency, θ is the initial phase, h
is the modulation index and F is a nonnegative frequency
shaping function with ‖F‖L1(R) = 1. Alternatively, we can
also start from a complex baseband version of (II.1), which
would lead to equivalent results. For example, the Gaussian
frequency-shift keying (GFSK) modulation scheme is defined
by the shaping function

F (t) =
1

2
erf

(
2πBT√
2 log 2

(
t+

1

2

))
−

1

2
erf

(
2πBT√
2 log 2

(
t− 1

2

))
, (II.2)

where BT, the bandwidth-time product, is a fixed parameter.
This particular scheme has advantages in NBI-limited
environments due to its flat spectral density shape and
in-band spectral efficiency, and it is used with h = 0.5 and
BT = 0.3 in several well-known communications protocols
such as GSM and Bluetooth. For the rest of the section,
we set E = T = 1 to simplify the notation. We also make
the approximation that ωc → ∞, which is effectively a
rigorous form of the standard “narrowband assumption”
that sufficiently high frequencies are filtered out in the
receiver’s basebanding process (including in particular,
any cross-term components at 2ωc). CPM signals can be
expressed in several alternate but equivalent forms, such as
linear combinations of PAM signals [18] or the outputs of a
time-invariant system [26], but the standard form (II.1) will
be convenient for our purposes.

As discussed in Section I, we consider simple repetition-like
codes for the symbol sequence B, which are motivated by a
scenario where short data packets are transmitted and need
to be decoded in real time. Command channel uplinks for
satellites and unmanned aerial vehicles often send data in
this manner, and in some cases require the use of codes
with small block or constraint lengths that fit into short
packets and can be rapidly decoded by the receiver. Block
length constraints also appear in situations when the data is
transmitted continuously, but the symbols need to fit into an
existing framing structure with short data frames. In general,
any repetition-based code has weak distance properties and
would not approach the classical Shannon bound at a given
SNR, but under such constraints on the code length, weak
block codes can achieve near-optimal performance as shown
in [8], [9]. Using sphere-packing bounds, these papers show
that at a maximum block length of 7 symbols, for example,
a bit-to-noise ratio Eb/N0 of roughly 5db is needed to
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achieve a BER of 10−4, and simple codes such as Hamming
codes are close to optimal. Some modern turbo codes (e.g.
from the CCSDS standard [11]) perform well under very
low SNR and come close to the Shannon bound, but use
long constraint lengths (of 16000 or more output symbols)
and are unsuitable for use with short data packets. Under the
combined demodulation approach we consider, the correlator
bank at the receiver (either coherent or noncoherent) checks
against only the possible waveforms sB that can occur,
given knowledge of the possible code words B.

The symbol sequence B under a spread code consists of
a fixed sequence of pseudorandom code words, each N
symbols long. This keeps the spectral density shape of a
given modulation scheme unchanged from an uncoded signal,
maintaining the same spectral efficiency and robustness to
NBI. This coding approach is well suited for binary CPM,
where the code words B can be chosen to be complements
of each other and correspond to a “0” or “1” at any given
bit position, and the fixed distance between them allows for
a tractable mathematical analysis in Section III. We focus
on this binary case in the rest of the paper, but the basic
concept can be used with larger alphabet sizes as well,
with the code words all taken to be pseudorandom. The
use of pseudorandom code words in this fashion can be
thought of as a DSSS technique, with the encoded symbols
corresponding to DSSS “chips,” and has been investigated
in the context of CPM in several papers ([3], [14], [16],
[17]). However, DSSS is typically used to enable multi-user
communications or to prevent detection by a third party (low
probability of intercept), rather than as an FEC technique
that reduces the BER, and has been studied primarily in
the former context. Whereas DSSS is traditionally used to
expand the signal’s spectral density at a fixed data rate, the
DSSS approach we consider in this paper keeps the spectral
density unchanged and gives improved BER performance at
a reduced data rate.

