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Abstract—This paper discusses a new channel model and code ~Several standards exist that specify lower layer coding
design for the reader-to-tag channel in near-field passive radio for RFID protocols. However, it seems that most standards
frequency identification (RFID) systems using inductive caopling employ codes that have been shown to be useful in general-

as a power transfer mechanism. If the receiver resynchroniegs s . L .
its internal clock each time a bit is detected, the bit-shift PUrPOSE communication settings. Although this is justigab

channel used previously in the literature to model the reade  from a pragmatic point of view, we observe that a thorough
to-tag channel needs to be modified. In particular, we propas information-theoretic approach may reveal alternate coding
a discretized Gaussian shift channel as a new channel modelschemes that, in general, can provide benefits in terms of
in this scenario. We introduce the concept of quantifiableerror reliability, efficiency, synchronization, simplicity, @ecurity.
avoidance, which is much simpler than error correction. The o t ’ f der-t ’ L d t ined b
capacity is computed numerically, and we also design some we pera_lng. range 0_ a reader-lag par Is determine Yy
simple codes for error avoidance on this channel model based COmmunications requirements as well as power transfer re-
on insights gained from the capacity calculations. Finallysome quirements. To meet the communications requirements, the
simulation results are presented to compare the proposed des reader-to-tag and the tag-to-reader communication chgnne
to the Manchester code and two previously proposed codes for gatisfy specified demands on communication transfer rate
the bit-shift channel model. . .
and reliability. To meet the power transfer requiremerits, t
Index Terms—Bit-shift channel, channel capacity, code design, received power at the tag must be sufficiently large as to
coding for error avoidance, constrained coding, discretied Gaus- provide operating power at the tag
sian shift channel, inductive coupling, radio frequency intifi- A dina to [1. 2 ith tt. hnol it is th
cation (RFID), reader-to-tag channel, synchronization erors. ccording _0 [1,2], with current technology it is ? power
transfer requirements that present the bottleneck witheras
to operating range for a two-way reader-tag communication
. INTRODUCTION session. Nevertheless, there is a value in determining the
) . , , information-theoretic aspects, such as tradeoffs between
_Inductive coupling is a technique by which energy from ongypijity and transmission rate, of this communicationrsEi
circuit is transferred to another without wires. Simultansly, pecayse future technologies may shift the relation between
the energy transfer can be used as a vehicle for informatigfnmuynication and power transfer requirements, and second
transmission. This is a fundamental technology for neda-fieyeqyse present cheap tag technologies impose challenges
passive radio frequency identification (RFID) applica®® o communication which are not directly related merely to
well as lightweight sensor applications. received signal power.

In the passive RFID application, eeader, containing or  ireless information and power transfer has been consid-
attached to a power source, controls and powers a COMMtiq in different contexts previously, for instance, forttinser
cation session with &g; a device without a separate powegythogonal frequency division multiplexing systems [3]dan
source. The purpose of the communication session may be, gfiylar networks [4]. See also [5] and references therin.
examples, object identification, access control, or adipis [g] wireless information and power transfer across a noisy
of sensor data. inductively coupled channel was considered from a differen
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resynchronizes its internal clock each time a bit is detbcteA. Power Issues

and is different from the recently proposed bit-shift chelnn o )

model in [8,9]. In Section IV, we numerically consider its 1h€ tag in Fig. 1 has no internal power source. Rather,
capacity, and, in Section V, we present several new and Véqfollects _the power derived from th.e carrier. After some
simple codes for this channel model, as well as their encdgtial transient delay, the tag’s power circuitry will baarged
ing/decoding techniques. Simulation results are predeinte Sufficiently to provide operating power for the tag. Comnyonl

Section VI, and we draw some conclusions in Section VII. @mplitude modulation, or more precisay-off keying (OOK)
is employed. In OOK, a 1" (resp. 0") is transmitted by

the presence (resp. absence, or alternatively a low ardp)itu
|| CHARACTER|ST|CS OF THEREADER'TO'TAG CHANNEL Of the Carrier fOI‘ the duration SpeCified fOI‘ transmittin@.tth
particular bit.

In this paper, we will be concerned with data transfer The transmitted power is limited by regulation [2]. Howegver
from a reader to a tag. Amformation source generates an the amount of transferred power can still be influenced by the
informationframe of & bitsu = (u1, ..., uy). The information encoding scheme used. Although the tag has no traditional
frame is passed through an encoder to produce an encodettery or other means of accumulating energy over an ex-
framec = (c1,...,¢,). The encoded frame is interpreted as @&ended period, it is possible to "ephemerally” store energy
waveform that modulates a carrier wave, as shown in Fig. dver a short time (say, a few bit periods) in the power cirguit
[10,11]. Thus, it makes sense to impose constraints on power content

Please observe that the concept of a frame in this cont@xthe transmitted signal [8, 9, 12], for example, by demagdi
refers to a collection of bits that belong together, for sombatmp out of everynp consecutive transmitted bits arés.
semantic reason related to the application layer. The hctd&us, a high power content (i.e., the ratiop /np is large)
encoder may work at a different length. Due to the strictlig an advantage. The precise manifestation of this advantag
limited computing power of the tag, the actual encoder maldepends on technology and is difficult to measure. Therefore
work on a bit-by-bit basis, as in most of the examples lat&re will consider different measures of power (to be defined
in this paper. The encoded frame lengthmay be fixed, below) as a figure of merit for a given coding scheme.
depending only ork, or variable, depending oh and also  Formally, we will define thepower content of a binary
on the information frame, but in general> k. vectora € GF(2)", denoted byP(a), as the rational number

w(a)/n, wherew(-) denotes the Hamming weight of its binary

[Letomaton surs | I I
Information source Information sink . .
Let C denote a block code or a variable-length code, i.e.,

Upsenosy Uyseestly a collection or set of codewords. Furthermore, &t be
Encoder Decoder the set of sequences of lengtfi > 1 over(, i.e., the set

PO of N consecutive codewords. Thaverage power of C is

Clsn0sC, ClseaesCpp . .
defined as the average power content of the sequences in
| /{ CINl as N — oo. For block codes, this average does not
depend onN, and the average power of a block code
iS Pyg(C) = Fﬂzaec P(a). However, for variable-length
codes, the average depends &h and we need to consider

the limit as/N — oc. In general, the average power of a code

[ ] C can be computed from [8]

Tag oy

Fig. 1. A simplified view of the reader-to-tag channel. wherew; andn; denote the Hamming weight and length of
the jth codeword inC, respectively.

