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Ángela I. Barbero, Eirik Rosnes,Senior Member, IEEE, Guang Yang, and Øyvind Ytrehus,Senior Member, IEEE

Abstract—This paper discusses a new channel model and code
design for the reader-to-tag channel in near-field passive radio
frequency identification (RFID) systems using inductive coupling
as a power transfer mechanism. If the receiver resynchronizes
its internal clock each time a bit is detected, the bit-shift
channel used previously in the literature to model the reader-
to-tag channel needs to be modified. In particular, we propose
a discretized Gaussian shift channel as a new channel model
in this scenario. We introduce the concept of quantifiableerror
avoidance, which is much simpler than error correction. The
capacity is computed numerically, and we also design some new
simple codes for error avoidance on this channel model based
on insights gained from the capacity calculations. Finally, some
simulation results are presented to compare the proposed codes
to the Manchester code and two previously proposed codes for
the bit-shift channel model.

Index Terms—Bit-shift channel, channel capacity, code design,
coding for error avoidance, constrained coding, discretized Gaus-
sian shift channel, inductive coupling, radio frequency identifi-
cation (RFID), reader-to-tag channel, synchronization errors.

I. I NTRODUCTION

Inductive coupling is a technique by which energy from one
circuit is transferred to another without wires. Simultaneously,
the energy transfer can be used as a vehicle for information
transmission. This is a fundamental technology for near-field
passive radio frequency identification (RFID) applications as
well as lightweight sensor applications.

In the passive RFID application, areader, containing or
attached to a power source, controls and powers a communi-
cation session with atag; a device without a separate power
source. The purpose of the communication session may be, for
examples, object identification, access control, or acquisition
of sensor data.
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Several standards exist that specify lower layer coding
for RFID protocols. However, it seems that most standards
employ codes that have been shown to be useful in general-
purpose communication settings. Although this is justifiable
from a pragmatic point of view, we observe that a thorough
information-theoretic approach may reveal alternate coding
schemes that, in general, can provide benefits in terms of
reliability, efficiency, synchronization, simplicity, orsecurity.

Operating range of a reader-tag pair is determined by
communications requirements as well as power transfer re-
quirements. To meet the communications requirements, the
reader-to-tag and the tag-to-reader communication channels
satisfy specified demands on communication transfer rate
and reliability. To meet the power transfer requirements, the
received power at the tag must be sufficiently large as to
provide operating power at the tag.

According to [1, 2], with current technology it is the power
transfer requirements that present the bottleneck with respect
to operating range for a two-way reader-tag communication
session. Nevertheless, there is a value in determining the
information-theoretic aspects, such as tradeoffs betweenre-
liability and transmission rate, of this communication: First,
because future technologies may shift the relation between
communication and power transfer requirements, and second,
because present cheap tag technologies impose challenges
on communication which are not directly related merely to
received signal power.

Wireless information and power transfer has been consid-
ered in different contexts previously, for instance, for multiuser
orthogonal frequency division multiplexing systems [3] and
cellular networks [4]. See also [5] and references therein.In
[6], wireless information and power transfer across a noisy
inductively coupled channel was considered from a different
perspective than we do in this paper, i.e., it was not considered
from the perspective of code design, but from acircuit perspec-
tive. For details, we refer the interested reader to [6]. In [7],
a coding-based secure communication protocol for inductively
coupled communication, inspired by quantum key distribution,
was recently proposed.

In this paper, however, we address issues related to lower
layer coding of information on inductively coupled channels,
with emphasis oncoding for error control for the reader-
to-tag channel. The remainder of the paper is organized as
follows. In Section II, we describe the characteristics of the
reader-to-tag channel and discuss power issues and processing
capabilities. A discretized Gaussian shift channel as a model
for the reader-to-tag channel for passive near-field RFID is
proposed in Section III. This model is relevant if the receiver
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resynchronizes its internal clock each time a bit is detected,
and is different from the recently proposed bit-shift channel
model in [8, 9]. In Section IV, we numerically consider its
capacity, and, in Section V, we present several new and very
simple codes for this channel model, as well as their encod-
ing/decoding techniques. Simulation results are presented in
Section VI, and we draw some conclusions in Section VII.

II. CHARACTERISTICS OF THEREADER-TO-TAG CHANNEL

In this paper, we will be concerned with data transfer
from a reader to a tag. Aninformation source generates an
informationframe of k bitsu = (u1, . . . , uk). The information
frame is passed through an encoder to produce an encoded
framec = (c1, . . . , cn). The encoded frame is interpreted as a
waveform that modulates a carrier wave, as shown in Fig. 1,
[10, 11].

Please observe that the concept of a frame in this context
refers to a collection of bits that belong together, for some
semantic reason related to the application layer. The actual
encoder may work at a different length. Due to the strictly
limited computing power of the tag, the actual encoder may
work on a bit-by-bit basis, as in most of the examples later
in this paper. The encoded frame lengthn may be fixed,
depending only onk, or variable, depending onk and also
on the information frame, but in generaln ≥ k.
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Fig. 1. A simplified view of the reader-to-tag channel.

Meanwhile, back at Fig. 1, the demodulator in the tag
samples the physical waveform at time intervals determined
by the tag’s timing device, and converts it into an estimate
ĉ = (ĉ1, . . . , ĉn′) of the transmitted frame, where in general
n′ 6= n. Ideally, ĉ should be identical toc, but additive noise,
interference, timing inaccuracies, and waveform degradation
due to limited bandwidth may contribute to corrupt the re-
ceived framêc. We will discuss some of these signal corrup-
tions later in this paper. A decoder at the tag subsequently
attempts to recover an information framêu = (û1, . . . , ûk)
from ĉ. Correct decoding is achieved if̂u = u.

