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Energy-Neutral Source-Channel Coding

with Battery and Memory Size Constraints

Paolo Castiglione and Gerald Matz

Abstract

We study energy management policies for the compression andtransmission of source data collected

by an energy-harvesting sensor node with a finite energy buffer (e.g., rechargeable battery) and a finite

data buffer (memory) between source encoder and channel encoder. The sensor node can adapt the

source and channel coding rates depending on the observation and channel states. In such a system, the

absence of precise information about the amount of energy available in the future is a key challenge.

We provide analytical bounds and scaling laws for the average distortion that depend on the size of the

energy and data buffers. We furthermore design a resource allocation policy that achieves almost optimal

distortion scaling. Our results demonstrate that the energy leakage of state of art energy management

policies can be avoided by jointly controlling the source and channel coding rates.

I. INTRODUCTION

Energy harvesting techniques [1] enable the design of completely autonomous wireless sensor

networks (WSN). However, fluctuations in the amount of the energy being harvested call for

resource management policies that achieve a trade-off between short-term metrics like delay and

data queue length and long-term performance indicators like throughput and average distortion

(see [2] and references therein).

In a WSN, an additional challenge is the fact that the energy consumption of source com-

pression is in the same order as that of transmission. Even without energy harvesting this allows

for energy savings via a joint energy management for source coding and transmission [3]–[5].

These results have been extended to fluctuating energy sources in [6], [7].
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In this paper, we consider a single sensor node and adopt the model from [6], where an

energy buffer, e.g., a rechargeable battery, stores the harvested energy. In each time slot, the

node acquires and compresses an observation with a suitablyadapted rate. The observation is

characterized by a time-varying state, e.g., observation signal-to-noise ratio (SNR). Then, the

node stores the source coder output bits in adata buffer(memory). Furthermore, it transmits to

the destination a certain number of bits from the data buffer, using a suitably adapted channel

coding rate. The transmission channel is characterized by an instantaneous channel SNR.

In previous work [6], we characterized optimal energy management policies that achieve

minimum distortion for the extreme cases where the energy and data buffer are either infinite or

very small. For infinite buffer size, where the stability of the data queue needs to be guaranteed,

the optimal policies independently allocate energy to the source and channel encoders. On the

other hand, for the case of very small buffer size, a joint energy allocation by means of dynamic

programming was found to be optimal.

In this paper, we consider finite buffers and use large deviation tools for our analysis that

were developed in the seminal work of Tse [8]. Compared to dynamic programming, these tools

have the advantage of not suffering from the curse of dimensionality. In [8], only the source

coding is taken into account in the sensor policy, which thusamounts to choosing a point on

the rate-distortion curve. Neither the problem of maintaining energy-neutrality, nor fluctuations

of the available energy, nor optimal resource allocation among source and channel encoder have

been addressed in [8].

In this work, we claim that distortion optimality can be achieved via a joint energy management

for the source and channel encoders. In particular, we provide analytical bounds on the average

distortion achievable with an energy-harvesting sensor, and on the scaling laws of the achievable

average distortion with respect to buffer size. We further propose a joint energy management for

source and channel encoding that asymptotically achieves the distortion lower bound and scales

almost optimally with buffer size. We emphasize that in related work [9], [10] on this topic a

joint adaptation of the source code and of the channel code has not been considered since the

bit stream entering the data buffer was modeled as exogenous(i.e., uncontrollable).

Other recent contributions [7], [11] for multi-hop systemshave shown that a good trade-off

between performance and buffer sizes can be found by using Lyapunov optimization techniques

that do not require knowledge of the statistics of the systemstates. In particular, [7] addresses
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Figure 1. Model for the energy harvesting sensor.

the problem of jointly controlling distributed source coding and data transmission and develops

policies that achieve a distortion optimality gap that is inversely proportional to buffer size. In

contrast to our work, the optimality of such policies is not discussed in [7].

II. SYSTEM MODEL

We consider a system in which a single energy-harvesting sensor node communicates with a

single receiver. A block diagram of the sensor node is depicted in Fig. 1. It essentially consists

of a source encoder, a transmitter, an energy buffer, a data buffer, and an energy management

unit (EMU).

Energy buffer.In our model, the sensor operation is structured in time slots (indexed byk).

The energy harvested in slotk, denotedEh,k ∈ R+, is accumulated in an energy buffer of finite

sizeB, hence-forth also referred to as battery. For convenience,all energies are normalized by

the numberN of channel uses per slot (i.e., the number of symbols transmitted per time slot).

The harvested energyEh,k is assumed to be a discrete stationary irreducible aperiodic Markov

process. The steady-state probability density function (pdf) of Eh,k is denotedpE(e). The energy

Ek+1 available in the battery for use in slotk + 1 evolves as

Ek+1 = min
{

B, [Ek − (Es,k + Et,k)]
+ + Eh,k

}

, (1)

where [x]+ = max{0, x}. Here, [Ek − (Es,k + Et,k)]
+ is the residual energy from the previous

slot, with Es,k and Et,k denoting the energies allocated in slotk for source encoding and

transmission, respectively. We do not take into account theenergy consumed by channel encoding

and channel state acquisition, since they are typically small compared to the transmit energy in

the scenario considered. Energy-neutrality amounts to theconstraintEs,k + Et,k ≤ Ek.
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Source encoder.The sensor takesM measurements per time slot. The quality of these mea-

surements is characterized by a parameter sequenceQk ∈ Q, which is assumed to form a

discrete stationary irreducible aperiodic Markov process. As an example,Qk could model the

measurement SNR, which may change over time due to source movement or environmental

factors. The setQ is assumed to be discrete and finite. The steady-state probability mass

function (pmf) for Qk is denotedPr(q) = Pr(Qk = q), q ∈ Q. Due to sampling, analog-

to-digital conversion, and compression the sensor acquires the source in a lossy fashion. The

loss is captured by the distortionDk ∈ R
+, obtained from a given distortion metric such as the

mean square error (MSE). The bit stream resulting at the source encoder output is stored in a

data buffer, subsequently also referred to as memory.