Meanwhile, back at Fig. 1, the demodulator in the tag The minimum sustainable power of a block or variable-
samples the physical waveform at time intervals determiné&ngth codeC is defined asPyin(C) = minacc P(a). We
by the tag’s timing device, and converts it into an estimatémark that for codes defined by a state diagram, the various
¢ = (é1,...,¢é,) Of the transmitted frame, where in generahotions of power can refer to any cycle in the state diagram.
n’ # n. Ideally, ¢ should be identical te, but additive noise, Thus, Puin refers to the minimum average cycle weight of a
interference, timing inaccuracies, and waveform degiadat Cycle in the state diagram.
due to limited bandwidth may contribute to corrupt the re- As a final figure of merit, we will consider théocal
ceived framec. We will discuss some of these signal corrupminimum power of a codeC as the minimum positive value
tions later in this paper. A decoder at the tag subsequentifythe ratiomp/np over all possible sequences !, for
attempts to recover an information franée= (a4,...,4,) any finite value ofN, wherenp > mp are arbitrary positive
from ¢. Correct decoding is achievediif = u. integers.



B. Processing Capability and its optimum value from bocal perspectivé to determine

Due to the limited tag power, processing capability id "uniengtha or runlengthb was transmitted is

severely limited in a tag. This applies to any processing 2ab
i i i ; i t =t(a,b) = .
involved in whatever service the tag is supposed to provide, a+b

but also signal processing involved in receiving inforroati . - . L
. o The corresponding decision error with one such decision is
1) Error Avoidance Versus Error Correction: For many

communication channels studied in the literature, appgioac t—a b—a 1
channel capacity (or even achieving a significant coding gai ae (a +b)e

over naive implementations) relies on error correctionesod ) B
However, although classes of codes are known for whidihereQ(z) is the probability that a sample of the standard

the decoder can be efficiently implemented, the decodiﬂ@rmal distribution has a value larger tharstandard devia-

process may still require a significant amount of processifiPns above the mean, i.e.,
We will argue below that for channels for which the error © 1 2/ 1 T
probabilities depend on the transmitted data, reliabitian (x) */ o Yy = 5 erfe (ﬁ)
be increased by using a code enforcing an appropriate set ‘
of modulation constraints. Suchrror avoiding codes can Where erf¢:) denotes the complementary error function.
typically be decoded by a simple table, mapping received Proof: Assuminga is transmitted, then the probability
sequences into information estimates. that b is received (witht as the quantization threshold) is
Q((t — a)/ae). Likewise, if b is transmitted, then the proba-
bility that a is received igQ((b—t)/be). This follows directly
from the fact thatK’ has a Gaussian distribution with mean
In this section, we will discuss a new channel model for and variances2. Now, sinceQ(-) is a monotonically de-
the reader-to-tag channel, which is slightly differentnfrthe  creasing function@((t — a)/ac) is monotonically decreasing
bit-shift model (for inductive coupling) recently introded in  and Q((b — t)/be) is monotonically increasing in (within
[8,9]. the rang€a, b]). Thus, the optimal thresholdcorresponds to
If the receiver resynchronizes its internal clock each tim@e intersection ofQ((t — a)/ac) and Q((b — t)/be). Thus,

a bit is detected, the bit-shift model from [8,9] needs to bg — a)/ac = (b — t)/be. Solving this equation, we get
modified. We will first introduce th&aussian shift channel. ¢ = 2ab/(a + b). The expression for the decision error in (2)
Suppose the reader transmits a runzofonsecutive equal follows by substituting the expression for the optimal imeld
symbols. This corresponds to an amplitude modulated signahto either Q((t — a)/ac) or Q((b — t)/be), and the final
of durationz. At the tag, we will assume that this is detectethequality (in (2)) follows from the fact thath — a)/(a + b)

)

IIl. THE DISCRETIZED GAUSSIAN SHIFT CHANNEL

(according to the tag’s internal clock) as having duratipn is smaller than. u
where Note that whena = b — 1, t = 2ab/(a + b) = 2b(b —
g=7-K (1) 1)/(2b — 1) will approach(a +b)/2 =b—1/2 asb goes to

infinity.

and K is a random variable. In this papek follows a
Gaussian distributioiN (v, ¢?) with meanv and variance?.
Consecutive samplings df are assumed to be independen
If v # 1, it means that the tag has a systematic drift, whic
may affect the tag's ab|I|ty. to fqnctlon at "’F"' Thus,. we W'”consistent with properties of practical inductively caegbl
focus on the case = 1. With this assumption, the input 10 \hannels.

the demodulator will be a sequence of alternating runs di hig In general, letQ

and low amplitude values; the detected duratjaof each run quantization valuesd = {ay,..., a4}, wherel < a; <

being areal-valued number. - < ajy < L, and L is some positive integer (that later

