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Abstract

In various wireless systems, such as sensor RFID networks and body area networks with implantable

devices, the transmitted signals are simultaneously used both for information transmission and for energy

transfer. In order to satisfy the conflicting requirements on information and energy transfer, this paper

proposes the use of constrained run-length limited (RLL) codes in lieu of conventional unconstrained

(i.e., random-like) capacity-achieving codes. The receiver’s energy utilization requirements are modeled

stochastically, and constraints are imposed on the probabilities of battery underflow and overflow at

the receiver. It is demonstrated that the codewords’ structure afforded by the use of constrained codes

enables the transmission strategy to be better adjusted to the receiver’s energy utilization pattern, as

compared to classical unstructured codes. As a result, constrained codes allow a wider range of trade-

offs between the rate of information transmission and the performance of energy transfer to be achieved.

I. INTRODUCTION

Various modern wireless systems, such as sensor RFID networks [1] and body area networks

with implantable devices [2]-[4], challenge the conventional assumption that the energy received

from an information bearing signal cannot be reused. For instance, implantable devices can

be powered by the received radio signal, hence alleviating the need for a battery and reduc-

ing significantly the size of the devices. This realization has motivated a number of research
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groups to investigate the design of wireless systems under joint information and energy transfer

requirements1.

The research activity in this area has focused so far on optimal resource allocation in the

presence of information and energy transfer for various network topologies. Specifically, refer-

ence [8] studied a single point-to-point channel, while [9][10] investigated power allocation for

a set of parallel point-to-point channels under energy transfer and information rate constraints.

The optimization of beamforming strategies under the same criteria was studied in [11]-[14] for

multiantenna broadcast channels and for two-user multiantenna interference channels in [15].

Optimal resource allocation assuming wireless energy transfer was also investigated in [16] for

cellular systems, in [17]-[19] for relay systems, in [20] for two-way interactive channels, and

in [21] for graphical multi-hop networks. Considerations on the design of the receiver under

the constraint that, when harvesting energy from the antenna, the receiver is not able to use the

same signal for information decoding, can be found in [22].

Unlike all prior work summarized above, this work focuses onthe code designfor systems

with joint information and energy transfer. We focus on a point-to-point link as shown in Fig. 1,

in which the receiver’s energy requirements are modeled as arandom process. The statistics of

this process generally depend on the specific application tobe run at the receiver, e.g., sensing or

radio transmission. The performance in terms of energy transfer is measured by the probabilities

of overflow and underflow of the battery at the receiver. The probability of overflow measures

the efficiency of energy transfer by accounting for the energy wasted at the receiver. Instead, the

probability of underflow is a measure of the fraction of the time in which the application run at

the receiver is in outage due to the lack of energy.

Classical codes, which are designed with the only aim of maximizing the information rate, are

unstructured (i.e., random-like), see, e.g., [23]. As a result, they do not allow to control the timing

of the energy transfer, and hence to optimize the probability of overflow and underflow. With

this in mind, here it is proposed to adopt constrained run-length limited (RLL) codes [24] in lieu

of conventional unconstrained codes. The constraints defining RLL codes ensure that the code

does not includes bursts of energy either too frequently, thus limiting battery overflow, or too

infrequently, thus controlling battery underflow. Constrained RLL codes have been traditionally

1It is worth noting that wireless energy transfer, has a long history [5] and is available commercially (see, e.g., [6][7]).
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studied for applications related to magnetic and optical storage [24]. The application to the

problem at hand of energy transfer has been previously studied in the context of point-to-point

RFID systems in [25], although no analysis of the information-energy trade-off was provided. In

contrast, in this work, a thorough analysis is provided of the interplay between information rate ad

energy transfer in terms of probabilities of battery overflow and underflow. The analysis reveals

that, by properly choosing the parameters that define RLL codes depending on the receiver’s

utilization requirements, constrained codes allow to greatly improve the system performance in

terms of simultaneous energy and information transfer.

The reminder of this paper is organized as follows. In Sec. II, the system model is intro-

duced along with performance criteria. In Sec. III and Sec. IV, we study the performance of

classical unconstrained codes and of constrained RLL codes, respectively, in terms of energy

and information transfer. Sec. V presents numerical results. Finally, some concluding remarks

can be found in Sec. VI.

II. SYSTEM MODEL

We consider the point-to-point channel illustrated in Fig.1. We assume that at each discrete

time i, the transmitter can either send an “on” symbolXi = 1, which costs one unit of energy,

or an “off” signalXi = 0, which does not require any energy expenditure. The receiver either

obtains an energy-carrying signal, which is denoted asYi = 1, or receives no useful energy, which

is represented asYi = 0. The channel is memoryless, and has transition probabilities as shown in

Fig. 1. Accordingly,p10 represents the probability that energy is lost when propagating between

transmitter and receiver2. At the receiver side, upon reception of an energy-carryingsignalYi = 1,

the energy contained in the signal is harvested. The harvested energy is temporarily held in a

supercapacitor and, if not used in the current time intervali, is stored in a battery, whose capacity

limited to Bmax energy units (see, e.g., [26]).

The receiver’s energy utilization is modeled as a stochastic processZi ∈ {0, 1}, so thatZi = 1

indicates that the receiver requires one unit of energy at time i, while Zi = 0 implies that no

energy is required by the receiver at timei. This process is not known at the transmitter and

2A more general model would allow also for a non-zero probability p01 of receiving energy when no energy is transmitted.