The number of bits produced by the source encoder within slotk is given byf (q)(Dk, Es,k) =

f(Dk, Es,k, Qk = q). Here, the rate-distortion-energy functionf models the dependence of the

source encoder output on the distortion levelDk, the allocated energyEs,k, and the observation

stateQk. The functionf (q)(Dk, Es,k) is assumed (for anyq ∈ Q) to be continuous, differentiable,

and separately strictly convex and non-increasing inDk andEs,k. Example rate-distortion-energy

functions are provided in [6]. Conventional rate-distortion functions are special cases without

dependence onEs,k.

Transmitter.The channel between sensor and destination is characterized by a a discrete

stationary irreducible aperiodic Markov processHk ∈ H that changes slowly over time (e.g.,

block-fading). The pmf ofHk is given byPr(h) = Pr(Hk = h), h ∈ H. The transmitter

uses the channelN times per slot. A maximum numberg(h)(Et,k) = g (Hk = h,Et,k) of bits

per slot can be communicated successfully to the destination. For anyh ∈ H, the channel

rate functiong(h)(Et,k) is assumed to be continuous, differentiable, strictly concave, and non-

decreasing inEt,k; furthermore,g(h)(0) = 0. We consider rate-adaptive transmission schemes that

achieve arbitrarily small block error probabilities. An example forg is given by the Shannon

capacity of the additive white Gaussian noise (AWGN) channel with SNR h. However, the

channel-rate function can also model the rate of channel codes with a non-zero gap to Shannon

capacity. The number of bits actually transmitted using theallocated energyEt,k is given by
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min
{

Xk, g
(h)(Et,k)

}

.

Data buffer.The size and queue length of the data buffer are denoted byA andXk, respectively.

The data queue length evolves as

Xk+1 = min
{

A, [Xk − g(Hk, Et,k)]
+ + f(Dk, Es,k, Qk)

}

. (2)

The source encoder increases the data queue length byf(Dk, Es,k, Qk) bits while the transmitter

decreases the queue length by transmittingg(Hk, Et,k) bits. When all parameters exceptEs,k and

Et,k are fixed, (2) captures the trade-off that results from splitting the available energy between

the source encoder and the transmitter. Ideally, it is desirable to decreasef(Dk, Es,k, Qk) by

increasingEs,k and simultaneously increaseg(Hk, Et,k) by increasingEr,k. However, due to

energy neutralityEs,k andEt,k cannot be simultaneously increased without bounds.

III. PROBLEM STATEMENT AND MAIN RESULTS

A. Problem Statement

The results obtained in what follows are based on the assumption that the buffer sizesA

andB are much larger than the maximum variation of the respectivebuffer states, i.e., (A ≫

max |Xk+1 − Xk| and B ≫ max |Ek+1 − Ek|). We further note that the Markov assumption

for the energy harvesting, for the observation state, and for the channel state generalizes the

memoryless assumption that was used in related work [2], [9], and is ispired by recent models

for real harvesting processes [12] as well as by well-established models for the wireless channel

[13]. An extension to even more general models is beyond the scope of this paper.

The EMU has to prescribe the distortionDk and the energiesEs,k andEt,k to be allocated to

the source encoder and the transmitter, respectively. It does so using the combined state of the

energy buffer, the data buffer, the source, and the channel,formallySk = {Ek, Xk, Qk, Hk}. More

specifically, the EMU uses a policyπ = {πk}k≥1 whereπk =
{

Dk(S
(k)), Es,k(S

(k)), Et,k(S
(k))
}

determines the parameters(Dk, Es,k, Et,k) in the kth time slot based on the present and past

statesS(k) = {S1, . . . , Sk}.

To decrease the distortion, the sensor can either use more compression energy, thereby faster

discharging the energy buffer, or compress less, thereby faster filling the data buffer (which

necessitates an increase of the transmission energy to empty the buffer). Therefore, any policy

π amounts to a trade-off between the distortion performance and the risk of an energy buffer
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drain or data buffer overflow. If the battery is empty or the memory is full, a packet is lost and

the maximum distortionDmax is accrued. The long-term average distortion achieved withpolicy

π is defined as

D̄π = lim sup
n→∞

1

n

n
∑

k=1

E
π[Dk]. (3)

The optimal EMU policyπopt achieves the minimum distortion̄Dmin = minπ D̄
π; hence,D̄π ≥

D̄min for all π.

B. Lower bound on the achievable distortion

We define, conditional on the observation stateQk = q, the long-term average source en-

coder energyE(q)
s = lim infn→∞

1
n

∑n
k=1 E[Es,k|Qk = q] and the long-term average distortion

D(q) = lim infn→∞
1
n

∑n
k=1 E[Dk|Qk = q]. Furthermore, the long-term average transmit energy

conditional on the channel stateHk = h is defined asE(h)
t = lim infn→∞

1
n

∑n

k=1E[Et,k|Hk = h].

Our main results are based on the following convex optimization problem.

Definition 1. The convex optimization problem CP(δd, δe) is defined as follows:

min
D(q),E

(q)
s ,E

(h)
t ,α

∑

q

Pr(q)D(q)

subject to

∑

q

Pr(q)f (q)
(

D(q), E(q)
s

)

−
∑

h

Pr(h)g(h)
(

E
(h)
t

)

≤ δd, (4)

∑

q

Pr(q)E(q)
s ≤ (1−α)(E [Eh,k] + δe), (5)

∑

h

Pr(h)E
(h)
t ≤ α(E [Eh,k] + δe), (6)

D(q) ≥ 0, E(q)
s ≥ 0, E

(h)
t ≥ 0, 0 < α < 1.