At the receiver, demodulation of a CPM signal can be
performed either coherently or noncoherently [25, p.
295-299] at any given symbol position, depending on
whether the signal’s initial phase is known and kept track
of (e.g. using a phase-locked loop and a Viterbi state
estimator; see [7], [6], [25]). We analyze the BERs of both
formulations in the next section, but in either case, under
the combined demodulation approach, the receiver correlates
any N -symbol block of the signal against only the two
possible waveforms that can appear in that position. In
general, coherent signal classification effectively increases
the signal power over an equivalent noncoherent problem
and has an effect similar to a 3db SNR improvement
[27]. On the other hand, the special structure of CPM
signals allows for the design of noncoherent methods that
demodulate over several data bits at a time and approach
the performance of a fully coherent classifier [7], and we

use one such method in the simulations in Section IV. An
intermediate approach is for the demodulator to output soft,
single-symbol decisions that are passed into the decoder, as
done in serially concatenated schemes [19], [22]. However,
the soft decisions are typically obtained under independence
or Markov assumptions, and under channels with NBI
components, they do not preserve dependencies between
consecutive decisions and are generally not equivalent to the
combined approach. Serially concatenated schemes often
use long interleavers (spanning 1000 or more symbols)
between the coding and modulation in order to remove
these dependencies in practice, but such interleavers are not
suitable for use with short packets. Even under a purely
white noise channel, a soft decision demodulator cannot be
expressed as a likelihood ratio (see Appendix A), so it is
difficult to obtain sharp theoretical bounds using a signal
detection framework as we do in this paper.

In practice, a spread code is best used as an inner code
dropped into an existing, uncoded communications system,
chosen to have a high enough code rate to bring the SER
down to 10−2 or 10−3. It can then be concatenated with a
more powerful outer code that is effective at these lower input
error rates, without changing any spectral characteristics of
the signal that other aspects of the existing system may
be built around. Note that the spread coding and combined
demodulation approach is specifically meant to operate under
a high noise level and short block length constraints, and
other schemes may be more appropriate for different system
requirements on e.g. the spectral efficiency [5] or receiver
complexity [4], [6]. We summarize the description of the
entire system in Figure II.1, and show an example of a coded
CPM signal’s phase in Figure II.2.

Binary data Outer encoder 
Inner spread 

encoder 
CPM modulator 

Channel 
(AWGN+NBI) 

Combined CPM 
demodulator 

Outer decoder Received data 

Figure II.1. A block diagram of the spread coded CPM system.

III. ASYMPTOTIC PERFORMANCE OF DEMODULATION

We proceed to state the main results of the paper, comparing
the performance of the two demodulation approaches.
The proofs of the theorems in this section are deferred to
Appendix B. We make several simplifying assumptions to
allow for a tractable mathematical theory of asymptotic
bit error rates. We assume that the symbol sequence B is
binary, so that the code words at any given bit position
are just complements of each other and have a simple
distance structure. We also assume that the code words



4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
−6

−8

−6

−4

−2

0

2

4

6

8

Time (seconds)

P
ha

se

Figure II.2. An example GFSK signal’s phase under the two possible
spread codes at a given location.

are formed from a repetition-like code, which results in
periodic distances between CPM signals, and that the
background is additive Gaussian white noise, which leads to
explicit symbolic formulas for error probabilities in signal
classification (see Appendix A). However, our results allow
for arbitrary CPM pulse shapes, such as GFSK or raised
cosine (RC) pulses.

Our first result establishes sharp asymptotic bounds on the
distance between two complemented binary CPM waveforms,
as would be the case in a repetition code, over an observation
interval of N symbols. For any functions f and g, we use the
Landau notation f(N) ∼ g(N) to denote f(N)/g(N) → 1
as N →∞.

Theorem 1. For any binary symbol sequence B ending with
N identical symbols, let B′ be the same sequence with those
N symbols flipped. Let sB and sB′ be the corresponding
CPM signals given by (II.1). Assume that F is zero outside
[−1, 1] and that F (t) = F (−t). As N →∞,

lim
ωc→∞

‖sB − sB′‖L2(0,N) ∼
√

2N, (III.1)

and for the complex-analytic signals P+sB and P+sB′ with
cos(·) in (II.1) replaced by 2−1/2 exp(i·),

lim
ωc→∞

∥∥P+sB − P+sB′
∥∥
L2(0,N)

∼
√

2N, (III.2)

lim
ωc→∞

∣∣∣´ N0 P+sB(t)P+sB′(t)dt
∣∣∣

‖P+sB‖L2(0,N) ‖P+sB′‖L2(0,N)

∼ E0(N)√
2N

,

(III.3)
where E0 is a function satisfying |E0(N)| ≤ 3

2

(
1 + 1

h

)
for

all N .

