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Interference Pricing Mechanism for Downlink
Multicell Coordinated Beamforming

José Joaquin Escudero Garzas, Member, IEEE, Mingyi Hong, Alfredo Garcia, and
Ana Garcia-Armada, Senior Member, IEEE

Abstract—We consider the downlink coordinated beamforming
problem in a cellular network in which the base stations (BSs) are
equipped with multiple antennas and each user is equipped with a
single antenna. The BSs cooperate in sharing their local interfer-
ence information, and they aim to maximize the sum-rate of the
users in the network. A decentralized interference pricing beam-
forming (IPBF) algorithm is proposed to identify the coordinated
beamformer, where a BS is penalized according to the interference
it creates to its peers. We show that the decentralized pricing
mechanism converges to an interference equilibrium, which is a
KKT point of the sum-rate maximization problem. The proofs rely
on the identification of rank-1 solutions of each BSs’ interference-
penalized rate maximization problem. Numerical results show that
the proposed iterative mechanism reduces significantly the ex-
changed information with respect to other state-of-the-art beam-
forming algorithms with very little sum-rate loss. The version of
the algorithm that limits the coordination to a cluster of base
stations (IPBF-L) is shown to have very small sum-rate loss with
respect to the full coordinated algorithm with much less backhaul
information exchange.

Index Terms—Base station coordination, beamforming, inter-
ference equilibirum, multiple input-multiple output (MIMO),
non-convex.

I. INTRODUCTION

ULTIPLE input—multiple output (MIMO) communica-

tions [1] have been adopted in many recent wireless
standards, such as IEEE 802.16 [2] and 3GPP LTE [3], in the
aim of boosting the data rates provided to the customers. A
promising solution to achieve spectrally-efficient communica-
tions is the universal frequency reuse (UFR) scheme, in which
all cells operate on the same frequency channel. This scenario is
also known as MIMO interference broadcast channel (MIMO-
IBC), where the downlink capacity of the conventional cel-
lular systems with UFR is limited by inter-cell interference.
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As a result, it is necessary to introduce coordination among
the base stations (BSs) so that they can jointly manage the
interferences in all cells to improve the system performance [4].
Such coordination technique among the BSs in the downlink is
also known as network MIMO [5] or Coordinated multipoint
(CoMP) [6].

Cooperative encoding among BSs using the non-linear Dirty
Paper Coding (DPC) technique can suppress other cell interfer-
ence if the interference is known by the transmitters [7]. How-
ever, this approach is impractical, so other approaches in the
literature have exploited less complex schemes. Linear transmit
beamforming has been proven to provide the same sum-rate
scaling law as DPC while maintaining low complexity [8] and
has attracted great interest as a technique for BS coordination
in multicell network [9]-[15]. In this regard, weighted sum-rate
maximization (WSRM) for BS coordination with linear beam-
forming has received increasing attention from the research
community. The WSRM problem is a nonconvex and NP-hard
problem [16], [17] and, consequently, very challenging from a
computational perspective.

Economists use the term externality to describe any effect
by an economic agent’s decision on other economic agents,
excepting those mediated by a price mechanism. It is well-
known that the competitive equilibrium of an exchange econ-
omy with either production or consumption externalities may
fail to maximize aggregate surplus. Lindahl [18] proposed an
externality pricing approach to recover efficiency in a compet-
itive equilibrium by charging consumers (in the case of a con-
sumption externality) the associated marginal benefit reduction.
It is in this sense that interference pricing has been recently
used for the design of linear beamforming for MIMO links
[19], multicell networks [20] and single-cell MIMO systems
[21], [22]. A distributed coordinated scheduler relying on a
master-slave architecture has been proposed in [23] to optimize
the network weighted sum-rate with uniform power allocation
and fixed beamformers. Interestingly, the problem is maximized
over transmission ranks and user scheduling rather than the
usual beamforming vectors.

In this paper, we address the WSRM problem for downlink
MISO-IBC in a cellular scenario, in which the base stations
simultaneously transmit to their respective groups of receivers
and impose upon each other an interference externality [24].
We introduce the notion of an interference equilibrium, i.e., a
3-tuple of interference prices, beamforming and power alloca-
tion strategies (power shadow prices) such that each individual
base station cannot strictly improve its own weighted sum rate
by unilaterally adopting a different beamforming and/or power



allocation strategy. We propose a decentralized iterative pricing
and beamforming algorithm and show that it converges to an
interference equilibrium. Such equilibrium is shown to corre-
spond to a KKT point for the original WSRM problem. The al-
gorithm has low computational and informational requirements
(i.e., beamforming updates are of rank 1 and interference price
updates are sent to a single base station at each iteration).

The paper is organized as follows. We start by reviewing
the existing literature in Section II. In Section III, we give the
problem formulation and system description. The interference
pricing mechanism framework and convergence of the itera-
tive mechanism are provided in Section IV after relaxing the
rank-1 constraint at each BS. In Section V we show that such
relaxation is done with no loss of generality as we provide a
simple procedure to obtain a rank-1 solution for each BS. The
Interference Pricing BeamForming (IPBF) algorithm to solve
the complete multicell beamforming problem is developed in
Section VI. In Section VII, we provide numerical results to
demonstrate the performance of the proposed algorithm and its
limited coordination version IPBF-L is presented and evaluated.
Finally, we offer concluding remarks in Section VIIIL.

II. LITERATURE REVIEW AND SUMMARY
OF CONTRIBUTIONS

Although the weighted sum-rate maximization (WSRM) for
BS coordination with linear beamforming can be globally
solved [25], [26], most works have focused on finding sub-
optimal solutions with less complex algorithms. For instance,
mean-square-error (MSE)-based approaches have been pro-
posed for the WSRM problem in MIMO interfered channel.
In [27], the MSE criterion is used to design the precoder to
solve the WSRM problem. Other works exploit the design
of the minimum mean-square error (MMSE) beamformer, in
both the transmitter (precoder) and the receiver, to maximize
the weighted sum-rate. In [28], the authors propose a set of
algorithms based on interference alignment for MIMO point-
to-point communications. Also, using interference alignment,
in [29] it is studied the maximization of the sum of degrees
of freedom for MIMO-IC. The proposed algorithm is semidis-
tributed in terms of communication and needs some informa-
tion exchange among the nodes, although sharing of users’ data
streams is not requered. When BSs share users’ data streams,
it is shown in [30] that partial coordination among BSs is
equivalent to the MIMO interference channel, in which each
transmitter only knows the message of one user under gener-
alized linear constraints. The main drawback of MSE-based
methods for the WSRM problem is that they generally require
additional fed back signal coordination from the receivers to the
base stations over the iterations of the algorithm.