Here, δd and δe can be interpreted as the incremental and decremental drifts1 for the data

buffer and for the energy buffer, respectively. The problemCP(δd, δe) minimizes the inferior

1The drift δd is the long-term expected difference between the size of thedata bufferinput and the size of the data buffer

output. Vice versa, the driftδe is the long-term expected difference between the size of theenergy bufferoutput and the size

of the energy bufferinput. For the definition of drift, the buffer is assumed to be unbounded. See Appendix for a more formal

definition.
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limit of the long-term expected distortion, thereby identifying the values of the above defined

long-term expectationsD(q), E(q)
s , E(h)

t and of the associated parameterα. The latter parameter

denotes the ratio between the long-term expected energy spent for transmission and the long-term

overall expected energy spent for transmission and source coding. For the problem CP(δd, δe)

with δd ≤ 0 andδe ≤ 0, condition (4) is necessary for themean rate stabilityof the data queue

[14], and conditions (5)-(6) are necessary to meet the energy neutrality requirement. We note

that the problems CP(δd, δe) with δd > 0 andδe > 0 can be viewed as relaxations of CP(0, 0).

Using the results in [6], we establish a lower bound on the achievable long-term distortion.

The proofs of this and the subsequent results are provided inthe Appendix.

Proposition 1. Let D̄∗ denote the minimum of the problemCP(0, 0) (i.e., with zero drift,δd = 0,

δe = 0). Then, the minimum distortion is lower bounded asD̄min ≥ D̄∗.

We note that it suffices to prove this result for the special case of infinite data and energy

buffer, i.e.,A = ∞ andB = ∞. This also establishes the bound for finite buffer sizes since

the assumptionA < ∞ andB < ∞ is more restrictive (an infinite buffer can always mimic a

finite buffer) and hence cannot lead to a smaller achievable distortion. The proof substantially

demonstrates by means of Jensen inequality that condition (4) is necessary to meet themean

rate stabilityof the infinite data queue [14].

The next result provides a lower bound on the scaling behavior of the differenceD̄min − D̄∗,

showing howD̄min converges toD̄∗ when buffer size increases.2

Proposition 2. For any EMU policyπ there is

D̄min − D̄∗ = Ω
(

A−2
)

+ Ω
(

B−2
)

.

This results states that the optimality gap̄Dmin − D̄∗ is asymptotically bounded below by

c1A
−2 + c2B

−2 (here,c1 and c2 are constants). Thus, with increasing buffer size,D̄min cannot

converge to the minimum distortion̄D∗ at a rate faster thanc1A−2 + c2B
−2. This result is not

intuitive. The key idea behind the proof provided in the Appendix entails the manipulation of

appropriate balance equations for each buffer as done in [8,2.4.1].

2We use the following notation to compare the growth of two sequencesan andbn asn increases:an = O(bn) if an/bn < c

for large enoughn and some constantc; an = Ω(bn) if bn = O(an).
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Figure 2. Illustration of the EMU policy (7).

C. Distortion achievable with finite buffer size

We now present a stationary EMU policyπo = {πo
k}k≥1 that only depends (in a deterministic

manner) on the current stateSk and performs close to the lower bound established in Proposition

2. This policy enforces drifts depending on hyper states that indicate whether the queues are

more or less than half full. These hyper states are captured by the indicesn = I{Xk ≥ A/2} and

m = I{Ek < B/2}.3 The data queue drift and the energy buffer drift then equalδd = (−1)n β1 lnA

A

andδe = (−1)mβ2 lnB

B
, respectively, withβ1 andβ2 sufficiently large constants (see Appendix).

The sign of these drifts ensures that the buffer states are pushed towards the respective center

levelsA/2 andB/2. Furthermore, the drift magnitude depends on the size of therespective buffer.

For example, the data queue drift decreases with increasingbuffer sizeA. This is intuitive since

smaller buffers tend to become full faster and hence requirea stronger drift to avoid overflow.

The same reasoning applies to the battery drift.

Definition 2. We define the policyπo
k = {Dk, Es,k, Et,k} by

Dk = D(q)
n,m, for Qk = q,

Es,k = min
{

(1−αn,m)Ek, E
(q)
s,n,m

}

, for Qk = q, (7)

Et,k = min
{

αn,mEk, E
(h)
t,n,m

}

, for Hk = h,

where the parametersD(q)
n,m, E(q)

s,n,m, E(h)
t,n,m, andαn,m are obtained by solving the optimization

problem CP(δd, δe) from Definition 1 with the drifts chosen asδd = (−1)n β1 lnA

A
and δe =

(−1)mβ2 lnB

B
.

3The indicator functionI{·} equals1 if the argument is true and0 otherwise.
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For given rate functionsf and g and given statistics forQk and Hk, the above problem

must be solved for all four possible hyper states using standard convex optimization tools and

the resulting parameters of the policy can then be stored in alookup table. As illustrated in

Fig. 2, the source code is determined by the distortionD
(q)
n,m and the energy consumptionE(q)

s,n,m

depending on the state of the sourceq. On the other hand, the channel code is determined by the

energy consumptionE(h)
t,n,m depending on the channel stateh. If the energy in the battery is not

sufficient to provideE(q)
s,n,m andE

(h)
t,n,m, policy (7) assigns the residual energyEk to the source

encoder and to the channel encoder according to parameterαn,m. The next result assesses the

performance of the EMU policy defined above.

Proposition 3. The policyπo achieves a long-term average distortion̄Dπo
that approaches̄D∗

asO
(

A−2 ln2A
)

+O
(

B−2 ln2B
)

.

Proposition 3 states that the scaling behavior of the long-term average distortion achieved

with the policyπo is almost optimal (cf. Proposition 2). More specifically, the optimality gap

D̄πo
− D̄∗ converges to zero asO

(

A−2 ln2A
)

+ O
(

B−2 ln2B
)

. This scaling behaviour can be

interpreted as the truncation of the Taylor representationof the optimality gap to the second

order derivative with respect to the drifts in each buffer. The second order component dominates

the performance because the first order component cancels out due to the fact that the drifts in

each buffer have opposite signs, are equal in magnitude and occur with asymptotically equal

probability (see Appendix). Moreover, the data and energy buffer drifts imposed byπo keep the

probabilities of battery depletion and memory overflow small (but different from zero), such

that they become asymptotically negligible. More complex EMU policies, for instance, that can

online adapt the source-channel code and the associated energies, might force these probabilities

to zero. However, according to Proposition 2, any other policy, even if more complex and

adaptive, cannot perform substantially better thanπo.