Theorem 1 indicates that even when the CPM waveforms
are not chosen to be orthogonal for any fixed N , such as
e.g. binary MSK, they still become orthogonal in the limit
as N → ∞. In practice, the condition on F can be relaxed
to read that F is “approximately” zero outside [−1, 1], as is
the case with GFSK modulation, and the asymptotic bound

still holds.

This result is used to compare the error probabilities of
performing demodulation and decoding jointly, denoted by
pNC
Joint and pCJoint for noncoherent and coherent demodulation

respectively, with that of doing them separately, denoted by
pNC
Separate and pCSeparate.

Theorem 2. (Combined decoding and demodulation) Sup-
pose the modulation is given by (II.1) with the constraints
in Theorem III.1, and let ωc → ∞. Then for a fixed noise
power σ2, as N →∞,

pNC
Joint ∼

1

2
I0

(√
2E0(N)

8σ2

)
e−

N
4σ2 ≈ 1

2
e−

N
4σ2

and
pCJoint ∼

σ√
πN

e−
N

4σ2 .

Here, I0 is the modified Bessel function defined by I0(x) =∑∞
n=0

(x/2)2n

n!2 . In the noncoherent bound, the coefficient
turns out to be very close to 1

2 when σ2 ≥ 1. In general,
the function E0 in (III.3) is oscillatory and it is not easy to
characterize its behavior precisely, but it is typically between
0 and 1, and since 1

2I0(x) ∼ 1
2+ 1

8x
2 as x→ 0, the coefficient

is about 1
2 .

Theorem 3. (Separate decoding and demodulation) Suppose
the modulation is given by (II.1) with the constraints in
Theorem III.1, and let ωc →∞. Assume that N is odd and
C = limωc→∞

∥∥s{0} − s{1}∥∥L2(0,1)
≤ σ, i.e. the noise is

at least as strong as the signal separation. Then for a fixed
noise power σ2 and for all sufficiently large N ,

pNC
Separate ≥

(
e−1/8

(
2− e−1/8

))N+1
2

√
2πN

(
1− 1

2e
−1/8

) ≈ 0.71√
N
× 0.993N+1

and

pCSeparate ≥
1√
N

(
1− 1

2π

)N+1
2

≈ 1√
N

0.917N+1.

The distance C in Theorem 3 can be calculated explicitly
for certain shaping functions F . For binary, orthogonal
FSK with MI = 1, it is easy to check that C =

√
2 and

that the exponents in Theorem 2 become 0.882 under
the same restriction C ≤ σ. These results can also be
formulated in terms of the symbol-to-noise ratio Es/N0

instead of the noise power σ2, using the equivalence
Es/N0 = 1

4σ2

∥∥s{0} − s{1}∥∥2L2 for CPM signals [1].
Theorem 3 holds when Es/N0 ≤ 1

4 = −6 dB.

Theorems 2 and 3 together show that as N →∞, pNC
Joint and

pCJoint decay significantly faster than pNC
Separate and pCSeparate

for high noise power σ2, with a much bigger difference in
the noncoherent case. Note that these estimates are quite con-
servative when the demodulation is performed over multiple
data bits at a time, taking advantage of the symbol memory



5

inherent in CPM, but they serve to illustrate the improvement
of the combined approach over the separated approach. We
also point out that pCJoint and pNC

Joint are of similar order and
only differ by an N−1/2 factor, while pCSeparate is far smaller
than pNC

Separate. This is intuitively reasonable, since the longer
noncoherent observation intervals in the combined approach
make more use of the memory in a CPM signal and are
comparable to accounting for the entire symbol history that
led to the phase at the most recent symbol position.

