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Abstract

In this paper we propose a novel power adapted network coding (PANC) for a non-orthogonal

multiple-access relay channel (MARC), where two sources transmit their information simultaneously

to the destination with the help of a relay. Different from the conventional XOR-based network coding

(CXNC), the relay in our PANC generates network coded bits by considering the coefficients of the

source-to-relay channels, and forwards each bit with a pre-optimized power level. Specifically, by

defining a symbol pair as two symbols from the two sources, we first derive the exact symbol pair

error rate (SPER) of the system. Noting that the generations of the exact SPER are complicated due to

the irregularity of the decision regions caused by random channel coefficients, we propose a coordinate

transform (CT) method to simplify the derivations of the SPER. Next, we prove that with a power

scaling factor at relay, our PANC scheme can achieve full diversity gain, i.e., two-order diversity

gain, of the system, while the CXNC can only achieve one-order diversity gain due to multi-user

interference. In addition, we optimize the power levels at the relay to equivalently minimize the SPER

at the destination concerning the relationship between SPER and minimum Euclidean distance of the

received constellation. Simulation results show that (1) the SPER derived based on our CT method can

well approximate the exact SPER with a much lower complexity; (2) the PANC scheme with power

level optimizations and power scaling factor design can achieve full diversity, and obtain a much higher

coding gain than the PANC scheme with randomly chosen power levels.
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I. INTRODUCTION

Relaying techniques have been studied for decades to improve the reliability of wireless

networks by exploiting spatial diversity via intermediate relay nodes [1], [2], [3]. Network coding,

on the other hand, originated from wire-line networks [4], [5], has been recently leveraged to the

wireless networks to enhance the network throughput [6]. With the implementations of diversity

techniques and network coding at the relay nodes, it is anticipated that the wireless networks

can achieve a more reliable communication with a higher network throughput.

Wireless networks can take the advantage of the broadcast nature of wireless signals to further

increase the throughput. For instance, by allowing multiple sources transmit in the same channel,

less transmissions are needed, and thus a larger network throughput is achieved. However, this

kind of non-orthogonal transmissions will lead to multi-user interferences, which could jeopardize

the system error performance. Many wireless network coding schemes are designed with the

considerations of multi-user interference issue in non-orthogonal transmissions [7], [8], [9], [10],

[11]. In [7], an optimal network coded relay function is derived to minimize the bit error rate

in a non-orthogonal two-way relay channel (TWRC). In [8], physical-layer network coding is

proposed in a non-orthogonal TWRC, where the relay maps the interfered signals from the two

sources to a network coded digit. In [9], [10], [11], denoise-and-forward based network coding

schemes are designed for the TWRC with multi-user interferences.

More practical than the TWRC, multiple access relay channel (MARC) has been recognized as

a fundamental building block for cellular networks and wireless sensor networks. Different from

the TWRC, where perfect side information, i.e., each source’s own information, is available at

each receiver side, the MARC only has imperfect information at the destination from the sources.

The MARC model has attracted a large amount of research interest from both academic and

industrial communities [12], [13], [14], [15], [16], [17], [18]. In [14], Galois field network coding

is designed to achieve the full diversity gain of the MARC. In [15], the authors propose a frame-

wise binary filed network coding which enables belief propagation decoding at the destination

to achieve the full diversity gain and a high coding gain. However, we note that most of these

works consider orthogonal MARC, where multiple sources transmit their signals by using time-

division multiple access or frequency-division multiple access manners. Multi-user interferences

are not considered in these works, which simplifies the network coding design but leads to a

lower spectrum efficiency.
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In this paper, we are interested in designing novel network coding schemes for a non-

orthogonal MARC over fading channels to achieve the full diversity gain and a good coding gain.

Although the conventional CXNC has been shown to achieve full diversity in the orthogonal

MARC [14], we will prove that it cannot achieve full diversity gain in a non-orthogonal one

due to multi-user interferences. Specifically in this paper, we consider a two-source, one-relay,

one destination non-orthogonal MARC.

There are three major concerns and contributions in our network coding design. First is how

to achieve the full diversity gain in the MARC. We propose a novel power adapted network

coding (PANC). Different from the CXNC, the relay in our PANC generates network coded bits

by considering the coefficients of the source-to-relay channels, and forwards each bit with one

of the two given power levels of the relay. Based on the received signals, the relay decides which

power level should be applied to each network coded bit. We prove that our PANC scheme with

the design of power scaling at relay can achieve the full diversity gain, i.e., two-order diversity

gain, of the system, while the CXNC scheme can only achieve one-order diversity gain with or

without power scaling design at relay due to multi-user interference.

Secondly, we derive the exact error probability at the destination. By defining a symbol pair as

two symbols from the two sources, we develop the exact symbol pair error rate (SPER), with the

setup of received constellations at both the relay and the destination. Due to the geometry property

of the decision regions, we adopt the wedge probability computation method to investigate the

SPER. The wedge probability computation method was first introduced in [19] to compute error

probability with wedge-shaped decision region in a polar coordinate. Noting that the derivations

of the exact SPER are complicated due to the irregularity of the decision regions caused by

random channel coefficients, we propose a coordinate transform (CT) method to simplify the

derivations. In the CT method, we transform the original parallelogram geometry to a rectangle

and approximate the exact results based on original constellation with simple expressions.

Thirdly, we optimize the two power adaption levels at the relay to achieve a higher coding

gain. Note that there are quite a few works on the optimizations of the relay transmissions to

enhance the error performance over fading channels. In [20], soft information scheme is proposed

in fading channels to reduce the error propagation by controlling the transmission power at the

relay. However, this scheme is not practical as the optimized power at the relay is a continuous

variable. In this paper, we will minimize the SPER by optimizing the two power adaption levels.

Specifically, we propose a criteria based on the relationship between Euclidean distance and
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the SPER, and formulate a convex optimization problem to develop the optimal power adaption

levels at the relay.

Simulation results show that (1) the SPER derived based on our CT method can well ap-

proximate the exact SPER with a much lower complexity; (2) the PANC scheme with power

level optimizations and power scaling factor design can achieve full diversity, and obtain a much

higher coding gain than the PANC scheme with randomly chosen power levels; (3) the CXNC

scheme cannot achieve full diversity with or without the power scaling design.

The rest of this paper is organized as follows. We first describe the system model in Section

II and propose the PANC scheme in Section III. Then we develop the exact system SPER

and its approximation in Section IV. In Section V, we address the error propagation problem,

and formulate and solve the optimization problem by minimizing the system SPER. Simulation

results are presented in Section VI, and conclusions are drawn in Section VII.

The notations used in this work are as follows. R and I respectively denote the real and

the imaginary parts of a complex number. Denote a ray by lij where the subscript ij is the

label of the line. Denote AB a line segment and AB the length between points A and B,

respectively. We use the format ray-vertex-ray and ray-vertex-vertex-ray to describe a wedge

and wedge combination, respectively. Denote φ = ∠ABC as the crossing angle between line

segment AB and BC with the intersection point B. The one-dimensional Q-function is defined

as Q1(x) =
1
π

∫ π
2

0
exp

(

− x2

2 sin2 θ

)

dθ. The two-dimensional Q-function Q2(x, y; ρ) with x = y is

simplified as Q2(x; ρ) with expression Q2(x; ρ) =
1
π

∫ arctan
(√

1+ρ

1−ρ

)

0 exp
(

− x2

2 sin2 φ

)

dφ.

II. SYSTEM MODEL

Consider a two-source single-relay multiple-access relaying system , where two sources S1

and S2 transmit their information to the common destination D with the assistance of a half-

duplex relay node R. Each transmission period is divided into two transmission phases. In the

first transmission phase, the two sources simultaneously broadcast their symbols x1 and x2 to

both the destination and the relay. In the second transmission phase, the two sources keep silent,

while the relay processes the received signals and forwards the network coded symbol xR to the

destination. At the end of the second phase, the destination decodes the two sources’ information

based on the received signals.

We assume that all the transmitted signals are binary phase shift keying (BPSK) modulated

with equal probability, i.e., x1, x2, xR ∈ {±1}, and all the signals are transmitted in the same
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frequency band. The channel between any two given nodes j and k, j ∈ {1, 2,R}, k ∈ {R,D},

and j 6= k, is denoted by hjk with the subscripts indicating the nodes under consideration. We

assume that hjk for all the j and k are Rayleigh distributed with zero mean and variance γ̄jk. We

consider slow fading channels in our system, i.e., the channels are constant during a transmission

period, while independently change from one transmission period to another.

Also, we implement the channel phase pre-equalization for both the source-to-destination

multiple access channels (MAC) and the relay-to-destination channel before each transmission.