We additionally observe that the source and channel encoderparameters are jointly adapted

over time. This is consistent with the dynamic programming solution in [6] for small mem-

ory/battery sizes. It is also interesting to note that the source encoder and the transmitter are

separatelycontrolled as long as the hyper state of the buffers remains the same, for instance,

as long as the data queue length is less thanA/2 and the available energy is larger thanB/2.

Hence, asA,B → ∞, a separate energy management for source encoding and transmission

May 2, 2018 DRAFT
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Figure 3. Optimality gap versus data buffer size and energy buffer size.

remains optimal, which is consistent with the results in [6].

IV. NUMERICAL RESULTS

We present Monte Carlo simulations in order to numerically assess the performance of the

proposed EMU policy. We consider a system with slot duration10ms. In each, the sensor acquires

M = 103 noisy samples with SNRQk. The source encoder output bits are passed through a

channel encoder and transmitted over an AWGN channel withN = 2 · 103 channel uses (the

transmission bandwidth thus is200kHz).

Using the model in [3], the source encoder is characterized by the rate-distortion-energy

function f (q)(Dk, Es,k) = M log2

(

Dmax−Dmmse

Dk−Dmmse

)

ξ(Es,k). Here, the first term is the information-

theoretic rate-distortion limit for a zero-mean white Gaussian source with varianceDmax and

with minimum distortion (minimum MSE)Dmmse = (q + 1/Dmax)
−1. The functionξ(Es,k) =

ζ max
{

1,
(

N
M

Es,k

Es,max

)η
}

accounts for the rate increase incurred by practical (energy-limited)

compression schemes. For our simulations we choseζ = 2, η = −2/3, and a maximum energy

consumption per slot ofM
N
Es,max = 1nJ = −7dBm. The transmitter is characterized by the

channel rate functiong(h) (Et,k) = N log(1 +
Et,k

hΓσ
), whereHk = h accounts for the path loss,

Γ = 7dB is the SNR gap to Shannon capacity of the (rate-adaptive) channel code, andσ is the

noise power (measured in J, here−80 dBm).

The source SNRQ = {1, 10}dB and the path lossH = {40, 50}dB are two-state Markov

chains with uniform steady-state pmf and transitions from one state to the other happening with
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probability 0.1. The harvested energyEh,k is a uniformly distributed Markov chain with nine

states, uniformly spaced in the interval(0, 100)µJ/s and with transition probability from each

state to any of the other eight states equal to0.05.

Fig. 3 shows the optimality gap of the policyπo versus data and energy buffer size. It is seen

that the optimality gap can be decreased to 0.2% of the sourcevarianceDmax by simultaneously

increasing the energy buffer size and the data buffer size torealistic values of 50µJ and 75kB,

respectively.4 Moreover, these results confirm the validity of the scaling behavior stated in

Proposition 3.

V. CONCLUDING REMARKS

In this paper we have proposed an energy management policy for energy-harvesting sensor

nodes that achieves a close-to-optimal distortion scalingwith respect to battery and memory size.

Our large deviations results substantially differ from [9], [10], which assumed the bits arriving

in the data buffer to be exogenous (uncontrolled). In these papers, the average harvested energy

was assumed to be strictly larger than the average energy required to achieve the optimal utility.

The energy buffer is therefore constantly filled, which implies that only the data buffer needs

to be controlled, at the price that not all harvested energy is used. In contrast, our proposed

energy management policy jointly adapts the source code andthe channel code, which leads

to a separate control of the energy buffer and the data bufferand achieves the distortion lower

bound without any detrimental energy leakage.

APPENDIX

Proof of Proposition 1

We prove this result for the special case of infinite data and energy buffer, i.e.,A = ∞ and

B = ∞. This also establishes the bound for finite buffer sizes since the assumptionA < ∞

andB < ∞ is more restrictive (an infinite buffer can always mimic a finite buffer) and hence

cannot lead to a smaller achievable distortion.

Without loss of generality we assumemean rate stability. i.e., lim supn→∞
1
n
E[Xk] = 0 and

E[X0] < ∞, both of which are always satisfied for the case of finite data buffers. Using [14,

4These are typical values for the capacitor and for the memoryof a low-power sensor node.
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Theorem 3], we now prove that mean rate stability implies thesame necessary stability conditions

as in [6, Proposition 1].

Sincef is convex non-increasing inDk andEs,k and g is concave non-decreasing inEt,k,

Jensen’s inequality implies

1

n

n
∑

k=1

E[f(Dk, Es,k, Qk)− g(Hk, Et,k)] ≥
∑

q

Pr(q)f (q)(D̄(q)
n , Ē(q)

s,n)−
∑

h

Pr(h)g(h)(Ē
(h)
t,n ).

with

D̄(q)
n =

1

n

n
∑

k=1

E[Dk|Qk = q], Ē(q)
s,n =

1

n

n
∑

k=1

E[Es,k|Qk = q], Ē
(h)
t,n =

1

n

n
∑

k=1

E[Et,k|Hk = h].

Furthermore, we have

lim sup
n→∞

∑

q

Pr(q)f (q)(D̄(q)
n , Ē(q)

s,n) =
∑

q

Pr(q)f (q)(D(q), E(q)
s ),

lim sup
n→∞

−
∑

h

Pr(h)g(h)(Ē
(h)
t,n ) = −

∑

h

Pr(h)g(h)(E
(h)
t ),

with D(q) = lim infn→∞ D̄
(q)
n , E

(q)
s = lim infn→∞ Ē

(q)
s,n, and E

(h)
t = lim infn→∞ Ē

(h)
t,n . Using

the fact that mean rate stability and [14, (12)] implylim supn→∞
1
n

∑n
k=1E[f(Dk, Es,k, Qk) −

g(Hk, Et,k)] ≤ 0, we finally arrive at

∑

q

Pr(q)f (q)(D(q), E(q)
s ) ≤

∑

h

Pr(h)g(h)(E
(h)
t ),

which is the same necessary stability condition as in [6, Proposition 1]. The proof of Proposition

1 thus follows from [6, Proposition 1].

