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Abstract

In various wireless systems, such as sensor RFID networkbadly area networks with implantable
devices, the transmitted signals are simultaneously ugtdfor information transmission and for energy
transfer. In order to satisfy the conflicting requirememsiformation and energy transfer, this paper
proposes the use of constrained run-length limited (RLLJexoin lieu of conventional unconstrained
(i.e., random-like) capacity-achieving codes. The rezesvenergy utilization requirements are modeled
stochastically, and constraints are imposed on the prbtiedbiof battery underflow and overflow at
the receiver. It is demonstrated that the codewords’ siracafforded by the use of constrained codes
enables the transmission strategy to be better adjusteldetoeteiver's energy utilization pattern, as
compared to classical unstructured codes. As a resulttregmsd codes allow a wider range of trade-

offs between the rate of information transmission and théopmance of energy transfer to be achieved.

I. INTRODUCTION

Various modern wireless systems, such as sensor RFID retrand body area networks
with implantable devices [2]-[4], challenge the conven@ibassumption that the energy received
from an information bearing signal cannot be reused. Faante, implantable devices can
be powered by the received radio signal, hence alleviatgrnieed for a battery and reduc-

ing significantly the size of the devices. This realizaticas hmotivated a number of research
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groups to investigate the design of wireless systems umd@ripformation and energy transfer
requirements

The research activity in this area has focused so far on aptresource allocation in the
presence of information and energy transfer for variousvolt topologies. Specifically, refer-
ence [8] studied a single point-to-point channel, whildJ0] investigated power allocation for
a set of parallel point-to-point channels under energystiemand information rate constraints.
The optimization of beamforming strategies under the sarteria was studied in [11]-[14] for
multiantenna broadcast channels and for two-user mudtiana interference channels in [15].
Optimal resource allocation assuming wireless energystearwas also investigated in [16] for
cellular systems, in [17]-[19] for relay systems, in [20} fovo-way interactive channels, and
in [21] for graphical multi-hop networks. Considerations the design of the receiver under
the constraint that, when harvesting energy from the alatetie receiver is not able to use the
same signal for information decoding, can be found in [22].

Unlike all prior work summarized above, this work focusestba code desigrfor systems
with joint information and energy transfer. We focus on anpdo-point link as shown in Fig. 1,
in which the receiver’s energy requirements are modeled r@an@m process. The statistics of
this process generally depend on the specific applicatidve taun at the receiver, e.g., sensing or
radio transmission. The performance in terms of energysfeans measured by the probabilities
of overflow and underflow of the battery at the receiver. Thabpbility of overflow measures
the efficiency of energy transfer by accounting for the epevgsted at the receiver. Instead, the
probability of underflow is a measure of the fraction of thadiin which the application run at
the receiver is in outage due to the lack of energy.

Classical codes, which are designed with the only aim of maing the information rate, are
unstructured (i.e., random-like), see, e.g., [23]. As altethey do not allow to control the timing
of the energy transfer, and hence to optimize the probghitoverflow and underflow. With
this in mind, here it is proposed to adopt constrained rungtle limited (RLL) codes [24] in lieu
of conventional unconstrained codes. The constraintsidgfiRLL codes ensure that the code
does not includes bursts of energy either too frequentlys timiting battery overflow, or too

infrequently, thus controlling battery underflow. Constesl RLL codes have been traditionally
LIt is worth noting that wireless energy transfer, has a loisgony [5] and is available commercially (see, e.g., [6)[7]
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studied for applications related to magnetic and opticatagfe [24]. The application to the

problem at hand of energy transfer has been previouslyesludi the context of point-to-point

RFID systems in [25], although no analysis of the informatenergy trade-off was provided. In
contrast, in this work, a thorough analysis is provided efititerplay between information rate ad
energy transfer in terms of probabilities of battery ovevfland underflow. The analysis reveals
that, by properly choosing the parameters that define RLLesatepending on the receiver’s
utilization requirements, constrained codes allow to tiyeenprove the system performance in
terms of simultaneous energy and information transfer.

The reminder of this paper is organized as follows. In Secthié system model is intro-
duced along with performance criteria. In Sec. Il and S&t.we study the performance of
classical unconstrained codes and of constrained RLL ¢adspectively, in terms of energy
and information transfer. Sec. V presents numerical res#inally, some concluding remarks

can be found in Sec. VI.

[l. SYSTEM MODEL

We consider the point-to-point channel illustrated in FigWe assume that at each discrete
time ¢, the transmitter can either send an “on” symbgl= 1, which costs one unit of energy,
or an “off” signal X; = 0, which does not require any energy expenditure. The receivieer
obtains an energy-carrying signal, which is denoteli;as 1, or receives no useful energy, which
is represented as; = 0. The channel is memoryless, and has transition probasilés shown in
Fig. 1. Accordingly,p;o represents the probability that energy is lost when projrag&etween
transmitter and receiverAt the receiver side, upon reception of an energy-carrgiggalY; = 1,
the energy contained in the signal is harvested. The hawestergy is temporarily held in a
supercapacitor and, if not used in the current time inter\valstored in a battery, whose capacity
limited to B,,., energy units (see, e.g., [26]).