Thus, the effective source-to-destination and relay-to-destination channel coefficients can be

regarded as real-valued channels, i.e., real channel coefficients and real values of noise samples.1

Based on the aforementioned system settings and assumptions, the received signals at the

relay and destination in the first transmission phase can be written as

yR =
√

E1h1Rx1 +
√

E2h2Rx2 + nR,

y1 =
√

E1|h1D|x1 +
√

E2|h2D|x2 + n1,
(1)

respectively, where E1 and E2 denote the transmission power of S1, S2, respectively, nR is the

complex additive white Gaussian noise (AWGN) sample at the relay with zero mean and variance

σ2/2 per dimension, and n1 is the real AWGN sample at the destination with zero mean and

variance σ2.

As we adopt the joint power scaling and adaption scheme at the relay, the instantaneous

power at the relay is optimized given the channel realization within each transmission period

tending to minimize the SER and achieve full diversity at the destination. Specifically, in the

power scaling, we have the scaling factor α (0 ≤ α ≤ 1) which is determined based on the

channel conditions. In the power adaption, we have two power levels, namely, a and b. We have

a2 + b2 ≤ 2Eave
R , where Eave

R is denoted as the average transmission power at the relay. The

determinations of α, a, b will be discussed latter in details. Therefore, in the second transmission

phase, the received signal at destination can be expressed as

y2 =
√

αER|hRD|xR + n2, (2)

where n2 is the real AWGN at destination with zero mean and variance σ2, and ER ∈ {a, b}
represents the adaptive power level.

1Note that, without channel phase pre-equalization, we will encounter a four-dimensional received constellation at destination,

namely, the real and imaginary parts of received signal in the first phase, and the real and imaginary parts of received signal in

the second phase, respectively, which leave the exact error probability analysis hardly derivable.
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III. NETWORK CODED POWER ADAPTION SCHEME AT RELAY

In the conventional CXNC based MARC, XOR operations are implemented at the relay on the

two sources’ information. We will show later in Section V that the system cannot achieve full

diversity with the conventional network coding. To solve this problem, we propose the PANC

scheme, which also take account the source-to-relay channels in network coding design.

Firstly, the relay obtain the two sources’ information (x1, x2) from its received signal yR by

utilizing the maximum likelihood (ML) detection, i.e.,

(x̂1, x̂2) = argmin
x̃1,x̃2∈{±1}

∣

∣

∣

∣

yR −
√

E1Rh1Rx̃1 −
√

E2Rh2Rx̃2

∣

∣

∣

∣

2

, (3)

where (̂·) denotes the detected symbol, and (̃·) denotes the trial symbol used in the hypothesis-

detection problem. Then the relay takes network coding operation on the two detected symbols.

The network coded operation in our PANC is denoted by ⊞, which is different from the

conventional XOR operation. That is, we calculate xR by xR = x̂1⊞x̂2 = sign(|h1R|x̂1+|h2R|x̂2).
Next, the relay chooses the power level ER based on the decoded symbols, i.e., if (x̂1 =

1, x̂2 = 1) or (x̂1 = −1, x̂2 = −1), power level is chosen as a; else if (x̂1 = 1, x̂2 = −1)

or (x̂1 = −1, x̂2 = 1), power level is chosen as b. The reason for adopting the new proposed

network coding operation and power level allocation method is that the received constellation

at destination is a parallelogram, on which the (x̂1 = 1, x̂2 = 1) corresponding constellation

point lies in a diagonal with the (x̂1 = −1, x̂2 = −1) corresponding constellation point. While

for XOR operation, the received constellation is an irregular quadrilateral no matter what power

level allocation result we implement.

The values of a and b are optimized by minimizing the system SPER at the destination.

Suppose that the instantaneous channel state information (CSI) of the MARC is available to

the destination before the transmission period starts. The destination first optimizes the power

levels a and b by minimizing the instantaneous SPER based on the CSI, and then feedbacks the

values to the relay before the transmission period starts. The relay will use this power adaption

to transmit the network coded symbol xR. Note that, as the values of a and b is derived based

on the instantaneous CSI, their values will keep invariant within each transmission period, and

change from one transmission period to another.

The PANC scheme at the relay can also be illustrated by a two-dimensional instantaneous

relay constellation (IRC), which is associated with the SPER calculation in the next section. The
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signal part of yR, i.e.,
√
E1h1Rx1 +

√
E2h2Rx2, can be seen as a point in the IRC with X-axis

being its real part, and Y-axis being its imaginary part. We define the constellation points (CPs)

Vi of the IRC, i = 1, · · · , 4, to represent the four possible values of ±
√
E1h1R ±

√
E2h2R,

and define the sources’ symbol pairs by Ti , (x1, x2). Specifically, we have T1 , (1, 1), T2 ,

(−1, 1), T3 , (1,−1), and T4 , (−1,−1).

From Fig. 1, we can see that the geometry of the IRC composed by CPs Vi is a parallelogram.

Similar to Voronoi diagram in [21], the decision regions are segmented by the perpendicular

bisectors of each side of the parallelogram. Specifically, rays l12, l13, l24 and l34 are perpendicular

bisectors of sides V1V2, V1V3, V2V4 and V3V4, respectively, M1 is the crossing points of rays l12

and l13, and M2 is the crossing points of rays l24 and l34. Mij is the middle point of each side

ViVj . The decision region ΩV1 of V1, defined as wedge l12 −M1 − l13 in Fig 1, is given by

ΩV1 ,

{ℜ{h2R}
ℑ{h2R}

ℜ{yR}+ ℑ{yR} − ℑ{h1R} −
√
E1ℜ{h1R}ℜ{h2R}

ℑ{h2R}
< 0 ∩

ℜ{h1R}
ℑ{h1R}

ℜ{yR}+ ℑ{yR} − ℑ{h2R} −
√
E2ℜ{h1R}ℜ{h2R}

ℑ{h1R}
≥ 0

}

.

(4)
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Fig. 1: One possible instantaneous relay constellation, where dashed lines represent boundaries

of decision regions.

Similarly, we can obtain the decision regions of V2, V3 and V4, denoted by ΩV2 , ΩV3 , and ΩV4 ,

respectively. Based on the four decision regions, we have the one-to-one mapping between the

March 3, 2020 DRAFT



8

CPs and the network coded power level as

√

ERxR =



























a if (ℜ{yR},ℑ{yR}) ∈ ΩV1 ,

b if (ℜ{yR},ℑ{yR}) ∈ ΩV2 ,

−b if (ℜ{yR},ℑ{yR}) ∈ ΩV3 ,

−a if (ℜ{yR},ℑ{yR}) ∈ ΩV4 ,

(5)

Based on the observations y1 and y2, the destination jointly decode the two source symbols

with the minimum Euclidean distance detection. Then we have

(x̂1, x̂2) = argmin
x̃1,x̃2∈{±1}

(

∣

∣

∣

∣

y1 −
2
∑

j=1

|hjD|x̃j
∣

∣

∣

∣

2

+

∣

∣

∣

∣

y2 − |hRD|
√

ẼR (x̃1 ⊞ x̃2)

∣

∣

∣

∣

2
)

, (6)

where ẼR ∈ {a, b} is determined by x̃1 and x̃2.

IV. ERROR PERFORMANCE ANALYSIS

In this section, we investigate the instantaneous SPER performance of the PANC given a

channel realization vector h = [h1R, h2R, h1D, h2D, hRD]. Assuming symbols are transmitted

with equal probability, then the general expression of the system SPER of the PANC scheme is

given by

Pe,inst =

4
∑

i=1

P (E|Ti, h)P (Ti) =
1

4

4
∑

i=1

P (E|Ti, h), (7)

where Ti is the symbol pair defined in Section III, E denotes the symbol error event at the

destination that a transmitted symbol pair from two sources is decoded to an erroneous pair,

i.e., either x1 or x2 is wrongly detected or both x1 and x2 are wrongly detected, P (E|Ti, h) is

the conditional SPER given Ti is transmitted and the channel realization h, and P (Ti) =
1
4

is

the probability that Ti is sent by the two sources. Since the decision regions of T1 and T4 are

symmetric, and the decision regions of T2 and T3 are symmetric, we have P (E|T1) = P (E|T4)
and P (E|T2) = P (E|T3). Therefore, (7) can be rewritten as

Pe,inst =
1

2
(P (E|T1, h) + P (E|T2, h))

=
1

2







2
∑

i=1

∑

k∈{±a,±b}
P (E|k, Ti, h1D, h2D, hRD)P (

√

ERxR = k|Ti, h1R, h2R)







,
(8)

where P (
√
ERxR = k|Ti, h1R, h2R) is the conditional probability that xR is allocated to the

power level |k| at the relay, and P (E|k, Ti, h1D, h2D, hRD) is the conditional probability that the
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destination makes a wrong decision on the sources’ symbol pair Ti. For the sake of simplicity,

we omit the channel coefficients in these notations, and use P (
√
ERxR = k|Ti) and P (E|k, Ti).