Proof of Proposition 2

We first define some quantities that are instrumental for the proofs of Propositions 2 and 3.

The probabilities that a policyπ results in an empty energy buffer or a full data queue are

respectively defined as

pπEB = lim sup
n→∞

1

n

n
∑

k=1

Pr([Ek −Es,k − Et,k]
+ = 0), (8)

pπFQ = lim sup
n→∞

1

n

n
∑

k=1

Pr(Xk = A) (9)
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The decrementaldrift δe of the unbounded energy buffer queue processẼk+1 = Ẽk − Es,k −

Et,k + Eh,k, and theincrementaldrift δd of the unbounded data queue processX̃k+1 = X̃k +

f(Dk, Es,k, Qk)− g(Hk, Et,k) are respectively defined as

δe = lim
n→∞

1

n

n
∑

k=1

E[Ẽk − Ẽk+1],

δd = lim
n→∞

1

n

n
∑

k=1

E[X̃k+1 − X̃k].

The drift δd can be viewed as the long-term expected difference between the size of the data

buffer input and the size of the data bufferoutput, whereas the driftδe can be viewed as the

long-term expected difference between the size of the energy buffer output and the size of the

energy bufferinput.

We denote the event ofnormal operationby Ek = {Xk < A and [Ek − (Es,k + Et,k)]
+ > 0}

(i.e., the data buffer is not full and the energy buffer is notempty). The complementary event is

denoted asEk (i.e., either the data buffer is full or the energy buffer is empty). The instantaneous

expected distortion can now be written asEπ[Dk] = E
π[Dk|Ek] Pr(Ek) + E

π
[

Dk|Ek

]

Pr(Ek).

With Pr(Ek) ≤ 1, E
π
[

Dk|Ek

]

= Dmax, and the union boundPr(Ek) ≤ Pr(Xk = A) +

Pr([Ek − (Es,k + Et,k)]
+ = 0), we obtain the following upper bound on the long-term average

distortionD̄π:

D̄π = lim sup
n→∞

1

n

n
∑

k=1

E
π[Dk] ≤ Dop +Dmax

(

pπFQ + pπEB
)

. (10)

Here, we have used (8), (9), and the long-term average distortion during normal operation,

Dop = lim sup
n→∞

1

n

n
∑

k=1

E
π[Dk|Ek] . (11)

Note that here we assume that if the energy buffer is empty or the data buffer is full, a packet

is lost and the maximum distortionDmax is accrued (i.e., the decoder treats this missing packet

as an arbitrary vector, e.g., the mean of the source distribution). An energy buffer discharge or

data buffer overflow could be handled in a more sophisticatedmanner, but this does not bear

on our asymptotic analysis (see also [8] for a similar reasoning). The bound (10) indicates that

studying the optimal convergence ofD̄π to the lower bound̄D∗ (see Proposition 1) is equivalent

to finding the optimal scaling laws for i) the probabilitiespπEB andpπFQ approaching zero and ii)

the operational distortionDop approachingD̄∗.

May 2, 2018 DRAFT



14

In order to prove Proposition 2, we need the following two lemmas5.

Lemma 1. Let B = ∞ and consider an arbitrary control schemeπk = {Dk, Es,k, Et,k} that

achievespπFQ = o(1/A2). Then,D̄π − D̄∗ = Ω(1/A2).

Lemma 1 states that for an infinitely large energy buffer no control scheme can make bothpπFQ

andD̄π converge at a rate faster than1/A2. The proof of Lemma 1 is based on [8, Proposition

2.4.1]. Let us consider the optimization problem CP(δd, 0), i.e., the problem formulated in Def. 1

with the specific choiceδe = 0. Denote the minimum of CP(δd, 0) by DT(δd).

According to Proposition 1, the solution to this problem with δd = 0 equals the lower bound

on the minimum achievable distortion. Notice that, by the convexity [15] of the problem,DT(δd)

is convex and non-increasing inδd. Moreover, using the same arguments as in Proposition 1, it

can be proved that there exists no policyπ that is able to achieve a long term average distortion

smaller thanDT(δd). with a data queue drift smaller or equal toδd. Thus,DT(δd) can be viewed

as the lower limit of the distortion-drift region. This observation allows us to directly apply the

proof of [8, Proposition 2.4.1] to Lemma 1.

Lemma 2. Let A = ∞, and consider an arbitrary control schemeπk = {Dk, Es,k, Et,k} that

achievespπEB = o(1/B2). Then,D̄π − D̄∗ = Ω(1/B2).

Lemma 2 is the counterpart of Lemma 1; it states that, for an infinitely large data buffer size,

no control scheme can achieve a convergence rate faster than1/B2 for both pπEB and D̄π. The

proof parallels that of Lemma 1.

We now prove Proposition 2 by contradiction. Assume that there exists a policy withpπEB =

o(1/B2) and pπFQ = o(1/A2) that achievesD̄π − D̄∗ = O(1/A2) + O(1/B2), i.e., D̄π − D̄∗ is

asymptotically boundedaboveby c1/A
2 + c2/B

2 (wherec1 andc2 are constant factors). Such a

policy would violate Lemma 1 (or Lemma 2) asB (or A) tends to infinity and hence cannot exist.

This implies thatD̄π − D̄∗ = Ω(1/A2) +Ω(1/B2), which concludes the proof of Proposition 2.