Previous works have proposed algorithms that reach a sta-
tionary point assuming complete users’ data sharing. In [17],
the authors propose a distributed algorithm to maximize the
WSR based on primal decomposition with users served by
several BSs. In this case, the convergence of the algorithm is
shown with appropriate choice of stopping criteria, although
local optimality is not guaranteed since the subproblems are not
solved using KKT conditions. The algorithm is defined by the

authors as asynchronous in the sense that BSs can solve their
local subproblems independently once they have the required
information from other BSs. In [31], the authors propose the
polite water-filling algorithm, which balances between created
interference and link rate, for generalized interference (referred
to as B-MAC) networks. The algorithm is based on the duality
between the forward and reverse links. This channel reciprocity
can be only used for point-to-point communications where the
power constraints are symmetric, so it cannot be extended to
the case of multicell multiuser networks. In [32], the authors
propose a set of centralized and distributed algorithms based
on MMSE to maximize the WSR with per antenna power
constraints. The algorithms are suitable for both single and
multicell scenarios and provide the design of transmitters and
receivers, although the decentralized algorithm relies on infor-
mation exchange among all BSs and users.

However, the limited bandwidth of the backhaul network
connecting the base stations may prevent users’ data sharing;
moreover, users’ data sharing can be difficult to implement in
real time. More practical models assuming coordinated base
stations only exchange channel-state-related information lead
to more efficient use of the backhaul bandwidth. For MIMO
cognitive radio networks with point-to-point links, the WSRM
problem for the secondary users is addressed in [33]. The WSR
problem is formulated with constraints in the interference cre-
ated over primary users to design the link transmitter precoders,
and the proposed iterative centralized algorithm is shown to
converge to a KKT point. The partially-connected cluster (PCC)
model presented in [34] assumes that each user is served by
only one BS and that coordinated BSs jointly optimize their
beams based on the inter-cell channel gains. They propose the
Iterative Coordinated Beamforming (ICBF) centralized algo-
rithm, which also admits a distributed implementation, and the
experiments show that the algorithm converges. In the same
line, in [35] the authors relate the WSRM problem to the
matrix-weighted sum-MSE minimization problem, and present
the WMMSE iterative algorithm to calculate the transmit and
receive beamformers in the MIMO-IBC. It is shown that the
WMMSE algorithm converges to a local optima of the utility
optimization problem, and that the algorithm can be extended
to other increasing utility functions.

Only a small subset of these papers (e.g., [33] for a cogni-
tive radio scenario in point-to-point communications, and [35]
for matrix-weighted sum-MSE minimization) effectively prove
convergence of decentralized (or distributed) algorithms to a
KKT solution. Based on the interference pricing framework,
we develop an algorithm allowing each BS to iteratively op-
timize its own interference-penalized sum rate. We show the
interference equilibrium is equivalent to a KKT point of the
original problem, and we prove that the algorithm converges
to a KKT point after relaxing the rank-1 constraint at each
base station. Such relaxation entails no loss of generality as
we describe a simple procedure to obtain the rank-1 closed-
form beamforming solution at each base station. The pro-
posed Interference Pricing BeamForming (IPBF) algorithm
exhibits the following properties: i) Decentralization, i.e., indi-
vidual BSs optimize their own interference-penalized sum rate;
it) Low informational requirements, interference pricg updates



are sent to a single base station at each iteration; iii) Con-
vergence, unlike most algorithms in the literature, the IBPF
algorithm is guaranteed to converge to a KKT point; iv) Users’
data sharing, the IPBF algorithm assumes that each user is
served by one and only one BS, so no users’ data sharing is
required.

The proposed Interference Pricing BeamForming (IPBF)
algorithm is compared with the Iterative Coordinated Beam-
Forming (ICBF) algorithm presented in [34] and with the
weighted MMSE (WMMSE) algorithm proposed in [35], which
is expected to outperform both IPBF and ICBF algorithms
at the expense of higher information exchange. We observe
some important differences with respect to these approaches.
First, in our approach the BSs update sequentially instead of
simultaneously. One important consequence of such difference
in updating schedule is the amount of information exchange
needed in each iteration; in our algorithm, all BSs only need
to send a single copy of their local information to a single BS,
while in ICBF and WMMSE, they need to send to all other
BSs. Second, there is no “inner iteration” needed,! in which
all the BSs can update their beam matrices at the same time
to reach some intermediate convergence (note that in ICBF
and WMMSE the convergence of the inner iteration is not
guaranteed). Such “inner iteration” is undesirable, because a)
a finite stopping time necessarily implies the solution identified
is only approximately optimal, hence the approximation error
may significantly deteriorate performance, and b) in each of
such inner iterations, extra feedback information needs to be
exchanged between the BSs and their users. Finally, the IPBF
algorithm is proven to converge to a KKT point, while the ICBF
algorithm does not possess such convergence guarantee. The
simulation results show that the proposed algorithm has similar
sum-rate performance that the ICBF and WMMSE algorithms,
while requiring significantly less information exchange among
the BSs through the backhaul network.

Notation: For a symmetric matrix X, X > 0 signifies that
X is positive semi-definite. We use Tr(X), |X|, X*, and
Rank(X) to denote the trace, the determinant, the Hermitian,
and the rank of a matrix, respectively. [X]; ; denotes the (7, )th
element of the matrix X. I, is used to represent a n. X n identity
matrix. We use RN *M and CN*M to denote the set of real and
complex N x M matrices; we use S and S¥ to identify the
set of N x N Hermitian and Hermitian semi-definite matrices,

respectively. Define t @ M = {(t+1) mod M} + 1 as an in-
teger taking values from {1,..., M}.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the interference broadcast channel (IBC) of a
multi-cell multiple-input-single-output (MISO) network with
M cells, each of them served by a base station (BS) m €

A .
M={1,...,M}. Each BS m serves a set N,, with N,,
distinctive users and is equipped with K transmit antennas,

'In the context of an algorithm that consists of two nested loops, inner
iterations refer to the iterations executed by the inner loop, and outer iterations
are the iterations corresponding to the outer loop.
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Fig. 1. MISO IFBC system with M base stations, K transmit antennas, and
N = N users per BS for all m.

and each user is equipped with a single receive antenna, as
shown in Fig. 1. A linear precoder w,, ; € CKX with i € A,
is used for transmission, and the signal x,, € CX transmitted
by BS m is

X = Y Won,ibm.i (1)

where b,,, ; is the complex information symbol to be sent by BS
m to user ¢. We assume that the data symbols are independent
and have unit variance: E|by, ;b; ;] = 0 for all (m, i) # (g, 7).
and E[by, ;by, ;] = 1, forall (m, i). Each BS m € M has a total
transmit power constraint such that Y,y ([ Wy, i[|* < Pin.