In the following we will derive Pe,inst based on two methods. The first method is based

on wedge probability computation [19], [22], which derives the instantaneous SPER of the

system. However, the calculations of various wedge probabilities are very complicated and time-

consuming. Hence, we simplify the wedge probabilities by applying coordinate transformations

with a little accuracy loss.

A. SPER based on Wedge Probabilities

We now investigate the SPER performance of the PANC scheme based on the wedge prob-

ability computation method. Due to the randomness of channel realizations, the two-dimension

decision regions of a symbol pair Ti at both the relay and the destination are irregular and

wedge-like, e.g., one possible case of the received constellation and its corresponding decision

regions at the relay is shown in Fig. 1. We thus use the wedge probability computation method

to facilitate the derivation of the SPER. There are totally five basic wedge prototypes, discussed

in Appendix A. Corresponding to these five wedge prototypes, we derive the corresponding five

wedge probabilities in Appendix A, i.e., Pwi
for i ∈ {1, · · · , 5}, based on which, we will later

derive the SPER of the system.

We first focus on the probabilities P (
√
ERxR = k|Ti), k ∈ {±a,±b}, at the relay. With

the setup of IRC given in Section III, we calculate the probabilities that relay detects the

received signal successfully, i.e., P (
√
ERxR = a|T1) and P (

√
ERxR = b|T2), by Pw4 and Pw5

defined in equations (37) and (38) respectively, and calculate the probabilities that relay makes

wrong decisions, i.e., P (
√
ERxR ∈ {±b,−a}|T1) and P (

√
ERxR ∈ {±b,−a}|T2), by Pw1 ,

Pw2 , and Pw3 defined in equations (34), (35), and (36), respectively. The computation of exact

instantaneous correct probabilities and error probabilities are divided into six cases according to

the relative lengths and intersection angles of parallelogram’s neighboring sides, and intersection

March 3, 2020 DRAFT
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P (
√

ERxR = a|T1) = Pw4

(

d11, arcsin

(

V1M13

V1M1

)

, arcsin

(

V1M12

V1M1

))

,

P (
√

ERxR = b|T1) = Pw3
(d12, d11,∠V1M2M24, π − ∠V1M2M1,∠V1M1M12,∠V1M1M2, 1, 1),

P (
√

ERxR = −b|T1) = Pw3
(d11, d12, π − ∠V1M1M2, π − ∠V1M1M13,∠V1M2M1,∠V1M2M34, 1, 1),

P (
√

ERxR = b|T2) = Pw5

(

d21, d22, π − arcsin

(

V2M12

V2M1

)

, arcsin

(

V2M24

V2M2

)

,∠M1V2M2,∠V2M1M2

)

,

P (
√

ERxR = a|T2) = Pw2
(d21,∠V2M1M12, π − ∠V2M1M13),

P (
√

ERxR = −a|T2) = Pw2
(d21,∠V2M1M34, π − ∠V2M1M13).

(10)

angles of perpendicular bisectors. These six cases are given as






















































V1V4 > V2V3



















M1,M2 /∈ P







V1V2 > V1V3,Case one

V1V2 ≤ V1V3,Case two

M1,M2 ∈ P, Case three

V1V4 ≤ V2V3



















M1,M2 /∈ P







V1V2 > V1V3,Case four

V1V2 ≤ V1V3,Case five

M1,M2 ∈ P, Case six

(9)

In (10), we show an example of computing P (
√
ERxR = k|Ti) for Case three, i.e., V1V4 >

V2V3 and M1,M2 ∈ P , where P is defined as the region of parallelogram in IRC. Let dik

be the normalized distance between Vi and Mk, which is given by dik = |Vi−Mk|2
σ2 . According

to the law of total probability, P (
√
ERxR = −a|T1) = 1 −

∑

k∈{a,±b}
P (

√
ERxR = k|T1) and

P (
√
ERxR = −a|T2) = 1−

∑

k∈{a,±b}
P (

√
ERxR = k|T2). We can obtain the probabilities for the

other five cases by following the similar method.

Then we consider the conditional error probabilities, P (E|k, Ti), at the destination. we establish

an instantaneous destination constellation (IDC) with X-axis being y1 and Y-axis being y2 based

on the minimum Euclidean distance detection, as shown in Fig. 2. When the relay detects the

received signal successfully and forwards the correct symbol, we define four reference points as

V D
1 = (

√

E1|h1D|+
√

E2|h2D|, a|hRD|), V D
2 = (−

√

E1|h1D|+
√

E2|h2D|, b|hRD|),

V D
3 = (

√

E1|h1D| −
√

E2|h2D|,−b|hRD|), V D
4 = (−

√

E1|h1D| −
√

E2|h2D|,−a|hRD|).
(11)

Similar to IRC, the decision regions of IDC are segmented by the perpendicular bisectors of

each edge in parallelogram according to Voronoi rule [21]. In particular, rays lD12, l
D
13, l

D
24 and lD34
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Fig. 2: Instantaneous destination constellation for network coded power adaption scheme. In

particular, dashed lines represent boundaries of decision regions ΩV D
i

.

are perpendicular bisectors of sides V D
1 V

D
2 , V D

1 V
D
3 , V D

2 V
D
4 and V D

3 V
D
4 , respectively. MD

1 is the

crossing points of ray lD12 and lD13, and MD
2 is the crossing points of ray lD24 and lD34. Line segment

MD
1 M

D
2 is the perpendicular bisector of diagonal V D

2 V
D
3 . Then the correct decision region V D

1

at destination is

ΩV D
1

,

{

2
√
E1|h1D|

(a− b)|hRD|
y1 + y2 +MD

1 > 0
⋂ 2

√
E2|h2D|

(a+ b)|hRD|
y1 + y2 +MD

2 > 0

}

, (12)

where MD
1 = −1

2
(a+ b)|hRD| − 2

√
E1E2|h1D||h2D|(a− b)|hRD| and MD

2 = −1
2
(a− b)|hRD| −

2
√
E1E2|h1D||h2D|(a+ b)|hRD|. Likewise, we can obtain ΩV D

i
for i = 2, 3, 4.

When T1 and T2 are transmitted by the sources, the error probabilities at the destination given

that relay transmits the correct symbol is denoted by P
(

E|
√
ERxR = a, T1

)

and P
(

E|
√
ERxR = b, T2

)

,

respectively. Let dDik be the normalized distance between V D
i and MD

k in Fig. 2, which is given

by dDik =
|V D

i −MD
k
|2

σ2 . Regarding the probability P
(

E|
√
ERxR = a, T1

)

, we have

P
(

E|
√

ERxR = a, T1

)

= 1− Pw4

(

dD11, φ1, φ2

)

. (13)

Defining PD as the region of parallelogram in IDC, the determinations of φ1, φ2 in (13) are as

follows. When V D
1 V

D
2 < V D

1 V
D
3 and MD

1 ,M
D
2 ∈ PD, we have φ1 = π − arcsin

(

V D
1 MD

13

V D
1 MD

1

)

, φ2 =

arcsin
(

V D
1 MD

12

V D
1 MD

1

)

; When V D
1 V

D
2 ≥ V D

1 V
D
3 and MD

1 ,M
D
2 6∈ PD, we have φ1 = arcsin

(

V D
1 MD

13

V D
1 MD

1

)

,

φ2 = π − arcsin
(

V D
1 MD

12

V D
1 MD

1

)

; When V D
1 V

D
2 ≥ V D

1 V
D
3 and MD

1 ,M
D
2 ∈ PD , we have φ1 =

arcsin
(

V D
1 MD

13

V D
1 MD

1

)

, φ2 = arcsin
(

V D
1 MD

12

V D
1 MD

1

)

.
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Regarding the probability P
(

E|
√
ERxR = b, T2

)

, we have

P
(

E|
√

ERxR = b, T2

)

= 1− Pw3

(

dD21, d
D
22, φ1, φ2, φ3, φ4

)

, (14)

where φ3 = ∠MD
1 V

D
2 M

D
2 and φ4 = ∠V D

2 M
D
1 M

D
2 . Further, the determinations of φ1, φ2 in (14)

are as follows. When V D
1 V

D
2 < V D

1 V
D
3 and MD

1 ,M
D
2 ∈ PD, we have φ1 = arcsin

(

V D
2 MD

12

V D
2 MD

1

)

and

φ2 = π−arcsin
(

V D
2 MD

24

V D
2 MD

2

)

. Otherwise, we have φ1 = arcsin
(

V D
2 MD

12

V D
2 MD

1

)

and φ2 = arcsin
(

V D
2 MD

24

V D
2 MD

2

)

.