5The following notations are used to compare two sequencesan andbn asn grows:an = O(bn) if an/bn < c for all n and

some constantc; an = Ω(bn) if bn = O(an); an = Θ(bn) if an = O(bn) andbn = O(an); an = o(bn) if limn→∞ an/bn = 0.
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Proof of Proposition 3

In order to prove Proposition 3, we first need to recall some known results. Let us define

the random walkZk+1 = Zk + Wk, k ≥ 0, with Z0 = 0 andWk a stationary, irreducible, and

aperiodic Markov chain with stateswi, 1 ≤ i ≤ I. The transition probability from statewi to

statewj is denotedpi,j andPr(wi) is the invariant distribution ofWk. The drift R = E[Wk] of

the random walk is assumed negative. The moment generating function ofWk is given by

ρ(r) = E [exp(rWk)] =
I
∑

i=1

Pr(wi) exp(rwi).

It can be shown that the functionlog ρ(r) (i.e., the cumulant-generating function) has a unique

positive zero atr = r∗.

Theorem 1. (Wald’s identity) Let K be the firstk ≥ 1 for which Zk ≥ a ≥ 0 or Zk ≤ b ≤ 0.

Then

E[exp(r∗ZK)] = 1,

wherer∗ is the unique positive root oflog ρ(r). Furthermore,

E[K]E[Wk] = E[ZK ].

Using Theorem 1 we can compute the probabilityp = Pr(ZK ≥ L) that a negative-drift

random walk that starts at zero will cross the barrierL > 0 before returning to the origin,

pE[exp(r∗ZK)|ZK ≥ L] + (1− p)E[exp(r∗ZK)|ZK ≤ 0] = 1.

SinceE[exp(r∗ZK)|ZK ≥ L] = Θ(exp(r∗L)) andE[exp(r∗ZK)|ZK ≤ 0] = Θ(1) in the regime

of largeL, we have

p = Θ(exp(−r∗L)), E[ZK ] = pE[ZK |ZK ≥ L] + (1− p)E[ZK |ZK ≤ 0] = Θ(1).

Hence, by Theorem 1, also the expected crossing time is dominated by the return to the origin,

i.e., E[K] = E[ZK ]/E[Wk] = Θ(1).

Let us now defineDT(δd, δe), as the minimum distortion in the convex problem CP(δd, δe)

(Def. 1). According to Proposition 1,̄D⋆ = DT(0, 0) is a lower bound for the minimum

achievable distortionDT(δd, δe). The convexity of CP(δd, δe) implies thatDT(δd, δe) is convex

and non-increasing in(δd, δe). Moreover, it can be proved using the same arguments as in
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Proposition 1 that there exists no policyπ that is able to achieve a long-term average distortion

D̄π smaller thanDT(δd, δe) with a data queue drift and energy buffer drift less than or equal to

δd andδe, respectively. Thus,DT(δd, δe) can be viewed as a lower bound for the distortion-drift

region.

Consider now the policyπo in Def. 2 and recall that the hyper stateŝXk = I(Xk ≥ A/2) ∈

{0, 1} and Êk = I(Ek < B/2) ∈ {0, 1} indicate, respectively, whether the data buffer is more

than half full and the energy buffer is more than half empty. Both X̂k and Êk can be shown

to be irreducible and aperiodic Markov chains. Furthermore, the data queueincrementprocess

W d
k (X̂k) = f(Dk, Es,k, Qk) − g(Hk, Et,k) in each half of the data buffer is function of the

aggregate Markov chain(Êk, Qk, Hk). Hence,W d
k (X̂k) in each half of the data queue is is itself

an irreducible and aperiodic Markov chain whose mean equalsthe drift δd. Similarly, the energy

buffer decrementprocessW e
k (Êk) = Es,k + Et,k − Eh,k in each half of the energy buffer is a

function of the aggregate Markov chain(X̂k, Eh,k, Qk, Hk) and hence is itself an irreducible and

aperiodic Markov chain whose mean equals the drift (as defined above), i.e.,δe. We next state

a lemma that follows from [10] and relates the unique positive rootsr∗d(X̂k) andr∗e(Êk) of the

cumulant-generating functions ofW d
k (X̂k) andW e

k (Êk), respectively.

Lemma 3. Assume that the policyπo is the unique optimal policy for the driftsδd and δe. Then

dr∗d(X̂k)

dδd

∣

∣

∣

∣

δd=δe=0

= −
2

var(W d
k (X̂k)|δd = δe = 0)

, (12a)

dr∗e(Êk)

d(δe)

∣

∣

∣

∣

δd=δe=0

= −
2

var(W e
k (Êk)|δd = δe = 0)

. (12b)

The proof of Lemma 3 is based on the fact that the policyπo depends smoothly on the drifts

(δd, δe) in the neighborhood ofδd = δe = 0. This implies thatr∗x(X̂k) and r∗e(Êk) are smooth

functions of the means of the respective increment/decrement processes, i.e.,δd andδe, too. Since

the supports ofW x
k (X̂k) andW e

k (Êk) are finite and the policyπo is almost always continuous and

differentiable (like the waterfilling-like policy in [16]), the respective second-order derivatives

aroundδd = δe = 0 almost always exist and are continuous.

To obtainr∗d (we omit the argument̂Xk in what follows for notational simplicity), we need

to find the root of the cumulant generating function ofW d
k (X̂k) with δe = 0:

Λ(r∗d) = log ρ(r∗d) = log

(

I
∑

i=1

Pr(wd
i ) exp(r

∗
dw

x
i )

)

= 0;
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here,Pr(wd
i ) is the invariant distribution ofW d

k (X̂k), which depends onδd. Denoting byκn the

nth cumulant ofW d
k (X̂k) (i.e., thenth derivative of the cumulant generating functionΛ(r) at

r = 0), the Maclaurin expansion ofΛ(r∗d) reads

Λ(r∗d) = κ0 +

∞
∑

n=1

κn

(r∗d)
n

n!
= δdr

∗
d +

∞
∑

n=2

κn

(r∗d)
n

n!
,

where the second equality is obtained withκ0 = 0 andκ1 = δd. Setting this expression equal to

zero, dividing both sides byr∗d and differentiating with respect toδd yields
∞
∑

n=2

κn

(n− 1)(r∗d)
n−2

n!

dr∗d
dδd

= −1.