The receiver’s energy utilization is modeled as a stocbg@sticessZ; € {0,1}, so thatZ;, = 1
indicates that the receiver requires one unit of energynaé & while Z; = 0 implies that no

energy is required by the receiver at timeThis process is not known at the transmitter and

2A more general model would allow also for a non-zero proligij; of receiving energy when no energy is transmitted.
This could be interpreted as the probability of harvestingrgy from the environment (see [20]). We do not consides thi

extension in this work.
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Figure 1. Point-to-point link with information and energwansfer.

evolves according to the Markov chain shown in Fig. 2. Notat #dopting a Markov model
to account for the time variations of energy usage is a stangdeactice (see, e.g., [27] and
references therein). Accordingly, when in stdfg there may be bursts of consecutive time
instants in which no energy is required (i.&;, = 0); while, when in statd/;, there may be
bursts of consecutive time instants in which energy is meguii.e., Z; = 1). The probability
that Z;, = 0 when in state, is referred to ag, and the probability thaZ; = 1 in stateU; is
denoted ag;. We observe that the average length of bursts of symbols iohwfy = j in state
U; is given by1/(1—g;) for j € {0,1}. Also, it is remarked that, wheqy = 1 — ¢;, the energy
usage model becomes a memoryless processRvith, = 1] =1 — ¢y = ¢1.

Due to the finite capacity of the battery, there may be batbegrflows and underflows. An
overflow event takes place when energy is received and stotbd supercapacitor (i.eY; = 1),
but is not used by the receiver (i.€Z; = 0) and the battery is full (i.e.B; = B.y), SO that the
energy unit is lost; instead, an underflow event occurs whanmgy is required by the receiver
(i.e., Z; = 1) but the supercapacitor and the battery are empty (Re= 0 andY; = 0). In the
rest of this section we define all the parts of the system in Fign detail.

A. Transmitter

The transmitter aims at communicating a messageiniformly distributed in the se[tl : Q"R} ,

reliably to the decoder, while at the same time guarantedegjred probabilities of battery
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Figure 2. Energy utilization model at the receiver.

overflow and underflow (see Sec. 11-B). Note thais the codeword length and represents the
information rate in bits per channel use, while the constsaon the probabilities of overflow
and underflow represents the requirements on energy tradsfediscussed in Sec. I, in this
work, we investigate the performance in terms of informatmd energy transfer achievable of
conventional unconstrained codes and of RLL codes. Wedntre RLL codes next following
[24].

The codewords™(m), with m € [1 : 2"R} , of a types RLL code satisfy run-length constraints
on the number of consecutive symba)swherei = 0 or i = 13. To elaborate, let/ and k& be
integers such thadl < d < k. We say that a finite length binary sequenc¢ém) satisfies the
type-0(d, k)-RLL constraint if the following two conditions hold (seegri3):

« the runs of 0’s have length at most and

« the runs of 0’s between successive 1's have length at l&asbte that the first and last

runs of O’s are allowed to have lengths smaller tllan
Therefore, a type-Qd, k)-RLL code is such that the codewords include sufficientlyglstretches
of zero-energy symbols 0O, via the selection dfthus limiting battery overflow, but not too
infrequently, viak, thus partly controlling also battery underflow. As a restype-0 (d, k)-
RLL codes are suitable for overflow-limited regimes in whicbntrolling overflow events is
most critical. An example of a sequence satisfying the §pe; k) = (2,7)-RLL constraint
is 2" (m) = 00100001001000000010 wheren = 20. Overall, the set of all sequences(m)

3Classical RLL codes as discussed in, e.g., [24] are typesOhére we find it useful to extend the definition to includeoals

type-1 RLL codes.
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satisfying a type-Qd, k)-RLL constraint is then described by all the possibkit outputs of
the finite state machine in Fig, where the outputs are shown by the binary labels of the teidec
edges. Note that finite-state machine consists-pi states (the numbered circles) and the initial
state is arbitrary.

A type-1(d, k)-RLL code is defined in the same way, upon substitution of @lIfor “1” and
vice versa in the edge labels of Fig. 3. Therefore, typgd;%)-RLL codes allow one to control
the stretches of “1” symbols in the codewords, and are heradeswited for underflow-limited

regimes, in which controlling the probability of underflog most important.

DD
1 1 1

Figure 3. The codewords of a typef@, k)-RLL code must be outputs of the shown finite-state maching/p&-1(d, k)-RLL

constrained code is instead obtained by substituting dlfd0“1” and vice versa.