We might attempt decoding directly at the Gaussian shifly he ysed as aunlength), and quantization thresholds —
channel, but the computational complexity may be high f o b Wherea) <ty < apyr, L =1, |Al— 1

the tag receiver. As a simplification, and to deal with thd fa he quantization scheme works in the following way. Map
that j may become negativei{ has a normal distribution), a received real-valued number to an integer .4n using

which of course dqes not ha\_/e any physical mterpreta_m(m, \ﬁuantization thresholds iff, i.e., if the received real-valued
propose to discretize the timing and truncafe The optimal |\ vo ic'in the rangg, ti1), [ =2 |A] —1, map it to

chmcg for the quantization thresh~olds, e, thg thrmmAhgn a, ifitis in the rangelt 4|, o), map it toa 4, and, otherwise,
mapping the real-valued numbejsto positive integers, will map it toa,

depend on the code under consideration. Hov_vever, an Opt_'maNow, we define the discretized Gaussian shift channel with
local threshold can be computed as shown in the fOIIOW'n@uantization schem@(A, T) as the cascade of the Gaussian

proposition. shift channel and the quantization sche T), where
Proposition 1: Let o andb be positive integers with > a, q 2ed, 7).

repr-esenting the only two Iggal rgnlengths in a given coN-iye can do better with a maximum-likelihood (ML) detector i
strained code. Then, there is a single threshold t(a,b), considers the whole transmitted sequence.

We remark that we do not allow the mapping of a real-
valued number (from the output of the Gaussian shift chgnnel
0 zero (or a negative integer), which means that the channel

n not make a runlength disappear. This appears to be

(A, T) denote a quantization scheme with



the quantization schem@(.A, 7) is applied to the real-valued transition probabilities

sequence at the output of the Gaussian shift channel. Plwi = wli; = i)
(2 1 T

As an example, we can define a discretized Gaussian shift

channel, where the quantization thresholds are chosen such p(e(7)), !f w=-1 and:f > 1

that the integer sequence is obtained from the real-valued |9 if w=—1andi=1
sequence by rounding its values to the nearest positivgeénte ) 1 —p(a(Z)) — p(3(2)), ifw=0andi>1  (5)
value. This particular quantization scheme will be denoted |1 —p(B(T)), if w=0andz =1

by OQrounding. AS @ further modificati_on, we may introduce p(B(2)), if w=1andi>1

a parameted’, to truncate the maximum observed length, 0, otherwise

into the quantization schem@,,unding, and in this way get
a family of discretized Gaussian shift channels. The resplt where
guantization scheme works in the following way. If the reade

Tprevious + Tnext + T

has transmitted a run af symbols, the tag will detect it as (%) = 2(% — Zprevious) and 3(7) = 2(Fnoxt — ) ©6)
having length and WhereZprevious (FeSp. Znext) is the closest value ta@
allowed by the quantization scheme that is also strictlyllena
2041 2[ 1 (resp. larger) tham.
L=l fK-1€ E o ~gr) and As will become clear later, this quantization scheme outper
t=1....I"-1 forms the general rounding scheme defined above. However,
L-T, fK—-1¢ ( ,—QF/”) note that whena 41 = a4 — 1 and a4 is large, the
I ifK_1¢ [ ) performance approaches the performance of the discretized
) L7 2L ; ; ; At
I o [2 5 21+1) and Gaussian shift channel with quantization sche@gunding
’ 2L 7 2L for low values ofe.
I=1,...,I'-1 We can make the following remarks in connection with the
L+T, if K—1€[Z o0) Gaussian shift channel.

(i) As can be seen from Fig. 2, when considering the “likely

error patterns”, we need to be concerned mainly about
the longest runs of equal symbols. The exception to this
pragmatic rule occurs when, for some codes, it is possible
to correct all shifts (up to some order, where a single shift
is a shift of order one, a double shift is a shift of order

two, and so on) corresponding to maximume-length runs.

whereI’ > 1 is a truncation integer parameter afd =
min(l', L — 1). With T' = 1, we denote the channel as the
discretized Gaussian single-shift channel. With= 2, the
channel is called the discretized Gaussian double-sthifticél,

and so on. Now, if we want to express the discretized Gaussian
single-shift channel in terms of runlengths with additiveoe

termsw; (as in [8, Eq. (4)]), [8, Eq. (4)] is modified by (1) l
and discretization to
1072
Ui = & + w; 3
C 107
where 2
@ 104
[N
p(i)7 |f w=-1 and(i > 1 10°5F
0, if w=-1andz =1
1—2p(x if w=0andz >1 10°°F
P(wi:w|5ci:5c): pEI)’ . v 1~7>
1-p), fw=0andz=1 )
p(fg)7 if w=1andz >1 10702 0.1()/1 [),;)6 (].;JS 0.1 0f12 0&4
0, otherwise )

(4) Fig. 2. Comparison of shift probabilities (with quantizati scheme
Qrounding) Versuse for runlengthsl, 2, 3, and4.

andp(L) = Q (5i2). (ii) For many simple codes used on the discretized Gaussian
N shift channel the frame error rate (FER), denoted by

As another example, we can define a quantization scheme P(FE), can be simplified to, respectively,

Q(A) = Q(A,T), where the quantization threshold =
2a;_1a;/(aj—1 +a;), I = 2,...,|A|. In a similar manner, as ~
for Qrounding, We can express the discretized Gaussian single- P(FE) ~ S -p(L)
shift channel (now with quantization scheri¥.4)) in terms and

of runlengths with additive error terms; as in (3), but with P(FE) =~ Sr -p(L —1/2)