When the relay detects the received signal unsuccessfully, the reference points in Eq. (11) will

change according to the incorrect relay decisions. In particular, if sources transmit T1 and the

relay wrongly forwards b,−b, a, then the reference point V D
1 in Fig. 2 will change to V D

5 , V D
6 ,

and V D
7 , respectively; If sources transmit T2 and the relay wrongly forwards a,−b,−a, then the

reference point V D
2 in Fig. 2 will change to V D

8 , V D
9 , and V D

10 , respectively.

In the case when T1 is transmitted by the sources, and the relay wrongly forwards b,−b, a,

the error probabilities that destination makes wrong decisions are given by

P
(

E|
√

ERxR = k1, T1

)

=







1− Pw4(d
D
j1, φ1, φ2), when V D

j ∈ ΩV D
1
,

1− Pw1(d
D
j1, φ1, φ2), when V D

j 6∈ ΩV D
1
,

(15)

where when k1 = b,−b, a, then j = 5, 6, 7, respectively.

In the case when T2 is transmitted by the sources, and the relay wrongly forwards a,−b,−a,

the error probabilities that destination makes wrong decisions are given by

P
(

E|
√

ERxR = k2, T2

)

=







1− Pw3(d
D
l1, d

D
l2, φ1, φ2, φ3, φ4, 1, 1), when V D

l ∈ ΩV D
2
,

1− Pw3(d
D
l2, d

D
l1, φ1, φ2, φ3, φ4, 1, 1), when V D

l 6∈ ΩV D
2
,

(16)

where when k1 = a,−b,−a, then l = 8, 9, 10, respectively. Note that the determinations on the

related angles φ1, φ2, φ3, and φ4 are shown in Table I and Table II.

TABLE I: Correspondence Parameters of P
(

E|
√
ERxR = k1, T1

)

V D

j ∈ Ω
V D
1

V D

j 6∈ Ω
V D
1

M1,M2 6∈ PD M1,M2 ∈ PD M1,M2 6∈ PD M1,M2 ∈ PD

V D

1
V D

2
< V D

1
V D

3
V D

1
V D

2
≥ V D

1
V D

3
- V D

1
V D

2
< V D

1
V D

3
V D

1
V D

2
≥ V D

1
V D

3
-

φ1 = ∠V D

j MD

1
MD

12

φ2 = π − ∠V D

j MD

1
MD

13

φ1 = π − ∠V D

j MD

1
MD

12

φ2 = ∠V D

j MD

1
MD

13

φ1 = ∠V D

j MD

1
MD

12

φ2 = ∠V D

j MD

1
MD

13

φ1 = π − ∠V D

j MD

1
MD

12

φ2 = ∠V D

j MD

1
MD

13

φ1 = ∠V D

j MD

1
MD

13

φ2 = π − ∠V D

j MD

1
MD

12

φ1 = ∠V D

j MD

1
MD

12

φ2 = π − ∠V D

j MD

1
MD

13

B. SPER Based on Coordinate Transformation

We observe that the SPER based on wedge probabilities is diversified into several cases

due to varying channel coefficients. Although the SPER result is accurate by using the wedge

March 3, 2020 DRAFT



13

TABLE II: Correspondence Parameters of P
(

E|
√
ERxR = k2, T2

)

V D

l ∈ Ω
V D
2

V D

l 6∈ Ω
V D
2

- V D

l is above line MD

1
MD

2
V D

l is below line MD

1
MD

2

- MD

1
,MD

2
6∈ PD MD

1
,MD

2
∈ PD MD

1
,MD

2
6∈ PD MD

1
,MD

2
∈ PD

φ1 = ∠V D

l MD

1
MD

12

φ2 = ∠V D

l MD

2
MD

24

φ3 = ∠V D

l MD

1
MD

2

φ4 = ∠MD

l V D

1
MD

2

φ1 = ∠V D

l MD

1
MD

2

φ2 = π − ∠V D

l MD

1
MD

12

φ3 = π − ∠V D

l MD

2
MD

1

φ4 = π − ∠V D

l MD

2
MD

24

φ1 = π − ∠V D

l MD

2
MD

1

φ2 = π − ∠V D

l MD

2
MD

24

φ3 = ∠V D

l MD

1
MD

2

φ4 = π − ∠V D

l MD

1
MD

12

φ1 = π − ∠V D

l MD

2
MD

24

φ2 = ∠V D

l MD

2
MD

1

φ3 = π − ∠V D

l MD

1
MD

12

φ4 = π − ∠V D

l MD

1
MD

2

φ1 = π − ∠V D

l MD

1
MD

12

φ2 = π − ∠V D

l MD

1
MD

2

φ3 = ∠V D

l MD

2
MD

24

φ4 = ∠V D

l MD

2
MD

1

probability method, the calculations of the SPER could be very complicated. Here, we will

propose a coordinate transformation method to derive the SPER, which reduces the calculation

complexity by sacrificing a little accuracy in the low SNR region. Specifically, our coordinate

transformation method transforms the original parallelogram geometry in the wedge potability

method to a rectangle geometry, based on which, we determine the decision regions of the new

constellations. The following lemma derives the coordinate transformation matrix at relay node.

Lemma 1: The coordinate transformation matrix C, which transforms the exact parallelogram-

shaped IRC to a rectangle centered at origin point, and preserve the length of each side in exact

IRC is given by

C = QA−1, (17)

where Q is the eigenvector matrix for B = ATΣ−1A given in (43), shown as

Q =











B(1,2)

(λ1−λ2)

√

B(1,1)−λ1
λ2−λ1

√

B(1,1)−λ1

λ2−λ1

√

B(1,1)−λ1

λ2−λ1
− B(1,2)

(λ1−λ2)

√

B(1,1)−λ1
λ2−λ1











, and A−1 =





ℜ{h1R}
2|h1R|

ℜ{h2R}
2|h2R|

ℑ{h1R}
2|h1R|

ℑ{h2R}
2|h2R|



 . (18)

where the eigenvalues λ1 and λ2 are derived in (44).

Proof: The proof of Lemma 1 is illustrated in Appendix B. �

Now, we will determine the decision regions of the new IRC. Denote Vi the constellation

point and Z̄ the received signal point (ℜ{yR},ℑ{yR}) after coordinate transformation by matrix

B, respectively. Denote Ω̄V̄i
the decision region corresponding to Vi. The boundary is defined

based on Voronoi rule

Ω̄V̄1
: ℜ{Z̄} − ℑ{Z̄} > 0

⋂

ℜ{Z̄}+ ℑ{Z̄} ≤ 0, Ω̄V̄2
: ℜ{Z̄} − ℑ{Z̄} > 0

⋂

ℜ{Z̄}+ ℑ{Z̄} > 0,

Ω̄V̄3
: ℜ{Z̄} − ℑ{Z̄} ≤ 0

⋂

ℜ{Z̄}+ ℑ{Z̄} > 0, Ω̄V̄4
: ℜ{Z̄} − ℑ{Z̄} ≤ 0

⋂

ℜ{Z̄}+ ℑ{Z̄} ≤ 0.
(19)

In Fig. 3, we present the constellation after coordinate transformation and its decision regions.
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Fig. 3: Received Constellation at Relay after Coordinate Transformation.

From (19), we can see that the decision regions are regular geometry with simple decision

boundary lines2. Thus, it will greatly reduce the computational complexity. The probabilities that

relay detects the received signal when T1 is sent are shown as

P (
√

ERxR = a|T1) =
∫ ∞

0

d(ℑ{Z̄})
∫ ℑ{Z̄}

−ℑ{Z̄}
fZ
(

Z̄;ℜ
{

Vi

}

,ℑ
{

Vi

})

d(ℜ{Z̄}), (20)

where fZ(·) is the probability density function of Z given in (40), Vi(1) and Vi(2) represent the

horizontal coordinate and vertical coordinate of Vi, respectively. Similar to (20), we can obtain

P (
√
ERxR = k|T1) for k ∈ {±b,−a} and the probabilities that relay detects the received signal

when T2 is sent.

Similar to the error probability analysis at relay, we will show the results of coordinate

transformation and the error probability based on the new constellation at destination. In the

following lemma, we present the coordinate transformation matrix CD at destination.