A. Power Issues

The tag in Fig. 1 has no internal power source. Rather,
it collects the power derived from the carrier. After some
initial transient delay, the tag’s power circuitry will be charged
sufficiently to provide operating power for the tag. Commonly,
amplitude modulation, or more preciselyon-off keying (OOK)
is employed. In OOK, a ”1” (resp. ”0”) is transmitted by
the presence (resp. absence, or alternatively a low amplitude)
of the carrier for the duration specified for transmitting that
particular bit.

The transmitted power is limited by regulation [2]. However,
the amount of transferred power can still be influenced by the
encoding scheme used. Although the tag has no traditional
battery or other means of accumulating energy over an ex-
tended period, it is possible to ”ephemerally” store energy
over a short time (say, a few bit periods) in the power circuitry.
Thus, it makes sense to impose constraints on power content
in the transmitted signal [8, 9, 12], for example, by demanding
thatmP out of everynP consecutive transmitted bits are1’s.
Thus, a high power content (i.e., the ratiomP /nP is large)
is an advantage. The precise manifestation of this advantage
depends on technology and is difficult to measure. Therefore,
we will consider different measures of power (to be defined
below) as a figure of merit for a given coding scheme.

Formally, we will define thepower content of a binary
vectora ∈ GF(2)n, denoted byP (a), as the rational number
w(a)/n, wherew(·) denotes the Hamming weight of its binary
argument.

Let C denote a block code or a variable-length code, i.e.,
a collection or set of codewords. Furthermore, letC[N ] be
the set of sequences of lengthN ≥ 1 over C, i.e., the set
of N consecutive codewords. Theaverage power of C is
defined as the average power content of the sequences in
C[N ] as N → ∞. For block codes, this average does not
depend onN , and the average power of a block codeC
is Pavg(C) = 1

|C|

∑

a∈C P (a). However, for variable-length
codes, the average depends onN , and we need to consider
the limit asN → ∞. In general, the average power of a code
C can be computed from [8]

Pavg(C) =
∑|C|

j=1 wj
∑|C|

j=1 nj

wherewj andnj denote the Hamming weight and length of
the jth codeword inC, respectively.

The minimum sustainable power of a block or variable-
length codeC is defined asPmin(C) = mina∈C P (a). We
remark that for codes defined by a state diagram, the various
notions of power can refer to any cycle in the state diagram.
Thus,Pmin refers to the minimum average cycle weight of a
cycle in the state diagram.

As a final figure of merit, we will consider thelocal
minimum power of a codeC as the minimum positive value
of the ratiomP /nP over all possible sequences inC[N ], for
any finite value ofN , wherenP ≥ mP are arbitrary positive
integers.
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B. Processing Capability

Due to the limited tag power, processing capability is
severely limited in a tag. This applies to any processing
involved in whatever service the tag is supposed to provide,
but also signal processing involved in receiving information.

1) Error Avoidance Versus Error Correction: For many
communication channels studied in the literature, approaching
channel capacity (or even achieving a significant coding gain
over naive implementations) relies on error correction codes.
However, although classes of codes are known for which
the decoder can be efficiently implemented, the decoding
process may still require a significant amount of processing.
We will argue below that for channels for which the error
probabilities depend on the transmitted data, reliabilitycan
be increased by using a code enforcing an appropriate set
of modulation constraints. Sucherror avoiding codes can
typically be decoded by a simple table, mapping received
sequences into information estimates.

III. T HE DISCRETIZEDGAUSSIAN SHIFT CHANNEL

In this section, we will discuss a new channel model for
the reader-to-tag channel, which is slightly different from the
bit-shift model (for inductive coupling) recently introduced in
[8, 9].

If the receiver resynchronizes its internal clock each time
a bit is detected, the bit-shift model from [8, 9] needs to be
modified. We will first introduce theGaussian shift channel.

Suppose the reader transmits a run ofx̃ consecutive equal
symbols. This corresponds to an amplitude modulated signal
of durationx̃. At the tag, we will assume that this is detected
(according to the tag’s internal clock) as having durationỹ,
where

ỹ = x̃ ·K (1)

and K is a random variable. In this paper,K follows a
Gaussian distributionN(ν, ε2) with meanν and varianceε2.
Consecutive samplings ofK are assumed to be independent.
If ν 6= 1, it means that the tag has a systematic drift, which
may affect the tag’s ability to function at all. Thus, we will
focus on the caseν = 1. With this assumption, the input to
the demodulator will be a sequence of alternating runs of high
and low amplitude values; the detected durationỹ of each run
being areal-valued number.

We might attempt decoding directly at the Gaussian shift
channel, but the computational complexity may be high for
the tag receiver. As a simplification, and to deal with the fact
that ỹ may become negative (K has a normal distribution),
which of course does not have any physical interpretation, we
propose to discretize the timing and truncateK. The optimal
choice for the quantization thresholds, i.e., the thresholds when
mapping the real-valued numbersỹ to positive integers, will
depend on the code under consideration. However, an optimal
local threshold can be computed as shown in the following
proposition.

Proposition 1: Let a andb be positive integers withb > a,
representing the only two legal runlengths in a given con-
strained code. Then, there is a single thresholdt = t(a, b),

and its optimum value from alocal perspective1 to determine
if runlengtha or runlengthb was transmitted is

t = t(a, b) =
2ab

a+ b
.

The corresponding decision error with one such decision is

Q

(

t− a

aε

)

= Q

(

b− a

(a+ b)ε

)

> Q

(

1

ε

)

(2)

whereQ(x) is the probability that a sample of the standard
normal distribution has a value larger thanx standard devia-
tions above the mean, i.e.,

Q(x) =

∫ ∞

x

1√
2π

e−y2/2dy =
1

2
erfc

(

x√
2

)

where erfc(·) denotes the complementary error function.
Proof: Assuminga is transmitted, then the probability

that b is received (witht as the quantization threshold) is
Q((t − a)/aε). Likewise, if b is transmitted, then the proba-
bility that a is received isQ((b− t)/bε). This follows directly
from the fact thatK has a Gaussian distribution with mean
1 and varianceε2. Now, sinceQ(·) is a monotonically de-
creasing function,Q((t− a)/aε) is monotonically decreasing
and Q((b − t)/bε) is monotonically increasing int (within
the range[a, b]). Thus, the optimal thresholdt corresponds to
the intersection ofQ((t − a)/aε) and Q((b − t)/bε). Thus,
(t − a)/aε = (b − t)/bε. Solving this equation, we get
t = 2ab/(a+ b). The expression for the decision error in (2)
follows by substituting the expression for the optimal threshold
t into eitherQ((t − a)/aε) or Q((b − t)/bε), and the final
inequality (in (2)) follows from the fact that(b − a)/(a + b)
is smaller than1.

