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Energy-Neutral Source-Channel Coding

with Battery and Memory Size Constraints

Paolo Castiglione and Gerald Matz

Abstract

We study energy management policies for the compressiotransimission of source data collected
by an energy-harvesting sensor node with a finite energyeb(#.g., rechargeable battery) and a finite
data buffer (memory) between source encoder and channeblencThe sensor node can adapt the
source and channel coding rates depending on the obsereatétbchannel states. In such a system, the
absence of precise information about the amount of energyadéle in the future is a key challenge.
We provide analytical bounds and scaling laws for the avedigtortion that depend on the size of the
energy and data buffers. We furthermore design a resounmatibn policy that achieves almost optimal
distortion scaling. Our results demonstrate that the gnkrgkage of state of art energy management

policies can be avoided by jointly controlling the sourcel @hannel coding rates.

I. INTRODUCTION

Energy harvesting techniques [1] enable the design of cet@lylautonomous wireless sensor
networks (WSN). However, fluctuations in the amount of thergyn being harvested call for
resource management policies that achieve a trade-offdegtwhort-term metrics like delay and
data queue length and long-term performance indicatoesthkoughput and average distortion
(see [2] and references therein).

In a WSN, an additional challenge is the fact that the enemysemption of source com-
pression is in the same order as that of transmission. Evétowtienergy harvesting this allows
for energy savings via a joint energy management for souncéng and transmission [3]=[5].

These results have been extended to fluctuating energyesoim¢6], [7].
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In this paper, we consider a single sensor node and adopt tlielnfrom [6], where an
energy buffere.g., a rechargeable battery, stores the harvested ererggach time slot, the
node acquires and compresses an observation with a suddhblyted rate. The observation is
characterized by a time-varying state, e.g., observatignatto-noise ratio (SNR). Then, the
node stores the source coder output bits olata buffer(memory). Furthermore, it transmits to
the destination a certain number of bits from the data butfsing a suitably adapted channel
coding rate. The transmission channel is characterizedhbpstantaneous channel SNR.

In previous work [[6], we characterized optimal energy mamagnt policies that achieve
minimum distortion for the extreme cases where the energydata buffer are either infinite or
very small. For infinite buffer size, where the stability betdata queue needs to be guaranteed,
the optimal policies independently allocate energy to theree and channel encoders. On the
other hand, for the case of very small buffer size, a jointgynallocation by means of dynamic
programming was found to be optimal.

In this paper, we consider finite buffers and use large dewviabols for our analysis that
were developed in the seminal work of Tsé [8]. Compared tadyin programming, these tools
have the advantage of not suffering from the curse of dinosadity. In [8], only the source
coding is taken into account in the sensor policy, which tAo®unts to choosing a point on
the rate-distortion curve. Neither the problem of maintainenergy-neutrality, nor fluctuations
of the available energy, nor optimal resource allocatiom@gnsource and channel encoder have
been addressed inl[8].

In this work, we claim that distortion optimality can be amed via a joint energy management
for the source and channel encoders. In particular, we geoanalytical bounds on the average
distortion achievable with an energy-harvesting sensut,an the scaling laws of the achievable
average distortion with respect to buffer size. We furthreppse a joint energy management for
source and channel encoding that asymptotically achidweslistortion lower bound and scales
almost optimally with buffer size. We emphasize that in tedawork [9], [10] on this topic a
joint adaptation of the source code and of the channel codenbibeen considered since the
bit stream entering the data buffer was modeled as exogdneysuncontrollable).

Other recent contribution§][7], [L1] for multi-hop systeimsve shown that a good trade-off
between performance and buffer sizes can be found by usiagunov optimization techniques

that do not require knowledge of the statistics of the systeates. In particular [7] addresses
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Figure 1. Model for the energy harvesting sensor.

the problem of jointly controlling distributed source codiand data transmission and develops
policies that achieve a distortion optimality gap that igeirsely proportional to buffer size. In

contrast to our work, the optimality of such policies is nagatissed in[[7].

1. SYSTEM MODEL

We consider a system in which a single energy-harvestingasamode communicates with a
single receiver. A block diagram of the sensor node is de@iat Fig[1. It essentially consists
of a source encoder, a transmitter, an energy buffer, a ddfarband an energy management
unit (EMU).

Energy bufferin our model, the sensor operation is structured in timesqlimidexed byk).
The energy harvested in slbt denotedE), , € R, is accumulated in an energy buffer of finite
size B, hence-forth also referred to as battery. For conveniestenergies are normalized by
the numberN of channel uses per slot (i.e., the number of symbols tratestnper time slot).
The harvested energh, ;. is assumed to be a discrete stationary irreducible aperidairkov
process. The steady-state probability density functiatf) (pf £, ;. is denotedvz(e). The energy