IV. EXTENSIONS AND SIMULATIONS

In this section, we discuss some extensions of the ideas in
Section III and consider numerical Monte Carlo simulations
of the demodulation approaches we have studied. Some
plots comparing the spectral density of a DSSS spread
coded CPM signal to that of uncoded and repetition coded
signals are shown in Figure IV.1. As an illustrative example,
we consider a 6Mbit/sec GFSK signal formed from 4000
random, equiprobable data bits and sampled at 30Mbit/sec,
with N = 10, h = 0.8 and BT = 0.3. These parameters
are similar to the GMSK modulation used in GSM, but the
higher modulation index results in a flatter spectral density
shape over the main lobe. The spectral density is estimated
using the multitaper method [29] and the spread coded
spectrum appears slightly thicker due to the signal being ten
times as long, but the overall shape is unchanged from the
uncoded case and remains flat over the main lobe. The fixed
length of the code word sequence means that the signal will
still contain periodicities, but these will be at (baseband)
frequencies that are too low to be detectable or relevant in
practice. In our simulations, we assume that the code words
are generated in advance and stored in memory at both the
transmitter and receiver ends. Alternatively, a deterministic
procedure such as a maximum-length shift register with a
known initial state can be used to generate the code words
in real-time at both ends. Both implementation approaches
have essentially the same effect on the spectral density.

In general, the distances between spread coded CPM
waveforms may differ from the repetition case addressed by
Theorem 1. Except in some special cases (e.g. when h = 1),
the periodicity techniques used to prove Theorem 1 (see
Appendix B) no longer apply and the waveforms in (III.1)
may no longer be approximately orthogonal. However, on
average, we find that the results of Theorem 1 still hold
in practice. In Figure IV.2, we numerically examine the
distances for the modulation parameters discussed earlier
at different rates N . We take all 2N symbol sequences
B of length N and calculate the mean of the distances
‖sB − sB′‖L2(0,N) over all such B. It can be seen that for
large N , this mean distance approaches the same

√
2N limit

established in Theorem 1.

We now study the performance of spread coding in
simulations and compute the error rates for a range of code
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Figure IV.1. Spectral density profiles with (A) no coding applied, (B) no
coding but with a reduced, 600kbit/sec symbol rate, (C) repetition coding
with rate N = 10, and (D) spread coding with rate N = 10.
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Figure IV.2. Mean distances over all 2N spread coded waveforms (blue)
at different rates N , compared to repetition coded waveforms (green).

rates N . For the purposes of simulations, we use the method
of noncoherent-block CPM demodulation over K = 5
data bits (see [1] and [25, p. 298-299]) as a substitute
for a fully coherent demodulator. At each bit position
a, this demodulator takes a K-bit length of the received
signal centered at a and computes envelope correlators
(see Appendix A) against all 2K possible waveforms,
outputting the bit b at a based on the average correlation
over all waveforms containing b at a. For K ≤ 7, this
approach exhibits performance similar to the optimal
coherent (Viterbi-based) receiver, with rapidly diminishing
gains for larger K, and is often used in practice for its
low complexity and simple implementation. For such a
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demodulator, it is generally no longer possible to obtain
precise asymptotic bounds of the type we developed in
Section III for the special case K = 1. However, any block
code can be incorporated into this scheme by observing
the signal over NK symbols at a time but correlating it
against only the 2K possible waveforms, using knowledge
of the underlying code (e.g. the pseudorandom code words).
Hardware implementations of this scheme typically use
K = 5 or 7, which allows the demodulation to be performed
in close to real time. We use this approach in the results
that follow.