Note that whena = b − 1, t = 2ab/(a + b) = 2b(b −
1)/(2b − 1) will approach(a + b)/2 = b − 1/2 as b goes to
infinity.

We remark that we do not allow the mapping of a real-
valued number (from the output of the Gaussian shift channel)
to zero (or a negative integer), which means that the channel
can not make a runlength disappear. This appears to be
consistent with properties of practical inductively coupled
channels.

In general, letQ(A, T ) denote a quantization scheme with
quantization valuesA = {a1, . . . , a|A|}, where 1 ≤ a1 <
· · · < a|A| ≤ L, andL is some positive integer (that later
will be used as arunlength), and quantization thresholdsT =
{t2, . . . , t|A|}, whereal < tl+1 < al+1, l = 1, . . . , |A| − 1.
The quantization scheme works in the following way. Map
a received real-valued number to an integer inA using
quantization thresholds inT , i.e., if the received real-valued
number is in the range[tl, tl+1), l = 2, . . . , |A|− 1, map it to
al, if it is in the range[t|A|,∞), map it toa|A|, and, otherwise,
map it toa1.

Now, we define the discretized Gaussian shift channel with
quantization schemeQ(A, T ) as the cascade of the Gaussian
shift channel and the quantization schemeQ(A, T ), where

1We can do better with a maximum-likelihood (ML) detector which
considers the whole transmitted sequence.
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the quantization schemeQ(A, T ) is applied to the real-valued
sequence at the output of the Gaussian shift channel.

As an example, we can define a discretized Gaussian shift
channel, where the quantization thresholds are chosen such
that the integer sequence is obtained from the real-valued
sequence by rounding its values to the nearest positive integer
value. This particular quantization scheme will be denoted
by Qrounding. As a further modification, we may introduce
a parameterΓ, to truncate the maximum observed length,
into the quantization schemeQrounding, and in this way get
a family of discretized Gaussian shift channels. The resulting
quantization scheme works in the following way. If the reader
has transmitted a run ofL symbols, the tag will detect it as
having length



















































L− l, if K − 1 ∈
[

− 2l+1
2L ,− 2l−1

2L

)

and

l = 1, . . . ,Γ′ − 1

L− Γ′, if K − 1 ∈
(

−∞,− 2Γ′−1
2L

)

L, if K − 1 ∈
[

− 1
2L ,

1
2L

)

L+ l, if K − 1 ∈
[

2l−1
2L , 2l+1

2L

)

and

l = 1, . . . ,Γ− 1

L+ Γ, if K − 1 ∈
[

2Γ−1
2L ,∞

)

where Γ ≥ 1 is a truncation integer parameter andΓ′ =
min(Γ, L − 1). With Γ = 1, we denote the channel as the
discretized Gaussian single-shift channel. WithΓ = 2, the
channel is called the discretized Gaussian double-shift channel,
and so on. Now, if we want to express the discretized Gaussian
single-shift channel in terms of runlengths with additive error
termsωi (as in [8, Eq. (4)]), [8, Eq. (4)] is modified by (1)
and discretization to

ỹi = x̃i + ωi (3)

where

P (ωi = ω|x̃i = x̃) =







































p(x̃), if ω = −1 and x̃ > 1

0, if ω = −1 and x̃ = 1

1− 2p(x̃), if ω = 0 and x̃ > 1

1− p(x̃), if ω = 0 and x̃ = 1

p(x̃), if ω = 1 and x̃ ≥ 1

0, otherwise
(4)

andp(L) = Q
(

1
2Lε

)

.

As another example, we can define a quantization scheme
Q(A) = Q(A, T ), where the quantization thresholdtl =
2al−1al/(al−1 + al), l = 2, . . . , |A|. In a similar manner, as
for Qrounding, we can express the discretized Gaussian single-
shift channel (now with quantization schemeQ(A)) in terms
of runlengths with additive error termsωi as in (3), but with

transition probabilities

P (ωi = ω|x̃i = x̃)

=







































p(α(x̃)), if ω = −1 and x̃ > 1

0, if ω = −1 and x̃ = 1

1− p(α(x̃))− p(β(x̃)), if ω = 0 and x̃ > 1

1− p(β(x̃)), if ω = 0 and x̃ = 1

p(β(x̃)), if ω = 1 and x̃ ≥ 1

0, otherwise

(5)

where

α(x̃) =
x̃previous + x̃

2(x̃− x̃previous)
andβ(x̃) =

x̃next + x̃

2(x̃next − x̃)
(6)

and wherex̃previous (resp. x̃next) is the closest value tõx
allowed by the quantization scheme that is also strictly smaller
(resp. larger) thañx.