B. Receiver

Transmitter and receiver communicate over the binary oblashown in Fig. 1 with the
probability of p;o of flipping symbol “1” to symbol “0”. As mentioned, this prob#ity can be
interpreted in terms of energy losses across the channelrddeived signal™ is used by the
decoder both to decode the information messafjeencoded via the constrained code at the
transmitter and to perform energy harvesting. The hardestergy is used to fulfill the energy
requirements of the receiver as dictated by the prog&ssvhere the requirements are given in
terms of probability of overflow and underflow. This is dissed next.

Let B; denote the number of energy units available in the battetyre i. At the ith time
period, the decoder first receives signal and stores its energy (¥; = 1) temporarily in a
supercapacitor (see Fig. 1). Then/f = 1, the receiver attempts to draw one energy unit from
the supercapacitor or, if the latter is empty, from the bgtté the energy in the supercapacitor

is not used, it is stored in the battery in the next time sl&.a@Aresult, the amount of energy in
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the battery evolves as
Biy1 = min (Bmama (Bi +Y; — Zi)+) ) (1)

where (a)” = max (0, a).

When the receiver harvests a unit of enefgy= 1, no energy is used;; = 0, and the battery
is full, B; = B,,..., we have an overflow event. To keep track of the overflow eyevsdefine
a random proces®); such thatO; = 1 if the event{B; = B,,...,Y; = 1, andZ; = 0} occurs

and O; = 0 otherwise. This can be expressed as
Olzl{BZ:Bm(m,lelandZZ:O} (2)

When the receiver wishes to use a unit of enetgy= 1, and both the supercapacitor and the
battery are emptyy; = 0 and B; = 0, we have an underflow event. To describe underflow events,
we introduce a random process such thatU; = 1 if the event{B; =0,Y; =0 andZ; = 1}

takes place and; = 0 otherwise. This can be expressed as

A sample path of the battery state procéssalong withY;, Z;, U; andO;, is shown in Fig. 4.
We define the probability of underflow as

1 n
Pr{U} =1l N E[U], 4
r{U} linfolipn; U] (4)
and the probability of overflow as
. 1
Pr{O} = hin_)solipg ;:1 E[O;]. (5)

We note that in (4) and (5), the expectation is taken over thgiloution of the messag#/, of

the channel and of the receiver’'s energy utilization preces

C. Performance Criteria and Problem Formulation

The point-to-point link under study will be evaluated innex of its performance for both
information and energy transfer. A triple?, P,s, P, ;) of information-energy requirements is
said to be achievable by an encoder-decoder pair if therrdton transfer at rat& is reliable,
ie., if

lim sup Pr [M #+ M} =0 (6)

n—oo
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Figure 4. A sample path of the evolution of the batté&hy Also indicated is the assumed order of energy arrival aqhdere
events from the battery (i.eY; and Z;) and the overflow and underflow events (where not specifiedhawe U; = 0 and

0; = 0).

and if the energy transfer fulfill the constraints

Pr{O}

IN

Py, (7)

and Pr{id} < P,. (8)

We are interested in investigating the set of achievabpdesi( R, P, P,s) for different classes
of codes, namely unconstrained afl k)-RLL constrained. To obtain further insight, in Sec.

V, we will consider the problem
minimize max (P, Pyy)
subjectto (R, P,s, P,r) Iis achievable (9)

where R is fixed and the minimization is done over all codes belongma certain class.
Problem (9) is appropriate when both underflow and overflesveaqually undesirable and one
wishes to reduce both equally as much as possible. Alteatgtone could, e.g., minimize either

one of P,; or P,y under a given constraint on the other and on the rate.
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IIl. UNCONSTRAINED CODES

In this section, we study the information-energy transtfgrmance of classical unconstrained
codes. To this end, we adopt Shannon’s classical randomngaaigument. Accordingly, we
assume that the codeword$(m), m € [1: 2"%], are generated independently as i.5d.r(p,)
processes and evaluate the corresponding performancescagavover the code ensemble. As it
is well known (see, e.g., [23]), the maximum informatiorerat achieved by this code is given

as
R = I(X;Y)
= HY) - HYIX)
= H(p.(1 - pio)) — pH(po)

= H (Py) - H(p1o). (10)

1 —pio
where we have defined the probability = Pr[Y; = 1] = p,(1 — pip) and the binary entropy
function

H(a) £ —alogya — (1 —a)logy(1 — a). (11)

We now turn to the evolution of the performance in terms ofrgpdransfer. In order to
simplify the analysis and obtain some insight, we first asstime special case for then receiver’s
energy utilization model in which the proceg% is i.i.d. and hence, = 1 — ¢, £ ¢. Note that
q is the energy usage probability, in that we have- Pr[Z; = 1]. The extension to the more
general Markov model of Fig. 2 will be discussed in Remarkf3hé processZ™ is i.i.d., the
battery state evolves according to the birth-death Markwircshown in Fig. 5. Using standard
considerations and recalling (2) and (3), we can then callelwthe probability of overflow and

underflow respectively, as

Pr{O0} = mp,.p0,(1—q) = O(py), (12)

and Pr{U/} = mo(1—py)g = U(py), (13)

where; is the steady-state probability of statec [0, By..| for the Markov chain in Fig. 5.
This can be easily calculated as
Az’