E,., available in the battery for use in slét+ 1 evolves as
Eps1 = min{ B, [Ey — (Egj, + Eui)]” + Eng}, 1)

where [z]T = max{0,z}. Here,[E} — (Es; + Et,k)]Jr is the residual energy from the previous
slot, with £, and E,; denoting the energies allocated in slotfor source encoding and
transmission, respectively. We do not take into accounétteggy consumed by channel encoding
and channel state acquisition, since they are typicallyllstoanpared to the transmit energy in

the scenario considered. Energy-neutrality amounts t@womstraintE , + E; , < Ej.
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Source encodeiThe sensor taked/ measurements per time slot. The quality of these mea-
surements is characterized by a parameter sequénce Q, which is assumed to form a
discrete stationary irreducible aperiodic Markov process an example(), could model the
measurement SNR, which may change over time due to sourcemamt or environmental
factors. The setQ is assumed to be discrete and finite. The steady-state plibpabass
function (pmf) for Q. is denotedPr(q) = Pr(Qx = ¢), ¢ € Q. Due to sampling, analog-
to-digital conversion, and compression the sensor acgjuire source in a lossy fashion. The
loss is captured by the distortian, € R*, obtained from a given distortion metric such as the
mean square error (MSE). The bit stream resulting at theceoincoder output is stored in a
data buffer, subsequently also referred to as memory.

The number of bits produced by the source encoder withinisistgiven by £ (Dy,, E; ;) =
f(Dy, Esk, Qr = q). Here, the rate-distortion-energy functighmodels the dependence of the
source encoder output on the distortion leigl, the allocated energ¥s ., and the observation
stateQy. The functionf@ (D, E, ) is assumed (for any € Q) to be continuous, differentiable,
and separately strictly convex and non-increasin@jnand E; .. Example rate-distortion-energy
functions are provided in_[6]. Conventional rate-distomtifunctions are special cases without

dependence o .

Transmitter. The channel between sensor and destination is charactezea a discrete
stationary irreducible aperiodic Markov proceds € #H that changes slowly over time (e.g.,
block-fading). The pmf ofH, is given by Pr(h) = Pr(H, = h), h € H. The transmitter
uses the channeV times per slot. A maximum numbet® (E, ;) = g (Hy, = h, E;,) of bits
per slot can be communicated successfully to the destmakor anyh € H, the channel
rate functiong(h)(Etvk) is assumed to be continuous, differentiable, strictly eme¢ and non-
decreasing irt; ;; furthermore g™ (0) = 0. We consider rate-adaptive transmission schemes that
achieve arbitrarily small block error probabilities. Anagmple forg is given by the Shannon
capacity of the additive white Gaussian noise (AWGN) chamwiégh SNR h. However, the
channel-rate function can also model the rate of channedsedth a non-zero gap to Shannon

capacity. The number of bits actually transmitted using dlecated energyt, ;. is given by
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min{Xk;, g(h)(Et,k)}-
Data buffer.The size and queue length of the data buffer are denoteddryd X, respectively.
The data queue length evolves as

Xis1 = min{ A, [Xy — g(Hy, Eor)]” + f(Dr, Es, Qi) }- (2)

The source encoder increases the data queue length/By, Es x, Q1) bits while the transmitter
decreases the queue length by transmitti(d;., E: ) bits. When all parameters excef;, and
E. ;. are fixed, [(2) captures the trade-off that results from tipdjtthe available energy between
the source encoder and the transmitter. Ideally, it is dbkrto decreas¢(Dy, Esx, Q) by
increasingE; ;, and simultaneously increasg Hy, E; ) by increasingE, ;. However, due to

energy neutrality , and £, cannot be simultaneously increased without bounds.

[1l. PROBLEM STATEMENT AND MAIN RESULTS
A. Problem Statement

The results obtained in what follows are based on the assomphiat the buffer sizesi
and B are much larger than the maximum variation of the respediwféer states, i.e.,.4 >
max | X1 — X and B > max |E,1 — Ex|). We further note that the Markov assumption
for the energy harvesting, for the observation state, amdhe channel state generalizes the
memoryless assumption that was used in related work[[2],8i®dl is ispired by recent models
for real harvesting processes [12] as well as by well-eisaddl models for the wireless channel
[13]. An extension to even more general models is beyond ¢bpesof this paper.

The EMU has to prescribe the distortidn, and the energieg , and £, ;, to be allocated to
the source encoder and the transmitter, respectively.ds o using the combined state of the
energy buffer, the data buffer, the source, and the chafumsdally Sy, = { Ey, Xk, Q, Hx}. More
specifically, the EMU uses a policy = {m.},.., wherem, = {Dy(S™), E, 1 (S™), B x(S™)}
determines the paramete(®;, E; x, E; ;) in the kth time slot based on the present and past
statesS®) = {S;,..., Sk}

To decrease the distortion, the sensor can either use marpression energy, thereby faster
discharging the energy buffer, or compress less, theresterfdilling the data buffer (which
necessitates an increase of the transmission energy toy éhgpbuffer). Therefore, any policy

m amounts to a trade-off between the distortion performamzkthe risk of an energy buffer
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drain or data buffer overflow. If the battery is empty or thenmoey is full, a packet is lost and
the maximum distortiorD,,,., is accrued. The long-term average distortion achieved patity
7 is defined as

D™ = limsu E™[Dy] 3
n_mp o ; lc (3)

The optimal EMU policyro achieves the minimum distortioR™® = min, D™; hence,D™ >
D™ for all

B. Lower bound on the achievable distortion

We define, conditional on the observation stéilg = ¢, the long-term average source en-
coder energyEs(q) = liminf,_,. + =3 v E[Ex|Qr = ¢] and the long-term average distortion
DY =liminf, .. 1 Y} E[Dy|Q) = ¢]. Furthermore, the long-term average transmit energy
conditional on the channel statf, = h is defined asEt(h) = liminf,, % S E[E x| Hy, = h].