with quantization schemeg,unaing and Q(.A), where received number to a positive integer) and consecutive sam-
A={a1,...,a.4-2,L—1,L}, andSy, is some constant plings of K are independent, the discretized Gaussian shift
(representing a count of different error events) dependicbannel (with any quantization scheme) is really a discrete
on the code and on the specific decoder, assuming tih@moryless channel operating on runlengths with the pesiti
the most likely error event when using the code imteger values as input and output alphabet, and with channe
connected with the confusion of runlengths of lendth transition probabilities that depend enand the quantization
with some other run of length — 1. We omit the details, scheme. Now, we define a truncated version of the channel,
but will show examples later (see Theorems 1 and 2).denoted by, 1, with input alphabett’ = {1,..., L}, output
(iii) Error avoidance versus error control: Suppose we caidphabety = {1,..., L'}, whereL andL’ are integers greater
design an error correction encoder that admits runlengtifian one, and channel transition probabilitfesx (y|z). The
of length at most 2; that has a decoder that can corrguarameterl’ is the smallest integer output of the discretized
all error events involving a single shift of @ngle run Gaussian shift channel (with a given quantization scheme)
of length 2, but that will make a mistake if two or moresuch that the probability of observing for any given input
such event occurs. Such a decoder should have a FERwa &' is smaller than some small threshold probabilityThe
the order ofp(2)? (with quantization schem@,ounaing) Normalized mutual information between the channel infiut
for small. Observe from Fig. 2 thai(2)? > p(1). Can and channel output’, denoted by/(X;Y") and measured in
we design a code with a simple decoder that behaveshits per input symbol, can be expressed by [15, Eq. (3)]
p(1)? Yes, we can; see Sections V-G, V-H, and V-J.
(iv) Observe that the discretized Gaussian single-shifineh _ I(X:;Y)
nel is aspecial form of an insertion-deletion channel, 1(X;Y) = W)’(]
which randomly may extend or shorten the runs of fyix (ylz)
transmitted identical symbols, but where the statistics 2_,cy 2sex [x(2)fy|x (y[z)logy (Zjex'fx(j)‘fy‘x(y‘j))
of this random process depend on the length of the - '
roves , djexd fx(h)
runs. Codes for insertion-deletion channels have been @)
studied, but to a moderate extent, and some of the best
known codes, such as the Varshamov-Tenengolz coodserel (X;Y") denotes the mutual information betwe&rand
[13] and the codes in [14], are apparently too compleX and E[X] the expectation ofX with respect to the input
for the application in question and also do not possepsobability distributionfx («). Now, the capacity o, 7 (in
the appropriate modulation constraints, to be discusseilis per symbol) can be obtained by maximizing the fraction
below. in (7) over all input probability distributiongx (x). Note that
(v) An intelligent receiver tag should realize that any resince the channel is memoryless, it is sufficient to consider
ceived run longer than the maximum run must be thenly a single use of the channel, i.e., not sequences oftlengt
result of an insertion. Thus, such insertions can triviallV as in [15, Eq. (3)].
be corrected. In consequender some codes, the dis- We remark that if the channel could in fact remove run-
cretized Gaussian shift channel is approximately simplgngths, then the channel would resemble a deletion channel
a special deletion channel that applies only to runs wfith substitution errors operating on runlengths. From an
maximum length. information-theoretic perspective, such a channel is much
(vi) In general, for any code and channel, a receiver may usbarder to analyze, since there is no finite-letter expresiio
forward error correction scheme (FEC), or an automatithe channel capacity [16].
repeat-request (ARQ) scheme asking for retransmissiond=rom [17, p. 191], we know that the numerator of (7), i.e.,
if an error is detected. Obviously, error detection ithe mutual information betweeX andY’, is a continuous
computationally simpler than error correction. Indeedind concave function of x (z). Thus, the maximization of
ARQ is typically used in standard protocols for passivthe un-normalized mutual information (i.e., the maximization
RFID, utilizing a standard embedded cyclic redundanceyf the numerator of (7) over the set of all input probability
check code. distributionsfx (x)) can be done using, for instance, a gradient
For the binary symmetric channel it is further well-ascent algorithm, or the iterative Blahut-Arimoto alglonit
known that the FER associated with FEC is typicall{18, 19].
much higher than the probability of undetected error Proposition 2: The normalized mutual information
corresponding to ARQ. Counter-intuitively, this property (X;Y) in (7) is quasiconcave itfx (z).
does not necessarily apply with the discretized Gaussian Proof: Since E[X] is a linear function onfx (x), it is
shift channel. obviously a convex function orfx(x). Furthermore, since
E[X] is strictly positive, therl /E[X] is also a convex function
on fx(z). Sincel (X;Y) is continuous and concave (from [17,
p. 191]), it follows that the fraction in (7) is a product of a
In this section, we will consider the channel capacity of theonvex and a concave function. Now,E[X] is actually both
discretized Gaussian shift channel. quasiconvex and quasiconcave because the upper and lower
Since a sequence of transmitted consecutive bits can wotntoursets are always convex sets, since the level sets ar
disappear (the quantization schemes quantize each regdvalinear varieties (they are linear f@[X], and hence they are

IV. CHANNEL CAPACITY
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fx (1) Ix(2) 02; - ‘

Fig. 3. Normalized mutual information as a function 6t (1) and fx (2)

when L =3 (fx (1) ":SfX(z) + fx(3) = 1), for e = 0.15. The threshold rjg 4. The capacity of the channel,  for different values ofL as a
probability is7" = 10~% and the quantization schem2,ounding has been g nction of e, The threshold probability & = 10~8 and the quantization

used. schemeQ, ounding has been used.

where
also linear forl/E[X], since they have the same level sets). 5/ x.y r
Every concave function is quasiconcave, herd¢&’;Y) is 85“7(’1:)) = Z fyix (y|z) log, (f)?yiéxgy))
guasiconcave. Thus, the normalized mutual informatior7)n ( X yeY X
is the product of two quasiconcave and nonnegative fungtion Iy Ixv(Lly)
which again is quasiconcave. [ - Z Frix(ylL) logy fx(@) )

yey

The function in (7) is continuous iffix (x) (the denominator Proof: This follows from straightforward calculus. m

is strictly positive and continuous, and the numerator r#ice ) . .
SO . : In summary: Recall that the capacity of the charMelr is
uous), which is not a general property of being quasiconcave = i :
: . ; equal tomax; .y I(X;Y), and that Proposition 2 shows that
Furthermore, angtrong local maximum is a global maxmumi V) i X%, ) Thus. i der t
for any quasiconcave function [20] (the result is formudfer (X;Y) is quasiconcave iffx (z). Thus, in order to numer