We assume the MIMO parallel channels are perfectly uncor-
related assuming the following hypothesis: a) transmit antenna
spacing is large enough (for instance, A/2); and b) omni-
directional and isotropic antennas, which provides rich scat-
tering environment. Under these ideal conditions, the MIMO
channels are i.i.d. frequency-flat Rayleigh fading channels, and
the channel vectors h,,, ; are modeled as i.i.d. CA/(0, 1) random
variables. Let h,, ; € C¥ denote the complex channel between
the mth BS and the ith user in mth cell. Let h, ,,,, € CK denote
the complex channel between the gth BS and the ith user in
mthcell, ¢ # m. Let n,, ; € C denote the circularly-symmetric
Gaussian noise with variance ¢, ;. We use (m, i) and —(m, 1)
to denote the ¢th user in mth cell and all the users except
user (m, 1), respectively. Then, the matched-filtered, symbol-
sampled complex baseband signal received by user (m, i) can
be expressed as

H H
Ymi =0l W b+ > Wl W b
J#i

Intra—cell Interference

+ Z hf;{miwq’jqu +nm,i- (2)
qgFm,jeN,

Inter—cell Interference 3



The following rate is achievable for user (m,4) by using
Gaussian codebooks:

Rm,i (Wm,iv W—(m,z))

H
hm’iwm,ihm,i

Cm,i t+ Z hgqu,j hlbmi
(g,5)#(m,i)

= Og _— )
I i (Wf(m,i))
where W,,, ; = Wm,iWH

m.i 1s the transmit covariance of user
(m, ). Clearly, W,,, ; = 0 and Rank(W,, ;) < 1. Note that
W _ (i is short notation for the collection of covariance ma-
trices others than W, ;,i.e., W_(,,, ;) = {Wy_j }g£m,ji. Note
that throughout this paper we refer to the same set of covariance
matrices with two different notations, i.e., we use the compact
notation W_,, ;y to refer to the set of all covariance matrices
except W, ;, and we use w, ; to refer to these covariance
matrices individually, for instance in the second and third terms
of (2).

The receivers perform single-user detection, i.e., each re-
ceiver decodes its intended signal by treating all other inter-
fering signals as noise, so the total interference plus noise
experienced at user (1, 7) is calculated as

élog 1+

3)

I (W_(m.) = Cm,i + Z h,Hn,in,jhm,i
J#i

+ Z hgmiwqdhqmr “4)
‘Hkmvje/\/’q

We assume that I, ;(W_(y, ;) is perfectly known at user
(m, i) and BSs m, but not the neighboring BSs. As suggested
by [36], this interference plus noise term can be estimated at
each mobile user by many different methods, and fed back to
its associated BS.

Then the weighted sum-rate of all users in cell m can be
expressed as

R(W) é Z Z aiRm,i (Wm,iawf(m,i)) s (5
meM ieNn,

where the weight a; > 0 stands for the priority of user i
in the system, and W represents the total set of covariance
matrices, i.e., W = {Wmvi}meM,ieNm' User’s weights may
be assigned according to a number of criteria, e.g., to achieve
proportional fairness among the users or to implement max-min
fairness. Discussing policies to assign users’ weights is out of
the scope of this work. Instead, we assume a given set of user
priorities {; m }

In our model, we assume that each BS m knows the channels
to all the users in the system. Regarding the information ex-
change, we opt for an approach where the BSs do not exchange
users data to optimize the downlink but only the channel state
information (CSI) in designing the downlink beamforming
vectors. Since channel variations are much slower than those

of data, the amount and the frequency of information exchange
is greatly reduced. We note that letting all the BSs coordinate
and exchange information induces heavy signaling overhead,
especially for large networks. Thus in practice coordination can
be limited to neighboring BSs, as we show in Section VII.

Then, we are interested in the following non-convex
weighted sum-rate maximization (WSRM) problem:

max R(W) (WSRM)
s.t. Z Te[Wo il < P, YmeM
€N,
Wm,i >__ 07 Rank(wnL,i) S 17 v (ma Z)

where we want to find the covariance matrices W, ; that
maximize (WSRM). Note that W, ; are imposed the constraint
Rank(W,, ;) < 1 for them to be the covariance matrices corre-
sponding to beamformers W, ;. The problem (WSRM) is NP-
hard in general [16]. Exact algorithms as the BRB algorithm of
[26]) can solve the problem (WSRM) but are computationally
intractable. Although optimal algorithms are not applicable
in real-time, they can be used to find close approximations.
Consequently, the study of heuristic algorithms along with
a characterization of their performance with respect to the
optimal is a reasonable alternative.

IV. INTERFERENCE PRICING AND
BEAMFORMING MECHANISM

Interference prices have the ability to force individual base
stations to internalize the negative effects (externality) they
impose upon other base stations. Consider the following relaxed
sum-rate optimization problem (R-WSRM) in which we relax
the rank-1 constraint

R(W) (R-WSRM)

max
{W'm,'i}e}-
st Y T [Wy ] < Py Ym e M
i€N,

where F denotes the set of feasible transmit covariance ma-
trices F 2 {W,..i : W,,, ; = 0}. For the problem (R-WSRM),
any optimal point W* must satisfy the Karush-Kuhn-Tucker
(KKT) conditions, which can be expressed as follows:

M
VW,,,L,i (R(W*) + Z )\m (pm - Z Tr [W:mz]))

m=1 1N,
=0, Vm,i (6)
A (pm — Z Tr [W,*m]) =0, Ym (1)
i€Nm
Y T [Wi ] <pn, Vm @®)
i€Nm

_— PN



It can be straightforwardly shown that the KKT conditions
(6)—(9) can be expressed as the interference equilibrium defined
in the following section.