Our main results are based on the following convex optimaraproblem.

Definition 1. The convex optimization problem €4, de) is defined as follows:

min Z Pr(q)D¥

D@, B EM o

subject to

Z Pr(q) f (DD, ED) =3 " Pr(h)g"(E") < &, 4)
h

Z Pr(q (1—)(E [Eynx] + de), (5)

Z Pr(h)E" < a(E [Ey i) + 06), (6)

DW >0, EY>0 E™>0 0<a<l.

Here, 04 and de can be interpreted as the incremental and decrementaﬂﬂdxﬁﬁt the data

buffer and for the energy buffer, respectively. The probl€f(dq4, de) Minimizes the inferior

The drift 64 is the long-term expected difference between the size ofitita bufferinput and the size of the data buffer
output Vice versa, the drifte is the long-term expected difference between the size okttegy bufferoutput and the size

of the energy buffeinput For the definition of drift, the buffer is assumed to be unimed. See Appendix for a more formal
definition.
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limit of the long-term expected distortion, thereby idéntig the values of the above defined
long-term expectation® (@, EWY, Et(h) and of the associated parameterThe latter parameter
denotes the ratio between the long-term expected energy ffparansmission and the long-term
overall expected energy spent for transmission and sowdig. For the problem GPy, de)

with 04 < 0 andde < 0, condition [4) is necessary for theean rate stabilityof the data queue
[14], and conditions[{5)z(6) are necessary to meet the gneegtrality requirement. We note
that the problems GBy, de) With dq > 0 andd. > 0 can be viewed as relaxations of ©F0).

Using the results in 6], we establish a lower bound on theexelble long-term distortion.

The proofs of this and the subsequent results are providéaeiRppendix.

Proposition 1. Let D* denote the minimum of the probleii® (0, 0) (i.e., with zero drift,y = 0,

de = 0). Then, the minimum distortion is lower bounded2&™ > D*.

We note that it suffices to prove this result for the specialecaf infinite data and energy
buffer, i.e., A = co and B = oo. This also establishes the bound for finite buffer sizesesinc
the assumptiom < oo and B < oo is more restrictive (an infinite buffer can always mimic a
finite buffer) and hence cannot lead to a smaller achievaist®rtion. The proof substantially
demonstrates by means of Jensen inequality that condipiis (necessary to meet theean
rate stabilityof the infinite data queue [14].

The next result provides a lower bound on the scaling behafithe differenceD™" — D*,

showing howD™® converges taD* when buffer size increasgs.

Proposition 2. For any EMU policyr there is
D™ — D* = Q(A72) + Q(B72).

This results states that the optimality gap™™ — D* is asymptotically bounded below by
c1A72 + ¢, B72 (here,c; andc, are constants). Thus, with increasing buffer sig&™ cannot
converge to the minimum distortioR* at a rate faster tham, A2 + ¢, B~2. This result is not
intuitive. The key idea behind the proof provided in the Apgie entails the manipulation of

appropriate balance equations for each buffer as dore iB.481].

2\We use the following notation to compare the growth of twousewesa,, andb,, asn increasesu, = O(b,,) if an /b, < ¢

for large enoughn and some constanrt a,, = Q(b,) if b, = O(an).
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Figure 2. lllustration of the EMU policy{7).

C. Distortion achievable with finite buffer size

We now present a stationary EMU poliey = {wg}k21 that only depends (in a deterministic
manner) on the current state and performs close to the lower bound established in Proposi
2. This policy enforces drifts depending on hyper state$ ithdicate whether the queues are
more or less than half full. These hyper states are captyreldedindices: = [{ X, > A/2} and
m=HE; < B/Q}H The data queue drift and the energy buffer drift then equat (—1)"%
andde = (—1)’”5217“3, respectively, with3; and 3, sufficiently large constants (see Appendix).
The sign of these drifts ensures that the buffer states asbguutowards the respective center
levelsA/2 and B/2. Furthermore, the drift magnitude depends on the size aftbgective buffer.
For example, the data queue drift decreases with incredsifigr sizeA. This is intuitive since
smaller buffers tend to become full faster and hence requiseronger drift to avoid overflow.
The same reasoning applies to the battery drift.