quasiconvex functions in Lemma 1 in [20]). Thus, a gradietlﬁa"y determine the capacity of the ChandeL’T' we *?"?“’e
ascent algorithm can be used to find the global maXimu|r|;'1;|plemented a steepest ascent method using Proposition 3 fo

of any continuous differentiable quasiconcave function h € expression of Fhe grad|gnt. n add|t|oq, we neeq to check
checking for strict maximality. if the located stationary point of (X;Y), i.e., a point for

which the partial derivative I}Sf(;) are zero for everyx (z),

. For illgstration purposes, in Fig. 3, the r_10rma|ized mutudl yaeq corresponds to a strict maximum i@fx; Y). If not,
information from (7) is plotted as a function dfv(1) and  5,other random starting point for the steepest ascent mého

fx(2) wthL = 3, for ¢ = 0.15. The threshold probability chosen, and the procedure is repeated until a strict maximum
is T'= 10~° and the quantization schen@,unding has been ¢ F(X.Y) is located.

used.

Due to the constraind .. fx(z) = 1, the normalized A Numerical Results
mutual information in (7) is really a function of, — 1
variablesfx (z), « = 1,..., L — 1. Thus, we may substitute
fx(L) =1- Zf;ll fx(z) into (7) and then compute the
partial derivatives with respect thx (z), z =1,...,L — 1.

In Fig. 4, we have plotted the capacity of the channel
Hrr as a function ofe for various values of the input
alphabet sizel. The threshold probability i§" = 10~8 and
the quantization schem@,,unaing has been used. The curves

Proposition 3: The partial derivative of the normalizedin Fig. 4 are computed using a gradient ascent algorithm
mutual informationZ(X;Y) in (7) with respect tofx(z), using the gradient from Proposition 3. We observe that there
r=1,...,L—1,1is is almost no difference between the curves for= 8 and

L = 12, which indicates convergence. Thus, the curve for
L = 12 should be very close to thexact capacity of the
discretized Gaussian shift channel with quantization sehe

0I(X;Y)  Brar Yjexd fx() —I(XGY)(@—=L)  Qrounding:

dfx(z) = _ N2 In Fig. 5, we have plotted the capacity of the chartgl
(Zjexj : fX(J)) as a function ofe for various values of the input alphabet




+L‘: S Oomin paper, we shall denote a particular binary runlength litinita
—6— L =8, Q(A) as RLL(Lo, £1), whereL,; is the set of admissible runlengths
j;fz;’ Sz‘;{‘;d‘”g of binary symbol. In the following,O(-) refers to thebig O
notation for describing the limiting behavior of functions.

Theorem 1: If a code satisfying the RLU1, ], [1, L]) limi-
tation, wher€1, L] = {1,2,..., L}, is used on the discretized
Gaussian shift channel with quantization sche@gunding
and with an ML decoder, then the FER behavesJds(L))
for small e.

Proof: By looking at the transition probabilities in (4),
we observe that the dominating error event (in terms of error
probability) is when a lengthi- runlength (the largest allowed
by the code) is received as a lendth— 1) runlength. This is
the case since(-) is an increasing function of its argument.
From (4), it follows that the FER behaves &¥p(L)) for
smalle, and the result follows. [ |

Theorem 2: If a code satisfying the RLU1, L], [1, L]) lim-
Fig. 5. The capacity of the chann@ly, - for different values ofL. as itation_ is _used on the discretized G_aussian shift channil wi
a function ofe with both quantization schemed,,uuaing and Q(A). The ~quantization schem@([1, L]) and with an ML decoder, then
threshold probability is/” = 105, the FER behaves a8(p(L — 1/2)) for smalle.
Proof: By looking at the transition probabilities in (5),

) ) o we observe that the dominating error event (in terms of error
size L and with both quantization scheme;ounaing @Nd  propability) is when a lengt- runlength (the largest allowed
Q(A). The threshold probability i = 10~%. We observe that by the code) is received as a length— 1) runlength. Again,
the quantization schem@:ounaing gives the best performancetyis is, as noted in the proof of Theorem 1, the case siige
for intermediate-to-large values ef while the quantization g 5 increasing function of its argument. From (5), it falk

schemeQ(A) performs better when decreases. Note that bythat the FER behaves &(p(a(L))) for smalle, where (from
looking at the optimal input distributiongy () we observe (6))

that the shortest runlengths (i.e., the smallest valuag bave L1471 o _ 1
the highest probabilities. Thus, an error control code s t a(L) = = =L—-1/2
channel should be designed to give coded sequences in which 2(L = (L—=1)) 2
small runlengths occur more frequently than longer rurtlesig and the result follows. |
This is the topic of the next section. The maximum rate of a constrained code is determined by
the capacity of the constraint, which can readily be calculated
V. CODING SCHEMES FOR THEREADER-TO-TAG from the constraint graph [21-23]. There exist several-tech
CHANNEL nigques [21-23] for designing an encoder (of code rate upper-

: . . . _..bounded by the capacity), and we refer the interested reader
Among the encoding schemes in use in communlcatl(?n

0.9F

Capacity

standards for RFID applications, one can find several co é)sthese works for further details.