P 5 14
T 1+ A1 .. + AP (14)
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p,g+@- p)1- 0
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A-py)q d-p))g

Figure 5. The birth-death Markov process defining the batitate evolution along the channel uses with unconstrajiniedl)
random codes and i.i.d. receiver’'s energy usage pragésf.e.,q = g1 = 1 — qo).

where A = % The following lemma summarizes our conclusions so far.
Y

Lemma 1. Given a receiver energy usage i.i.d. process with energgeipaobabilityq, the set
of achievable information-energy triplész, P,;, P,s) for unconstrained (i.i.d.) codes is given
by

{(R, P, Pys): 3 p, €]0,1—pi| such that

R < H(py> -

= H(pio) (15)
10

Pof 2 O(py)vpuf 2 U(py)}v (16)
whereH(p,), O(p,) and U(p,) are defined in (11), (12) and (13), respectively.

Remarkl. The region (15) is in general not convex, but it can be corfiexiif one allows
for time sharing between codes with different valuesppf(see, e.g., [28, Ch. 4] for related
discussion).

In order to get further insight into the performance of urstesined codes, we now assume
that the channel is noiseless, i.e, = 0 and, as a result, we haw€ = X, foralli =1,....n
andp, = p,. Moreover, we consider problem (9), which reduces to thfiohg optimization

problem

minimize max (O(p,), U(p,))
px€[0,1]

subject to: H(p.) > R, (17)
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11
where R is fixed. The solution of problem (17) is summarized in théowing lemma.

Lemma 2. The optimal solutiorp’ of problem (17) is given as

¢ if R<TH(g) (18a)
H'(R) if B> H(q) andgq< % (18b)
1-HYR) if R>H(g) andq > % (18c)

whereH™!(R) is the inverse of the entropy function in the interifall /2]. Moreover, the optimal

valuemax (O (pr), U (pr)) of the problem (17) is given by

% if R <H(q) (19a)
O(H™'(R)) if R>H(q) andg < % (19b)
U(l-H'(R)) if R>H(g) andg > % (19c¢)

Proof: A graphical illustration of Lemma 2 is shown in Fig. 6. To irgeet the conditions
(18a) and (19a), we observe that the underflow probability,Uis monotonically decreasing
with p,, while the overflow probability @,.) is monotonically increasing with,.. Therefore, in
the absence of the rate constraint, the optimal value ofl@nol§17) is achieved whep, = ¢,
since, with this choice, we hav@(p,) = U(p.). As a result, ifR < H(g), and hence the rate
constraint is immaterial fop, = ¢, we havep} = q.

Instead, ifR > H(q), the rate constraint is active and the optimal solution iregu? = H(p,,).
In particular, there are two situations to be consideredaneta the overflow-limited regime,
defined by the conditiop < 1/2, and theunderflow-limited regimewhere we have > 1/2. In
the former regime (Fig. 6-(a)), the rate constraint forgeso be larger tham, which leads to the
optimal solutionp? = H~!(R) and causes the overflow probability£?) to be larger than the
underflow probability Up,.), so thatmax (O (p,), U (p,)) = O(p,). In contrast, in the underflow-
limited regime (Fig. 6-(b)), the rate constraint forgesto be smaller thary, which leads to
pt=1—-HY(R) and causes (b,) to dominate @Qp,), or max (O (p,),U (p,)) =U(p,). ™

Remark2. The proof of Lemma 2 suggests that, when the rate is sufflgiemall, problem
(9) is solved by "matching” the code structure to the res&venergy utilization model. This

is done, under the given i.i.d. assumption on codes andvexteienergy utilization, by setting
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12

px = q. Instead, when the rate constraint is the limiting factore as forced to allow for a
mismatch between code properties and receiver’s enerigation model (by setting: # q).
These ideas will be useful when interpreting the gains aelie by constrained codes discussed
in Sec. IV.

0 H(q) 1 R

Figure 6. lllustration of the optimal solutiopi; of problem (17) (Lemma 2): (a) the overflow-limited regime< 1/2; (b) the

underflow-limited regime; > 1/2.

Remark3. The characterization of the achievable information-epériples (R, P,f, P, s) of
Lemma 1 can be extended to the more general Markov model iRy the receiver’s energy
usage. This is done by noting that the battery evolution umtltise model is described by the
Markov chain shown in Fig. 7, instead of the simpler birtlattieMarkov process shown in Fig.
5. The calculation of the corresponding steady-state fwibbes ;,, for i € [0, Buax] and
j = {0,1}, can be done using standard steps (see, e.g., [29]). Lemrhanlextends to the

scenario at hand by calculating the probabilities of overftmd underflow, similar to (12)-(13)
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as

Pr {O} = 7TBrna>c7UOpyq0 + ﬂ-BmamUlpy(l - ql) é O(py)v (20)

and Pr{U} = 7oy, (1 —py)(1— o) + 7o (1= py)ar = Ulpy). (21)

a-p)g a-p)a

Figure 7. The Markov process defining the battery state &weolwalong the channel uses with unconstrained (i.i.d.ploam
codes and the Markov receiver's energy usage model of Fig. 2.