This could be interpreted as the probability of harvesting energy from the environment (see [20]). We do not consider this

extension in this work.

August 10, 2018 DRAFT



4

M

M̂

maxB

Encoder 
nX

nY
Decoder 

ReceiverChannel

Transmitter
0

1 1

0
1

10p

101 p−

Supercapacitor

nZ

Figure 1. Point-to-point link with information and energy transfer.

evolves according to the Markov chain shown in Fig. 2. Note that adopting a Markov model

to account for the time variations of energy usage is a standard practice (see, e.g., [27] and

references therein). Accordingly, when in stateU0, there may be bursts of consecutive time

instants in which no energy is required (i.e.,Zi = 0); while, when in stateU1, there may be

bursts of consecutive time instants in which energy is required (i.e.,Zi = 1). The probability

that Zi = 0 when in stateU0 is referred to asq0 and the probability thatZi = 1 in stateU1 is

denoted asq1. We observe that the average length of bursts of symbols in which Zi = j in state

Uj is given by1/(1− qj) for j ∈ {0, 1}. Also, it is remarked that, whenq0 = 1− q1, the energy

usage model becomes a memoryless process withPr[Zi = 1] = 1− q0 = q1.

Due to the finite capacity of the battery, there may be batteryoverflows and underflows. An

overflow event takes place when energy is received and storedin the supercapacitor (i.e.,Yi = 1),

but is not used by the receiver (i.e.,Zi = 0) and the battery is full (i.e.,Bi = Bmax), so that the

energy unit is lost; instead, an underflow event occurs when energy is required by the receiver

(i.e., Zi = 1) but the supercapacitor and the battery are empty (i.e.,Bi = 0 andYi = 0). In the

rest of this section we define all the parts of the system in Fig. 1 in detail.

A. Transmitter

The transmitter aims at communicating a messageM , uniformly distributed in the set
[

1 : 2nR
]

,

reliably to the decoder, while at the same time guaranteeingdesired probabilities of battery
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Figure 2. Energy utilization model at the receiver.

overflow and underflow (see Sec. II-B). Note thatn is the codeword length andR represents the

information rate in bits per channel use, while the constraints on the probabilities of overflow

and underflow represents the requirements on energy transfer. As discussed in Sec. I, in this

work, we investigate the performance in terms of information and energy transfer achievable of

conventional unconstrained codes and of RLL codes. We introduce RLL codes next following

[24].

The codewordsxn(m), with m ∈
[

1 : 2nR
]

, of a type-i RLL code satisfy run-length constraints

on the number of consecutive symbolsi, wherei = 0 or i = 13. To elaborate, letd and k be

integers such that0 ≤ d ≤ k. We say that a finite length binary sequencexn(m) satisfies the

type-0 (d, k)-RLL constraint if the following two conditions hold (see Fig. 3):

• the runs of 0’s have length at mostk, and

• the runs of 0’s between successive 1’s have length at leastd; note that the first and last

runs of 0’s are allowed to have lengths smaller thand.

Therefore, a type-0(d, k)-RLL code is such that the codewords include sufficiently long stretches

of zero-energy symbols 0, via the selection ofd, thus limiting battery overflow, but not too

infrequently, viak, thus partly controlling also battery underflow. As a result, type-0 (d, k)-

RLL codes are suitable for overflow-limited regimes in whichcontrolling overflow events is

most critical. An example of a sequence satisfying the type-0 (d, k) = (2, 7)-RLL constraint

is xn(m) = 00100001001000000010 wheren = 20. Overall, the set of all sequencesxn(m)

3Classical RLL codes as discussed in, e.g., [24] are type-0, but here we find it useful to extend the definition to include also

type-1 RLL codes.
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satisfying a type-0(d, k)-RLL constraint is then described by all the possiblen-bit outputs of

the finite state machine in Fig.3, where the outputs are shown by the binary labels of the directed

edges. Note that finite-state machine consists ofk+1 states (the numbered circles) and the initial

state is arbitrary.

A type-1 (d, k)-RLL code is defined in the same way, upon substitution of all “0” for “1” and

vice versa in the edge labels of Fig. 3. Therefore, type-1(d, k)-RLL codes allow one to control

the stretches of “1” symbols in the codewords, and are hence well suited for underflow-limited

regimes, in which controlling the probability of underflow is most important.

0
0

0
1 d 1d + k

0 0

1 1 1

Figure 3. The codewords of a type-0(d, k)-RLL code must be outputs of the shown finite-state machine. Atype-1(d, k)-RLL

constrained code is instead obtained by substituting all “0” for “1” and vice versa.

B. Receiver

Transmitter and receiver communicate over the binary channel shown in Fig. 1 with the

probability of p10 of flipping symbol “1” to symbol “0”. As mentioned, this probability can be

interpreted in terms of energy losses across the channel. The received signalY n is used by the

decoder both to decode the information messageM encoded via the constrained code at the

transmitter and to perform energy harvesting. The harvested energy is used to fulfill the energy

requirements of the receiver as dictated by the processZn, where the requirements are given in

terms of probability of overflow and underflow. This is discussed next.