that are popular in general communication protocols, sich a

NRZ, Manchester, Unipolar RZ, and Miller coding [2]. HereB. The Manchester Code

we will study the effect of some new encoding schemes for The Manchester code is a very simple block code that
the reader-to-tag channel, considering power constrgges maps0 into 01, and1 into 10. The code is popular in many
Section II-A) and the communication channel described tbmmunication protocols, but one can observe that it also
Section Ill, i.e., the Gaussian shift channel. As a refeeene satisfies several of the criteria we can derive for a coding
will provide the Manchester code (described in Section V-Bgcheme to be used on a reader-to-tag discretized Gaussian
and two variable-length codes presented in [8] (and desdribshift channel: The maximum runlength is two; the average
in Sections V-C and V-D, respectively) and designed for thsower is1/2; the minimum sustainable powerig2; the local

bit-shift channel from [8, 9]. minimum power is1/4; the minimum Hamming distance is
Before describing the specific code constructions, we wilvo, and the code is simple to decode. The performance of
briefly explain the concept of constrained coding. this code on the discretized Gaussian shift channel will be

presented in Section VI.
A. Runlength Limitations and Other Coding Constraints

We may desire and enforce that an encoded sequefcelhe Code {10,011} [8,9]
satisfies certain constraints specified bycanstraint graph The variable-length cod€l10,011} is single bit-shift error
[21-23]. These constraints may, for example, be the powasrrecting, i.e., it corrects any single bit-shift on theé-dhift
constraints described in Section II-A, or runlength liidas, model from [8, 9], and has minimum sustainable powg2,
or a combination of these constraints. For the purpose sf tthocal minimum poweil /3, and average pow&r/5. The rate of



. . . . TABLE |
the code i2/5, the minimum runlength i, and the maximum | 5ok-up TaBLE DECODING OF THERLL ({1, 2}, {1, 2})-CONSTRAINED

runlength is3. The performance of this code on the discretized cope FROMEXAMPLE 1 AND WITH THE ENCODER GIVEN INFIG. 6.

Gaussian shift channel will be presented in Section VI. BEFORE DECODING IF A RUN OF AT LEAST THREE ZEROS OR ONES IS
OBSERVED, CHANGE IT TO TWO, SINCE IT MOST LIKELY COMES FROM
INSERTIONS
D. The Code {101’ 01101} [8] Current word Next bits | Decode to
000 Not possible Detect insertion
The variable-length cod€101,01101} is single bit-shift 001 010, 001 00
error detecting, i.e., it detects any single bit-shift oe thit- 1,011 01
shift channel from [8, 9], and has minimum sustainable power 010 1(1)61?81 }é
3/5, local minimum powerl /3, and average powei/8. The oo '0 o
rate of the code i4/4, the minimum runlength i4, and the (1 means insertion)
maximum runlength i®. The performance of this code on 100 1 01
the discretized Gaussian shift channel will be presented in (0 means insertion)
Section VI. 101 e "
110 0, 100 00
110, 101 01
E. RLL({L 2}7 {1, 2})-Limited Codes 111 Not possible Detect insertion

The capacity of the constraint RILL1, 2}, {1,2}) is 0.694.
Furthermore, it follows from Theorems 1 and 2 that, simitar t _
the Manchester code, any code with this runlength IimitatioF' RLL({1}, {1, 2})-Limited Codes
has a FER on the order 6¥(p(2)) andO(p(3/2)), for small ~ The capacity of the constraint RICEL}, {1,2}) is 0.406.

e, on the discretized Gaussian shift channel with quantizati Thus, a practical rate is no higher thari5. However, the
scheme, ounding @and Q([1,2]), respectively. FER on the discretized Gaussian shift channel behaves (for
Example 1: A two-state, rate2/3 encoder for a Smalle)asO(p(2)) andO(p(3/2)) with quantization schemes

RLL({1},{1,...,00})-constrained code is given in [22]. TheSrounding aNdQ([1, 2]), respectively. The only advantage over

encoder can be transformed into a four-state encoder foth§ RLL({1,2},{1,2}) limitation is a higher power content.

RLL({1,2},{1,2})-constrained code by a simple differential

mapping. The encoder is shown in Fig. 6, while a verg Ri| ({1,3},{1,3})-Limited Codes

simple decoder/demapper is provided in Table I. The code _ . .

has minimum sustainable powgy3, local minimum power The capacity of the constraint RIL{_l,?.)}, {1’_3}) IS 0'552'_
Theorem 3: The FER on the discretized Gaussian

1/5, and average power/2. _ i o
shift channel with quantization schem&@.ounding for
RLL({1,3},{1,3})-constrained codes is on the order of
11/010 O(p(1)) for smalle.

Proof: The decoder works in the following way. Every
received run of lengthl (on the discretized Gaussian shift
channel with quantization schem@,,unaing) IS kept as is,
and every received run of length 2 is assumed to be a run
of length3. This decoder makes an error if a run of length
is extended by the Gaussian shift channel to length more than
3/2 (this happens with probability(1)), or if a run of length
3 is shortened to less thay2 (this happens with probability
Q(2) =p(1)). :

We remark that on the discretized Gaussian shift channel
with quantization schem@({1,3}), the error probability is
of the same order for smadl, i.e., it behaves a®(p(1)).
Fig. 6.  An encoder for a RL{{1, 2}, {1, 2})-constrained code. Example 3: A three-state, raté/2 encoder for a
RLL({1,3},{1,3})-constrained code is depicted in Fig. 7,
Example 2: A code with a very simple encoding and decodwhile a very simple decoder/demapper is provided in
ing can be obtained by using bit-stuffing. The resulting codrible 1. The code has minimum sustainable powgt, local
is a variable-length code. The encoder keeps the informatiginimum powerl /7, and average powelr3/24.
SymbOISut, t = 1,...,k, unmodified, but inserts an extra Examp|e 4: A code with a very simp]e encoding and de-
inverted symboll — u; if u; = t (mod 2). The decoder coding can be obtained by using bit-stuffing. The resulting
destuffs the extra inserted symbols in a similar way. Th&de is a variable-length code. The encoder keeps the infor-
encoder has ratg/3, minimum sustainable powdr/3, local mation symbolsu,, ¢t = 1,..., %, unmodified, but inserts a
minimum power 1/5, average powerl/2, and maximum pair of extra symbolgu,,1 — u;) if u; = ¢ (mod 2). The
runlength2. decoder destuffs the extra inserted symbols in a similar. way