IV. CONSTRAINED CODES

In this section, we study the performance (df k)-RLL codes. To this end, as with uncon-
strained codes, we adopt a random coding approach. Spdgifwa take the codewords to
be generated independently according to a stationary Matkain defined on the finite state
machine in Fig. 3. It is known that this choice is optimal imbts of capacity (see, e.g., [24], [25],
[30]). A stationary Markov chain on the graph of Fig. 3 is defirby the transition probabilities
P = {pa,pa+1, -, Pr—1} ON its edges as shown in Fig. 8. We define(@sthe state of the
constrained code at timi prior to the transmission ak;. For example, the state sequence for
the type-0(d, k) = (2, 7)-RLL corresponding to the codeword (m) = 00100001001000000010
is ¢*(m) = 01201234012012345670 wheren = 20. Then, the transition probability; for
j=d,...,k—1is equal toPr[C; = j + 1|C;_, = j], for i > 1. Barring degenerate choices for
P, it is easy to see that the Markov chain is irreducible, anttheone can calculate the unique

steady-state distribution; = Pr [C; = j] for j € [0, k] (see, e.g., [24]).
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A. Information Rate

In [31, Lemma 5], it was proved that an achievable r&tevith (d, k)-RLL codes is given as

R = 1(Cy; Y3|C1). Evaluating this expression for typefd, k)-RLL constrained codes leads to
R = H(Y3|C1) — H(Y2|C1, Cy)
k—1
= Y m {H((1 = p;)(1 = po)) = (1 = p;)H(p1o)} - (22)
j=d
Instead, for type-1 code the achievable rate becomes
k—1
R = Y m {H(p;(L ~ pi)) — pH(pao)} - (23)
j=d

Remark4. We note that if the channel is noiseless, gy, = 0, the information rates (22) and

(23) equal the entropy rate of the channel input sequéfitei.e.,
k—1
R = Y mH(p,) (24)
j=d

Moreover, the maximization of the achievable informatiater(24) over the transition proba-

bilities P, with no regards for energy transfer, leads to the solution
k—1
s%pZmH(m = log, \, (25)
j=d

where) is the largest absolute value taken by the eigenvalues ehagljmatrif A of the graph
that defines théd, k)-RLL code [24].

po:]- 1 p1=1 /d\pd @pdﬂ pkfl‘ K
jipu ’fl_pdﬂ 1-p =1

Figure 8. Transition probabilitie® = {p4, pa+1, ..., pk—1} defining the stationary Markov chain used for random codiity w

type-0(d, k)-RLL codes.

“The adjacency matrix A is & x k matrix such that thé:, j)th element equals 1 if stateand statej are connected in the

graph that defines the code (see Fig. 8) and is zero otherwise.
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B. Energy Transfer

We now address energy transfer by turning to the calculatiothe probabilities of battery
underflow and overflow, namelyr {¢/} andPr {O} in (4) and (5), respectively. To this end, as
for unconstrained codes, we focus at first on the special icasdich the energy usage process
Z™ is i.i.d. with energy usage probability. We refer to Remark 6 below for a discussion on
the extension to the Markov model in Fig. 2.

We use a renewal-reward argument (see, e.g., [29]). Wel ridwl a renewal process is a
random process of inter-renewal intervdls /s, ... that are positive i.i.d. random variables. For
our analysis, it is convenient to define the renewal evenf(@s= 0}, so that a renewal takes
place every time the state of the constrained codes equal to 0. This is equivalent to saying
that, in the channel use before a renewal event, the traleshsignal X; equals 1 for type-0
(d, k)-RLL codes andX; = 0 for type-1(d, k)-RLL codes. We refer to Fig. 9 for an illustration.
Based on the above, the renewal intervg|sfor ¢ > 1, are i.i.d. integer random variables with

distributionp; (i) that can be calculated, giveh, as

0 i<dand:>k+1
1 —pg i=d+1

pr(i) = i—2 26
k—1 =

Moreover, it is useful to define a Markov chai® that defines the evolution of the battery as
evaluated at the renewal instants (i.e., for values foir which C; = 0), as illustrated in Fig. 9.
We refer to the steady-state probability of this Markov chas 7, with b € [0, Bpax). Finally,
we define ag), the random variable that counts the number of overflow evients renewal
that starts with a battery with capacitye [0, By..x], @and, similarly, we define as, the random
variable that counts the number of underflow events in a rah#vat starts with a battery with
capacityb € [0, B.x]. We proceed by treating separately the type-O and type-géscod

1) Type-0 CodesFor type-0 codes, the transition probabilities for the pss®; are reported
in Appendix A (see also Fig. 10 for an illustration), from whithe steady state probabilities
7, can be calculated (see, e.g., [29]). The next propositionnsarizes the main result of the

analysis. We use the definitigrin; i, ¢) = (*)¢"(1 — ¢)" " with n = 0, ..., 4, for the probability
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€ I, >€ I, > eeoo
L L L L [ 1 1 ;
1 x=0 2 x,=03 x,=1 4 x,=05 x.=1 6 x,=0 7 [
Y,=0  Y,=0 Y= Y,=0  Y,=0  Y,=0
c.=0 C,=0 C, =0
B=8 B,=B, B, =B,

Figure 9. A sample of renewal everf€’; = 0} and the corresponding evolution of the battery across @lamses for a
type-0 (d, k)-RLL code.

distribution of a binomial random variable with parametérs).