In Figure IV.3, we use the same CPM parameters as before
and examine the BER for different code rates N at the noise
levels given by Es/N0 = 0 dB and −3 dB, with a uniformly
distributed initial phase. We also compare the results with
several standard convolutional codes of rates 1/N and con-
straint length 8 [25, p. 492-494]. The results show that the
spread code with combined, noncoherent-block demodulation
greatly outperforms the other methods, especially in the
Es/N0 = −3 dB case. At low N , the convolutional codes
actually increase the BER over an uncoded signal and high-
light the drawbacks of powerful, short-length codes in such
noise environments, although as either N or Es/N0 increase,
we would expect such codes to eventually outperform the
repetition-based spread codes. For moderate rates N , these
results indicate that the spread codes have an “imperfectness”
of 1 − 2db under the combined demodulation approach, in
terms of the lower bounds for codes of such rates discussed
in [8], so it is not possible for a coding scheme to perform
substantially better without using larger block lengths. We
also note that the BERs obtained here are comparable to
trellis coded noncoherent CPM schemes discussed in [33]
or the baseline serially concatenated schemes described in
[19] (the latter paper demonstrates much better BERs by
inserting interleavers that are 2000 or more symbols long,
which effectively increases the block length and would be
unsuitable for our design constraints as discussed in Section
A).

We next compare the performance of a fixed rate spread code
at different Es/N0, as well as in the presence of narrowband
interference. We simulate a single 3kbit/sec quadrature phase-
shift keyed (QPSK) interferer at a random (but fixed) fre-
quency within the band ωc±30Mhz, which corresponds to the
GFSK signal’s main lobe (see Figure IV.1), and with the same
power as an equivalent level of white noise determined by the
Es/N0. We take N = 6 and plot the BERs of a spread coded
CPM signal. We also consider the effects of changing the
signal modulation to QPSK at the same data rate. The basic
effect of the spread code increasing the distances between
waveforms holds for QPSK as well, with the same

√
2N

asymptotic behavior as in Theorem III.1 for large N . Finally,
we consider an example concatenating a rate 3 spread coded
CPM signal with a rate 1/2 convolutional code at different
error rates under white noise, which is how this technique is
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Figure IV.3. BER performance of CPM signals with spread coding using
combined demodulation (bold curves) and separated demodulation (thin
curves), along with convolutional coding (dashed curves), at Es/N0 = 0dB
(blue) and Es/N0 = −3 dB (red).

best applied in practice. The results are all shown in IV.4.
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Figure IV.4. Performance of rate 6 spread coded CPM under white noise
(blue) and narrowband interference (green) using the combined demodula-
tion approach. Also shown are rate 6 spread coded QPSK under white noise
(red) and rate 3 spread coded and rate 1/2 convolutional coded CPM under
white noise (black).

V. CONCLUSION

We have proved that combining the processes of decoding
and demodulation with simple, DSSS-based and repetition-
like coding schemes can confer significant advantages in high
noise environments. We expect our results to generalize to
broader classes of short-length block codes or other mod-
ulation schemes, as well as other demodulation approaches
such as those that output soft symbol decisions and/or have
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observation intervals of multiple data bits. These topics will
be pursued in future work.
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APPENDIX A
BACKGROUND ON SIGNAL CLASSIFICATION THEORY

Before proving the Theorems 1-3, we first review some
standard results on continuous-time binary signal classifica-
tion from [24] and [31]. Let f ∈ L2(I) be a continuous,
real deterministic function over some time interval I and
let G be a Gaussian white noise process with power σ2.
Suppose we receive the (random) signal Y (t) and want to
determine which of the hypotheses H0 = {Y = G} and
H1 = {Y = f +G} holds. The likelihood ratio test for this
coherent classification problem is given by

e
1
σ2
〈f,Y 〉I−

d2

2 ≶ τ. (A.1)

where τ is a fixed threshold, d = 1
σ ‖f‖L2 and the inner

product 〈·, Y 〉I is interpreted as a white noise functional.
The performance of the test is given in terms of the error
function erf(x) = 2π−1/2

´ x
0
e−y

2

dy by

P (H1|H1) =
1

2
erf

(
1√
2

(
log τ

d
+
d

2

))
+

1

2
,

P (H1|H0) =
1

2
erf

(
1√
2

(
log τ

d
− d

2

))
+

1

2
.