Definition 2. We define the policyr) = { Dy, Esk, Ev i} by
Dy =D, for Q= g,
By = min{ (1—ay, ) Ex, Es(gm}, for Qi = q, @)
Ei = min{an,mEk, Et(ﬁim}, for Hy = h,

where the parameter@ﬁf{%, ES(‘Qm Et(};)m anda, ,,, are obtained by solving the optimization

problem CRdy,de) from Definition 1 with the drifts chosen a& = (—1)"224 and ¢, =

m B21nB
(—1) P

3The indicator functiori{-} equalsl if the argument is true an otherwise.
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For given rate functions’ and g and given statistics for), and Hy, the above problem
must be solved for all four possible hyper states using st@hdonvex optimization tools and
the resulting parameters of the policy can then be stored lookup table. As illustrated in
Fig.[2, the source code is determined by the distormﬁﬁn and the energy consumptioﬁ‘v’é,‘%&m
depending on the state of the soucén the other hand, the channel code is determined by the

energy consumptiort.”’

t,n,m

depending on the channel stdtelf the energy in the battery is not
sufficient to provideE %), and E") ., policy (7) assigns the residual energy to the source
encoder and to the channel encoder according to paramgier The next result assesses the

performance of the EMU policy defined above.

Proposition 3. The policyn® achieves a long-term average distortid)’ that approache*
asO(A2In*A) + O(B—2In’B).

Proposition 3 states that the scaling behavior of the lengrtaverage distortion achieved
with the policy 7° is almost optimal (cf. Proposition 2). More specificallygtbptimality gap
D™ — D* converges to zero a8 (A~2In’A) + O (B~%In’B). This scaling behaviour can be
interpreted as the truncation of the Taylor representatibthe optimality gap to the second
order derivative with respect to the drifts in each buffdresecond order component dominates
the performance because the first order component cancetiueuo the fact that the drifts in
each buffer have opposite signs, are equal in magnitude ecar avith asymptotically equal
probability (see Appendix). Moreover, the data and energffeb drifts imposed byr® keep the
probabilities of battery depletion and memory overflow dnflalit different from zero), such
that they become asymptotically negligible. More compl@AUEpolicies, for instance, that can
online adapt the source-channel code and the associateglesnenight force these probabilities
to zero. However, according to Proposition 2, any othercggoleven if more complex and
adaptive, cannot perform substantially better thén

We additionally observe that the source and channel enquatameters are jointly adapted
over time. This is consistent with the dynamic programmiotutson in [6] for small mem-
ory/battery sizes. It is also interesting to note that thers® encoder and the transmitter are
separatelycontrolled as long as the hyper state of the buffers remdiassame, for instance,
as long as the data queue length is less thana and the available energy is larger th&n2.

Hence, asA, B — oo, a separate energy management for source encoding ananisaion
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Figure 3. Optimality gap versus data buffer size and enetgdfebsize.

remains optimal, which is consistent with the results[in [6]

IV. NUMERICAL RESULTS

We present Monte Carlo simulations in order to numericaigess the performance of the
proposed EMU policy. We consider a system with slot duratioms. In each, the sensor acquires
M = 10 noisy samples with SNR),. The source encoder output bits are passed through a
channel encoder and transmitted over an AWGN channel Witk 2 - 103 channel uses (the
transmission bandwidth thus 2)0kHz).

Using the model in[]3], the source encoder is characterizedhle rate-distortion-energy
function f(@(Dy, F, ;) = Mlog%%) ¢(E,y). Here, the first term is the information-
theoretic rate-distortion limit for a zero-mean white Gsiams source with varianc®,,,, and
with minimum distortion (minimum MSEY,.se = (¢ + 1/Dmax)_1. The function{(Es ) =
Cmax{l, (%EE")"} accounts for the rate increase incurred by practical (grkmjted)
compression sbhemes. For our simulations we cljose2, n = —2/3, and a maximum energy

consumption per slot O%E&max = 1nJ = —7dBm. The transmitter is characterized by the
channel rate functiog™ (E, ;) = Nlog(1 + %) where H,, = h accounts for the path loss,
I' = 7dB is the SNR gap to Shannon capacity of the (rate-adaptiveyreel code, and is the
noise power (measured in J, her&0 dBm).

The source SNRQ = {1,10}dB and the path los$/ = {40,50}dB are two-state Markov

chains with uniform steady-state pmf and transitions fram etate to the other happening with
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probability 0.1. The harvested energh, ,, is a uniformly distributed Markov chain with nine
states, uniformly spaced in the interv@l, 100).J /s and with transition probability from each
state to any of the other eight states equal .tiy.

Fig.[3 shows the optimality gap of the poliey versus data and energy buffer size. It is seen
that the optimality gap can be decreased to 0.2% of the soar@@nceD,,,, by simultaneously
increasing the energy buffer size and the data buffer sizeabstic values of 50J and 75kB,
respectiveIE Moreover, these results confirm the validity of the scalirghdwvior stated in

Proposition 3.

V. CONCLUDING REMARKS

In this paper we have proposed an energy management poliggnfrgy-harvesting sensor
nodes that achieves a close-to-optimal distortion scailitigf respect to battery and memory size.
Our large deviations results substantially differ frdm, [[I0], which assumed the bits arriving
in the data buffer to be exogenous (uncontrolled). In thegeers, the average harvested energy
was assumed to be strictly larger than the average energyreddo achieve the optimal utility.
The energy buffer is therefore constantly filled, which imaplthat only the data buffer needs
to be controlled, at the price that not all harvested enesgysied. In contrast, our proposed
energy management policy jointly adapts the source codett@ahannel code, which leads
to a separate control of the energy buffer and the data baffdrachieves the distortion lower

bound without any detrimental energy leakage.