Figure 10. The birth-death Markov process defining the batséate evolution along the renewal instants, where we have
C; = 0, for (d, k)-RLL codes, i.i.d. receiver's energy usage patt&fh, andk = Bmax.

Proposition 1. Given an i.i.d. receiver energy usage process with energgeaiprobabilityg, the

set of achievable information-energy tripleg, P,;, P, ) for type-0(d, k)-RLL codes is given
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by

{(R, Pof, Puf) : B P = {pd,pd+1, ...,pk_l} - (0, 1)n such that

k—1
R < Zﬂy {H((1 = p;)(1 = p1o)) — (1 —pj)H(p10) }, (27)
j=d
P WBII\(IXE [OBIHZ%X} 28
of — E [I] ) ( )
Bmax
Z 7TbE [Ub]
>
and Py > — 1] }, (29)
where we have defined
k+1
E1] = ) i-pili), (30)
i=d+1
along with
~ k+1 i—b—1
E [Ub] = Z pi() {(1 — P1o) Z p(l+0byi—1,q)
i=d+1 =1
i—b
+p10 Y _p(l + b, q)} , (31)
=1
) k+1
and E[OBIW] = Z pr(i)(1 = p10)p(0; 1, q). (32)
i=d+1
Proof: See Appendix B. [ |

Remark5. The right-hand side of (28) evaluates the probability ofrioer as the ratio of the
average numbers of overflow events in a renewal interval theeraverage length of a renewal
interval. The right-hand side of (29) can be similarly ipieted. Note that, by the given definition
of renewal events, in order to have an overflow, the initidtdrg stateB; must be in staté3,,.,
whereas underflow events can potentially happen for akstat {0, ..., By }- This is reflected
by the numerators of (28) and (29).

Remark6. Similar to the case of unconstrained codes (see Remarke3ghtdracterization of the
achievable information-energy tripleé&, P,, P, ;) of Proposition 1 can be extended to the more

general Markov model in Fig. 2 for the receiver’s energy esadis is done by noting that the
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Figure 11. The Markov process defining the battery stateutieol along the renewal instants where we héye= 0, and the
energy usage state at the receiver, (igrk)-RLL codes, and: = Bmax With the Markov receiver’s energy usage model of Fig.
2.

evolution of the battery state along the renewal instanmisbeastill described by a Markov chain,
albeit a more complex one. Moreover, in order to extend thayais one needs to include in
the state of the Markov process not only the battery skatbut also the state of the receiver’s
energy usage (eithdr, or U;). The corresponding Markov chain is sketched in Fig. 11. The
calculation of the corresponding transition probabiitie straightforward but cumbersome and

is not detailed here.

2) Type-1 CodesFor type-1 codes, the analysis presented above does niyt gaseralize in
the case in which the channel loss probability is nonzero. This can be seen by following the
main steps of the proof of Proposition 1, which is based onnggat most one non-zero received

symbol per renewal interval. However, in the special casehich p;o = 0, the approach can
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be generalized, leading to the following result.

Proposition 2. Given an i.i.d. receiver energy usage process with energgeaiprobabilityg, the

set of achievable information-energy triplég, P,;, P, ) for type-1(d, k)-RLL codes is given
by

{(R Pop, Pug): 3 P ={pa,Par1, -1} € (0,1)" such that

R <Y mH(p). (33)

> b=0
Py > BT , (34)
>_ Lt 4
and - Puy 2 —pr (0 (35)
where we have defined (30) along with
~ k+1
E [Uo} = > pui)p(0;4,1—g), (36)
i=d+1
~ k+1 i—b—1
and E[Ob} = S )Y pl+bii—1,1—q). (37)
i=d+1 =1

Proof: Proposition 2 follows by the same steps as Proposition 1 sundti detailed heraa