Lemma 2: At destination, the coordinate transformation matrix CD, which transform the exact

IDC to a rectangle centered at origin point, and preserve the length of each side in exact

2Note that the real decision boundary lines are slightly different from the perpendicular bisectors of Voronoi diagram after

coordinate transformation. This is why the SPER results of coordinate transformation have notably little difference in low SNR

comparing with its counterpart of exact constellation. As the SNR goes larger, the real decision boundary lines are coincide

with the perpendicular bisectors.
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parallelogram-shaped IDC is given by

CD = QDA
−1
D , (21)

where QD is the eigenvector matrix for BD shown as

BD =
2

β2
Dσ

2





d21(a+ b)2|hRD|2 + 4d21|h2D|2 d1d2(b
2 − a2)|hRD|2 − 4d1d2|h1D||h2D|

d1d2(b
2 − a2)|hRD|2 − 4d1d2|h1D||h2D| d22(b− a)2|hRD|2 + 4d22|h2D|2



 ,

(22)

where βD = hRD (|h1D|(a+ b) + |h2D|(b− a)), d1 =
√

4|h1D|2 + (a− b)2|hRD|2 and d2 =
√

4|h2D|2 + (a + b)2|hRD|2. And

QD =













BD(1,2)

(λD
1 −λD

2 )

√

BD(1,1)−λD1
λD2 −λD1

√

BD(1,1)−λD
1

λD
2 −λD

1

√

BD(1,1)−λD
1

λD
2 −λD

1
− BD(1,2)

(λD
1 −λD

2 )

√

BD(1,1)−λD
1

λD
2

−λD
1













, and A−1
D =





(a+ b)|hRD| −|h2D|
(a− b)|hRD| −|h1D|



 .

(23)

where the eigenvalues λD1 and λD2 are eigenvalues of BD.

Lemma 2 can be obtained in the same way as we formulated at relay. Now, we will deter-

mine the decision regions with the new IDC. Denote V
D
i the constellation point and Z̄D the

received signal after coordinate transformation by matrix CD. Denote Ω̄D
V

D
i

the decision region

corresponding to V
D
i . The boundary is defined based on Voronoi rule

Ω̄D

V
D

1

: Z̄D(1)− Z̄D(2) > 0
⋂

Z̄D(1) + Z̄D(2) ≤ 0, Ω̄D

V
D

2

: Z̄D(1)− Z̄D(2) > 0
⋂

Z̄D(1) + Z̄D(2) > 0,

Ω̄D

V
D

3

: Z̄D(1)− Z̄D(2) ≤ 0
⋂

Z̄D(1) + Z̄D(2) > 0, Ω̄D

V
D

4

: Z̄D(1)− Z̄D(2) ≤ 0
⋂

Z̄D(1) + Z̄D(2) ≤ 0,
(24)

where Z̄D(1) and Z̄D(2) represent the horizontal coordinate and vertical coordinate of Z̄D,

respectively.

Based on the decision regions of new IDC, the probability that destination detects the received

signal successfully and unsuccessfully when T1 is sent are shown respectively as

P
(

E|
√

ERxR = a, T1

)

=

∫ ∞

0

d(Z̄D(2))

∫ Z̄D(2)

−Z̄D(2)

fZD

(

Z̄D;V
D
i (1),V

D
i (2)

)

d(Z̄D(1)), (25)

where fZD
(·) is the probability density function of Z̄D, V

D
i (1) and V

D
i (2) represent the hor-

izontal coordinate and vertical coordinate of V
D
i , respectively. Similar to (25), we can obtain

P
(

E|
√
ERxR = k, T1

)

for k ∈ {±b,−a} and the probabilities that relay detects the received

signal when T2 is sent.

Based on (20) and (25), we can calculate the SPER shown in (8) based on the constellation

after coordinate transformation.
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Fig. 4: Virtual channel model.

V. SYSTEM OPTIMIZATION

In this section, we first develop a practical method at the relay side to address the error

propagation problem. With the designed method, the system is proved to achieve full diversity

when the relay implements non-perfect detection. Specifically, we propose a power scaling

scheme where the relay power is adaptive to the channel conditions. For such link adaptive

relaying (LAR) scheme, we model the complicated MARC system as a degraded virtual one-

source one-relay one destination model (triangle model), and show that the relay power should

be such to balance the SNRs of source-relay channel and relay-destination channel. Moreover,

we formulate a sub-optimal Max-min method to obtain the optimized system parameters a and

b that minimize the end-to-end SER.

A. The Design of Power Scaling Factor at Relay

Before introducing the design of power scaling factor at relay, we would present the diversity

performance of the proposed PANC scheme and the CXNC scheme in the following Proposition.

Theorem 1: Without the design of power scaling factor at relay, both the PANC scheme and

the CXNC scheme can only achieve one order diversity in the MARC system.

Proof: Please refer to Appendix C.

From Theorem 1, we can see that the error propagation from the early source-relay hop

degrades the performance of the system. In this case, we adopt a power scaling factor at relay to

leverage the effect of error propagation by adjusting the relay transmission power according to

the channel conditions. Such link adaptive ratio (LAR) was first introduced for the single-source

DF system in [23]. However, LAR cannot be directly applied to the multi-user power adapted

network coding system.
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To extend the spirit of LAR, we first develop a virtual channel model for the source-relay-

destination link, as shown in Fig. 4. In the first phase, the two sources transmit to relay

simultaneously. For such multiple-access channel, the upper bound for the instantaneous SER is

given by

PMAC ≤ PU
MAC , Q1

(

√

2E1|h1R|2/σ2
)

+Q1

(

√

2E2|h2R|2/σ2
)

+Q1

(
√

2|
√

E1h1R +
√

E2h2R|2/σ2

)

,
(26)

which can be further approximated as

PU
MAC ≈ Q1

(

√

2min
[

E1|h1R|2/σ2, E2|h2R|2/σ2, |
√

E1h1R +
√

E2h2R|2/σ2
]

)

, (27)

which is quite tight when E1|h1R|2/σ2, E2|h2R|2/σ2, |
√
E1h1R+

√
E2h2R|2/σ2 and their differ-

ence are reasonably large, as the one-dimensional Q-function Q1(x) decays fast as x grows. The

advantage of such approximation is that we can now model the multiple access source-relay chan-

nel as a single-input single-output channel with the input being the virtual source message xS̃ =

x1 ⊞ x2 and the instantaneous channel SNR being γSR , min(E1|h1R|2, E2|h2R|2, |
√
E1h1R +

√
E2h2R|2) that is the SNR of the worse source-relay channel3. The idea of regarding virtual

source message as network coded sources’ signals is that we implement network coding at relay

node. Thus, the virtual transmitting information from source to destination via the aid of relay

becomes the same. Likely, we can model the multiple access source-destination channel as a

point-to-point channel with the channel SNR as γSD. So far, we have successfully degrade the

complex MARC system to a traditional triangle model. Based on the conclusion in [23], the

power scaling factor α with instantaneous γSR and γRD is given by

α = min

(

γSR
γRD

, 1

)

. (28)

Note that, instantaneous channel SNR γRD can be replaced by statistical channel SNR γ̄RD. The

advantage of using γ̄RD to obtain α is that the relay node does not need the feedback of relay-

destination channel. Later, we will show that both instantaneous and statistical relay-destination

channel SNR can achieve full diversity in the proposed PANC scheme.

Theorem 2: Given instantaneous source-relay channel SNR, and instantaneous (or statistical)

relay-destination channel SNR, the power scaled PANC scheme can achieve two order diversity,

3Note that our approximation is different from the one shown in [16], in which the authors consider an orthogonal MARC

system.
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i.e., the full diversity, in the MARC system, while the power scaled conventional NC scheme

can only achieve one order diversity.

Proof: Please refer to Appendix D.

B. The Design of Power Adaption Factors

From the derivations of the instantaneous system SPER in Section IV, we note that the

expressions of the SPER depends on the power adaption levels a and b at the relay. To minimize

the SPER requires a smart optimization on a and b. However, directly minimizing the SPER

is very complicated and leads to no closed forms of a and b. Here, we propose a sub-optimal

criterion for the instantaneous SPER minimization, i.e., maximizing the minimum Euclidean

distances of the instantaneous constellation at the destination. The Max-min optimization problem

under the power constraint is formulated as

(a∗, b∗) = argmax
a,b

min
k,j=1,2,3,4;k 6=j

{

||V D
k − V D

j ||2
}

s. t. a2 + b2 ≤ 2Eave
R , a, b ∈ R,

(29)

where the lengths of parallelogram’s two edges are
−−−−→
V D
1 V

D
2 = ||V D

1 − V D
2 ||2 = 4E1|h1D|2 +

|hRD|2(a − b)2 and
−−−−→
V D
1 V

D
3 = 4E2|h2D|2 + |hRD|2(a + b)2, and the lengths of diagonals are

−−−−→
V D
2 V

D
3 =

(

−2
√
E1|h1D|+ 2

√
E2|h2D|

)2
+4|hRD|2b2 and

−−−−→
V D
1 V

D
4 =

(

2
√
E1|h1D|+ 2

√
E2|h2D|

)2
+

4|hRD|2a2. Defining V as the set of
{−−−−→
V D
1 V

D
2 ,

−−−−→
V D
1 V

D
3 ,

−−−−→
V D
2 V

D
3 ,

−−−−→
V D
1 V

D
4

}

, and introducing a variable

u , min{V}, after some manipulations, the Max-min problem in (29) can be further described

as a maximization problem

max
(u∗,a∗,b∗)

u

s. t. − (4E1|h1D|2 + |hRD|2(a− b)2) ≤ −u,−(4E2|h2D|2 + |hRD|2(a+ b)2) ≤ −u,

− (c1 + 4|hRD|2b2) ≤ −u,−(c2 + 4|hRD|2a2) ≤ −u, a2 + b2 ≤ 2Eave
R ,

(30)

where c1 =
(

−2
√
E1|h1D|+ 2

√
E2|h2D|

)2
and c2 =

(

2
√
E1|h1D|+ 2

√
E2|h2D|

)2
. Since the

objective function is an affine function and the constraints are quadratic functions of a and b

in (30), it is a convex optimization problem. We can adopt the Lagrange Multiplier method to

obtain the solutions. The Lagrange equation is given by

L(a, b, u, µ1, µ2, µ3, µ4, µ5) = u+µ1(u−4E1|h1D|2−|hRD|2(a−b)2)+µ2(u−4E2|h2D|2−|hRD|2(a+b)2)