APPENDIX
Proof of Proposition 1

We prove this result for the special case of infinite data ametgy buffer, i.e.,A = oo and
B = oo. This also establishes the bound for finite buffer sizesesite assumptiom < oo
and B < oo is more restrictive (an infinite buffer can always mimic atgnbuffer) and hence
cannot lead to a smaller achievable distortion.

Without loss of generality we assunmeean rate stabilityi.e., limsup,,_,., ~E[X;] = 0 and

E[X,] < oo, both of which are always satisfied for the case of finite datifebs. Using [14,

“These are typical values for the capacitor and for the merbegy low-power sensor node.
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Theorem 3], we now prove that mean rate stability impliessdi@e necessary stability conditions
as in [6, Proposition 1].
Since f is convex non-increasing i, and E;; and g is concave non-decreasing Hj y,

Jensen’s inequality implies

% ZE[f(Dk7 Es,ky Qk) - g(Hkv Et,k)] > Z PI(Q)JC([])(DS] Sq Z PI' E(h )
k=1 q

with
1y _ A0 LY _ A _ Ly _
==Y E[DiQu=¢q), EY ==Y ElEQi=q, Ei, = - E[E¢ x| Hi, = h).
n k=1 n k=1 k=1
Furthermore, we have
lim su Pr(q D(q L E9) = Pr @ (pla) p@)y,
maw 3 Pl ) = L Prla)f (D%, B
lim su Pr(h (h E(h Pr(h ,
mup =3 P Z )

with D@ = liminf, .o, DY, B = liminf, . £%, and B = liminf, .., E"). Using
the fact that mean rate stability ard [14, (12)] impiyrsup,,_,.. £+ >0 E[f(Dy, Esr, Q1) —
g(Hy, Ey )] <0, we finally arrive at

ZPr 9 (DW, EW) <ZP1~ W (EM),

which is the same necessary stability condition aslin [6p&sdion 1]. The proof of Proposition

1 thus follows from[[6, Proposition 1].

Proof of Proposition 2

We first define some quantities that are instrumental for tlo®fp of Propositions 2 and 3.
The probabilities that a policyr results in an empty energy buffer or a full data queue are

respectively defined as

pEB—hmsuanPr Ek—Esk—Etk] =0), (8)
1 n

= limsup — Pr(X,=A 9

pFQ n_mopnkz:; (X ) 9)
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The decrementaldrift §. of the unbounded energy buffer queue procé$$1 = FE, — Eqr, —
E.r + En, and theincrementaldrift 5, of the unbounded data queue procéﬁsﬂ = X, +
f(Dy, Esk, Qx) — g(Hg, E¢ ) are respectively defined as

The drift §g can be viewed as the long-term expected difference betweesize of the data
buffer input and the size of the data buffeutput whereas the drifée can be viewed as the
long-term expected difference between the size of the gnauffer outputand the size of the
energy bufferinput

We denote the event aformal operationby &, = {X; < A and [E}, — (E.;, + Fi )] > 0}
(i.e., the data buffer is not full and the energy buffer is emipty). The complementary event is
denoted ag;, (i.e., either the data buffer is full or the energy buffer ispy). The instantaneous
expected distortion can now be written BS[D;] = E™[Dy|&] Pr(&x) + E™[Dy|Ex] Pr(Ex).
With Pr(&;) < 1, E"[Dg|€,] = Duax, and the union boundr(€;) < Pr(X, = A) +
Pr([E), — (Esx + Ei)]" = 0), we obtain the following upper bound on the long-term averag
distortion D™:

_ 1 <&
D™ =limsup ~ » E"[Di] < D + Dyax (D + Dig) - (10)

n
n—00 1

Here, we have used](8],1(9), and the long-term average tistaturing normal operation,

1 n
D°P = lim sup - E E™[Dy|Ek] - (11)
k=1

Note that here we assume that if the energy buffer is empthedata buffer is full, a packet

is lost and the maximum distortioR,,,., is accrued (i.e., the decoder treats this missing packet
as an arbitrary vector, e.g., the mean of the source disiwitou An energy buffer discharge or
data buffer overflow could be handled in a more sophisticatadner, but this does not bear
on our asymptotic analysis (see also [8] for a similar reaspn The bound[{10) indicates that
studying the optimal convergence Df to the lower boundD* (see Proposition 1) is equivalent
to finding the optimal scaling laws for i) the probabilitigs; andpf, approaching zero and ii)

the operational distortio®°? approachingD*.
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In order to prove Proposition 2, we need the following two llﬂﬂg

Lemma 1. Let B = oo and consider an arbitrary control scheme, = {Dy, E,, E;} that
achievespf, = o(1/A?). Then,D™ — D* = Q(1/A4?).

Lemmal states that for an infinitely large energy buffer natiad scheme can make botf,
and D™ converge at a rate faster thapiA%. The proof of Lemmall is based dn [8, Proposition
2.4.1]. Let us consider the optimization problem(&R0), i.e., the problem formulated in Def. 1
with the specific choicé, = 0. Denote the minimum of Q@,,0) by Dr(dq).