Remark7. Similar to Proposition 1, the right-hand sides of (34), arfd(35), evaluate the

probabilities of overflow, and of underflow, via the ratiostbé average numbers of overflow,
and of underflow, events in a renewal interval over the awvetaggth of a renewal interval. In
a dual fashion with respect to Proposition 1, given the didimiof renewal events, underflow
can only occur in renewal intervals with initial batterytst#; is zero, whereas overflow events

can potentially happen for all statés {0, ..., Bpax }-

V. NUMERICAL RESULTS

In this section, we compare the performance of unconsiulaare constrained codes using
problem (9) as the benchmark. Fig. 12 shows the optimal vafueax(F,, P,s) for a noiseless

channel, i.e.p;p = 0 in Fig. 1, whenR = 0.1 andg; = 0 versusg, (recall Fig. 2). Withg; = 0,
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the energy usage proce&$ is such that a single energy request (i£.= 1) is followed by
an average ofl /(1 — ¢o) instants where no energy is required (i.&;,= 0). Therefore, agy
increases from 0.1 to 0.9, the average length of an interithl mo energy usage increases from
around 1 to 10. Similar to the discussion in Remark 2 for ustamed codes, when neglecting
the rate constraint, problem (9) is observed to be optimimeohatching the code structure to the
receiver’s energy utilization model. Whenis sufficiently small, this can be easily accomplished
with type-0(d, k)-RLL codes with a smalk. This is becausé defines the maximum possible
number of zero symbolX; sent before a symboY; = 1. As ¢, increases, and hence the average
length of the bursts of zeros grows in the procg&ssthe value ofk must be correspondingly
increased. This is confirmed by Fig. 12, which shows the 8aamt gain achievable by the use
of RLL codes when properly selecting the code parametersobServe that type-1d, k)-RLL
codes would provide exactly the same performance in the stnoncase in which we have
go = 0, and hence intervals of energy usage (i£.= 1) are followed by a single instant with
no energy usage (i.e4; = 0).

The impact of the information rat& is illustrated in Fig. 13 forgy = ¢ = 0 and p;o = 0.
Following the discussion above, when the rate is small, with= ¢; = 0, it is sufficient
to choose a type-0 or type{l, k)-RLL code with k = 1, as this matches the energy usage
process. However, as the rate grows larger, one needs &as®the value df, while keepingd
as small as possible [24]. For instance, with= 1 andd = 0, the maximum achievable rate (25)
is R =0.6942; with £ =2 andd = 0, itis R = 0.8791; with k = 3 andd = 1, itis R = 0.5515;
and withk = 3 andd = 0, it is R = 0.9468 [24, Table 3.1]. Accordingly, Fig. 13 shows again
that, by appropriately choosingand k£, RLL codes can provide relevant advantages.

Finally, we observe the effect of the loss probability in Fig. 14 where we sek = 0.01 and
g9 = ¢1 = 0. Following the discussion above (see Remark 2), in order acmthe receiver’s
energy utilization, the unconstrained code should be design such a way that, = 0.5 since
Pr[Z; = 1] = 0.5. Given thatp, = p,(1 — p1o), this is only possible fop;, < 0.5, and hence,
for p1o > 0.5, the performance is degraded as seen in Fig. 14. Wheg- 0, as demonstrated
above, RLL codes provide significant gains by providing advetatching to the utilization
processZ™. As the losses on the channel become more pronounced tmisigaieases due to

the reduced control of the received signal afforded by dwsggthe transmitted signal.
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Figure 12. Maximum between probability of underfld% ; and overflowP,; as per problem (9) for unconstrained and type-0
constrained codes versgs with g1 = 0 (see Fig. 2) and? = 0.1. To simplify the numerical optimization, the curve for= 10

has been obtained by optimizing only ov&y, p1, p2, ps andpe in P = {po, p1, ..., pe } and settingps = psa = p5 = ... = ps.

VI. CONCLUSIONS

A host of new applications, including body area networkdwntplantable devices, is enabled
by the possibility to reuse the energy received from infdramabearing signals. With these
applications in mind, we have investigated the use of camstd run-length limited (RLL) codes
with the aim of enhancing the achievable performance in $esfrsimultaneous information and
energy transfer. We have proposed a framework whereby tHerpwnce of energy transfer
is measured by the probabilities of underflow and overflowhat teceiver. The analysis has
demonstrated that constrained codes enable the tranemssategy to be better adjusted to the
receiver’'s energy utilization pattern as compared to @assinstructured codes. This has been
shown to lead to significant performance gains especiallpwatinformation rates. Interesting

future work includes the investigation of non-binary co@asl multi-terminal scenarios.
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Figure 13. Maximum between probability of underflow and @egr as per problem (9) for unconstrained and type-0 comsrhi
codes versus the information rakewith ¢o = ¢g1 = 0 (see Fig. 2).