Let Bi denote the number of energy units available in the battery attime i. At the ith time

period, the decoder first receives signalYi, and stores its energy (ifYi = 1) temporarily in a

supercapacitor (see Fig. 1). Then, ifZi = 1, the receiver attempts to draw one energy unit from

the supercapacitor or, if the latter is empty, from the battery. If the energy in the supercapacitor

is not used, it is stored in the battery in the next time slot. As a result, the amount of energy in

August 10, 2018 DRAFT
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the battery evolves as

Bi+1 = min
(

Bmax, (Bi + Yi − Zi)
+) , (1)

where(a)+ = max (0, a).

When the receiver harvests a unit of energy,Yi = 1, no energy is used,Zi = 0, and the battery

is full, Bi = Bmax, we have an overflow event. To keep track of the overflow events, we define

a random processOi such thatOi = 1 if the event{Bi = Bmax, Yi = 1, andZi = 0} occurs

andOi = 0 otherwise. This can be expressed as

Oi = 1 {Bi = Bmax, Yi = 1 andZi = 0} . (2)

When the receiver wishes to use a unit of energy,Zi = 1, and both the supercapacitor and the

battery are empty,Yi = 0 andBi = 0, we have an underflow event. To describe underflow events,

we introduce a random processUi such thatUi = 1 if the event{Bi = 0, Yi = 0 andZi = 1}

takes place andUi = 0 otherwise. This can be expressed as

Ui = 1 {Bi = 0, Yi = 0 andZi = 1} . (3)

A sample path of the battery state processBi along withYi, Zi, Ui andOi, is shown in Fig. 4.

We define the probability of underflow as

Pr {U} = lim sup
n→∞

1

n

n
∑

i=1

E [Ui] , (4)

and the probability of overflow as

Pr {O} = lim sup
n→∞

1

n

n
∑

i=1

E [Oi] . (5)

We note that in (4) and (5), the expectation is taken over the distribution of the messageM , of

the channel and of the receiver’s energy utilization process Zn.

C. Performance Criteria and Problem Formulation

The point-to-point link under study will be evaluated in terms of its performance for both

information and energy transfer. A triple(R,Pof , Puf) of information-energy requirements is

said to be achievable by an encoder-decoder pair if the information transfer at rateR is reliable,

i.e., if

lim sup
n→∞

Pr
[

M̂ 6= M
]

= 0 (6)

August 10, 2018 DRAFT
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Figure 4. A sample path of the evolution of the batteryBi. Also indicated is the assumed order of energy arrival and departure

events from the battery (i.e.,Yi and Zi) and the overflow and underflow events (where not specified, wehaveUi = 0 and

Oi = 0).

and if the energy transfer fulfill the constraints

Pr {O} ≤ Pof , (7)

and Pr {U} ≤ Puf . (8)

We are interested in investigating the set of achievable triples(R,Pof , Puf) for different classes

of codes, namely unconstrained and(d, k)-RLL constrained. To obtain further insight, in Sec.

V, we will consider the problem

minimize max(Pof , Puf)

subject to (R,Pof , Puf) is achievable, (9)

whereR is fixed and the minimization is done over all codes belongingto a certain class.

Problem (9) is appropriate when both underflow and overflow are equally undesirable and one

wishes to reduce both equally as much as possible. Alternatively, one could, e.g., minimize either

one ofPof or Puf under a given constraint on the other and on the rate.

August 10, 2018 DRAFT
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III. U NCONSTRAINED CODES

In this section, we study the information-energy transfer performance of classical unconstrained

codes. To this end, we adopt Shannon’s classical random coding argument. Accordingly, we

assume that the codewordsxn(m), m ∈
[

1 : 2nR
]

, are generated independently as i.i.d.Ber(px)

processes and evaluate the corresponding performance on average over the code ensemble. As it

is well known (see, e.g., [23]), the maximum information rate R achieved by this code is given

as

R = I(X ; Y )

= H(Y )− H(Y |X)

= H(px(1− p10))− pxH(p10)

= H(py)−
py

1− p10
H(p10), (10)

where we have defined the probabilitypy , Pr[Yi = 1] = px(1 − p10) and the binary entropy

function

H(a) , −a log2 a− (1− a) log2(1− a). (11)

We now turn to the evolution of the performance in terms of energy transfer. In order to

simplify the analysis and obtain some insight, we first assume the special case for then receiver’s

energy utilization model in which the processZn is i.i.d. and henceq1 = 1− q0 , q. Note that

q is the energy usage probability, in that we haveq = Pr[Zi = 1]. The extension to the more

general Markov model of Fig. 2 will be discussed in Remark 3. If the processZn is i.i.d., the

battery state evolves according to the birth-death Markov chain shown in Fig. 5. Using standard

considerations and recalling (2) and (3), we can then calculate the probability of overflow and

underflow respectively, as

Pr {O} = πBmaxpy(1− q) , O(py), (12)

and Pr {U} = π0(1− py)q , U(py), (13)

whereπi is the steady-state probability of statei ∈ [0, Bmax] for the Markov chain in Fig. 5.

This can be easily calculated as

πi =
Ai

1 + A+ ...+ ABmax
, (14)

August 10, 2018 DRAFT



10

maxB210 max 1B −

(1 )(1 )y yp q p q+ − −

(1 )yp q−

(1 )(1 )yq p q+ − − (1 )yp q− 1 yq p q− +

(1 )yp q−(1 )yp q−

(1 )yp q− (1 )yp q−

Figure 5. The birth-death Markov process defining the battery state evolution along the channel uses with unconstrained(i.i.d.)

random codes and i.i.d. receiver’s energy usage processZn (i.e., q = q1 = 1− q0).

whereA = py(1−q)
(1−py)q

. The following lemma summarizes our conclusions so far.