As will become clear later, this quantization scheme outper-
forms the general rounding scheme defined above. However,
note that whena|A|−1 = a|A| − 1 and a|A| is large, the
performance approaches the performance of the discretized
Gaussian shift channel with quantization schemeQrounding

for low values ofε.
We can make the following remarks in connection with the

Gaussian shift channel.
(i) As can be seen from Fig. 2, when considering the “likely

error patterns”, we need to be concerned mainly about
the longest runs of equal symbols. The exception to this
pragmatic rule occurs when, for some codes, it is possible
to correct all shifts (up to some order, where a single shift
is a shift of order one, a double shift is a shift of order
two, and so on) corresponding to maximum-length runs.
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(ii) For many simple codes used on the discretized Gaussian
shift channel the frame error rate (FER), denoted by
P (FE), can be simplified to, respectively,

P (FE) ≈ SL · p(L)
and

P (FE) ≈ SL · p(L− 1/2)
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with quantization schemesQrounding andQ(A), where
A = {a1, . . . , a|A|−2, L−1, L}, andSL is some constant
(representing a count of different error events) depending
on the code and on the specific decoder, assuming that
the most likely error event when using the code is
connected with the confusion of runlengths of lengthL
with some other run of lengthL−1. We omit the details,
but will show examples later (see Theorems 1 and 2).

(iii) Error avoidance versus error control: Suppose we can
design an error correction encoder that admits runlengths
of length at most 2; that has a decoder that can correct
all error events involving a single shift of asingle run
of length 2, but that will make a mistake if two or more
such event occurs. Such a decoder should have a FER on
the order ofp(2)2 (with quantization schemeQrounding)
for small ε. Observe from Fig. 2 thatp(2)2 > p(1). Can
we design a code with a simple decoder that behaves as
p(1)? Yes, we can; see Sections V-G, V-H, and V-J.

(iv) Observe that the discretized Gaussian single-shift chan-
nel is a special form of an insertion-deletion channel,
which randomly may extend or shorten the runs of
transmitted identical symbols, but where the statistics
of this random process depend on the length of the
runs. Codes for insertion-deletion channels have been
studied, but to a moderate extent, and some of the best
known codes, such as the Varshamov-Tenengolz codes
[13] and the codes in [14], are apparently too complex
for the application in question and also do not possess
the appropriate modulation constraints, to be discussed
below.

(v) An intelligent receiver tag should realize that any re-
ceived run longer than the maximum run must be the
result of an insertion. Thus, such insertions can trivially
be corrected. In consequence,for some codes, the dis-
cretized Gaussian shift channel is approximately simply
a special deletion channel that applies only to runs of
maximum length.

(vi) In general, for any code and channel, a receiver may use a
forward error correction scheme (FEC), or an automatic-
repeat-request (ARQ) scheme asking for retransmissions
if an error is detected. Obviously, error detection is
computationally simpler than error correction. Indeed,
ARQ is typically used in standard protocols for passive
RFID, utilizing a standard embedded cyclic redundancy
check code.
For the binary symmetric channel it is further well-
known that the FER associated with FEC is typically
much higher than the probability of undetected error
corresponding to ARQ. Counter-intuitively, this property
does not necessarily apply with the discretized Gaussian
shift channel.

IV. CHANNEL CAPACITY

In this section, we will consider the channel capacity of the
discretized Gaussian shift channel.

Since a sequence of transmitted consecutive bits can not
disappear (the quantization schemes quantize each real-valued

received number to a positive integer) and consecutive sam-
plings of K are independent, the discretized Gaussian shift
channel (with any quantization scheme) is really a discrete
memoryless channel operating on runlengths with the positive
integer values as input and output alphabet, and with channel
transition probabilities that depend onε and the quantization
scheme. Now, we define a truncated version of the channel,
denoted byHL,T , with input alphabetX = {1, . . . , L}, output
alphabetY = {1, . . . , L′}, whereL andL′ are integers greater
than one, and channel transition probabilitiesfY |X(y|x). The
parameterL′ is the smallest integer output of the discretized
Gaussian shift channel (with a given quantization scheme)
such that the probability of observingL′ for any given input
x ∈ X is smaller than some small threshold probabilityT . The
normalized mutual information between the channel inputX
and channel outputY , denoted byĨ(X ;Y ) and measured in
bits per input symbol, can be expressed by [15, Eq. (3)]

Ĩ(X ;Y ) =
I(X ;Y )

E[X ]

=

∑

y∈Y

∑

x∈X fX(x)fY |X(y|x) log2
(

fY |X (y|x)
∑

j∈X fX (j)fY |X(y|j)

)

∑

j∈X j · fX(j)

(7)

whereI(X ;Y ) denotes the mutual information betweenX and
Y andE[X ] the expectation ofX with respect to the input
probability distributionfX(x). Now, the capacity ofHL,T (in
bits per symbol) can be obtained by maximizing the fraction
in (7) over all input probability distributionsfX(x). Note that
since the channel is memoryless, it is sufficient to consider
only a single use of the channel, i.e., not sequences of length
N as in [15, Eq. (3)].

We remark that if the channel could in fact remove run-
lengths, then the channel would resemble a deletion channel
with substitution errors operating on runlengths. From an
information-theoretic perspective, such a channel is much
harder to analyze, since there is no finite-letter expression for
the channel capacity [16].

From [17, p. 191], we know that the numerator of (7), i.e.,
the mutual information betweenX and Y , is a continuous
and concave function offX(x). Thus, the maximization of
the un-normalized mutual information (i.e., the maximization
of the numerator of (7) over the set of all input probability
distributionsfX(x)) can be done using, for instance, a gradient
ascent algorithm, or the iterative Blahut-Arimoto algorithm
[18, 19].

Proposition 2: The normalized mutual information
Ĩ(X ;Y ) in (7) is quasiconcave infX(x).

Proof: SinceE[X ] is a linear function onfX(x), it is
obviously a convex function onfX(x). Furthermore, since
E[X ] is strictly positive, then1/E[X ] is also a convex function
onfX(x). SinceI(X ;Y ) is continuous and concave (from [17,
p. 191]), it follows that the fraction in (7) is a product of a
convex and a concave function. Now,1/E[X ] is actually both
quasiconvex and quasiconcave because the upper and lower
countoursets are always convex sets, since the level sets are
linear varieties (they are linear forE[X ], and hence they are
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used.

also linear for1/E[X ], since they have the same level sets).
Every concave function is quasiconcave, henceI(X ;Y ) is
quasiconcave. Thus, the normalized mutual information in (7)
is the product of two quasiconcave and nonnegative functions,
which again is quasiconcave.