A. Interference Pricing Equilibrium

We define, for each pair (m, ), a modified objective function
U,n,; as follows:

Um,i (Wm,iy Wf(m,i)v T, )‘)
:Rm,i (Wm,ivwf(m,i))

— > TE(W)GL (W i) = Am Tr[W, ], (10)
(g,5)#(m.1)

where T,SL’J% (W) is the interference price associated with
the interference originated by pair (m,i) on (g,j) so that
T (W)GE (W, i) is the “interference payment” due to
interferepce GHi(Win i) = hgqu.m,ihm,qj.on pair (q,].'),
and A, is the shadow price for transmit power in BS m. While
interference prices are used to control the interference the BSs
create over each other, shadow prices regulate that users served
by a given BS do not consume excessive power.

Let A 2 Dt and T = {T,,;} ¥ (m,i), where T,,
is the set of interference prices 7,17 (W), ie., Ty, =

{T2T(W

i ( )}q i’ Let Wy, ; denote the set of feasible trans-

mit covariance matrices for (m, ), Wiy, ; 2 {Wpi: Tr[W,, 4] <
DPm, Wm;i = 0}

Definition 1: The 3-tuple (W*, T* \*) is said to be an
interference pricing equilibrium if the following conditions are
satisfied’:

W:n i €arg max U’m,i (Wm,i; Wi(m i) Tjn i A*>
’ m,,ie m,i ’ ’
an
OR_ (1) (W
T;, (W) & - il 2 (W) >0 (12)

OW i
PN (pm— > Tr [Wj;w.]> =0, \m =0, Vm (13)
€N,

Z Tr [Wer,i] S pm, Vm. (14)

€N,

It can be readily seen that (11)-(14) are equivalent to the
KKT conditions (6)—(9), and this guarantees that the covariance
matrices in the interference equilibrium W* are also a KKT
point of the sum-rate maximization problem (R-WSRM). In the
following we will set out to find such interference equilibrium.

B. Iterative Decentralized Pricing and
Beamforming Mechanism

In this section, we describe an iterative decentralized
pricing and beamforming mechanism to calculate the tuple

2See [37] for a related application of this concept.

(T, A*, W*). The mechanism is decentralized in the sense that
as long as the BS m has the information from the other BSs
and the channel matrices {H,, g, } 3 it can carry out the
computation by itself.

The mechanism consists in iteratively calculating the values
of (T, A\, W) until convergence. At each iteration ¢ and for
a specific user ¢, a given BS m receives updated interference
prices T;’fj’-”t(Wt‘l) (15), obtains the optimal W7, ; (16), and
updates the shadow price !, (17). Hence, for a chosen pair BS-
user (m, i), a basic iteration ¢ comprises the following steps:

qFm’

1) Interference prices update. The interference prices are
updated in BSs ¢ # m as

m,i,t -1
T, (W)
__ORy, (W)
OW i

_ 1/1n(2) hgihy.;
t-1 H yxrt—1 t-1
Iq.j (W—m,j)) +hy ;Woihglq; (W—(q,ﬂ)

5)

2) Information exchange. BS m collects WZTJ-I and interfer-

ence prices TZ?f’til(Wt’l) from BSs ¢ # m.
3) Transmit covariance matrix update. The following indi-

vidual optimization problem for user (m, ) is solved:

Wi, =arg max Uy (Wi WL ) T L) (16)

m,i

with W, ; € Wy, ;.
4) Transmit power price update. The transmit power A, is
updated by BS m as follows:

/\fnmax{/\gnl +p< Z Tr[Wf;ﬂ ﬁm>,0},p>0, (17)

1N,

In our mechanism, in each time instance a single users’
maximization problem (16) must be solved, providing a rank-1
solution in accordance with the original (WSRM) problem. In
Section V, we find a procedure to calculate a rank-1 solution,
showing that the rank relaxation effectuated here does not affect
the global solution. The mechanism described above, together
with the procedure of Section V, are the basis to design the
complete Interference Pricing Beamforming (IPBF) algorithm
detailed in Section VI.

C. Convergence of the Pricing and Beamforming Mechanism

We now prove that the previous scheme converges to a KKT
point of (R-WSRM), as it is shown by Theorem 1 developed
in this section. We first establish the following proposition that
characterizes the users’ rate (3).

3Note that channels are assumed to be invariable while solving the WSRM
problem. Then, {H,, 4 j }q e be broadcast just once initially. 5



Proposition 1: Ry, i(Wy i, W_(p, ;) is a convex function
of w, ; € SK forall (¢, j) # (m, ) and for a fixed W, ;, and
a concave function of W, ; € S_If for fixed W_,,, ;).

Proof: See Appendix A.

It is important to note that in classical information theoret-
ical literature we can find some form of concavity w.r.t the
precoding matrix, convexity w.r.t the noise interference (see,
e.g., [38]). However, it is worth noting that in the context of
beamforming, the above property is only true in the space of
rank-relaxed covariance matrix W,,,, but not in the transmit
beamformer space w,,,. In the following we state a convergence
result for the pricing and beamforming mechanism.

Theorem 1: The sequence of covariance matrices W* con-
verges to a KKT solution W* of problem (R-WSRM) with
probability 1.

Proof: The details of the proof can be found in
Appendix B. |

However, any stationary solution for problem (R-WSRM)
may not even be a feasible solution for the original problem
(WSRM), due to the rank relaxation performed earlier. In the
following section we show that we can in fact find a rank-1
optimal solution for the users’ utility maximization problem
(16). This result implies that indeed we can find a KKT solution
for problem (WSRM).

V. DEALING WITH THE RANK-1 CONSTRAINT

In this section, we develop a procedure to find a rank-1
solution to the problem (16) of the pricing and beamforming
mechanism. We first show the existence of such rank-1 solution
and afterwards we propose a procedure that provides a closed-
form solution for the rank-a covariance matrices.

A. Existence of Rank-1 Solution to the User’s Utility
Maximization Problem

In our mechanism, in each time instance a single users’
covariance (say the ith user in mth cell) is computed by solving
the following users’ utility maximization problem (UUM)

(UUM)

max
W, i €Wn,

Um,i (Wm7i7 Wf(m,z)) .