Sincer∗d → 0 asδd → 0 (due to well-known properties of the moment generating function, see,

e.g., [8]), the above expression becomes

κ2

2

dr∗d
dδd

∣

∣

∣

∣

δd=0

= −1.

By substitutingκ2 = var(W d
k (X̂k)|δd = δe = 0), we obtain (12a) in Lemma 3. The proof of

(12b) is analogous.

Let us next consider the probability of a full data bufferpπ
o

FQ obtained by adopting the policyπo.

The times at which the data buffer becomes full can be viewed as the epochs of a renewal process

[17]. The fullness probability can thus be written aspπ
o

FQ = 1/E[Y ], whereY is the duration

between successive time instants at which the buffer becomes full. We define the random walk

Zu
k = Zu

k−1+W d
k (X̂k = 1), k = 0, 1, . . . , in the upper half of the data buffer, with negative drift

δd. Let Ku be the smallest time indexk ≥ 1 for which Zu
k ≥ 0 or Zu

k ≤ −A/2. We then have

(for similar arguments refer to [8])

E[Y ] =E[Ku|Zu
0 = 0] + Pr

[

Zu
Ku ≤ −

A

2

∣

∣

∣

∣

Zu
0 = 0

]

·

∫ gmax

0

Pr

[

Zu
Ku = −

A

2
− x

∣

∣

∣

∣

Zu
Ku ≤ −

A

2
, Zu

0 = 0

]

E

[

V

∣

∣

∣

∣

X0 =
A

2
− x

]

dx, (13)

wheregmax is the maximum undershoot relative to the center of the buffer (i.e., the maximum

variation for the considered policy towards the empty buffer) andV is the time it takes to fill up

the buffer starting from an initial buffer stateX0. We furthermore define the timeJu to be the

smallestk ≥ 1 for which Zu
k ≤ 0 or Zu

k ≥ A/2. Also, we define another random walk for the

dynamics in the lower half of the buffer (statêXk = 0), Z l
k = Z l

k−1+W d
k (X̂k = 0), k = 0, 1, . . . ,
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with positive drift δd. The smallestk ≥ 1 such thatZ l
k ≤ 0 or Z l

k ≥ A/2 is denotedK l, and the

smallestk ≥ 1 such thatZ l
k ≥ 0 or Z l

k ≤ −A/2 is denotedJ l. For 0 ≤ x < gmax we have

E

[

V

∣

∣

∣

∣

X0 =
A

2
− x

]

=E

[

P

∣

∣

∣

∣

X0 =
A

2
− x

]

+

∫ fmax

0

Pr

[

XP =
A

2
+ y

∣

∣

∣

∣

X0 ≤
A

2
− x

]

E

[

V

∣

∣

∣

∣

X0 =
A

2
+ y

]

dy, (14)

where the integral is up to the maximum overshootfmax relative to the center of the buffer (i.e.

the maximum variation for the considered policy towards thefull buffer). The quantityP is the

first time instant for which the buffer becomes more than halffull starting from an initial buffer

stateX0.

By conditioning on the event that the buffer becomes full or that the data queue leaves the

upper buffer half, we have for every0 ≤ y < fmax

E

[

V

∣

∣

∣

∣

X0 =
A

2
+ y

]

=E

[

Ju

∣

∣

∣

∣

Zu
0 = y

]

+ Pr

[

Zu
Ju ≤ 0

∣

∣

∣

∣

Zu
0 = y

]

·

∫ gmax

0

Pr

[

Zu
Ju = −w

∣

∣

∣

∣

Zu
Ju ≤ 0

]

E

[

V

∣

∣

∣

∣

X0 =
A

2
− w

]

dw. (15)

From (15) it follows that for every0 ≤ y < fmax

E

[

V

∣

∣

∣

∣

X0 =
A

2
+ y

]

≤ E

[

Ju

∣

∣

∣

∣

Zu
0 = y

]

+ Pr[Zu
Ju ≤ 0|Zu

0 = y] max
0≤w<gmax

E

[

V

∣

∣

∣

∣

X0 =
A

2
− w

]

.

Inserting this bound into (14) yields for every0 ≤ x < gmax

E

[

V

∣

∣

∣

∣

X0 =
A

2
− x

]

≤ E

[

P

∣

∣

∣

∣

X0 =
A

2
− x

]

+ max
0≤y<fmax

E [Ju|Zu
0 = y]

+ max
0≤y<fmax

Pr[Zu
Ju ≤ 0|Zu

0 = y] max
0≤w<gmax

E

[

V

∣

∣

∣

∣

X0 =
A

2
− w

]

.

Taking the maximum with respect to0 ≤ x < gmax and noting that1− max
0≤y<fmax

Pr[Zu
Ju ≤ 0|Zu

0 = y] =

min
0≤y<fmax

Pr[Zu
Ju ≥ 0|Zu

0 = y], we obtain

max
0≤x<gmax

E

[

V

∣

∣

∣

∣

X0 =
A

2
− x

]

≤
max0≤x<gmax E

[

P
∣

∣X0 =
A
2
− x
]

+max0≤y<fmax E
[

Ju
∣

∣Zu
0 = y

]

min0≤y<fmax Pr
[

Zu
Ju ≥ A

2

∣

∣Zu
0 = y

] .

