Correction to "On the Optimality of Beamforming with Quantized Feedback"

Syed A. Jafar and Sudhir Srinivasa

Abstract—This correspondence corrects an error in our paper titled, "On the Optimality of Beamforming with Quantized Feedback", published in the IEEE Transactions on Communications, vol. 55, no. 12, pp. 2288-2302, Dec. 2007.

Index Terms—Beamforming, multiple-input multiple-output (MIMO) channels, feedback.

T HE objective function in (19) is not concave in **b** (for the same reason that the function $\log(1 + ax^2)$ is not concave in x). Therefore, the condition presented in Theorem 1 is only a necessary condition. In its corrected form, Theorem 1 is stated as follows (changing "if and only if" to "only if").

Theorem 1: (Symmetry Condition): The unit vector **b** is the optimal beamforming direction given $\mathbf{h} \in \mathcal{D}_n$ only if

$$\mathbf{E}_{\mathbf{h}\in\mathcal{D}_n}\left[\frac{h_{||}h_{\perp j}^*}{1+P|h_{||}|^2}\right] = 0 \qquad \forall 2 \le j \le M.$$

Consider any set of vectors $\{\mathbf{u}_1 = b, \mathbf{u}_2, \cdots, \mathbf{u}_{M-1}, \mathbf{u}_M\}$ that form an orthonormal basis in *M*-dimensional space. $h_{||}$ is the projection of the channel along **b** (i.e., $h_{||} = \mathbf{b}^{\dagger}\mathbf{h}$) while $h_{\perp j}$ is the projection along \mathbf{u}_j for $j \geq 2$ (i.e., $h_{\perp j} = \mathbf{u}_j^{\dagger}\mathbf{h}$).

I. ACKNOWLEDGMENT

The authors are grateful to Dr. Giorgio Taricco for kindly bringing this error to our attention.

Manuscript received January 16, 2014; no revision. The editor coordinating the review of this paper and approving it for publication was N. Al-Dhahir.

The authors are with the Department of Electrical Engineering and Computer Science, University of California—Irvine (e-mail: syed@uci.edu, sudhirs@gmail.com).

Digital Object Identifier 10.1109/TCOMM.2014.012014.140002