We note here that although recent works such as [39], [40]
have shown that the WSRM problem must admit rank-1 glob-
ally optimal solution, their argument cannot be directly used to
show that the (UUM) problem must have rank-1 solution. In
fact, the solution of UUM is not directly related to the global
optimal solution of WSRM, except for the case where W_,,, ;)
is itself part of the globally optimal solution for WSRM. We can
identify a special structure of the problem (UUM) that allows
it to admit a rank-1 solution. To this end, we tailor the rank
reduction procedure (abbreviated as RRP) proposed in [41] to
fit our problem. For the sake of readability, we relegate the
discussion details to Appendix C.

However, this procedure is not that useful in practice as
it requires solving (UUM) to begin with. Therefore, in the

following we propose a procedure that directly computes a
rank-1 optimal solution to the problem (UUM).

B. Procedure for User’s Utility Rank-1 Maximization

The problem (UUM) is a concave determinant maximization
(MAXDET) problem [42], and can be solved efficiently using
convex program/SDP solvers such as CVX [43]. However, in
practice such general purpose solvers may still induce heavy
computational burden. Moreover, the resulting optimal solu-
tion of the relaxed problem may have rank greater than one.
Fortunately, these difficulties can be resolved. We have found
an explicit construction that generates a rank-1 solution of the
problem (UUM), hence the interference pricing equilibrium co-
variance matrices W* are rank-1. The rank reduction problem
of downlink beamforming has been recently studied in [41],
[44] and [45]. However, the algorithms proposed in those works
cannot be directly used to obtain a rank-1 solution to (UUM):
[41] considers problems with linear objective functions; [45]
and [44] consider the relaxation of the MAXDET problem
without the linear penalty terms.*

In this section we develop a procedure that provides a rank-1
W, ; for each user (m,i). We first show that W7, . must
be diagonal. As a consequence, we can find a closed-form
expression for W7, ..

The utility function U, ; at time ¢ can be written, for a given
Wt

~(m,i)> 38

v
Im,i (Wt,(mﬂ))

— T [(A + AL D) WY

Ufm(Wml) =log |I+ anszz

(18)

We recall that X, =max{\, 140" (3, Tr[WE L] =P, 0.
Notice that A,,, ; = 0 (see Appendix C), then for any \!, >
0, we can perform the Cholesky decomposition A, ; +
ALI=LPL, which results in Tr[(A,,;+ A, )W}, ] =
Tr[LW!, ,L]. Define W, ; = LW/, ;L7 we have

m,i

Upi(Wini)

1

= log|I+L™'W,,,,L "H,, ; ————

— TI‘[Wml]
@ log [T+ W, ; VAVH| = Tr[W,, ]
© 1og ’1 + Wm,iA’ — Te[VW,, V]

= log |1+ Wi A =T Wo ] = Uy (Woni),  (19)

“In [44], with linear penalty in the form of —Tr[A,(W,, — /W\m’q)],
equation (43) is no longer equivalent to equation (44). 6



TABLE 1
OPTIMIZATION OF THE USER’S UTILITY

S1) Compute decomposition:
LAL = Ap s + Aml
VAVH = L-HH,, ;L1 — L
. ’ L i (W _ 1))
S2) Compute W;‘n’i by (20).
$3) Compute W, ; = L™'VW7 VAL~

where in (a) we have used the eigendecomposition:
L "H,, ;L (1/ 1, (W', ) = VAV in (b) we have
defined sz = VHW,,L,iV.

We now prove that the solution to (19) must be diago-
nal. Let W7, ; denote an optimal solution to the problem

max., Upn,i(Wp,;). We claim that there must exist

W, i €W,
a W, ; that is diagonal. Note that Rank(H,, ;) = 1 implies
Rank(A) < 1. Thus W,

»...A has at most a single column, and

we can remove the off diagonal elements of I + V/\\P:nlA with-

out changing the values of |I + V/anlA| Consequently, for

*
m,i?

W:ﬁD by removing all its off diagonal elements. This operation

any given W we can construct a diagonal optimal solution

removes all the off diagonal elements of I + W;’iA, and it
does not change either |I + W;1A| or Tr[\/ﬂ\/';i“} Given that,

W:’LDi is also optimal. When restricting W, ; to be diagonal,
we can straightforwardly derive the closed-form expression of

every diagonal element [W* from (19) as

m,i]]“k
[ et k.k

where [z]" = max{0,z}. Then we can obtain W/ , =
L VW’ ,VHL H_ Combining the fact that Rank(A) < 1

with (20) we conclude Rank(\/ﬂ\/';m) < 1, and consequently
Rank(W: ) < 1, for any A, > 0.

We can also show that when \,,, = 0, A,, ; must have full
rank. In this case, we can find the Cholesky decomposition
A= LL", and the above construction can still be used to
directly obtain W7y ;(0), which satisfies Rank(W: ;(0)) < 1.

In conclusion, for any \,,, > 0, we obtain Rank(ij-) < 1.
Table I summarizes the above procedure.

1t
{[?k]:k 1} if [A]gx # 05

0 otherwise.

(20)

VI. INTERFERENCE PRICING BEAMFORMING
(IPBF) ALGORITHM

In this section we develop an algorithm based on the inter-
ference pricing and beamforming mechanism of section IV and
the procedure described in Section V-B to solve the problem
(WSRM), where a BS m optimizes one and only one user i
each time. We propose the Interference Pricing Beamforming
(IPBF) algorithm for the users to iteratively compute their
beamformers. Moreover, the convergence of the IPBF algo-
rithm is guaranteed by Theorem 1.

Algorithm 1 Interference pricing beamforming (IPBF)

Sett = 0.

1) Inmitialization and BS Selection: randomly choose a set
of feasible covariance matrices. Choose m € M such
that m =t ® B, t > 1, and randomly choose i € N,,,.
WO Vme M.

2) Interference Pricing Update and Information Ex-
change: Let each BS ¢ #m compute TZ)'(W'1)
as in (15), and transfer {T%7'(W* 1)} and Wl o
BS m.

3) Maximization: BS m uses the procedure in Table I to
obtain Wi ; = maxw: cw,, Ub, ;(Wh, ;, WE L ).

4) Update: Let W' = [W: . Wtj(rln’i)].

5) Update: X\, = max{\"' 4+ p' (3, Te[W] }] —
DPm), 0}, given by (17).

6) Information Exchange: Transfer W ; to g # m.

7) Continue: If |[R(W?!) — R(W!M)| < ¢, stop. Other-
wise, sett =t + 1, go to Step 1).