Lemma 1. Given a receiver energy usage i.i.d. process with energy usage probabilityq, the set

of achievable information-energy triples(R,Pof , Puf) for unconstrained (i.i.d.) codes is given

by
{

(R,Pof , Puf) : ∃ py ∈ [0, 1− p10] such that

R ≤ H(py)−
py

1− p10
H(p10) (15)

Pof ≥ O(py), Puf ≥ U(py)

}

, (16)

whereH(py), O(py) andU(py) are defined in (11), (12) and (13), respectively.

Remark1. The region (15) is in general not convex, but it can be convexified if one allows

for time sharing between codes with different values ofpy (see, e.g., [28, Ch. 4] for related

discussion).

In order to get further insight into the performance of unconstrained codes, we now assume

that the channel is noiseless, i.e.,p10 = 0 and, as a result, we haveYi = Xi for all i = 1, ..., n

andpy = px. Moreover, we consider problem (9), which reduces to the following optimization

problem

minimize
px∈[0,1]

max (O(px),U(px))

subject to: H(px) ≥ R, (17)

August 10, 2018 DRAFT
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whereR is fixed. The solution of problem (17) is summarized in the following lemma.

Lemma 2. The optimal solutionp⋆x of problem (17) is given as

q if R ≤ H(q) (18a)

H−1(R) if R > H(q) and q ≤
1

2
(18b)

1− H−1(R) if R > H(q) and q >
1

2
(18c)

whereH−1(R) is the inverse of the entropy function in the interval[0, 1/2]. Moreover, the optimal

valuemax (O (p⋆x) ,U (p⋆x)) of the problem (17) is given by

(1− q) q

Bmax + 1
if R ≤ H(q) (19a)

O
(

H−1(R)
)

if R > H(q) and q ≤
1

2
(19b)

U
(

1− H−1(R)
)

if R > H(q) and q >
1

2
. (19c)

Proof: A graphical illustration of Lemma 2 is shown in Fig. 6. To interpret the conditions

(18a) and (19a), we observe that the underflow probability U(px) is monotonically decreasing

with px, while the overflow probability O(px) is monotonically increasing withpx. Therefore, in

the absence of the rate constraint, the optimal value of problem (17) is achieved whenpx = q,

since, with this choice, we haveO(px) = U(px). As a result, ifR ≤ H(q), and hence the rate

constraint is immaterial forpx = q, we havep⋆x = q.

Instead, ifR > H(q), the rate constraint is active and the optimal solution requiresR = H(px).

In particular, there are two situations to be considered, namely the overflow-limited regime,

defined by the conditionq ≤ 1/2, and theunderflow-limited regime,where we haveq > 1/2. In

the former regime (Fig. 6-(a)), the rate constraint forcespx to be larger thanq, which leads to the

optimal solutionp⋆x = H−1(R) and causes the overflow probability O(px) to be larger than the

underflow probability U(px), so thatmax (O(px) ,U (px)) = O (px). In contrast, in the underflow-

limited regime (Fig. 6-(b)), the rate constraint forcespx to be smaller thanq, which leads to

p⋆x = 1− H−1(R) and causes U(px) to dominate O(px), or max (O (px) ,U (px)) = U (px).

Remark2. The proof of Lemma 2 suggests that, when the rate is sufficiently small, problem

(9) is solved by "matching" the code structure to the receiver’s energy utilization model. This

is done, under the given i.i.d. assumption on codes and receiver’s energy utilization, by setting

August 10, 2018 DRAFT
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p⋆x = q. Instead, when the rate constraint is the limiting factor, one is forced to allow for a

mismatch between code properties and receiver’s energy utilization model (by settingp⋆x 6= q).

These ideas will be useful when interpreting the gains achievable by constrained codes discussed

in Sec. IV.

1H ( )R−

q

xp∗

1

1

2

R0

R

11 H ( )R−−q

1

2

0 1

( )a

( )b

H( )q

H( )q

xp∗

Figure 6. Illustration of the optimal solutionp⋆x of problem (17) (Lemma 2): (a) the overflow-limited regimeq ≤ 1/2; (b) the

underflow-limited regimeq > 1/2.

Remark3. The characterization of the achievable information-energy triples (R,Pof , Puf) of

Lemma 1 can be extended to the more general Markov model in Fig. 2 for the receiver’s energy

usage. This is done by noting that the battery evolution under this model is described by the

Markov chain shown in Fig. 7, instead of the simpler birth-death Markov process shown in Fig.