According to Proposition 1, the solution to this problemhwit = 0 equals the lower bound
on the minimum achievable distortion. Notice that, by thevexity [15] of the problemD(d4)
is convex and non-increasing #y. Moreover, using the same arguments as in Proposition 1, it
can be proved that there exists no policyhat is able to achieve a long term average distortion
smaller thanD+1(d4). with a data queue drift smaller or equal®tp Thus,Dr(dq) can be viewed
as the lower limit of the distortion-drift region. This olrgation allows us to directly apply the
proof of [8, Proposition 2.4.1] to Lemnid 1.

Lemma 2. Let A = oo, and consider an arbitrary control schemg = {Dy, Esy, E;;} that
achievegf, = o(1/B?). Then,D™ — D* = Q(1/B?).

Lemmal2 is the counterpart of Lemrh 1; it states that, for &nifaly large data buffer size,
no control scheme can achieve a convergence rate faste ttizinfor both pf; and D™. The
proof parallels that of Lemm{ 1.

We now prove Proposition 2 by contradiction. Assume thatetfexists a policy withpf, =
0o(1/B?) and pf, = o(1/A?) that achievesD™ — D* = O(1/A?) + O(1/B?), i.e.,, D™ — D* is
asymptotically boundedboveby ¢, /A* + ¢,/ B* (wherec; andc, are constant factors). Such a
policy would violate Lemmall (or Lemnia 2) @s(or A) tends to infinity and hence cannot exist.
This implies thatD™ — D* = Q(1/A?) + Q(1/B?), which concludes the proof of Proposition 2.

*The following notations are used to compare two sequengeandb,, asn grows:a, = O(b,) if a, /b, < c for all n and
some constant; a, = Q(by) if b, = O(an); an = O(by) If an = O(by) andb, = O(an); an = o(by) if limy o0 an /b = 0.
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Proof of Proposition 3

In order to prove Proposition 3, we first need to recall somewknresults. Let us define
the random walk?7, ., = Z, + Wy, k > 0, with Z, = 0 and W, a stationary, irreducible, and
aperiodic Markov chain with states;, 1 < i < I. The transition probability from state; to
statew; is denotedp,; ; and Pr(w;) is the invariant distribution of¥;,. The drift R = E[WW}] of

the random walk is assumed negative. The moment generatiregidn of 17/, is given by
1

p(r) = E[exp(rWy)] = Z Pr(w;) exp(rw;).

=1
It can be shown that the functidng p(r) (i.e., the cumulant-generating function) has a unique

positive zero at = r*.

Theorem 1. (Wald's identity) Let K be the first > 1 for whichZ, > a >0 or Z, < b < 0.
Then
Elexp(r*Zk)| =1,

wherer* is the unique positive root dbg p(r). Furthermore,
E[K]E[W)] = E[Zk].

Using Theorem 1 we can compute the probability=- Pr(Zx > L) that a negative-drift

random walk that starts at zero will cross the bardier 0 before returning to the origin,
PE[exp(r*Zk)|Zx > L] + (1 — p)Elexp(r"Zk)|Zx < 0] = 1.

SinceElexp(r*Zk)|Zx > L] = O(exp(r*L)) andE[exp(r*Zk)|Zx < 0] = ©(1) in the regime

of large L, we have
p = O(exp(—r*L)), E[Zk] = pE[Zk|Zk > L]+ (1 — p)E[ZKk|Zx < 0] = O(1).

Hence, by Theorem 1, also the expected crossing time is ddedrby the return to the origin,
i.e., E[K] = E[Zk]/E[W,] = ©(1).

Let us now defineD+(dq, d.), as the minimum distortion in the convex problem (&RJ.)
(Def. 1). According to Proposition 1D* = D+(0,0) is a lower bound for the minimum
achievable distortiorDr(dq, d.). The convexity of CPq, d.) implies thatDr(dq, d.) iS convex

and non-increasing ifdq, d.). Moreover, it can be proved using the same arguments as in
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Proposition 1 that there exists no poligythat is able to achieve a long-term average distortion
D™ smaller thanD+(dq4, 6.) with a data queue drift and energy buffer drift less than araédgo

dq andd,, respectively. ThusDr(dq, d.) can be viewed as a lower bound for the distortion-drift
region.

Consider now the policy® in Def. 2 and recall that the hyper stat&s = (X, > AJ2) €
{0,1} and E}, = I(E, < B/2) € {0,1} indicate, respectively, whether the data buffer is more
than half full and the energy buffer is more than half emptytrBXk and Ek can be shown
to be irreducible and aperiodic Markov chains. Furthermtite data queuencrementprocess
W,S(Xk) = f(Dy, Esx, Qr) — g(Hy, Et ) in each half of the data buffer is function of the
aggregate Markov chaif&,, Q., Hy). Hence,WW3(X,) in each half of the data queue is is itself
an irreducible and aperiodic Markov chain whose mean edbalslrift 64. Similarly, the energy
buffer decremenﬂorocessW,f(Ek) = FE.r + Ei, — By in each half of the energy buffer is a
function of the aggregate Markov chaﬂf(k, E, i, Qr, Hy) and hence is itself an irreducible and
aperiodic Markov chain whose mean equals the drift (as défamve), i.e.f.. We next state
a lemma that follows from[10] and relates the unique positivotsr(X,) andr*(E}) of the

cumulant-generating functions ®Fd(X,) and W¢(E;), respectively.