The function in (7) is continuous infX(x) (the denominator
is strictly positive and continuous, and the numerator is contin-
uous), which is not a general property of being quasiconcave.
Furthermore, anystrong local maximum is a global maximum
for any quasiconcave function [20] (the result is formulated for
quasiconvex functions in Lemma 1 in [20]). Thus, a gradient
ascent algorithm can be used to find the global maximum
of any continuous differentiable quasiconcave function by
checking for strict maximality.

For illustration purposes, in Fig. 3, the normalized mutual
information from (7) is plotted as a function offX(1) and
fX(2) whenL = 3, for ε = 0.15. The threshold probability
is T = 10−8 and the quantization schemeQrounding has been
used.

Due to the constraint
∑

x∈X fX(x) = 1, the normalized
mutual information in (7) is really a function ofL − 1
variablesfX(x), x = 1, . . . , L − 1. Thus, we may substitute
fX(L) = 1 − ∑L−1

x=1 fX(x) into (7) and then compute the
partial derivatives with respect tofX(x), x = 1, . . . , L− 1.

Proposition 3: The partial derivative of the normalized
mutual informationĨ(X ;Y ) in (7) with respect tofX(x),
x = 1, . . . , L− 1, is

∂Ĩ(X ;Y )

∂fX(x)
=

∂I(X;Y )
∂fX (x)

∑

j∈X j · fX(j)− I(X ;Y )(x − L)
(

∑

j∈X j · fX(j)
)2
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Fig. 4. The capacity of the channelHL,T for different values ofL as a
function of ε. The threshold probability isT = 10−8 and the quantization
schemeQrounding has been used.

where

∂I(X ;Y )

∂fX(x)
=

∑

y∈Y

fY |X(y|x) log2
(

fX|Y (x|y)
fX(x)

)

−
∑

y∈Y

fY |X(y|L) log2
(

fX|Y (L|y)
fX(L)

)

.

Proof: This follows from straightforward calculus.
In summary: Recall that the capacity of the channelHL,T is

equal tomaxfX (x) Ĩ(X ;Y ), and that Proposition 2 shows that
Ĩ(X ;Y ) is quasiconcave infX(x). Thus, in order to numer-
ically determine the capacity of the channelHL,T , we have
implemented a steepest ascent method using Proposition 3 for
the expression of the gradient. In addition, we need to check
if the located stationary point of̃I(X ;Y ), i.e., a point for
which the partial derivatives∂Ĩ(X;Y )

∂fX (x) are zero for everyfX(x),

indeed corresponds to a strict maximum ofĨ(X ;Y ). If not,
another random starting point for the steepest ascent method is
chosen, and the procedure is repeated until a strict maximum
of Ĩ(X ;Y ) is located.

A. Numerical Results

In Fig. 4, we have plotted the capacity of the channel
HL,T as a function ofε for various values of the input
alphabet sizeL. The threshold probability isT = 10−8 and
the quantization schemeQrounding has been used. The curves
in Fig. 4 are computed using a gradient ascent algorithm
using the gradient from Proposition 3. We observe that there
is almost no difference between the curves forL = 8 and
L = 12, which indicates convergence. Thus, the curve for
L = 12 should be very close to theexact capacity of the
discretized Gaussian shift channel with quantization scheme
Qrounding.

In Fig. 5, we have plotted the capacity of the channelHL,T

as a function ofε for various values of the input alphabet
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Fig. 5. The capacity of the channelHL,T for different values ofL as
a function ofε with both quantization schemesQrounding andQ(A). The
threshold probability isT = 10−8.

size L and with both quantization schemesQrounding and
Q(A). The threshold probability isT = 10−8. We observe that
the quantization schemeQrounding gives the best performance
for intermediate-to-large values ofε, while the quantization
schemeQ(A) performs better whenε decreases. Note that by
looking at the optimal input distributionsfX(x) we observe
that the shortest runlengths (i.e., the smallest values ofx) have
the highest probabilities. Thus, an error control code for this
channel should be designed to give coded sequences in which
small runlengths occur more frequently than longer runlengths.
This is the topic of the next section.

V. CODING SCHEMES FOR THEREADER-TO-TAG

CHANNEL

Among the encoding schemes in use in communication
standards for RFID applications, one can find several codes
that are popular in general communication protocols, such as
NRZ, Manchester, Unipolar RZ, and Miller coding [2]. Here,
we will study the effect of some new encoding schemes for
the reader-to-tag channel, considering power constraints(see
Section II-A) and the communication channel described in
Section III, i.e., the Gaussian shift channel. As a reference, we
will provide the Manchester code (described in Section V-B),
and two variable-length codes presented in [8] (and described
in Sections V-C and V-D, respectively) and designed for the
bit-shift channel from [8, 9].

Before describing the specific code constructions, we will
briefly explain the concept of constrained coding.

A. Runlength Limitations and Other Coding Constraints

We may desire and enforce that an encoded sequence
satisfies certain constraints specified by aconstraint graph
[21–23]. These constraints may, for example, be the power
constraints described in Section II-A, or runlength limitations,
or a combination of these constraints. For the purpose of this

paper, we shall denote a particular binary runlength limitation
as RLL(L0,L1), whereLb is the set of admissible runlengths
of binary symbolb. In the following,O(·) refers to thebig O
notation for describing the limiting behavior of functions.

Theorem 1: If a code satisfying the RLL([1, L], [1, L]) limi-
tation, where[1, L] = {1, 2, . . . , L}, is used on the discretized
Gaussian shift channel with quantization schemeQrounding

and with an ML decoder, then the FER behaves asO(p(L))
for small ε.