5. The calculation of the corresponding steady-state probabilities πi,Uj
, for i ∈ [0, Bmax] and

j = {0, 1}, can be done using standard steps (see, e.g., [29]). Lemma 1 then extends to the

scenario at hand by calculating the probabilities of overflow and underflow, similar to (12)-(13)

August 10, 2018 DRAFT
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as

Pr {O} = πBmax ,U0pyq0 + πBmax,U1py(1− q1) , O(py), (20)

and Pr {U} = π0,U0(1− py)(1− q0) + π0,U1(1− py)q1 , U(py). (21)

max 0,B U02,U01,U
00,U max 01,B U−

1q

max 1,B Umax 11,B U−10,U 12,U11,U

0(1 )yp q−

0yp q

1yp q

01 q−

1(1 )(1 )yp q− −

0yp q 0yp q

0q

0(1 )yp q−

1yp q

1(1 )yp q−

1(1 )yp q−

1(1 )(1 )yp q− −

1(1 )yp q−

1(1 )yp q−
0(1 )yp q−

0(1 )(1 )yp q− − 0(1 )(1 )yp q− −

1(1 )yp q−

1yp q

0(1 )yp q− 0(1 )yp q−

0(1 )yp q−

1(1 )q−

1yp q

1(1 )(1 )yp q− −

0(1 )yp q−

1(1 )yp q−

0(1 )yp q−

1(1 )(1 )yp q− −

0(1 )(1 )yp q− −

1(1 )yp q−

Figure 7. The Markov process defining the battery state evolution along the channel uses with unconstrained (i.i.d.) random

codes and the Markov receiver’s energy usage model of Fig. 2.

IV. CONSTRAINED CODES

In this section, we study the performance of(d, k)-RLL codes. To this end, as with uncon-

strained codes, we adopt a random coding approach. Specifically, we take the codewords to

be generated independently according to a stationary Markov chain defined on the finite state

machine in Fig. 3. It is known that this choice is optimal in terms of capacity (see, e.g., [24], [25],

[30]). A stationary Markov chain on the graph of Fig. 3 is defined by the transition probabilities

P = {pd, pd+1, ..., pk−1} on its edges as shown in Fig. 8. We define asCi the state of the

constrained code at timei, prior to the transmission ofXi. For example, the state sequence for

the type-0(d, k) = (2, 7)-RLL corresponding to the codewordxn(m) = 00100001001000000010

is cn(m) = 01201234012012345670 where n = 20. Then, the transition probabilitypj for

j = d, ..., k − 1 is equal toPr[Ci = j + 1|Ci−1 = j], for i > 1. Barring degenerate choices for

P, it is easy to see that the Markov chain is irreducible, and hence one can calculate the unique

steady-state distributionπj = Pr [Ci = j] for j ∈ [0, k] (see, e.g., [24]).
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A. Information Rate

In [31, Lemma 5], it was proved that an achievable rateR with (d, k)-RLL codes is given as

R = I(C2; Y2|C1). Evaluating this expression for type-0(d, k)-RLL constrained codes leads to

R = H(Y2|C1)− H(Y2|C1, C2)

=
k−1
∑

j=d

πj {H((1− pj)(1− p10))− (1− pj)H(p10)} . (22)

Instead, for type-1 code the achievable rate becomes

R =

k−1
∑

j=d

πj {H(pj(1− p10))− pjH(p10)} . (23)

Remark4. We note that if the channel is noiseless, i.e.,p10 = 0, the information rates (22) and

(23) equal the entropy rate of the channel input sequenceXn, i.e.,

R =

k−1
∑

j=d

πjH(pj). (24)

Moreover, the maximization of the achievable information rate (24) over the transition proba-

bilities P, with no regards for energy transfer, leads to the solution

sup
P

k−1
∑

j=d

πjH(pj) = log2 λ, (25)

whereλ is the largest absolute value taken by the eigenvalues of adjency matrix4 A of the graph

that defines the(d, k)-RLL code [24].

0 1p =
0 1 d 1d + kdp 1dp +

1 dp− 11 dp +− 1 1kp− =

1kp −1 1p =

Figure 8. Transition probabilitiesP = {pd, pd+1, ..., pk−1} defining the stationary Markov chain used for random coding with

type-0 (d, k)-RLL codes.

4The adjacency matrix A is ak × k matrix such that the(i, j)th element equals 1 if statei and statej are connected in the

graph that defines the code (see Fig. 8) and is zero otherwise.

August 10, 2018 DRAFT



15

B. Energy Transfer

We now address energy transfer by turning to the calculationof the probabilities of battery

underflow and overflow, namelyPr {U} andPr {O} in (4) and (5), respectively. To this end, as

for unconstrained codes, we focus at first on the special casein which the energy usage process

Zn is i.i.d. with energy usage probabilityq. We refer to Remark 6 below for a discussion on

the extension to the Markov model in Fig. 2.

We use a renewal-reward argument (see, e.g., [29]). We recall that a renewal process is a

random process of inter-renewal intervalsI1, I2, ... that are positive i.i.d. random variables. For

our analysis, it is convenient to define the renewal event as{Ci = 0}, so that a renewal takes

place every time the state of the constrained codeCi is equal to 0. This is equivalent to saying

that, in the channel use before a renewal event, the transmitted signalXi equals 1 for type-0

(d, k)-RLL codes andXi = 0 for type-1(d, k)-RLL codes. We refer to Fig. 9 for an illustration.

Based on the above, the renewal intervalsIi, for i ≥ 1, are i.i.d. integer random variables with

distributionpI(i) that can be calculated, givenP, as

pI(i) =











































0 i ≤ d and i > k + 1

1− pd i = d+ 1

(1− pi−1)
i−2
∏

l=d

pl d+ 1 < i ≤ k

k−1
∏

l=d

pl i = k + 1

. (26)

Moreover, it is useful to define a Markov chaiñBi that defines the evolution of the battery as

evaluated at the renewal instants (i.e., for values ofi for which Ci = 0), as illustrated in Fig. 9.