+ µ3(u− c1 − 4|hRD|2b2) + µ4(u− c2 − 4|hRD|2a2) + µ5(a
2 + b2 − Eave

R ). (31)
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After some intermediate manipulations, we obtain one of the optimal solutions for the problem

in (30) in the case µ1 = µ2 = 0, µ3 6= 0, µ4 6= 0, and µ5 6= 0 as follows.

(a∗, b∗) =

(√

Eave
R +

c1 − c2
8|hRD|2

,

√

Eave
R +

c2 − c1
8|hRD|2

)

. (32)

Note that there are total 32 optimal solutions by adopting different µ1, µ2, µ3, µ4 and µ5, which

can be obtained similarly by adopting the KKT conditions. But one of these solutions is sufficient

to achieve the optimal u.

We can also formulate the Max-min method for the coordinate transformed IDC proposed

in Subsection B of Section IV, which simplifies the calculations of the SPER. Here, based

on the coordinate transformed IDC, we can also simplify the optimization process of a and

b. Specifically in the Max-min problem described in (29), we only consider the the two edges

of the rectangle in the coordinate transformed IDC, since the two edges are always less than

the diagonals of the rectangle. Likewise, we can implement the Max-min method to obtain the

optimal a and b based on the IDC after coordinated transforming, one of the solution is

a∗ =
1

2

(
√

2 (Eave
R |hRD|2 + E2|h2D|2 − E1|h1D|2)

|hRD|2
+

√

2 (Eave
R |hRD|2 + E1|h1D|2 − E2|h2D|2)

|hRD|2

)

,

b∗ =
1

2

(
√

2 (Eave
R |hRD|2 + E1|h1D|2 − E2|h2D|2)

|hRD|2
−
√

2 (Eave
R |hRD|2 + E2|h2D|2 −E1|h1D|2)

|hRD|2

)

.

(33)

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed PANC scheme by simulations.

Consider a two-dimensional cartesian coordinate system, where nodes S1, S2 and D are located

at (0,
√
3
3
), (0,−

√
3
3
), and (1, 0), respectively. The relay node is moving from origin point (0, 0)

to (1, 0) at X-axis. Throughout our simulations, we use the path loss model γij = d−3
ij , where

γij is the channel gain and dij is the distance between two terminals, where i ∈ {S1,S2,R} and

j ∈ {R,D}. The average SNR range is [0, 30] dB. To simplify the expression in the legends

of simulation results, ’sim’ stands for Monte-Carlo simulation result, ’thy’ stands for theoretical

derivation result.

In order to investigate the performance of our proposed scheme comprehensively, we consider

the relay located at different locations resulting in different channel scenarios. Firstly, we consider

the relay is located at (0, 0), so the relay is close to the sources, i.e., asymmetric network with
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strong source-relay channel, shown in Fig. 5. Then, we consider the relay is located at (1
3
, 0), so

the distance between source and relay is equal to the distance between relay and destination, i.e.,

a symmetric network, shown in Fig. 6. Finally, we consider the relay is located at (0.8, 0), so

the distance between sources and relay is larger than the distance between relay to destination,

i.e., asymmetric network with strong relay-destination channel, shown in Fig. 7.

In each realization of nodes locations, we simulate the following schemes to demonstrate the

performance of the proposed PANC scheme: (1) the SPER performance of original received con-

stellation with optimized a and b given in (32), for both monte carlo simulation and theoretically

derived result, denoted by Origin-sim and Origin-thy, respectively. (2) the SPER performance

of received constellation after coordinate transformation with optimized a and b given in (33),

for both monte carlo simulation and theoretically derived result, denoted by CT-sim and CT-thy,

respectively.

As the references, we also simulate the following schemes: (1) the SPER performance of

CXNC scheme [8], [9] in which the relay transmits XORed signal to the destination in the second

transmission phase, denoted by CXNC; (2) The SPER performance of CXNC scheme in which

the relay transmits power scaled XORed signal to the destination in the second transmission

phase, denoted by CXNCα; (3) The SPER performance of genie-aided PANC scheme which is

under the assumption that the symbols are perfectly detected at relay, denoted by Genie; (4)

The SPER performance of PANC scheme with randomly generated a and b, in which a is a

uniformly distributed random variable in [0,
√
2] and b =

√
2ER − a2, and both a and b vary in

different instantaneous CSI, denoted by Random; (5) the SPER performance of PANC scheme

with fixed chosen a and b, in which a is a uniformly distributed random variable in [0,
√
2]

and b =
√
2ER − a2. Once both a and b are generated, they will remain the same for all CSI,

denoted by Fixed.

Firstly, the CXNC without power scaling can only achieve one order diversity, since the error

propagation from the early source-relay hop degrades the performance of the system as Theorem

1 indicates. The CXNC with power scaling cannot either achieve full diversity due to the multi-

user interference of non-orthogonal MARC as Theorem 2 infers. The proposed PANC scheme

with the power scaled factor can achieve full diversity no matter what power levels it adopts at

relay node, which verify the proof of Theorem 2. The Genie method plays as the benchmark of

the system performance, since it assumes that a genie exists at relay and guarantee that the relay

transmit correct information to the destination. We can conclude from the simulation results that
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the proposed PANC scheme with the design of allocating different power levels and adopting

the power scaling factor can achieve full diversity in MARC system.

In addition, the SPER performance based on new coordinate is larger than the SPER based on

original coordinate in low SNR (e.g., from 0dB to 5dB), and coincides after 10dB. The reason

for such phenomenon is that the detector based on the new coordinate is sub-optimal comparing

to the optimal ML detection in (3). Thus, the error performance based on the new coordinate is

poorer than its counterpart based on the original coordinate. As the SNR grows, the minimum

Euclidean distance between constellation points in both original and new coordinates increases.

So the error performances become perfectly matched. The theoretically derived results of both

original coordinate and transformed coordinate match the Monte-Carlo simulation results. It

infers that the closed-form SPER expression is accurate by wedge error calculation method and

the CT method.

Notice that, allocating different power levels at relay may vary the coding gain of the system.

In particular, the SPER performance of optimized a and b based on the Maxmin method has

the best coding gain for both original coordinate and CT case. It infers that our Maxmin is

performance efficient and it has low complexity compared with exhaustive search. The SPER

performance of random or fixed chosen a and b has poorer coding gain performance because

they are not adaptive to the instantaneous CSI compared with the optimized a and b.

Since there exists error propagation from early source-relay hop to destination, we notice that

the gap between the SPER performance of genie-aided PANC scheme and the SPER performance

of original received constellation with optimized a and b is different with three relay location

realization. In particular, such gap is quite small when we have a strong source-relay channel, and

the gap becomes bigger as the relay moves further from source and closer to the destination. The

reason is that with strong source-relay channel, the relay will generates more reliable information

and thus degrades the influence of error propagation to destination.

VII. CONCLUSION

In this paper we propose a novel PANC strategy to minimize the system SPER by allocating

different power levels to the network coded signals and achieve full diversity for a non-orthogonal

MARC. Firstly, with the setup of IRC and IDC, respectively, we derive the decision regions

for received signal and obtain the end-to-end SPER in closed form. Moreover, we propose a

more efficient SPER derivation by transforming the parallelogram-shaped to the rectangle-shaped
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Fig. 5: Error performance with strong source-relay channel (Best viewed in color.).
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Fig. 6: Error performance in a symmetric network (Best viewed in color.).
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Fig. 7: Error performance with strong relay-destination channel (Best viewed in color.).

constellations, and therefore reduce the various derivations resulting from the randomization of

channel conditions. By incorporating the power scaling method at relay, our proposed PANC

scheme can achieve full diversity, which is proved in both theoretical and experiential aspects.