Proof: By looking at the transition probabilities in (4),
we observe that the dominating error event (in terms of error
probability) is when a length-L runlength (the largest allowed
by the code) is received as a length-(L− 1) runlength. This is
the case sincep(·) is an increasing function of its argument.
From (4), it follows that the FER behaves asO(p(L)) for
small ε, and the result follows.

Theorem 2: If a code satisfying the RLL([1, L], [1, L]) lim-
itation is used on the discretized Gaussian shift channel with
quantization schemeQ([1, L]) and with an ML decoder, then
the FER behaves asO(p(L − 1/2)) for small ε.

Proof: By looking at the transition probabilities in (5),
we observe that the dominating error event (in terms of error
probability) is when a length-L runlength (the largest allowed
by the code) is received as a length-(L− 1) runlength. Again,
this is, as noted in the proof of Theorem 1, the case sincep(·)
is an increasing function of its argument. From (5), it follows
that the FER behaves asO(p(α(L))) for smallε, where (from
(6))

α(L) =
L− 1 + L

2(L− (L− 1))
=

2L− 1

2
= L− 1/2

and the result follows.
The maximum rate of a constrained code is determined by

thecapacity of the constraint, which can readily be calculated
from the constraint graph [21–23]. There exist several tech-
niques [21–23] for designing an encoder (of code rate upper-
bounded by the capacity), and we refer the interested reader
to these works for further details.

B. The Manchester Code

The Manchester code is a very simple block code that
maps0 into 01, and1 into 10. The code is popular in many
communication protocols, but one can observe that it also
satisfies several of the criteria we can derive for a coding
scheme to be used on a reader-to-tag discretized Gaussian
shift channel: The maximum runlength is two; the average
power is1/2; the minimum sustainable power is1/2; the local
minimum power is1/4; the minimum Hamming distance is
two, and the code is simple to decode. The performance of
this code on the discretized Gaussian shift channel will be
presented in Section VI.

C. The Code {10, 011} [8, 9]

The variable-length code{10, 011} is single bit-shift error
correcting, i.e., it corrects any single bit-shift on the bit-shift
model from [8, 9], and has minimum sustainable power1/2,
local minimum power1/3, and average power3/5. The rate of
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the code is2/5, the minimum runlength is1, and the maximum
runlength is3. The performance of this code on the discretized
Gaussian shift channel will be presented in Section VI.

D. The Code {101, 01101} [8]

The variable-length code{101, 01101} is single bit-shift
error detecting, i.e., it detects any single bit-shift on the bit-
shift channel from [8, 9], and has minimum sustainable power
3/5, local minimum power1/3, and average power5/8. The
rate of the code is1/4, the minimum runlength is1, and the
maximum runlength is2. The performance of this code on
the discretized Gaussian shift channel will be presented in
Section VI.

E. RLL({1, 2}, {1, 2})-Limited Codes

The capacity of the constraint RLL({1, 2}, {1, 2}) is 0.694.
Furthermore, it follows from Theorems 1 and 2 that, similar to
the Manchester code, any code with this runlength limitation
has a FER on the order ofO(p(2)) andO(p(3/2)), for small
ε, on the discretized Gaussian shift channel with quantization
schemesQrounding andQ([1, 2]), respectively.

Example 1: A two-state, rate-2/3 encoder for a
RLL({1}, {1, . . . ,∞})-constrained code is given in [22]. The
encoder can be transformed into a four-state encoder for a
RLL({1, 2}, {1, 2})-constrained code by a simple differential
mapping. The encoder is shown in Fig. 6, while a very
simple decoder/demapper is provided in Table I. The code
has minimum sustainable power1/3, local minimum power
1/5, and average power1/2.
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Fig. 6. An encoder for a RLL({1, 2}, {1, 2})-constrained code.

Example 2: A code with a very simple encoding and decod-
ing can be obtained by using bit-stuffing. The resulting code
is a variable-length code. The encoder keeps the information
symbolsut, t = 1, . . . , k, unmodified, but inserts an extra
inverted symbol1 − ut if ut ≡ t (mod 2). The decoder
destuffs the extra inserted symbols in a similar way. The
encoder has rate2/3, minimum sustainable power1/3, local
minimum power 1/5, average power1/2, and maximum
runlength2.

TABLE I
LOOK-UP TABLE DECODING OF THERLL({1, 2}, {1, 2})-CONSTRAINED

CODE FROMEXAMPLE 1 AND WITH THE ENCODER GIVEN IN FIG. 6.
BEFORE DECODING, IF A RUN OF AT LEAST THREE ZEROS OR ONES IS

OBSERVED, CHANGE IT TO TWO, SINCE IT MOST LIKELY COMES FROM

INSERTIONS.

Current word Next bits Decode to

000 Not possible Detect insertion

001 010, 001 00
1, 011 01

010 0, 100 11
110, 101 10

011 0 00
(1 means insertion)

100 1 01
(0 means insertion)

101 010, 001 11
1, 011 10

110 0, 100 00
110, 101 01

111 Not possible Detect insertion

F. RLL({1}, {1, 2})-Limited Codes

The capacity of the constraint RLL({1}, {1, 2}) is 0.406.
Thus, a practical rate is no higher than2/5. However, the
FER on the discretized Gaussian shift channel behaves (for
smallε) asO(p(2)) andO(p(3/2)) with quantization schemes
Qrounding andQ([1, 2]), respectively. The only advantage over
the RLL({1, 2}, {1, 2}) limitation is a higher power content.

G. RLL({1, 3}, {1, 3})-Limited Codes

The capacity of the constraint RLL({1, 3}, {1, 3}) is 0.552.
Theorem 3: The FER on the discretized Gaussian

shift channel with quantization schemeQrounding for
RLL({1, 3}, {1, 3})-constrained codes is on the order of
O(p(1)) for small ε.