We refer to the steady-state probability of this Markov chain as π̃b with b ∈ [0, Bmax]. Finally,

we define asÕb the random variable that counts the number of overflow eventsin a renewal

that starts with a battery with capacityb ∈ [0, Bmax], and, similarly, we define as̃Ub the random

variable that counts the number of underflow events in a renewal that starts with a battery with

capacityb ∈ [0, Bmax]. We proceed by treating separately the type-0 and type-1 codes.

1) Type-0 Codes:For type-0 codes, the transition probabilities for the processB̃i are reported

in Appendix A (see also Fig. 10 for an illustration), from which the steady state probabilities

π̃b can be calculated (see, e.g., [29]). The next proposition summarizes the main result of the

analysis. We use the definitionp(n; i, q) =
(

i

n

)

qn(1− q)i−n with n = 0, ..., i, for the probability
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Figure 9. A sample of renewal events{Ci = 0} and the corresponding evolution of the battery across channel uses for a

type-0 (d, k)-RLL code.

distribution of a binomial random variable with parameters(i, q).

maxB210 max 1B −

Figure 10. The birth-death Markov process defining the battery state evolution along the renewal instants, where we have

Ci = 0, for (d, k)-RLL codes, i.i.d. receiver’s energy usage patternZn, andk = Bmax.

Proposition 1. Given an i.i.d. receiver energy usage process with energy usage probabilityq, the

set of achievable information-energy triples(R,Pof , Puf) for type-0(d, k)-RLL codes is given
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by
{

(R,Pof , Puf) : ∃ P = {pd, pd+1, ..., pk−1} ∈ (0, 1)n such that

R ≤

k−1
∑

j=d

πj {H((1− pj)(1− p10))− (1− pj)H(p10)} , (27)

Pof ≥
π̃BmaxE

[

ÕBmax

]

E [I]
, (28)

and Puf ≥

Bmax
∑

b=0

π̃bE
[

Ũb

]

E [I]

}

, (29)

where we have defined

E [I] =

k+1
∑

i=d+1

i · pI(i), (30)

along with

E
[

Ũb

]

=

k+1
∑

i=d+1

pI(i)

{

(1− p10)

i−b−1
∑

l=1

p(l + b; i− 1, q)

+p10

i−b
∑

l=1

p(l + b; i, q)

}

, (31)

and E
[

ÕBmax

]

=

k+1
∑

i=d+1

pI(i)(1− p10)p(0; i, q). (32)

Proof: See Appendix B.

Remark5. The right-hand side of (28) evaluates the probability of overflow as the ratio of the

average numbers of overflow events in a renewal interval overthe average length of a renewal

interval. The right-hand side of (29) can be similarly interpreted. Note that, by the given definition

of renewal events, in order to have an overflow, the initial battery stateB̃i must be in stateBmax,

whereas underflow events can potentially happen for all statesb ∈ {0, ..., Bmax}. This is reflected

by the numerators of (28) and (29).

Remark6. Similar to the case of unconstrained codes (see Remark 3), the characterization of the

achievable information-energy triples(R,Pof , Puf) of Proposition 1 can be extended to the more

general Markov model in Fig. 2 for the receiver’s energy usage. This is done by noting that the
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max 1,B U12,U11,U10,U max 11,B U−

max 0,B U02,U01,U00,U max 01,B U−

Figure 11. The Markov process defining the battery state evolution along the renewal instants where we haveCi = 0, and the

energy usage state at the receiver, for(d, k)-RLL codes, andk = Bmax with the Markov receiver’s energy usage model of Fig.

2.

evolution of the battery state along the renewal instants can be still described by a Markov chain,

albeit a more complex one. Moreover, in order to extend the analysis one needs to include in

the state of the Markov process not only the battery stateB̃i but also the state of the receiver’s

energy usage (eitherU0 or U1). The corresponding Markov chain is sketched in Fig. 11. The

calculation of the corresponding transition probabilities is straightforward but cumbersome and

is not detailed here.

2) Type-1 Codes:For type-1 codes, the analysis presented above does not easily generalize in

the case in which the channel loss probabilityp10 is nonzero. This can be seen by following the

main steps of the proof of Proposition 1, which is based on having at most one non-zero received

symbol per renewal interval. However, in the special case inwhich p10 = 0, the approach can
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be generalized, leading to the following result.

Proposition 2. Given an i.i.d. receiver energy usage process with energy usage probabilityq, the

set of achievable information-energy triples(R,Pof , Puf) for type-1(d, k)-RLL codes is given

by
{

(R,Pof , Puf) : ∃ P = {pd, pd+1, ..., pk−1} ∈ (0, 1)n such that

R ≤

k−1
∑

j=d

πjH(pj), (33)

Pof ≥

Bmax
∑

b=0

π̃bE
[

Õb

]

E [I]
, (34)

and Puf ≥
π̃0E

[

Ũ0

]

E [I]

}

, (35)

where we have defined (30) along with

E
[

Ũ0

]

=
k+1
∑

i=d+1

pI(i)p(0; i, 1− q), (36)

and E
[

Õb

]

=

k+1
∑

i=d+1

pI(i)

i−b−1
∑

l=1

p(l + b; i− 1, 1− q). (37)

Proof: Proposition 2 follows by the same steps as Proposition 1 and is not detailed here.