Lemma 3. Assume that the policy° is the unique optimal policy for the drifts; and J.. Then

dT:i(Xk) _ 2 (123)
dog 5q=06=0 Val"(W;?(Xk)wd =0, = 0)’

dTi(Ek) _ 2 . (12b)
d(0e) lpsm0  var(We(E)|da = 6 = 0)

The proof of Lemmal3 is based on the fact that the potitydepends smoothly on the drifts
(84,0,) in the neighborhood ofy = &, = 0. This implies that*(X,) and r*(E,) are smooth
functions of the means of the respective increment/deaneprecesses, i.edq andd,, too. Since
the supports ofV/*(X,,) andW¢(E;) are finite and the policy® is almost always continuous and
differentiable (like the waterfilling-like policy in[[16))the respective second-order derivatives
aroundoy = d, = 0 almost always exist and are continuous.

To obtainr (we omit the argumenk, in what follows for notational simplicity), we need

to find the root of the cumulant generating functionW)ﬁ1 Xk with 6, = 0:

A(r3) = log p(ry) = log (Z Pr(w?) exp(rjw? )) = 0;
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here,Pr(w?) is the invariant distribution ofV’d(X,), which depends o#y. Denoting by, the
nth cumulant of Wd(X}) (i.e., thenth derivative of the cumulant generating functiditr) at

r = 0), the Maclaurin expansion of(r}) reads

o r\n oo r\n
A(ry) :fioJrZFan—( T‘i") zédrf;—i-Zmn( a) ,
n=1 ’ n=2

n!

where the second equality is obtained with= 0 andx,; = d4. Setting this expression equal to

zero, dividing both sides by and differentiating with respect @ yields

oo

So, (oD dry

n=2

Sincer); — 0 asdq — 0 (due to well-known properties of the moment generating fionc see,
e.g., [8]), the above expression becomes

Ko dr}

EX 7

54=0

By substitutings, = var(Wd(X;)|dq = d. = 0), we obtain [IZa) in Lemmal 3. The proof of
(@2B) is analogous.

Let us next consider the probability of a full data bufpﬁ%j’g2 obtained by adopting the policy’.
The times at which the data buffer becomes full can be viewdati@epochs of a renewal process
[17]. The fullness probability can thus be written pgsg = 1/E[Y], whereY is the duration
between successive time instants at which the buffer besduatie We define the random walk
7} =70 4+ WXy =1),k=0,1,..., in the upper half of the data buffer, with negative drift
dq. Let K" be the smallest time indek > 1 for which Z;! > 0 or Z}} < —A/2. We then have

(for similar arguments refer to [[8])

A
E[Y] =E[K"|Z} = 0] + Pr [Z;;u <-3

Z(‘)‘:O]

max
g

A
/ Pr[Z}‘(uz———x
0 2

where ¢g™** is the maximum undershoot relative to the center of the byife., the maximum

A
Ziw < =523 = o] E[V

A
Xy = 3 x} dz, (13)

variation for the considered policy towards the empty b)ffand V" is the time it takes to fill up
the buffer starting from an initial buffer stat€,. We furthermore define the timé" to be the
smallestk > 1 for which Z! < 0 or Z}! > A/2. Also, we define another random walk for the
dynamics in the lower half of the buffer (stat, = 0), Z. = Z,  +W3(X, =0),k=0,1,...,
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with positive driftd4. The smallest > 1 such thatZ., < 0 or Z. > A/2 is denotedk’, and the
smallestt > 1 such thatZ} > 0 or Z} < —A/2 is denoted/!. For0 < z < g™ we have

E|v

A A

o A A
+ PrXp——+yXo<§—$ VX0:§+y dy, (14)
0

where the integral is up to the maximum overshgtt* relative to the center of the buffer (i.e.
the maximum variation for the considered policy towardsftiiebuffer). The quantityP is the
first time instant for which the buffer becomes more than halfstarting from an initial buffer
state X,.

By conditioning on the event that the buffer becomes full lattthe data queue leaves the

upper buffer half, we have for evefy< y < fm

A
E[V‘X(]:E—l—y] :IE{J“ Z(‘]l:y}

Zy :y] —i—Pr{Z}}u <0
gmex A
/ Pr [Z}}u = —w‘Z}}u < O] E[V'XO =35 w} dw. (15)
0
From [15) it follows that for every) <y < fmax
A A
E[V‘Xo = — +y} < E{J“ Zy = y} +Pr[ZY. <0|Z) =y] max E[V‘XO = — —w} .
2 O<w < gmax 2

Inserting this bound intdIL4) yields for evety< x < gm**

0<y<fmax

A
E{V‘XO =3 —x] <E 'XO — —x] + max E[JYZy =v]
+ Pr[Z}. <0|Zy =y IEVX—A
0<Iyrl<é‘l‘f)§1ax r Ju y m<alg}r(nax O - 2 w :
Taking the maximum with respect (o< = < ¢™** and noting that —O<ma}x Pr[ZY. < 0|23 = y] =
7y< max
min Pr[ZY. > 0|2} = y], we obtain