TABLE Il 10° T
LOOK-UP TABLE DECODING OF THERLL ({1, 3}, {1, 3})-CONSTRAINED :
CODE FROMEXAMPLE 3 AND WITH THE ENCODER GIVEN INFIG. 7.
BEFORE DECODING IF A RUN OF TWO ZEROS OR TWO ONES IS OBSERVED ~ 107'F
CHANGE IT TO THREE SINCE IT MOST LIKELY COMES FROM A DELETION
OF A LENGTH-THREE RUN. SIMILARLY , IF A RUN OF FOUR ZEROS OR ONES
IS OBSERVED CHANGE IT TO THREE

Current word | Next bit pair | Decode to 10-3
00 Whatever 0 &
- =
01 Not possible | Detect error 10-4
10 00 or11 0
10 1
-5 10,011 code
107 ’
11 Whatever 1 —+— 101,01101 code

—&— Manchester code
10-6 F —s7— 4-state, rate-2/3 code | |
.. . v ——— 3-state, rate-1/2 code
The encoder has rate/2, minimum sustainable power/4, : 01,0111 code
. ; ; ; ; ‘ ‘ ‘
local minimum powerl /7, average powei /2, and allowed 10 e ra— o T o o o
runlengthsl and 3. .

L Fig. 8. FER on the discretized Gaussian shift channel as @ifumof  for
H. RLL({1}, {1, 3})-Limited Codes different codes.

The capacity of the constraint RIL{1}, {1,3}) is 0.347.
Furthermore, there is no difference in the asymptotic F
(i.e., the FER for small values ot) with respect to
RLL({1, 3}, {1,3})-limited codes (the proof of Theorem 3
holds in this case as well). Thus, the only advantage over )
the RLL({1,3}, {1,3}) limitation is a higher power content. J- Related Constraints

Example 5: The  variable-length ~ RLY1},{1,3})-  Any RLL({3":i=0,...,L},{3":i=0,...,L})-limited
constrained code with codeword$01,0111} has rate code, for any positive integef, has a FER of the order
1/3, minimum sustainable powdr/2, local minimum power of O(p(1)) (with both quantization scheme8;oundaing and

E\ﬁith the quantization scheme@,ounding and Q({1,2,4}),
respectively, for small values af for these codes.

1/3, and average powex/3. Q({3" : i = 0,...,L})) for small . This can be shown
with a similar argument to that used to prove Theorem 3. We
I RLL({1,2,4}, {1,2, 4})-Limited Codes remark here that th&(p(1)) performance guarantee under

the quantization schem@,,unding assumes that the decoder

deals with nonadmissible (with respect to the code) observe

RLL({1,2,4},{1,2,4}), RLL({1,2},{1,2,4}), and runlengths in the appropriz_;\te way. Notice that_ the capacity

RLL({1},{1,2,4}) seems to approach a limit at abo08 as L increases.
AT Thus, there seems to be no immediate practical advantage on

have capacitie).811, 0.758, and 0.515, respectively. The extending these ideas further.

latter constraint may be attractive from a power transféntpo

of view; the two former constraints admit code ratesigh VI. SIMULATION RESULTS

and 3/4, respectively, but may be hard to implement. For | this section, we provide some simulation results of some
the RLL({1},{1,2,4}) constraint, a raté;2, 6-state encoder qf the above-mentioned codes on the discretized Gaussitan sh
can be designed using the state-splitting algorithm fro#].[2 channel. In particular, we consider the Manchester coda fro
Finally, we remark that the FER on the discretized Gaussia@ction V-B, the{10,011} code from Section V-C, and the
shift channel is on the order oD(p(2)) and O(p(3/2))  {101,01101} code from Section V-D, in addition to the newly
designed codes from Examples 1, 3, and 5. For convenience,
the information block lengtlk is chosen to bel0 bits; this
allows a simple processing, while the block length is alyead
long enough for the issues addressed in our analytical appro
to be valid. The simulation was carried out with software
implemented in C++, and the simulation was terminated (for
each simulation point) after the transmission 10f frames
or when at leas200 frame errors were recorded. This should
give sufficient statistical significance, as can also be §ean
the figures (all simulation curves are smooth), and hence no
error bars are included.

In Fig. 8, we have plotted the FER performance of these
codes as function af on the discretized Gaussian shift channel
Fig. 7. An encoder for a RL{1,3}, {1, 3})-constrained code. with quantization schem@([1, 2]) for the Manchester code,

Codes satisfying the constraints
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10° T ‘ ‘ ‘ ‘ T TABLE IlI
LOOK-UP TABLE DECODING OF THEMANCHESTER CODE
. . =3
101k e 4 Previously decoded bit Next bit pair | Decode to | Advance
1 10 1 2
1072 F E 1 01 0 2
1 11 0 1
10-3F 4 1 00 Whatever 3
& 0 01 0 2
=
104} i 0 10 1 2
0 00 1 1
. 0 11 Whatever 3
1077 F E
—+— Manchester code; Qrounding
10-6 F —6— Manchester code; O([1,2]) . .
——— 01,0111 code; Qrounding kis approxmately
—F&— Analytical
10-7 ; ‘ ; ‘ ‘ ‘ ‘ 1
004 006 008 01 012 014 016 018 0.2 kE-p(l)=k-Q (2—)
e
€