Remark7. Similar to Proposition 1, the right-hand sides of (34), and of (35), evaluate the

probabilities of overflow, and of underflow, via the ratios ofthe average numbers of overflow,

and of underflow, events in a renewal interval over the average length of a renewal interval. In

a dual fashion with respect to Proposition 1, given the definition of renewal events, underflow

can only occur in renewal intervals with initial battery state B̃i is zero, whereas overflow events

can potentially happen for all statesb ∈ {0, ..., Bmax}.

V. NUMERICAL RESULTS

In this section, we compare the performance of unconstrained and constrained codes using

problem (9) as the benchmark. Fig. 12 shows the optimal valueof max(Pof , Puf) for a noiseless

channel, i.e.,p10 = 0 in Fig. 1, whenR = 0.1 andq1 = 0 versusq0 (recall Fig. 2). Withq1 = 0,
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the energy usage processZn is such that a single energy request (i.e.,Zi = 1) is followed by

an average of1/(1 − q0) instants where no energy is required (i.e.,Zi = 0). Therefore, asq0

increases from 0.1 to 0.9, the average length of an interval with no energy usage increases from

around 1 to 10. Similar to the discussion in Remark 2 for unconstrained codes, when neglecting

the rate constraint, problem (9) is observed to be optimizedby matching the code structure to the

receiver’s energy utilization model. Whenq0 is sufficiently small, this can be easily accomplished

with type-0 (d, k)-RLL codes with a smallk. This is becausek defines the maximum possible

number of zero symbolsXi sent before a symbolXi = 1. As q0 increases, and hence the average

length of the bursts of zeros grows in the processZi, the value ofk must be correspondingly

increased. This is confirmed by Fig. 12, which shows the significant gain achievable by the use

of RLL codes when properly selecting the code parameters. Weobserve that type-1(d, k)-RLL

codes would provide exactly the same performance in the symmetric case in which we have

q0 = 0, and hence intervals of energy usage (i.e.,Zi = 1) are followed by a single instant with

no energy usage (i.e.,Zi = 0).

The impact of the information rateR is illustrated in Fig. 13 forq0 = q1 = 0 and p10 = 0.

Following the discussion above, when the rate is small, withq0 = q1 = 0, it is sufficient

to choose a type-0 or type-1(d, k)-RLL code with k = 1, as this matches the energy usage

process. However, as the rate grows larger, one needs to increase the value ofk, while keepingd

as small as possible [24]. For instance, withk = 1 andd = 0, the maximum achievable rate (25)

is R = 0.6942; with k = 2 andd = 0, it is R = 0.8791; with k = 3 andd = 1, it is R = 0.5515;

and withk = 3 andd = 0, it is R = 0.9468 [24, Table 3.1]. Accordingly, Fig. 13 shows again

that, by appropriately choosingd andk, RLL codes can provide relevant advantages.

Finally, we observe the effect of the loss probabilityp10 in Fig. 14 where we setR = 0.01 and

q0 = q1 = 0. Following the discussion above (see Remark 2), in order to match the receiver’s

energy utilization, the unconstrained code should be designed in such a way thatpy = 0.5 since

Pr[Zi = 1] = 0.5. Given thatpy = px(1 − p10), this is only possible forp10 < 0.5, and hence,

for p10 > 0.5, the performance is degraded as seen in Fig. 14. Whenp10 = 0, as demonstrated

above, RLL codes provide significant gains by providing a better matching to the utilization

processZn. As the losses on the channel become more pronounced this gain decreases due to

the reduced control of the received signal afforded by designing the transmitted signal.
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Figure 12. Maximum between probability of underflowPuf and overflowPof as per problem (9) for unconstrained and type-0

constrained codes versusq0 with q1 = 0 (see Fig. 2) andR = 0.1. To simplify the numerical optimization, the curve fork = 10

has been obtained by optimizing only overp0, p1, p2, p3 andp9 in P = {p0, p1, ..., p9} and settingp3 = p4 = p5 = ... = p8.

VI. CONCLUSIONS

A host of new applications, including body area networks with implantable devices, is enabled

by the possibility to reuse the energy received from information-bearing signals. With these

applications in mind, we have investigated the use of constrained run-length limited (RLL) codes

with the aim of enhancing the achievable performance in terms of simultaneous information and

energy transfer. We have proposed a framework whereby the performance of energy transfer

is measured by the probabilities of underflow and overflow at the receiver. The analysis has

demonstrated that constrained codes enable the transmission strategy to be better adjusted to the

receiver’s energy utilization pattern as compared to classical unstructured codes. This has been

shown to lead to significant performance gains especially atlow information rates. Interesting

future work includes the investigation of non-binary codesand multi-terminal scenarios.
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Figure 13. Maximum between probability of underflow and overflow as per problem (9) for unconstrained and type-0 constrained

codes versus the information rateR with q0 = q1 = 0 (see Fig. 2).