We take τ = 1 and f = f1−f2, where f1 and f2 are known,
modulated waveforms corresponding to a 0 or 1 bit. The test
(A.1) reduces to a simple correlation classifier:

〈f1, Y 〉I ≶ 〈f2, Y 〉I . (A.2)

Assuming that P (H0) = P (H1), the probability of a symbol
classification error is

p =
1

2
− 1

2
erf

(
‖f1 − f2‖L2(I)

2
√

2σ

)
. (A.3)

Similar results can also be shown for noncoherent classifi-
cation, where f is now complex-valued and we instead have
H1 = {Y = 21/2Re(e2πiθf) +G} for some unknown phase
angle θ. If θ is assumed to be random and uniformly dis-
tributed over [0, 1], the correlation classifier (A.2) is replaced
by the envelope classifier given by

|〈f1, Y 〉I | ≶ |〈f2, Y 〉I | .

When f1 and f2 have equal norms, the error probability of
this classifier is [25, p. 311]

p = e−
1
2 (u

2+v2)
∞∑
k=0

(u/v)kIk(uv)

−1

2
e−

1
2 (u

2+v2)I0(uv), (A.4)

where

u =
‖f1 − f2‖L2(I)

2
√

2σ

(
1−

√
1− |RI(f1, f2)|2

)1/2

,

v =
‖f1 − f2‖L2(I)

2
√

2σ

(
1 +

√
1− |RI(f1, f2)|2

)1/2

,

RI(f1, f2) =
〈f1, f2〉I

‖f1‖L2(I) ‖f2‖L2(I)

,

and Ik(x) =
∑∞
n=0

(x/2)2n+k

n!(n+k)! is the modified Bessel func-
tion of order k. The probability (A.4) is minimized when
RI(f1, f2) = 0 [28], in which case (A.4) simplifies to

p =
1

2
e
− 1

8σ2
‖f1−f2‖2L2(I) . (A.5)

We also note that the error function in (A.3) satisfies the
elementary bounds

erf(x) ≤ 2x√
π

(A.6)

for x ≥ 0 and

erf(x) ∼ 1− e−x
2

√
πx

(A.7)

as x→∞.

APPENDIX B
PROOF OF THEOREMS 1-3

Proof of Theorem 1: Let sB,θ0(t) be (II.1) with the
phase θ replaced by θ + θ0, where θ0 is either 0 or 1

4 . The
purpose of this extra parameter will become clear later. We
also define J(N, t) =

∑N
k=0

´ t
−∞ F (s − k)ds to simplify

some notation. First, we have

‖sB,θ0 − sB′‖
2
L2(0,N)

= ‖sB,θ0‖
2
L2(0,N) + ‖sB′‖2L2(0,N) − 2 〈sB,θ0 , sB′〉(0,N)

= 2N − E1(ωc)− 2

ˆ N

0

cos

(
2π

(
θ0 +

h

2
×

N∑
k=−∞

(2bk − 1− 2b′k + 1)

ˆ t

−∞
F (s− k)ds

))
dt

= 2

ˆ N

0

(1− cos (2π (θ0 + hJ(N, t)))) dt

−E1(ωc), (B.1)

where E1(ωc) = O(1/ωc). Taking ωc →∞ causes this term
to drop out. Now the function 1− cos(2πx) is well approxi-
mated by a sum of hat functions 2

∑∞
m=−∞H(x−m), where

the hat function H(x) is given by H(x) = 2x for x ∈ [0, 12 ),
H(x) = 2− 2x for x ∈ [ 12 , 1), and H(x) = 0 otherwise. We
define the approximation error

E2(x) = 2

∞∑
m=−∞

H(x−m)− (1− cos(2πx)).
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E2(x) is periodic with period 1 and satisfies |E2(x)| ≤ 1
4

and E2(x) = −E2( 1
2 − x) = E2(1 − x) (see Figure B.1),

which implies that
´M
0
E2(x + 1

2 )dx = 0 for any M ∈ Z.
The conditions on F show that J(N, ·) is a continuous,
nondecreasing function that equals t+ 1

2 for t ∈ Z ∩ [0, N ].
This shows that as long as N ≥ 1

h , there exists a point
M ′ ≤ N with |M ′ −N | ≤ 1

h such that
ˆ M ′

0

E2 (θ0 + hJ(N, t)) dt = 0.