In addition, to further minimize the error performance, we propose a max-min criteria based

on the relationship between Euclidean distance and error probability, and formulate a convex

optimization problem to obtain the optimal power adaption levels at relay. Simulations show that

our method can achieve similar performances as genie-aided scheme and with low complexity.

Simulation results show that the SPER derived based on our CT method can well approximate the

exact SPER with a much lower complexity, and the PANC scheme with power level optimizations

and power scaling factor design can achieve full diversity.
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APPENDIX

A. Computations on Wedge Probability

Wedge probability computation method in [19], [22] can be utilized to derive the SPER with

irregular decision regions. In the following, we will discuss five wedge prototypes as shown in

Fig. 8. Let us first review the wedges discussed in [22]. Denote the CP as Vi and vertex of

wedge as Mk. Assume that the angle in counter-clockwise is positive and clockwise is negative,

respectively.
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Fig. 8: Demonstrations for the basic patterns of wedge probabilities. dik (or dij ) is the normalized distance

between CP Vi and wedge vertex Mk (or Mj). In particular, both (1) and (2) are introduced in [22]; (3) is the

wedge difference between wedge l1 −Mk − l2 and l1 −Mj − l3, denoted as l2 −Mk −Mj − l3, in which both

l1 and l2 are sides of wedge l1 −Mk − l2, and l3 is the side of wedge l1 − Mj − l3, respectively. And φi with

i ∈ {1, · · · , 4} are included angles between line ViMk (or ViMj) and wedge side lm for m ∈ {1, 2, 3}. In (4),

φi with i ∈ {1, 2} are included angle between line ViMk and wedge sides; and φi + φ̄i = π. And in (5), φi

with i ∈ {1, 2} are included angle between line ViMk and wedge sides; and φi + φ̄i = π; φ3 = ∠ViMjMk and

φ4 = ∠MjViMk, respectively.

There are two types of wedge error probabilities to be considered when Vi is outside the
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wedge region. For φ1φ2 ≥ 0 as presented in Fig. 8 (1), the wedge probability is given by [22]

Pw1(dik, φ1, φ2) =
1

2

{

Q2

(

√

2dik sinφ2;
tan2 φ2 − 1

tan2 φ2 + 1

)

−Q2

(

√

2dik sinφ1;
tan2 φ1 − 1

tan2 φ1 + 1

)}

,

(34)

where the two-dimensional Q-function Q2(x; ρ) is defined in Notations, and its closed-form

solution can be found in Equation (5.74) on [24].

Similarly, for φ1φ2 < 0 as shown in Fig. 8 (2), the wedge error probability is shown as [22]

Pw2(dik, φ1, φ2) =
1

2

{

Q2

(

√

2dik sinφ1;
tan2 φ1 − 1

tan2 φ2 + 1

)

−Q2

(

√

2dik sin(−φ2);
tan2 φ2 − 1

tan2 φ1 + 1

)}

.

(35)

Since decision regions may also be the difference of two wedges, for notational convenience,

we introduce the probability involves difference between two wedges, as shown in Fig. 8 (3).

According to the value of φ1φ2 and relative size of two wedges in Fig. 8 (1) and (2), we have

error probability for wedge difference given as

Pw3(dij, dik, φ1, φ2, φ3, φ4, m, n) = Pwm
(dij, φ1, φ2)− Pwn

(dik, φ3, φ4), (36)

where m,n ∈ {1, 2}, angles φ1 and φ2 are with respect to vertex Mj , and angles φ3 and φ4 are

with respect to vertex Mk.

Next, we discuss the probability of correct decisions, i.e., the received signal is inside the

decision region of Vi. We use two different ways to represent the probabilities corresponding to

two different decision regions, as shown in Fig. 8 (4) and (5). In particular, the probability of a

received signal within the wedge region with vertex Mk, shown in Fig. 8 (4), is given by

Pw4(dik, φ1, φ2) =
1

2π

2
∑

n=1

(

1−
∫ φ̄n

0

exp

(

− dik sin
2 φn

sin2(φn + φ)

)

dφ

)

+
φ1 + φ2

2π

=
1

2π

2
∑

n=1

(

Q2

(

√

2dik sin φn;
tan2 φn − 1

tan2 φn + 1

)

− πQ1

(

√

2dik sin φn

)

)

+
φ1 + φ2 + 2

2π
.

(37)

In addition, when the decision region of Vi is defined by a line segment MjMk and two rays

with initial points Mj and Mk, respectively, shown in Fig. 8 (5), the probability of Vi inside

such wedge combination is given by

Pw5(dik, dij, φ1, φ2, φ3, φ4) =
1

2π

{

3
∑

n=1

Q2

(

√

2dij sinφn;
tan2 φn − 1

tan2 φn + 1

)

−
2
∑

n=1

πQ1

(

√

2dij sinφn

)

−Q2

(

√

2dik sin(φ3 + φ4);
tan2(φ3 + φ4)− 1

tan2(φ3 + φ4) + 1

)

+ φ1 + φ2 + φ4 + 3

}

.

(38)

March 3, 2020 DRAFT



27

B. Derivation of the coordinate transformation at relay

Define Z = [ℜ{yR},ℑ{yR}]T as the point on the original coordinate, where (·)T is the

transform operation of the matrix or vector, 2 × 1 vector Z′ as the intermediate transformed

point, A as the intermediate coordinate transformation matrix. The relationship between Z and

Z′ is Z = AZ′, where A is a 2× 2 matrix and det(A) 6= 0. The probability density function of

Z can be represented by Z′ as

fZ(z) =
1

2π|Σ|1/2 exp
(

−1

2
(z−Vi)

TΣ−1(z−Vi)

)

=
1

2π|Σ|1/2 exp
(

−1

2
(z′ −A−1Vi)

TATΣ−1A(z′ −A−1Vi)

)

,

(39)

where Σ = [σ2/2, 0; 0, σ2/2], and |Σ| is the determinant of Σ, i ∈ {1, · · · , 4}. Note that the

covariance matrix B , ATΣ−1A is not diagonal, we adopt eigenvalue decomposition and obtain

fZ(z) =
1

2π|Σ|1/2 exp



−1

2
(z′ −A−1VT

i )
T [ψ1, ψ2]

T





λ1 0

0 λ2



 [ψ1, ψ2](z
′ −A−1VT

i )



 ,

(40)

where ψi for i = 1, 2 and λi are the eigenvectors and eigenvalues of B, respectively. Thus, we

define Z = [ψ1, ψ2](z
′ − A−1VT

i ), which is a complex Gaussian random variable with mean

Vi = [ψ1, ψ2]A
−1VT

i and covariance [λ1, 0; 0, λ2], as the point on the transformed coordinate.

Let Q = [ψ1, ψ2], the relationship between original received signal Z and the transformed

received signal Z, original RP Vi and transformed RP Vi after coordinate transformation and

decorrelation are

Z = QA−1Z and Vi = QA−1VT
i , (41)

respectively. To transform the RP-composed parallelogram to a rectangle centered at origin point

and preserve the length of geometry’s sides, e.g.,
−−−→
V iV j =

−−→
ViVj , the transformation matrix A is

given by

A =





−−→
V1V2 −−−→

V1V2
−−→
V1V3

−−→
V1V3









V1(1) V2(1)

V1(2) V2(2)





−1

=
2

β





|h1R|ℑ{h2R} −|h1R|ℜ{h2R}
−|h2R|ℑ{h1R} |h2R|ℜ{h1R}



 ,

(42)

where β = ℜ{h1R}ℑ{h2R} − ℜ{h2R}ℑ{h1R}. And

B =
4

βσ2





|h1R|2ℑ2{h2R}+ |h2R|2ℑ2{h1R} −|h1R|2ℜ{h2R}ℑ{h2R} − |h2R|2ℜ{h1R}ℑ{h1R}
−|h1R|2ℜ{h2R}ℑ{h2R} − |h2R|2ℜ{h1R}ℑ{h1R} |h1R|2ℜ2{h2R}+ |h2R|2ℜ2{h1R}



,

(43)
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And for i = 1, 2, the eigenvalues are shown as

λi =
B(1, 1) +B(2, 2)±

√

B(1, 1)2 +B(2, 2)2 + 4B(1, 2)2 − 2B(1, 1)B(2, 2)

2
. (44)

From (43) and (44) we can see that B is a real orthogonal symmetric matrix. In this case,

matrix Q is a rotation matrix. Hence, the coordinate transformed by A is a rectangle with its

sides parallel to the axis, and after eigenvalue decomposition, the new constellation is still a

rectangle and being rotated counterclockwise through an angle θ, which is defined by Q =

[cos(θ), sin(θ);− sin(θ), cos(θ)]T . The corresponding eigenvectors matrix is given by (23). In

this case, the final coordinate transform matrix C is given by

C = QA−1, (45)

where A−1 is shown in (23).