0<y< fmax
max ]E _V X(] _ é . CC- S maX0<m<gmax ]E[P‘XO 5 SL’} + maj0<y<fmax E[JU‘ZU = yj|
0<z<gmax | 2 | m1n0<y<fmax Pr [Z}u > ‘ZO = y}

Similarly, it can be shown that

min E-V X, = A z| > MiNg<y < gmax E[P‘XO s — x} + mlnj<y<fmax E[JU‘ZH — y} |
0<z<gmax | 2 maxoqumax Pr[Zu. > 2|2y = y|
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Bounds onIE[P}XO = g — x} can be derived in an analogous manner, i.e., by conditioomg
hitting first the bottom of the buffer or leaving the lower haf the buffer:

E [K'|Z) = 0]
Pr[Z}, > 4|Z)=0]

5 Zé = —x]

E{P'XO = é —x} =E[J'|Z) = —a] +Pr[Z},1 < 4

Using Theorem 1, we can estimate the above quantities asvll

A ] _— E[Z}.|Z) =0 .
E{P‘ona—m =0(E[K'|Zz)=0]) =0 (E[EA/{J‘(LQ:O}]) =000,

4 -

PI[Z;(u < 3 Zy =0| =1—-Pr[Z}. > 0]Z5 =0] = O(1),
E[J" %5 = y] = (1),

Pr {Z}u > é Zy =y| = @(exp(—érﬁ(f(k = 1))) ,

E[K"Zy = 0] = ©(4),

wheredy = E[WI(X, = 0)] is the drift in the lower half of the buffer. Inserting thesstimates
into (13) leads to
E[Y] = @(5;1 exp (ér(’;(f(k = 1))) . (16)

LemmalB implies

= AR = e = =0 1 0

~InA 201 _ In4 i
A var(W(Xy, = 1)|64 = 0o = 0) + O(|6¢|) ¢ << A ) > -

wheredy = W and the termO(|d.|) accounts for the variation of the second-order statistic

of the Markov chainiVd(X,) arounddy = d. = 0.
Combiningpf, = ﬁ, I8), and [(I7), and assumingy/2 > var(W(X;)|0q = 6 = 0) +

O(]é¢]), we arrive at
° A * (Vv

o 2
=0 %exp InA - b —I—O(lnA)
A var(Wa( Xy, = 1)[6g = 0. = 0) + O(|5e|) A

~(3)

May 2, 2018 DRAFT




20

A similar derivation can be used to show that the probabittyan empty energy buffer scales
aspry = o(1/B?%). Here, the decremental drift is chosendas= MT“B and we need to choose
with B,/2 > var(Wg(Ey)|0q = d. = 0) + O(|da]). We note that the estimates fpf;, and pfy,
are tight if the renewal epochs of the Markov chaifisand £, are sufficiently small compared
to A and B, respectively (see [18] and references therein for furtfetails).

We next analyze the convergence of the average distortitinet@ptimal value. The average
distortion during normal operation as defined[inl (11) can)y@essed via the Taylor expansion

dD+(0,0) By In A dD+(0,0) By 1In B
954 A 95 B

92Dr(0,0) (BiIn AN 02D(0,0) [ Boln B\ BnA\®* /B InB\*
e (5) e () ol (B5) < (%57) )
whereqq = Pr(X; = 1) andg. = Pr(Ej, = 1).

We next show that the scaling behavior of the first-order seiimthis expansion is(1/A?)

D = Dp(0,0) +

(2qa — 1) +

(2Qe - 1)

ando(1/B?), respectively. Since the data buffer is finite, the diffeebetween input and output

in steady state equals zero. Mathematically,

1 n
lim — [ZW,ﬁJrL‘}L—U,E}

n—oo N,
k=0

—0, (18)

where W = f(Dy, Es 1, Qr) — g(Hy, Ev ) is the data buffer increment process (neglecting
boundary effects).d is the cumulative number of bits up to timethat have been padded with
zeros due to underflow, and¢ is the cumulative number of bits up to timethat have been

lost due to overflow. According to the strong law of large nensifor renewal-reward processes

a7, )

(2qa — 1).

As to the boundary effects, there is a one-to-one correspualbetween the times at whitl{
increases and the times that the buffer is full. Furthermtbrie increase is bounded by***, so

that

: Us max, m 2
lim — < f™pro = o(1/A%)

n—oo N
Due to the symmetry of the problem, we similarly obtéin,, .., L3 /n = o(1/A?). Hence, [(IB)
implies 224 (2¢4 — 1) = o(1/A?). The same line of arguments can be used to sFgi (2¢. —
1) = o(1/B?). By combining the above intermediate results, it follonattthe average distortion
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during normal operation reads®® = D+(0,0) + O ((%)ﬁ +0 ((%)3 . Inserting this
expression foD°? together withpf, = o(1/A?%) andpf = o(1/B?) into the upper bound(10) of
the average distortion finally confirms that” approache®* asO((In A/A)?)+O((In B/B)?).
Proposition 3 is thus proved.
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