Fig. 9. A comparison of the FER (as a function @fon the discretized aS€ becomes smaller.
Gaussian shift channel with two different quantization esoks and with Proof: The p(-)-part of the expression follows from

analytical expressions for the asymptotic performance,tfie Manchester Thagrem 3 (or more precisely, the proof of Theorem 3, since

code and the variable-length coge, 0111} the proof holds for both RL{{1},{1,3})-constrained and
RLL({1, 3}, {1,3})-constrained codes). The factbrin front
follows from the fact that the decoder needs to make exactly
one decision for each information symbol. |

for the {101,01101} code from Section V-D, and for the Proposition 5: For the Manchester code on an information

code from Example 1, with quantization sche®@€[1, 3]) for block of lengthk, the FER is approximately

the {10,011} code from Section V-C, and with quantization 1

schemeQ({1, 3}) for the remaining codes. As can be observed  (3k/2+1/2)-p(3/2) = (3k/2+1/2)-Q (3—)

from the figure, the RLI{1, 3}, {1, 3})-constrained code from c

Example 3 and the RLY{1},{1,3})-constrained code from and

Example 5 have the best error rate performance, while the k/4-p(2) =k/4-Q (i)

variable-length cod€ 10,011} designed in [8,9] for the tra- de

ditional bit-shift channel has the worst performance amo i i7ati )

the simulated codes. However, this is not surprising, sthise ':g;:jergtei\l/ce,l\;vltgsqEzzgﬁ:;)r;;c;g:@([1, 2)) andQroundine;

code has not been designed for the discretized Gaussidn shif pyqof- "I'he p(-)-parts of the expressions follow from

channel. Theorems 2 and 1, respectively. The factor in front (for
In Fig. 9, we have compared the performance of twauantization schem@([1, 2])) follows from the fact that all

different codes, namely the RIL1,2}, {1,2})-constrained runlengths are equally critical, i.e., .the probgbility deagth-
Manchester code and the RUL}, {1,3})-constrained code 1 runlength (of zeros or _ones) being received as a Ie_fz_gth-
(01,0111} from Example 5 with two different quantizationrunlength and vice versa is the same. Thus, the multiplioity
schemes. We have used the quantization schemes simulatefaft Of thep(-)-part will be the average number of runlengths
Fig. 8 and the quantization SCheniounding. Note that the N @ codeword, which is exactlyk/2 + 1/2.

curve for the RLI({1},{1,3})-constrained codg01,0111}  With the second quantization schem@,{unding). Only
from Example 5 with quantization schen@({1,3}) is not length2 runlengths are qrmcal, but not all of them,_ as can
explicitly shown, since there is no noticeable performatice be seen from the operano_n of the decoder. In partl_cular, the
ference between the two quantization schemes for this ijetaecoder works as shown in Ta_b'e lll. Observe a window of
also shown by Proposition 4 below). On the other hand, thdWo consecutive bits of the received sequence (second_collum
is a significant performance difference for the other codes T © Table 1Il). Then, based on the previously decoded bitt(firs
is consistent with our earlier discussion in Section V. la thcolump of Table II1), decode the observed bits as |nd|ca|l]ed_ :
figure, we also show analytical expressions for the asyrigptof"€ third column of Table IIl, and advance a number of bits
performance which depend on both the quantization schefS |nd|catgd in the fourth column) for the new ,W'nd_o_w‘

used and the particular decoding algorithm. These exmressi VoW, for instance, the sequence 10.01.01.... is critical,

are given by the propositions below and match perfectly wifinc€ it can be received as.10.10.1... (the third bit
the simulation results. is deleted), and the decoder from Table IIl is not able to

recover it without errors. On the other hand, the sequence
Proposition 4: For the RLL({1}, {1, 3})-constrained code ...10.01.10... is not critical, since the corresponding re-
from Example 5, the FER (with both quantization scheme®ived sequence .10.11.0... (again the third bit is deleted)
9({1,3}) and Q,ounding) 0N an information block of length is decoded correctly by the decoder of Table Ill. In summary,
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from Table lll, the critical sequences are in fact exactlyhe (discretized) Gaussian shift channel was proposed as a
those that have a length+tunlength followed by a length- channel model for the reader-to-tag channel when the receiv
1 runlength. Assuming equally likely transmitted inforneetti resynchronizes its internal clock each time a bit is detkcte
symbols, with probabilityl /4, a critical pattern occurs in the Furthermore, the capacity of this channel was considersdi, a
transmitted sequence for each information symbol, and tekeme new simple codes for error avoidance were presented.

expression (valid for larg&) follows.

B Their performance were also compared to the Manchester code

We have also simulated the case where the communicatad two previously proposed codes for the bit-shift channel
takes place on the discretized Gaussian shift channel wittodel.
simultaneous additive white Gaussian noise (AWGN), and Error avoidance allows a quantification of the coding gain
where the Gaussian noise is added (at the bit level) at thiea runlength-limited code, and we believe that this qdanti
output of the discretized Gaussian shift channel. The t®sukation adds a new perspective of constrained codes.

shown in Fig. 10, are for the Manchester code wali1, 2])
and hard-decisions as a function of battand the signal-to-
noise ratio (SNR), defined &sl; — Ag)?/2Ro?, whereo is the
standard deviation of the AWGNg is the code rate, and;
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performance behavior with simultaneous AWGN (results not
included here). We remark that in the normal mode of RFID
reader-to-tag operation, the SNR can be expected to be hig[li]

(2]
(31

10°

102 [4]
= 1074 [5]
1076 4 [6]

10-% 3
10 [7]
(8]

SNR in dB

9
Fig. 10. FER on the discretized Gaussian shift channel witiuaneous (9]

AWGN as a function of botlz and the SNR (in dB) for the Manchester code

Finally, we remark that we have used look-up table decoding
in all simulations. For instance, for the codes from Exarale
and 3, we have used Tables | and I, respectively, in the decod
ing. For the Manchester code, we have used Table Ill. Fyrther
note that all the codes used in the simulation are local aed eV*?
a (hard-decision) ML decoder is limited in performance by th
issues discussed in our analysis. A soft-decision ML decode
may improve on this, but will complicate the implementatior{l?’]
something which is undesirable with current technologye#x k
point of the proposed codes is that they are designedrfor  [14]
avoidence, and consequently coding gain is achieved with a
very simple decoding procedure. [15]

VIlI. CONCLUSION [16]

In this work, we have discussed a new channel model
and code design for near-field passive RFID communicati?lp,]
using inductive coupling as a power transfer mechanism.
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