Proof: The decoder works in the following way. Every
received run of length1 (on the discretized Gaussian shift
channel with quantization schemeQrounding) is kept as is,
and every received run of length≥ 2 is assumed to be a run
of length3. This decoder makes an error if a run of length1
is extended by the Gaussian shift channel to length more than
3/2 (this happens with probabilityp(1)), or if a run of length
3 is shortened to less than3/2 (this happens with probability
Q
(

3
6ε

)

= p(1)).
We remark that on the discretized Gaussian shift channel

with quantization schemeQ({1, 3}), the error probability is
of the same order for smallε, i.e., it behaves asO(p(1)).

Example 3: A three-state, rate-1/2 encoder for a
RLL({1, 3}, {1, 3})-constrained code is depicted in Fig. 7,
while a very simple decoder/demapper is provided in
Table II. The code has minimum sustainable power1/4, local
minimum power1/7, and average power13/24.

Example 4: A code with a very simple encoding and de-
coding can be obtained by using bit-stuffing. The resulting
code is a variable-length code. The encoder keeps the infor-
mation symbolsut, t = 1, . . . , k, unmodified, but inserts a
pair of extra symbols(ut, 1 − ut) if ut ≡ t (mod 2). The
decoder destuffs the extra inserted symbols in a similar way.
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TABLE II
LOOK-UP TABLE DECODING OF THERLL({1, 3}, {1, 3})-CONSTRAINED

CODE FROMEXAMPLE 3 AND WITH THE ENCODER GIVEN IN FIG. 7.
BEFORE DECODING, IF A RUN OF TWO ZEROS OR TWO ONES IS OBSERVED,
CHANGE IT TO THREE, SINCE IT MOST LIKELY COMES FROM A DELETION

OF A LENGTH-THREE RUN. SIMILARLY , IF A RUN OF FOUR ZEROS OR ONES

IS OBSERVED, CHANGE IT TO THREE.

Current word Next bit pair Decode to

00 Whatever 0

01 Not possible Detect error

10 00 or 11 0
10 1

11 Whatever 1

The encoder has rate1/2, minimum sustainable power1/4,
local minimum power1/7, average power1/2, and allowed
runlengths1 and3.

H. RLL({1}, {1, 3})-Limited Codes

The capacity of the constraint RLL({1}, {1, 3}) is 0.347.
Furthermore, there is no difference in the asymptotic FER
(i.e., the FER for small values ofε) with respect to
RLL({1, 3}, {1, 3})-limited codes (the proof of Theorem 3
holds in this case as well). Thus, the only advantage over
the RLL({1, 3}, {1, 3}) limitation is a higher power content.

Example 5: The variable-length RLL({1}, {1, 3})-
constrained code with codewords{01, 0111} has rate
1/3, minimum sustainable power1/2, local minimum power
1/3, and average power2/3.

I. RLL({1, 2, 4}, {1, 2, 4})-Limited Codes

Codes satisfying the constraints

RLL({1, 2, 4}, {1, 2, 4}), RLL({1, 2}, {1, 2, 4}), and

RLL({1}, {1, 2, 4})

have capacities0.811, 0.758, and 0.515, respectively. The
latter constraint may be attractive from a power transfer point
of view; the two former constraints admit code rates of4/5
and 3/4, respectively, but may be hard to implement. For
the RLL({1}, {1, 2, 4}) constraint, a rate-1/2, 6-state encoder
can be designed using the state-splitting algorithm from [24].
Finally, we remark that the FER on the discretized Gaussian
shift channel is on the order ofO(p(2)) and O(p(3/2))
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Fig. 7. An encoder for a RLL({1, 3}, {1, 3})-constrained code.
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Fig. 8. FER on the discretized Gaussian shift channel as a function of ε for
different codes.

with the quantization schemesQrounding and Q({1, 2, 4}),
respectively, for small values ofε for these codes.

J. Related Constraints

Any RLL({3i : i = 0, . . . , L}, {3i : i = 0, . . . , L})-limited
code, for any positive integerL, has a FER of the order
of O(p(1)) (with both quantization schemesQrounding and
Q({3i : i = 0, . . . , L})) for small ε. This can be shown
with a similar argument to that used to prove Theorem 3. We
remark here that theO(p(1)) performance guarantee under
the quantization schemeQrounding assumes that the decoder
deals with nonadmissible (with respect to the code) observed
runlengths in the appropriate way. Notice that the capacity
seems to approach a limit at about0.58 as L increases.
Thus, there seems to be no immediate practical advantage on
extending these ideas further.

VI. SIMULATION RESULTS

In this section, we provide some simulation results of some
of the above-mentioned codes on the discretized Gaussian shift
channel. In particular, we consider the Manchester code from
Section V-B, the{10, 011} code from Section V-C, and the
{101, 01101} code from Section V-D, in addition to the newly
designed codes from Examples 1, 3, and 5. For convenience,
the information block lengthk is chosen to be40 bits; this
allows a simple processing, while the block length is already
long enough for the issues addressed in our analytical approach
to be valid. The simulation was carried out with software
implemented in C++, and the simulation was terminated (for
each simulation point) after the transmission of108 frames
or when at least200 frame errors were recorded. This should
give sufficient statistical significance, as can also be seenfrom
the figures (all simulation curves are smooth), and hence no
error bars are included.

In Fig. 8, we have plotted the FER performance of these
codes as function ofε on the discretized Gaussian shift channel
with quantization schemeQ([1, 2]) for the Manchester code,
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analytical expressions for the asymptotic performance, for the Manchester
code and the variable-length code{01, 0111}.

for the {101, 01101} code from Section V-D, and for the
code from Example 1, with quantization schemeQ([1, 3]) for
the {10, 011} code from Section V-C, and with quantization
schemeQ({1, 3}) for the remaining codes. As can be observed
from the figure, the RLL({1, 3}, {1, 3})-constrained code from
Example 3 and the RLL({1}, {1, 3})-constrained code from
Example 5 have the best error rate performance, while the
variable-length code{10, 011} designed in [8, 9] for the tra-
ditional bit-shift channel has the worst performance among
the simulated codes. However, this is not surprising, sincethis
code has not been designed for the discretized Gaussian shift
channel.