C. Proof of Theorem 1

Firstly, we consider the case that T1 is wrongly decoded to other symbol pairs. The average

probability that T1 is wrongly decoded into T4 at the destination is given by

P (T1 → T4) = E{P (T1 → T4|h)}

= E







∑

k∈{±a,±b}

P (T1 → T4|
√

ERxR = k, T1, h1D, h2D, hRD)P (
√

ERxR = k|T1, h1R, h2R)







= E















Q1









√
2

(

(

∑

2

i=1

√
Ei|hiD|

)2

+ |hRD|2a2
)

√

(E1|h1D|2 + E2|h2D|2 + |hRD|2a2)σ2









[

1−
2
∑

i=1

Q1

(

√

2 (Ei|hiR|2/σ2)
)

−Q1







√

√

√

√2

(

2
∑

i=1

√

EihiR

)2

/σ2












+Q1









√
2

(

(

∑2

i=1

√
Ei|hiD|

)2

+ |hRD|2ab
)

√

(E1|h1D|2 + E2|h2D|2 + |hRD|2a2)σ2









Q1

(

√

2 (E1|h1R|2/σ2)
)

+Q1









√
2

(

(

∑

2

i=1

√
Ei|hiD|

)2

− |hRD|2ab
)

√

(E1|h1D|2 + E2|h2D|2 + |hRD|2a2) σ2









Q1

(

√

2 (E2|h2R|2/σ2)
)

+Q1









√
2

(

(

∑

2

i=1

√
Ei|hiD|

)2

− |hRD|2a2
)

√

(E1|h1D|2 + E2|h2D|2 + |hRD|2a2)σ2









Q1







√

√

√

√2

(

2
∑

i=1

√

EihiR

)2

/σ2





















.

(46)
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Without loss of generality, we assume E1 = E2 = ER = E in the following. Denote ρ =

E/σ2 as the reference system SNR for i ∈ {1, 2,R}. In general, averaging the following one-

dimensional Q-function over channel distributions, we have

E

{

Q1

(

√

2ρ|hij|2
)}

=
1

π

∫ π/2

0

(

1 +
ργij
sin2 θ

)−1

dθ
ρ→∞≈ 1

4γij
ρ−1. (47)

Likewise, E
{

Q1

(
√

2ρ
∑

t∈{ij,mn} |ht|2
)}

ρ→∞≈ 3
16γijγmn

ρ−2 and E{Q1(
√

2ρ
∑

t∈{ij,mn,pq} |ht|2)}
ρ→∞≈ 5

32γijγmnγpq
ρ−3. According to the result shown in [25], we have the high-SNR approximation

E







Q1





√
2
(

(
∑2

i=1

√
Ei|hiD|

)2 − |hRD|2ab
)

√

(E1|h1D|2 + E2|h2D|2 + |hRD|2a2) σ2











≈ γRD
γ1D + γ2D + γRD

. (48)

With the conclusion in (47) and (48), averaging the probability P (T1 → T4|h) in (46) over

channel distributions, we further have

P (T1 → T4) ≈
5

32γ1Dγ2DγRD
ρ−3 +

5

128γ1Dγ2DγRDγ1R
ρ−4

+
γRD

4γ2R(γ1D + γ2D + γRD)
ρ−1 +

γRD
4γSR(γ1D + γ2D + γRD)

ρ−1,
(49)

where γSR = γ1R + γ2R. Likewise, we can derive P (T2 → T3). When only one error occurs,

we further have

P (T1 → T2) ≈















3
16γ1DγRD

ρ−2 + 1
4γ1R

ρ−1 + 1
4γ2R

ρ−1 + 1
4γSR

ρ−1, when a > b,

3
16γ1DγRD

ρ−2 + 1
4γ1R

ρ−1 + 3
64γ1DγRDγ2R

ρ−3 + 3
64γ1DγRDγSR

ρ−3, when a < b,

3
16γ1DγRD

ρ−2 + 1
4γ1R

ρ−1 + 1
16γ1Dγ2R

ρ−2 + 1
16γ1DγSR

ρ−2, when a = b.
(50)

Similarly, we can derive P (T1 → T3), P (T2 → T4). From (49), and (50), we can conclude that

the PANC scheme can only achieve one order diversity in MARC system without power scaling.

In NC based MARC system, averaging the related PEPs over the channel coefficients, we

have

P (T1 → T4) ≈
5

32γSDγRDγ1R
ρ−3 +

5

32γSDγRDγ2R
ρ−3 +

1

4γSD
ρ−1,

P (T1 → T2) ≈
3

16γ1Dγ1R
ρ−2 +

3

16γ1Dγ2R
ρ−2 +

3

16γ1DγRD
ρ−2.

(51)

Similarly, we can derive P (T1 → T3), P (T2 → T3) and P (T2 → T4). In this case, we can

conclude that the MARC system applied network coding cannot achieve full diversity.
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D. Proof of Theorem 2

We prove Theorem 2 using our virtual channel model. After some manipulations, it is easy

to show that given any power scaling coefficient α employed at the relay side, the lower bound

of SPER can be in general approximated as

Pv , P ((x1, x2, xR) → (x̂1, x̂2, x̂R))

≈E

[

Q

(

(√
E1|h1D| (x1 − x̂1) +

√
E2|h2D| (x2 − x̂2)

)2
+ α|hRD|2(xR − x̂R)

2

√

E1|h1D|2(x1 − x̂1)2 + E2|h2D|2(x2 − x̂2)2 + α|hRD|2(xR − x̂R)2

)]

(x+y)2≤2(x2+y2)
≤ E



Q





(√
E1|h1D| (x1 − x̂1) +

√
E2|h2D| (x2 − x̂2)

)2
+ α|hRD|2(xR − x̂R)

2

2
√

(√
E1|h1D|(x1 − x̂1) +

√
E2|h2D|(x2 − x̂2)

)2
+ α|hRD|2(xR − x̂R)2







 .

(52)

After applying the Chernoff bound Q1(x) ≤ 1
2
exp

(

−x2

2

)

, we can further obtain

Pv ≤ E

[

1

2
exp

(

−
(√

E1|h1D|(x1 − x̂1) +
√
E2|h2D|(x2 − x̂2)

)2
+ γSRD|xR − x̂R|2

4

)]

ρ→∞≈ 1

2

(

r
∏

k=1

Λi

)−1

ρ−r

(53)

where Λi, r are the ith non-zero eigenvalue and the rank of the diagonal matrix

[ (
√
E1|h1D|(x1−x̂1)+

√
E2|h2D|(x2−x̂2))2

4
, 0; 0, γSRD(xR−x̂R)2

4
], respectively. γSRD = min{γSR, γRD} is an

exponential distributed random variable with mean γ1Rγ2RγRD

γ1Rγ2R+γ1RγRD+γ2RγRD
, which is proven as

follows. Define T = min(E1|h1R|2, E2|h2R|2). Since γSRD = min{E1|h1R|2, E2|h2R|2, (
√
E1|h1R|+

√
E2|h2R|)2, γRD}, we have

2γSRD ≥ min{2E1|h1R|2, 2E2|h2R|2, E1|h1R|2 + E2|h2R|2, 2γRD} ≥ 2min{T, γRD}. (54)

If X and Y are i.i.d. exponentially distributed random variables with mean vx and vy, respectively,

min{X, Y } is a also an exponentially distributed random variable with mean vx+vy. So we have

the conclusion of γSRD. Since both two diagonal elements are non-zero when an error event

happens or two error events happen, we have max
x̂ 6=x

Pr (x→ x̂) = O (Γ−2). Note that, replacing

γRD in (53) by γ̄RD will not change the result of diversity, which completes the proof of the

theorem.

If we apply the power scaling on CXNC scheme, when one error occurs, i.e., x̂i = −xi for

i ∈ {1, 2}, we have

P ((x1, x2, xR) → (−x̂1, x̂2, x̂R))

≈ E

[

Q

(

2E1|h1D|2
√

E1|h1D|2(x1 − x̂1)2 + E2|h2D|2(x2 − x̂2)2 + α|hRD|2(xR − x̂R)2

)]

.
(55)
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Averaging the probability in (55) over channel distributions, we further have

P ((x1, x2, xR) → (−x̂1, x̂2, x̂R)) ≈
1

4γ1D
ρ−1. (56)

Hence, we can conclude that the power scaled CXNC scheme still cannot achieve full diversity.
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