Now let A ≤ 0 be the closest point to 0 such that
hJ(N,A) = 0, and let B ≥ N − 1

h be the closest point
to N such that hJ(N,B) − 1

2 ∈ Z. Since F is identically
zero outside [−1, 1], we must have A ≥ −1 and B ≤ N+ 1

2 .
We can use this to find that as N →∞,

2

ˆ N

0

(1− cos (2π (θ0 + hJ(N, t)))) dt

= 4

ˆ N

0

∞∑
m=−∞

H (θ0 + hJ(N, t)−m) dt−

2

ˆ N

0

E2 (θ0 + hJ(N, t)) dt

∼ 4

ˆ B

A

∞∑
m=−∞

H (θ0 + hJ(N, t)−m) dt−

2

ˆ N

M ′
E2 (θ0 + hJ(N, t)) dt

∼ 4 · B −A
2

+ E0(N)

∼ 2N,

where E0(N) = 2
´ N
M ′

E2 (θ0 + hJ(N, t)) dt satisfies the
bound |E0(N)| ≤ 2(−A− (B−N)) + N−M ′

2 ≤ 3
2

(
1 + 1

h

)
.

Taking θ0 = 0 completes the proof. For the complex case
(III.2), we simply replace θ by θ + 1

4 and obtain the same
bound for the quadrature signal s?B with cos(·) in (II.1)
replaced by sin(·), and therefore also for the analytic signal
P+sB = 2−1/2(sB + is?B). Finally, for the inner product
estimate (III.3), we first take θ0 = 0 to get

Re
(
R(0,N)(P

+sB , P
+sB′)

)
=
‖P+sB‖

2
L2(0,N) + ‖P+sB′‖

2
L2(0,N)

2 ‖P+sB‖L2(0,N) ‖P+sB′‖L2(0,N)

−
‖P+sB − P+sB′‖

2
L2(0,N)

2 ‖P+sB‖L2(0,N) ‖P+sB′‖L2(0,N)

∼ E0(N)

2N
.

By taking θ0 = 1
4 , the same result follows for

Im
(
R(0,N)(P

+sB , P
+sB′)

)
, and thus∣∣R(0,N)(P

+sB , P
+sB′)

∣∣ ∼ E0(N)√
2N

.
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Figure B.1. The approximation error E2.

Proof of Theorem 2: The coherent result follows im-
mediately from combining (A.3) and (III.1). As N →∞, we
use (A.7) to find that

pCJoint ∼ 1

2
− 1

2
erf

(√
2N

2
√

2σ

)
.

∼ 1

2
− 1

2

1− e
−
( √

2N
2
√

2σ

)2

√
π
( √

2N
2
√
2σ

)


=
σ√
πN

e−
N

4σ2 .

The noncoherent case uses the “almost orthogonality” im-
plied by (III.3) to show that (A.4) is closely approximated
by (A.5). Letting δ0,k = 1 for k = 0 and δ0,k = 0 otherwise,
we use (III.2) and (III.3) in (A.4) to get

pNC
Joint

= e−
1
2 (u

2+v2)
∞∑
k=0

(
1− δ0,k

2

)
(u/v)kIk(uv) (B.2)

= e
− 1

8σ2
‖P+sB−P+sB′‖2L2(0,N)

∞∑
k=0

(
1− δ0,k

2

)
×

1−
√

1−
∣∣R(0,N)(P+sB , P+sB′)

∣∣2
1 +

√
1−

∣∣R(0,N)(P+sB , P+sB′)
∣∣2
k/2

×

Ik

(
1

8σ2

‖P+sB − P+sB′‖
2
L2(0,N)∣∣R(0,N)(P+sB , P+sB′)

∣∣−1
)

∼
∞∑
k=0

(
1− δ0,k

2

)(
1−

√
1− E0(N)/(4N2)

1 +
√

1− E0(N)/(4N2)

)k/2

×Ik

(√
2E0(N)

8σ2

)
e−

N
4σ2 . (B.3)

Using the basic property |Ik(x)| ≥ |Ik+1(x)| for each k ≥ 1
[32], we conclude that as N → ∞, all terms in the sum
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(B.3) go to zero uniformly in k except for the k = 0 term,
which goes to 1

2I0

(√
2E0(N)
8σ2

)
e−

N
4σ2 . Consequently, we end

up with

pNC
Joint ∼ 1

2
I0

(√
2E0(N)

8σ2

)
e−

N
4σ2 .