The sketch of the algorithm is as follows. We initialize the
algorithm with a set of feasible covariance matrices and a
random selection of a BS-user pair (1, ) in Step 1). In Step 2),
each BS ¢ # m updates its interference prices {Tf,;f;t(wt’l)}
for all users 7 of BS ¢, and send them to BS m together with
the covariance matrices Wf]jjl. With this information, BS m
optimizes the utility function Ufm and obtains the optimal
covariance matrix W:,*” (Step 3) for the corresponding value of
Am, which is updated in Step 5). The covariance matrix ij;Z
is broadcasted from m in Step 6), and the algorithm concludes
if the stopping criteria specified in Step 7) is satisfied with the
condition € > 0. Otherwise, the algorithm starts a new iteration
and chooses a new BS-user pair.

The algorithm is distributed in the sense that as long as the
BS m has the information specified in Step 2) and the matrices
{Hm,q,-}q S it can carry out the computation by itself. The
stopping criteria is specified in Step 7) with the condition € > 0.

Convergence of the algorithm. We have shown by Theorem 1
that the interference mechanism converges to a KKT point
of the (R-WSRM) problem. Note that the steps of the IPBF
algorithm are equivalent to this mechanism once the rank-1
solution procedure has been incorporated into such mechanism.
Then, by Theorem 1, the convergence of the IPBF algorithm is
guaranteed.

VII. NUMERICAL RESULTS

In this section we analyze the performance of the IBPF
algorithm suitably adjusted to make use of the rank-1 solution
developed in Section V-A. We consider a network with a set
M of BS, within a square area of appropriate size. We evenly
divide the square area into M cells, with a single BS located at
the center of each cell and randomly generated user locations.
The BS to BS distance is 2 km. The channel coefficients
h,,; between BS m and any user ¢ are modeled AS zero
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Fig. 2. Comparison of sum-rate of the different algorithms, for M = 2, K =
2,and N = 2. Users ¢ € Ny, are uniformly placed within d,,, ; € [200, 1000]
meters within each BS.

mean circularly symmetric complex Gaussian vector, and these
coefficients are calculated as [46]

200 \*°
hmi: mya \ 7 Lmia
= (20)

where z,,; is a zero-mean unit-variance circularly symmet-
ric complex Gaussian random vector characterizing Rayleigh
fading, d,,; is the distance between BS m and user ¢, and
the large-scale Log-Normal shadowing effect is modeled by
101og1o(Lym, i), which is a real Gaussian random variable mod-
eling with zero mean and standard deviation 8. We take the
maximum power per BS p,,, = 1 for all m € M, assume the
same environmental noise power for all (m,4)c,, ; = 02 and
define the SN R as 1010g;y(pm /0?).

We compare our algorithm with relevant algorithms in the
recent related literature. The branch-reduce-and-bound (BRB)
algorithm [26] provides the optimal solution and is an upper
benchmark for the WSR maximization problem; the imple-
mentation of the algorithm provided in [47] is utilized. The
weighted sum MSE minimization (WMMSE) algorithm [35]
has favorably been compared with the interference-based algo-
rithm of [19]. The Iterative Coordinated BeamForming (ICBF)
algorithm [34] is a distributed algorithm that has already been
compared in terms of sum-rate performance with an upper
bound achieved when there is no intercell interference; then, it
provides a good benchmark for our algorithm. We also show the
results for two non-coordinating schemes, namely regularized
zero-forcing beamforming [48] and channel matched scheme
(see, for instance, [49]), which are lower bounds.

We first consider a network with two BSs and two users per
BS, with two transmit antennas at each BS,i.e., M = 2, K = 2,
N = 2, for comparison purposes. For this network topology,
the results are obtained by averaging over 200 randomly gener-
ated user locations and channel realizations. This network set-
ting is considered as the used BRB algorithm implementation is
recommended for less than 6 network users. In Fig. 2, we show
the average sum-rate achieved by the different algorithms. We

10 T T T T T T T T T

- —%—- SNR = 0dB
9 | —o—SNR=5dB
—p— SNR = 10dB
8 | —5— SNR = 15dB
—— SNR = 20dB [—*—
7T | —=— sNR =25dB

Average sum-rate per iteration (bits per channel use)

0 1 1 1 L L 1 1 1 L
2 4 6 8 10 12 14 16 18 20
Iterations
Fig. 3. Convergence of the IPBF algorithm, with different values of SNR from
0 dB to 25 dB.
20 T T T
—6— WMMSE )
— ICBF

Coordinated mechanism IPBF

Number of averaged exchanged information units

5 1 1 L L
0 5 10 15 20 25

SNR (dB)

Fig. 4. Comparison of the number of information units needed for conver-
gence for M = 2, K = 2, and N = 2, with stop value of € = 104, for the
IPBF, ICBF and WMMSE algorithms.

observe that the loss of the IPBF algorithm is small with respect
to the WMMSE and ICBF algorithms. At the same time, the
difference with respect to the optimal BRB is also small. The
IPBF algorithm notoriously outperforms the non-coordinated
regularized zero-forcing and channel matched schemes. Fig. 3
reproduces the convergence behavior of the IPBF algorithm
for several values of SNR. These curves show that the IPBF
algorithm converges in a few steps.

We now compare the amount of inter-cell information needed
for the iterative algorithms. We define the unit of information
transfer as the total information needed from the set of co-
ordinated BSs for updating the beam vectors for a single BS
m € M. Clearly, at each iteration of the IPBF algorithm a
single unit of information is needed to go through the backhaul
network, in the ICBF and WMMSE algorithms M units of
information are needed, and M x N units are required by
the BRB algorithm. In Fig. 4 we demonstrate the averaged
total units of information needed for the IPBF, ICBF and
WMMSE schemes until convergence. Note that t]ge results
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Fig. 5. Example of network with partial coordination, for M = 14, K = 2,
N = 1, where only the four central BSs perform coordination. User associated
with BS1 is a boundary user.

corresponding to BRB are not included in Fig. 4 for the sake
of clarity, since the values are typically above 800 information
units. We observe that the total units of information needed
for the proposed IPBF algorithm is more than 20% less than
the ICBF algorithm for SNR values above 10 dB, and for
SNR = 25 dB the information excess goes beyond 50%. We
also emphasize that typically several inner iterations are needed
per outer iteration of ICBF and WMMSE algorithms, and we
have not counted the extra information needed between the
BSs and the users in these inner iterations. We also notice an
increase in the number of iterations until sum-rate convergence
with SNR. This is due to the fact that the higher the SNR the
higher the sum-rate. As e = 10~* irrespectively of the value of
SNR the algorithms converge slower as SNR rises.