In Fig. 9, we have compared the performance of two
different codes, namely the RLL({1, 2}, {1, 2})-constrained
Manchester code and the RLL({1}, {1, 3})-constrained code
{01, 0111} from Example 5 with two different quantization
schemes. We have used the quantization schemes simulated in
Fig. 8 and the quantization schemeQrounding. Note that the
curve for the RLL({1}, {1, 3})-constrained code{01, 0111}
from Example 5 with quantization schemeQ({1, 3}) is not
explicitly shown, since there is no noticeable performancedif-
ference between the two quantization schemes for this code (as
also shown by Proposition 4 below). On the other hand, there
is a significant performance difference for the other code. This
is consistent with our earlier discussion in Section V. In the
figure, we also show analytical expressions for the asymptotic
performance which depend on both the quantization scheme
used and the particular decoding algorithm. These expressions
are given by the propositions below and match perfectly with
the simulation results.

Proposition 4: For the RLL({1}, {1, 3})-constrained code
from Example 5, the FER (with both quantization schemes
Q({1, 3}) andQrounding) on an information block of length

TABLE III
LOOK-UP TABLE DECODING OF THEMANCHESTER CODE.

Previously decoded bit Next bit pair Decode to Advance

1 10 1 2

1 01 0 2

1 11 0 1

1 00 Whatever 3

0 01 0 2

0 10 1 2

0 00 1 1

0 11 Whatever 3

k is approximately

k · p(1) = k ·Q
(

1

2ε

)

asε becomes smaller.
Proof: The p(·)-part of the expression follows from

Theorem 3 (or more precisely, the proof of Theorem 3, since
the proof holds for both RLL({1}, {1, 3})-constrained and
RLL({1, 3}, {1, 3})-constrained codes). The factork in front
follows from the fact that the decoder needs to make exactly
one decision for each information symbol.

Proposition 5: For the Manchester code on an information
block of lengthk, the FER is approximately

(3k/2 + 1/2) · p(3/2) = (3k/2 + 1/2) ·Q
(

1

3ε

)

and

k/4 · p(2) = k/4 ·Q
(

1

4ε

)

for largek, with quantization schemesQ([1, 2]) andQrounding,
respectively, asε becomes smaller.

Proof: The p(·)-parts of the expressions follow from
Theorems 2 and 1, respectively. The factor in front (for
quantization schemeQ([1, 2])) follows from the fact that all
runlengths are equally critical, i.e., the probability of alength-
1 runlength (of zeros or ones) being received as a length-2
runlength and vice versa is the same. Thus, the multiplicityin
front of thep(·)-part will be the average number of runlengths
in a codeword, which is exactly3k/2 + 1/2.

With the second quantization scheme (Qrounding), only
length-2 runlengths are critical, but not all of them, as can
be seen from the operation of the decoder. In particular, the
decoder works as shown in Table III. Observe a window of
two consecutive bits of the received sequence (second column
of Table III). Then, based on the previously decoded bit (first
column of Table III), decode the observed bits as indicated in
the third column of Table III, and advance a number of bits
(as indicated in the fourth column) for the new window.

Now, for instance, the sequence. . . 10.01.01 . . . is critical,
since it can be received as. . . 10.10.1 . . . (the third bit
is deleted), and the decoder from Table III is not able to
recover it without errors. On the other hand, the sequence
. . . 10.01.10 . . . is not critical, since the corresponding re-
ceived sequence. . . 10.11.0 . . . (again the third bit is deleted)
is decoded correctly by the decoder of Table III. In summary,
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from Table III, the critical sequences are in fact exactly
those that have a length-2 runlength followed by a length-
1 runlength. Assuming equally likely transmitted information
symbols, with probability1/4, a critical pattern occurs in the
transmitted sequence for each information symbol, and the
expression (valid for largek) follows.

We have also simulated the case where the communication
takes place on the discretized Gaussian shift channel with
simultaneous additive white Gaussian noise (AWGN), and
where the Gaussian noise is added (at the bit level) at the
output of the discretized Gaussian shift channel. The results,
shown in Fig. 10, are for the Manchester code withQ([1, 2])
and hard-decisions as a function of bothε and the signal-to-
noise ratio (SNR), defined as(A1−A0)

2/2Rσ2, whereσ is the
standard deviation of the AWGN,R is the code rate, andA1

(resp.A0) is the amplitude level of a one (resp. zero). For the
other simulated codes, we have observed a similarly shaped
performance behavior with simultaneous AWGN (results not
included here). We remark that in the normal mode of RFID
reader-to-tag operation, the SNR can be expected to be high.
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Finally, we remark that we have used look-up table decoding
in all simulations. For instance, for the codes from Examples 1
and 3, we have used Tables I and II, respectively, in the decod-
ing. For the Manchester code, we have used Table III. Further,
note that all the codes used in the simulation are local and even
a (hard-decision) ML decoder is limited in performance by the
issues discussed in our analysis. A soft-decision ML decoder
may improve on this, but will complicate the implementation,
something which is undesirable with current technology. A key
point of the proposed codes is that they are designed forerror
avoidence, and consequently coding gain is achieved with a
very simple decoding procedure.

VII. C ONCLUSION

In this work, we have discussed a new channel model
and code design for near-field passive RFID communication
using inductive coupling as a power transfer mechanism.

The (discretized) Gaussian shift channel was proposed as a
channel model for the reader-to-tag channel when the receiver
resynchronizes its internal clock each time a bit is detected.
Furthermore, the capacity of this channel was considered, and
some new simple codes for error avoidance were presented.
Their performance were also compared to the Manchester code
and two previously proposed codes for the bit-shift channel
model.

Error avoidance allows a quantification of the coding gain
of a runlength-limited code, and we believe that this quantifi-
cation adds a new perspective of constrained codes.
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