Proof of Theorem 3: If p is the error probability in
demodulating an individual symbol, the error probability in
a majority vote decoder is given by

p′ =

N∑
k=(N+1)/2

N !

k!(N − k)!
pk(1− p)N−k. (B.4)

For large N , we can approximate this using a classical
extension of the Stirling expansion for the gamma function,

Γ(N + k + 1) =
√

2πNN+k+ 1
2 e−N+E3(N,k),

with the error E3 satisfying

1

N + 1
≤ E3(N, k)

k2

2 −
k
2 + 1

12

≤ 1

N

for N ≥ k > 0 [32]. This can be applied to (B.4) to obtain
a simple geometric series after some simplification:

p′

=

(N−1)/2∑
k=0

Γ(N + 1)

Γ(N+1
2 + k + 1)Γ(N−12 − k + 1)

×

p
N+1

2 +k(1− p)
N−1

2 −k

∼
(N−1)/2∑
k=0

NN+ 1
2 e−Np

N+1
2 +k(1− p)N−1

2 −k

(N+1
2 )

N+1
2 +k+ 1

2 (N−12 )
N−1

2 −k+
1
2 e−N

×(2π)−1/2eE3(N,k)−E3(
N+1

2 ,k)−E3(
N−1

2 ,−k)

∼ NN+ 1
2 p

N+1
2 (1− p)N−1

2

√
2π(N+1

2 )
N+1

2 + 1
2 (N−12 )

N−1
2 + 1

2

×

∞∑
k=0

(
4p

(N2 − 1) (1− p)

)k
×

e
− 1
N

(
(3N2+1)(k2+1/6)+(N2+4N−1))k

2(N2−1)

)
(B.5)

∼ (2N)N+ 1
2 (p(1− p))N+1

2

(N2 − 1)
N
2 ((1− 2p)N + 1)

√
π

=
(4p(1− p))N+1

2

√
2π((1− 2p)

√
N + 1/

√
N)

, (B.6)

where in (B.5), we used the fact that the exponential factor in
the sum tends uniformly to 1 for all k. For the noncoherent
case, we obtain a lower bound on the overall BER by
assuming

〈
P+s{0}, P

+s{1}
〉

= 0, so that (A.5) applies,
and using (III.2) and the condition C ≤ σ. The function

e−x(2 − e−x) is decreasing for x > 0, so for sufficiently
large N ,

pNC
Separate

≥

(
4
(

1
2e
−C2/(8σ2)

)(
1− 1

2e
−C2/(8σ2)

))N+1
2

√
2πN

(
1− 1

2e
−C2/(8σ2)

)
≥

(
e−1/8

(
2− e−1/8

))N+1
2

√
2πN

(
1− 1

2e
−1/8

) .

In the coherent case, the error probabilities p at consecutive
symbols from the demodulator are no longer independent, but
we can again find a lower bound on the BER by considering a
best-case scenario where at any symbol position, all previous
symbols were demodulated correctly and the initial phase is
thus known. For sufficiently large N , we use the estimate
(III.1) with (B.6) to get

pCSeparate

≥

(
4
(

1
2 −

1
2erf

(
C

2
√
2σ

))(
− 1

2 + 1
2erf

(
C

2
√
2σ

)))N+1
2

√
2πNerf

(
C

2
√
2σ

)
=

1
√

2πNerf
(

C
2
√
2σ

) (1− erf

(
C

2
√

2σ

)2
)N+1

2

.

Since C ≤ σ, we take the inequality (A.6) into account and
obtain

pCSeparate

≥ 1
√

2πN
(

C√
2πσ

) (1−
(

C√
2πσ

)2
)N+1

2

≥ 1√
N

(
1− 1

2π

)N+1
2

.
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