Consider now the same network as before but with 14 BSs
(M = 14).In practice, as it is mentioned in recent contributions
(e.g., [30] and [34]), letting all the BSs coordinate and exchange
information induces heavy signaling overhead in the backhaul
network, especially when the network size is large. We propose
a limited coordination variant of IPBF, named as IPBF-L, in
which each BS only coordinates with its neighboring BSs.
This limited coordination scheme reduces signaling and is
reasonable in practice, as the benefit of transmission coordi-
nation diminishes when the BSs are far away and create small
interference to each other. We compare the results of IPBF with
IPBF-L when only 4 of the BSs are coordinated for transmis-
sion, being all other BSs’ transmission regarded as noise, with
1 user served by each BS and K = 2. The system topology of
the network is illustrated in Fig. 5, in which we consider the
existence of a boundary user for BS1, i.e., the distance between
BS1 and this user is 1 km (the cell radius). The other users
are non-boundary users, who are randomly distributed within
the cell. While the loss in sum-rate is very small (Fig. 6), the
speed of convergence is much faster (Fig. 7) and the number
of exchanged information units is considerably lower (Fig. 8).
We also show in Fig. 9 that boundary users with IPBF-L
experience slight degradation with respect to IPBF (full coordi-
nation) and limited cooperation practically does not affect non-
boundary users.

8 T T T T T T T
—o— IPBF

- —%— IPBF-L

Average sum rate (bits per channel use)

10 15 20
SNR (dB)

Fig. 6. Comparison of sum-rate of the IPBF and IPBF-L algorithms, for
M =14, K = 2, N = 1. Users i € N,y are uniformly placed within dm,i €
[200, 1000] meters within each BS.
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VIII. CONCLUSION

In this paper, we propose an interference pricing algorithm to
study the non-convex sum-rate maximization problem for coor-
dinated beamforming in a multi-cell multiuser MISO network.
We have proved that the interference mechanism converges and
we have explored the structure of the problem to identify a
procedure that guarantees a rank-1 solution. The IPBF algo-
rithm, which is based on the interference mechanism, is fa-
vorably compared with the state-of-the-art ICBF and WMMSE
algorithms, achieving almost the same system throughput with
notably reduced backhaul information exchange among the
BSs, while having little loss with respect to the optimal
BRB algorithm.

We also propose the IPBF-L algorithm, a less complex
variant of our algorithm that restricts coordination to a cluster

APPENDIX A
PROOF OF PROPOSITION 1

To show convexity, it is sufficient to prove that whenever
D cSK, D#0 and W,,; +tD > 0, the function R, ;(t)
(21) shown at the bottom of the page is convex in ¢ [50, Chapter
3]. Let us simplify the expression a bit by defining the constant
c=hll W, ;h,,; >0 (note that W,, ; = 0). The first and
the second derivatives of R,, ;(t) w.r.t. ¢ can be expressed as
indicated in (22) and (23) at the bottom of the page. Clearly
Im}i(W,(myi)) + thqf{miDh%mi > (0 for all Wq’j +tD > 0.
We also have that h//, | Dhg p,, isreal and (h}/,, Dhy, )* >
0, due to the assumption that D € SX, and the subsequent im-
plication that (b Dhy ., ) = hf Dh,, . We conclude
that whenever D € S and w, ; +tD = 0, d®R,, ;(t)/dt*> >
0, which implies that Ry, ;(W,, ;W _(p, ;)) is convex in W ;
forall (q,j) # (m,1).

The fact that Ry, ;(W .5, W_(p, 5) is concave in W, ; can
be shown similarly as above (see equation at the bottom of
the page).

APPENDIX B
PROOF OF THEOREM 1
Proof: We first prove that if W' — W* then (W*, \*) is a
KKT point. Given that at time ¢ > 0 only one user, say (m, 1),
is uniformly randomly chosen to optimally react to Wf(m i)
it follows that with probability 1 user (m,i) updates W, ;
infinitely often. Let {¢(n) : n > 0} be the index set of time
periods at which user (m, ) is chosen. Hence:
Upn.i ((Wt(n_)+1, Wt((n) )) 7Tfr(zni)7 A%n))

m,i

> Um,i<<wm,iywt(n) ) ’Tt(n)

7(m:i) "7‘7i ’

Af;")) Y Wons € Wi,

Hence, in the limit along the sub-sequence {t(n) : n > 0} we
obtain

U (Wit W) T Vo)

of base stations. The IPBF-L algorithm has a very small loss ~ . . i ~
with respect to IPBF while it requires much less information 2 Unm,i ((Wm»i’wf(mﬁi» » Lo i m)  YWini € Wi
exchange through the backhaul. (24)
hZ W, h,,
Ruilt) = log [ 1+ el - @1
Cm,i + 2 (p)2 () (oD 2(m.d) Wpims WoiBpmi + By (Wqj + tD)hgm,
ARy ;(t) 1/1n(2) chf Dhy .,
’ = - — (22)
R i(t) 1/1n(2) ¢ (b Dhy,,,)*
dt2 (Im,i (W,(m’i)) + thg{miDh%mi =+ 6)2 Im,i (W—(m,i)) + thg{mthq,mi
1/1n(2 ¢(hf Dh,,..)°
+ / n( ) ( q,m; q, ’L) (23)

Im,i (W—(m,i)) + thg{miDhqvmi tc (Im,i (Wf(m,i)) + tl’lq}{n“Dhq,mi)2

10



Using (10) we can rewrite (24) as follows:

Z T J*qu (W* )
(g.5)#(m,i)
>

2 Rm,i (Wm,zawi(m’z)) -
(q,5)#(m.i)

v Wm,i € Wm,i .