Similarly, it can be shown that

min
0≤x<gmax

E

[

V

∣

∣

∣

∣

X0 =
A

2
− x

]

≥
min0≤x<gmax E

[

P
∣

∣X0 =
A
2
− x
]

+min0≤y<fmax E
[

Ju
∣

∣Zu
0 = y

]

max0≤y<fmax Pr
[

Zu
Ju ≥ A

2

∣

∣Zu
0 = y

] .
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Bounds onE
[

P
∣

∣X0 =
A
2
− x
]

can be derived in an analogous manner, i.e., by conditioningon

hitting first the bottom of the buffer or leaving the lower half of the buffer:

E

[

P

∣

∣

∣

∣

X0 =
A

2
− x

]

= E
[

J l
∣

∣Z l
0 = −x

]

+ Pr

[

Z l
J l ≤ −

A

2

∣

∣

∣

∣

Z l
0 = −x

]

E
[

K l
∣

∣Z l
0 = 0

]

Pr
[

Z l
K l ≥

A
2

∣

∣Z l
0 = 0

] .

Using Theorem 1, we can estimate the above quantities as follows:

E

[

P

∣

∣

∣

∣

X0 =
A

2
− x

]

= Θ
(

E
[

K l
∣

∣Z l
0 = 0

])

= Θ

(

E
[

Z l
K l

∣

∣Z l
0 = 0

]

E
[

W d
1 (X̂k = 0)

]

)

= Θ(δ−1
d ),

Pr

[

Zu
Ku ≤ −

A

2

∣

∣

∣

∣

Zu
0 = 0

]

= 1− Pr[Zu
Ku ≥ 0|Zu

0 = 0] = Θ(1),

E [Ju|Zu
0 = y] = Θ(1),

Pr

[

Zu
Ju ≥

A

2

∣

∣

∣

∣

Zu
0 = y

]

= Θ

(

exp

(

−
A

2
r∗d(X̂k = 1)

))

,

E [Ku|Zu
0 = 0] = Θ(A),

whereδd = E[W d
1 (X̂k = 0)] is the drift in the lower half of the buffer. Inserting these estimates

into (13) leads to

E [Y ] = Θ

(

δ−1
d exp

(

A

2
r∗d(X̂k = 1)

))

. (16)

Lemma 3 implies

r∗d(X̂k = 1) =
2δd

var(W d
k (X̂k = 1)|δd = δe = 0) +O(|δe|)

− O(δ2d)

=
lnA

A

2β1

var(W d
k (X̂k = 1)|δd = δe = 0) +O(|δe|)

− O

(

(

lnA

A

)2
)

, (17)

whereδd = β1 lnA

A
and the termO(|δe|) accounts for the variation of the second-order statistic

of the Markov chainW d
k (X̂k) aroundδd = δe = 0.

Combiningpπ
o

FQ = 1
E[Y ]

, (16), and (17), and assumingβ1/2 > var(W x
k (X̂k)|δd = δe = 0) +

O(|δe|), we arrive at

pπ
o

FQ = O

(

δd exp
(

−
A

2
r∗d(X̂k = 1)

)

)

= O

(

lnA

A
exp

[

lnA
−β1

var(W d
k (X̂k = 1)|δd = δe = 0) +O(|δe|)

+O

(

ln2A

A

)

])

= o

(

1

A2

)

.

May 2, 2018 DRAFT



20

A similar derivation can be used to show that the probabilityfor an empty energy buffer scales

aspπ
o

EB = o(1/B2). Here, the decremental drift is chosen asδe =
β2 lnB

B
and we need to choose

with β2/2 > var(W e
k (Êk)|δd = δe = 0) + O(|δd|). We note that the estimates forpπ

o

FQ and pπ
o

EB

are tight if the renewal epochs of the Markov chainsX̃k andẼk are sufficiently small compared

to A andB, respectively (see [18] and references therein for furtherdetails).

We next analyze the convergence of the average distortion tothe optimal value. The average

distortion during normal operation as defined in (11) can be expressed via the Taylor expansion

Dop = DT(0, 0) +
∂DT(0, 0)

∂δd

β1 lnA

A
(2qd − 1) +

∂DT(0, 0)

∂δe

β2 lnB

B
(2qe − 1)

+
∂2DT(0, 0)

2∂δ2d

(

β1 lnA

A

)2

+
∂2DT(0, 0)

2∂δ2e

(

β2 lnB

B

)2

+O

(

(

β1 lnA

A

)3

+

(

β2 lnB

B

)3
)

,

whereqd = Pr(X̂k = 1) andqe = Pr(Êk = 1).

We next show that the scaling behavior of the first-order terms in this expansion iso(1/A2)

ando(1/B2), respectively. Since the data buffer is finite, the difference between input and output

in steady state equals zero. Mathematically,

lim
n→∞

1

n

[

n
∑

k=0

W d
k + Ld

n − Ud
n

]

= 0, (18)

whereW d
k = f(Dk, Es,k, Qk) − g(Hk, Et,k) is the data buffer increment process (neglecting

boundary effects),Ld
n is the cumulative number of bits up to timen that have been padded with

zeros due to underflow, andUd
n is the cumulative number of bits up to timen that have been

lost due to overflow. According to the strong law of large numbers for renewal-reward processes

[17],

lim
n→∞

1

n

n
∑

k=0

W d
k = E

[

W d
1

]

=
β1 lnA

A
(2qd − 1).

As to the boundary effects, there is a one-to-one correspondence between the times at whichUd
n

increases and the times that the buffer is full. Furthermore, this increase is bounded byfmax, so

that

lim
n→∞

Ud
n

n
≤ fmaxpπFQ = o(1/A2)

Due to the symmetry of the problem, we similarly obtainlimn→∞ Ld
n/n = o(1/A2). Hence, (18)

implies β1 lnA

A
(2qd−1) = o(1/A2). The same line of arguments can be used to showβ2 lnB

B
(2qe−

1) = o(1/B2). By combining the above intermediate results, it follows that the average distortion
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during normal operation readsDop = DT(0, 0) +O
(

(

β1 lnA

A

)2
)

+O
(

(

β2 lnB

B

)2
)

. Inserting this

expression forDop together withpπ
o

FQ = o(1/A2) andpπ
o

EB = o(1/B2) into the upper bound (10) of

the average distortion finally confirms thatD̄πo
approaches̄D∗ asO((lnA/A)2)+O((lnB/B)2).

Proposition 3 is thus proved.
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