APPENDIX A

TRANSITION PROBABILITIES FOR THE MARKOV CHAIN IN FIG. 10

Using the definitions in Sec. IV, we now calculate the traasiprobabilityp,, ., =S Pr[Bi =
m —n|B;_; = m], whereB; is the random process that describes the evolution of therigait
the renewal instants (see Fig. 9). The probabilifigs,_,, for m € [0, Bi.x] andn € [—1,m]
can be calculated as

;

(1—p10)p(0; 1, q) n=—1
i—1 7
i Bl [(I=po)gy_p(lii—1,q) + po_p(lii,q) n=m
Brnm—n =y _pii) i=n i=n ,(38)

m#0,1,Bmax j—g11 (1—p1o) [gp(n;i — 1, ¢ H{1—q)p(n + 1;i — 1,q)]

d-p1op(n; 1, q) n=0,1,...,m—1
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Figure 14. Maximum between probability of underflow and @eer as per problem (9) for unconstrained and constrained
codes versupio for k =3, R =0.01 andgo = ¢1 = 0.

i—1
k+1 (L =pw)1—q) > plii—1,q) n=-1
ﬁm,m—n = ij(l) i—1 e 4 ’
m=0 T (1 —=pu)gd_p(li —1,q)+pwy_p(liig) n=0

l:n l:n

k4l (1—=po)(1—q) n=-1
- pr(i) - , (39)
igl;rl I (1 =pio)g+po n=0

(

(1-p10)p(0; 1, q) n=-1

—1
k+1 (1—p1o) {qp(n;i —1,9)+(1—q) > p(l;i—1,q)
ﬁm,m—n — Zpl(l) l=n+1 : (40)
" i=d+1 p10p(0; 2, ) n=0

i—1 %

(1-p10)ad>_p(l;i—1,q) + poY_p(lii, q) n=1

\ l=n l=n
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and

(

(1—p1o) [p(0;4, ) + qp(0;i—1, g }H{1—¢q)p(1;i—1, q)]
+p10p(0;4, q) n=>0

(1=p1o) [gp(n;i—1, )1 — q)p(n+1;i—1,q)]

ﬁmm_n:kiipl(i)- +p1op(n; 1, q) | n=12..m-2 (41)
e (1=p10) [qp(n; i—1, QHl—Q)l_Z%lp(l; i—1,q)
+p1op(n; 4, q) n=m—1
(1—2910)61:_2:1 (n;i—1, q)ﬁ?mlf)p(n; i,q) n=m
\ = —)
APPENDIX B

PROOF OFPROPOSITION1

In this Appendix, we prove Proposition 1 following a similgproach as [29, Theorem. 5.4.1].
We first relate the overflow event (2) and the underflow evehtd3he processe®, and U,
that count the number of overflow and underflow events actessenewal intervals (recall Sec.
IV). To this end, we define a random process that counts thebauwf renewals (i.e., events
{C; = 0}) up to timei, namely

N(i) = {j € {L,....,i} : C; =0}, (42)
where|-| represents the cardinality of its argument. It is also coier to classify the renewal

events depending on the value of the battery at the beginvfitge renewal interval. We can

then define

Ny(i) =|{j €{1,...,i} : C; =0 and B; = b}|. (43)
The relationship between (42) and (43) is given as
Bmax
N(i) = Y Ny(i). (44)
b=0

Moreover, the initial time instant of thé&h interval corresponding to an initial battery state

b € {0, ..., Bnax} Can be written as
de' = min {Z . Nb(l) = ]} . (45)
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Using (42)-(45), we can now obtain the relationship (see {9, pp. 239-240])

Bmabe(i) ~ ) Bmabe(i)J’_l ~
22Uy sy 2 2 Uy
oL (46)
7 7
where
S,
Uy = > Uk (47)
k:Sbyjfl
Averaging over all battery statés we also have
~ k+1 ~
E|0)| = Y piG)E|Thi]. (48)
i=d+1
The left hand side of (46) can be separated as
BII)aXNbZ(i) ~ N ()
Ub] BmaxVpl?) _
— D 2 2 U, N(i)
b=0 ]—1 =0 j=1 1
= = 0] . (49)

)
Therefore,t — oo, since we haveN(t) — oo, the strong law of renewal processes can be
invoked on the second term on the right hand side of (49) talode thatN(i)/i — 1/E[I]
with probability one [29]. As for the first term, it can be weh as

Bmabe(i) ~ sz(l)U
] b,j B Brax p=1 b,j (50)
N(i) o Bmax _
=0 Ny(i)
b'=0
Ni(:i)(j
Bmax b7' .
S ) E= U (51)
Nb(l) Bmax .
b=0 > Ny (i)
b¥'=0

As a result, ift — oo, and henceN,(i) — oo, by the strong law of large numbers, noting
the fact that the random variablefs,,j for every b € [0, Byax| are i.i.d. acrossj, we have
SN U,/ Ny(i)— E[Us,;] with probability one. Finally, by the law of large numbers évgodic
Markov chains (see, e.g., [24]), we hadg(i)/ 25‘;‘"5* Ny (i)— 7, where we recall that, is

the steady-state of the Markov cha, which can be calculated from the transition probabilities
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detailed in Appendix A. From the discussion above, we catelthat the following limit holds

with probability one

Bmabe(i) ~
U . Bmax -~ -
20 L SN CEAES
Jim = =Em (52)

The same limit is obtained by applying the approach detadlleove to the right-hand side of
the inequality (46). This concludes the proof of (29) in Rysiion 1. The overflow probability
(28) is obtained following the same approach.
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