R, i(W*)— AT [me]

0% 45T (YA
Tm,i Gm,z(w

myi)

AT [wm} , (25)

Consequently, we have

Rm,i (W*)

(q,3)7#(m,i)
- )\jnTI' {Wm,z}

A Tr [an 1] Z Ry (Wm i W2 (m, 1))

(Wi = Wi ) B,

VWi € Wini. (26)
Since R, ;(W) is convexin W, ;. (¢, ) # (m,i) and hY Wh
is a linear transformation of W, we have

Ry (W7) > qu(sz,W*(m,i))

6Rq,j (W*)

hH
+ W,

™m,q; (W:nl - wm,z) hm,qj ) (27)
and if we sumup >, o, ;) B, (W) to both sides of (26)

and also apply (27) we have

Y Ry (W) =X, Tr [W;, ]
aj
>3 Ry, (va,i,W’:(myiQ AT W], (28)
a7
for all mei € Wiy,,i. This in turn implies the following first
order condition:
ORy, i(WH) OR, ;(W¥)
— = — —_— . 2
’ (g.9)#(m,i) ’
We now show complementary slackness. If ) . N,

Tr[W?, ;] > pm then, according to (17), AL, — oo, which
would 1mply > ien, Tr[W7 ] = 0, a contradiction. Finally, if
Aop = Ay, > Othen 75 - Tr[Wi ] = P

We conclude verifying that the sequence {(W, \) : ¢ > 0}
converges with probability 1. By compactness the sequence
has a converging sub-sequence { (WH AU - > 0} with
limit point (W, \). For every pair (1, i) at time ¢(n) either user
(m, 1) is selected for updating W, ; € W,, ; in which case

Wt(n')—H =arg %ax Um,z' ((Wm (2] Wt((nri z)) m 70 /\ir(Ln )

_ Wt(") for all (g,7) # (m,i) or user (m,1)
t(n)+1

and Wt(n,)+1
is not selected for updatmg W, i in which case, W
W, tn ). Since either case occurs infinitely often we conclude
Wi W,

m,e

i with probability one and

Wm,i = arg nax Uml ((Wmu W—(’m,i)) 7Tm,i7 5\rrL)

m,i

Now consider the subsequence {W ()2,

t(n)+2

:n > 0}. Here,
again, either W, Wf,(:fiH because user (m, ) is not
chosen to update at time t(n) + 1 or

t(n)+2
m,i

= arg max Un,i ((Wm)uw‘i(&);;) 7Tfr(zT,Li)+1> qusn)+1> )

t(n)+

i R ‘W, ;. The same argument can

Thus, we conclude W

now be recursively applied to show that WZ(fin — Wm’i for
any k> 2. Thus, the sequence { (W, \) : ¢ >0} converges. W

APPENDIX C
EXISTENCE OF RANK-1 SOLUTION TO
THE UUM PROBLEM

Let us define A,,; = Z(q)j)#(m)i) TgrfiHm,qj = 0, then
the utility for user (m, 7) has the form

Um7i (Wm,iawf(m,i)) = Rm7i (Wm,iawf(m,i))

—Tr (A + A )W (30)

m,i] .

Problem (UUM) must provide a rank-1 solution, as the (SRM)
problem is solved with rank-1 solution [39], [40]. In the fol-
lowing, we identify a special structure of the problem (UUM)
that allows it to admit a rank-1 solution. To this end, we tailor
the rank reduction procedure (abbreviated as RRP) proposed
in [41] to fit our problem.> Assume that using standard op-

timization package we obtain an optimal solution W7, to
the convex problem (UUM), with Rank(ij) =r>1. Let
\’7\72) W;‘m, and let 7(!) = r. At iteration ¢ of the the
RRP, we perform an eigen decomposition W(t) vive

where V() € CK™ 1f () > 1, find D® € S™" such that
the following three conditions are satisfied

Tr (D<t)v<t>HHm,iV<t>) —0 31)

Tr (D(t)V(t)HAmﬂ-V(t)) -0 (32)

Tr (D(t)V(t)HV(t)) —0. (33)

If such D®) cannot be found, exit. Otherwise, let A\(D(*)) be

the eigenvalue of D) with the largest absolute value, and
construct VNVSL?) =v® (I,, - (I/A(D(t)))D(t))V(t)H = 0.
Clearly, Rank(I, — (1/A(D®))) <+® —1, as a result,
Rank(W(tH)) < Rank(W(t) ) — 1, i.e., the rank has been re-

m,t

duced by at least one. Utlllzmg (31)—(33), we obtain
H ~xr(t+1
hm,iwgn,i )hmﬂ
= Tr [H,, ;WY
SNote that the RRP procedure in [41] cannot be directly applied to our
problem. This is because in [41], the RRP is used to identify rank-1 solution

of semidefinite programs with linear objective and constraints. Our problem is
different in that the objective function is of a logdet form. 1



—mlm, vo (1, - L po|yol
" " A(DO)

= Tx [H,, W), | =nll W)l (34)
Tr [Am,iwgiﬁl)}

=Tr |A,,;V® (Ir -3 (];(t))D(t) v

= Tr (A W] (35)
Tr [Wg‘:l)}

=Tr |V® [T _;D(t) V(t)H

" A(DW)
="Tr [{7\7&)7} . (36)

Equations (34)—(36) together ensure that the value of the utility
function does not change, i.e.,

Um <W$ﬁ1)7w—(7n,i)> - Um,i (ng,\/ﬁ_(md)) .

Combined with the fact that Wgﬁl) > 0, we have that Wiﬁ;l)
is also an optimal solution to the problem (UUM).

Evidently, performing the above procedure for at most r
times, we will obtain a rank-1 solution W7, . that solves the
problem (UUM). Now the question is that under what condition
we can find D®) that satisfies (31)~(33) in each iteration t.
Note that D(*) is a r(*) x 7(!) Hermitian matrix, hence finding
D® that satisfies (31)—(33) is equivalent to solving a system
of three linear equations with ()2 unknowns.® As long as
(r®)2 > 3, the linear system is underdetermined and such
D® can be found. Consequently, the RRP procedure, when
terminated, gives us a W7, with Rank2(W;‘n’i) < 3. As the
rank of a matrix is an integer, we must have Rank(W7, ;) < 1.
It is important to note, however, that the ability of the RRP
procedure to recover a rank-1 solution for problem (UUM) lies
in the fact that we only have three linear terms of W, ; in
both the objectives and the constraints. This results in solving a
linear system with three equations in each iteration of the RRP
procedure. If we have an additional linear constraint of the form
Tr(BW,, ;) < ¢ for some constant ¢, the RRP procedure may
produce a solution W7, ; with Rankz(anﬂ») < 4, which does

not guarantee Rank( ;‘,m) =1
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