APPENDIX A

TRANSITION PROBABILITIES FOR THE MARKOV CHAIN IN FIG. 10

Using the definitions in Sec. IV, we now calculate the transition probabilityp̃m,m−n , Pr[B̃i =

m−n|B̃i−1 = m], whereB̃i is the random process that describes the evolution of the battery at

the renewal instants (see Fig. 9). The probabilitiesp̃m,m−n for m ∈ [0, Bmax] andn ∈ [−1, m]

can be calculated as

p̃m,m−n

m6=0,1,Bmax

=
k+1
∑

i=d+1

pI(i)·







































(1−p10)p(0; i, q) n = −1

(1−p10)q
i−1
∑

l=n

p(l; i−1, q) + p10
i
∑

l=n

p(l; i, q) n = m

(1−p10) [qp(n; i− 1, q)+(1−q)p(n+ 1; i− 1, q)]

+p10p(n; i, q) n = 0, 1, ..., m−1

, (38)
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Figure 14. Maximum between probability of underflow and overflow as per problem (9) for unconstrained and constrained

codes versusp10 for k = 3, R = 0.01 andq0 = q1 = 0.

p̃m,m−n
m=0

=

k+1
∑

i=d+1

pI(i)·















(1− p10)(1− q)
i−1
∑

l=n+1

p(l; i− 1, q) n = −1

(1− p10)q
i−1
∑

l=n

p(l; i− 1, q)+p10
i
∑

l=n

p(l; i, q) n = 0

,

=

k+1
∑

i=d+1

pI(i) ·











(1− p10)(1− q) n = −1

(1− p10)q + p10 n = 0
, (39)

p̃m,m−n
m=1

=

k+1
∑

i=d+1

pI(i)·











































(1−p10)p(0; i, q) n = −1

(1−p10)

[

qp(n; i− 1, q) + (1−q)
i−1
∑

l=n+1

p(l; i−1, q)

]

+p10p(0; i, q) n = 0

(1−p10)q
i−1
∑

l=n

p(l; i−1, q) + p10
i
∑

l=n

p(l; i, q) n = 1

, (40)
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and

p̃m,m−n
m=Bmax

=
k+1
∑

i=d+1

pI(i)·























































































(1−p10) [p(0; i, q) + qp(0; i−1, q)+(1−q)p(1; i−1, q)]

+p10p(0; i, q) n = 0

(1−p10) [qp(n; i−1, q)+(1− q)p(n+1; i−1, q)]

+p10p(n; i, q) n= 1, 2, ...m−2

(1−p10)

[

qp(n; i−1, q)+(1−q)
i−1
∑

l=n+1

p(l; i−1, q)

]

+p10p(n; i, q) n = m−1

(1−p10)q
i−1
∑

l=n

p(n; i−1, q)+p10
i
∑

l=n

p(n; i, q) n = m

. (41)

APPENDIX B

PROOF OFPROPOSITION1

In this Appendix, we prove Proposition 1 following a similarapproach as [29, Theorem. 5.4.1].

We first relate the overflow event (2) and the underflow event (3) to the processes̃Ob and Ũb

that count the number of overflow and underflow events across the renewal intervals (recall Sec.

IV). To this end, we define a random process that counts the number of renewals (i.e., events

{Cj = 0}) up to timei, namely

N(i) = |{j ∈ {1, ..., i} : Cj = 0}| , (42)

where|·| represents the cardinality of its argument. It is also convenient to classify the renewal

events depending on the value of the battery at the beginningof the renewal interval. We can

then define

Nb(i) = |{j ∈ {1, ..., i} : Cj = 0 andBj = b}| . (43)

The relationship between (42) and (43) is given as

N(i) =
Bmax
∑

b=0

Nb(i). (44)

Moreover, the initial time instant of theith interval corresponding to an initial battery state

b ∈ {0, ..., Bmax} can be written as

Sb,j = min {i : Nb(i) = j} . (45)
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Using (42)-(45), we can now obtain the relationship (see also [29, pp. 239-240])

Bmax
∑

b=0

Nb(i)
∑

j=1

Ũb,j

i
≤

i∑

j=1
Uj

i
≤

Bmax
∑

b=0

Nb(i)+1
∑

j=1

Ũb,j

i
, (46)

where

Ũb,j =

Sb,j
∑

k=Sb,j−1

Uk. (47)

Averaging over all battery statesb, we also have

E
[

Ũb

]

=

k+1
∑

i=d+1

pI(i)E
[

Ũb,i

]

. (48)

The left hand side of (46) can be separated as

Bmax
∑

b=0

Nb(i)
∑

j=1

Ũb,j

i
=

Bmax∑

b=0

Nb(i)∑

j=1
Ũb,j

N(i)

N(i)

i
. (49)

Therefore,t → ∞, since we haveN(t) → ∞, the strong law of renewal processes can be

invoked on the second term on the right hand side of (49) to conclude thatN(i)/i → 1/E [I]

with probability one [29]. As for the first term, it can be written as

Bmax
∑

b=0

Nb(i)
∑

j=1

Ũb,j

N(i)
=

Bmax
∑

b=0

Nb(i)
∑

j=1

Ũb,j

Bmax
∑

b′=0

Nb′(i)

(50)

=
Bmax
∑

b=0











Nb(i)
∑

j=1

Ũb,j

Nb(i)

Nb(i)
Bmax
∑

b′=0

Nb′(i)











(51)

As a result, if t → ∞, and henceNb(i) → ∞, by the strong law of large numbers, noting

the fact that the random variables̃Ub,j for every b ∈ [0, Bmax] are i.i.d. acrossj, we have
∑Nb(i)

j=1 Ũb,j/Nb(i)→ E[Ũb,j ] with probability one. Finally, by the law of large numbers for ergodic

Markov chains (see, e.g., [24]), we haveNb(i)/
∑Bmax

b′=0 Nb′(i)→ π̃b, where we recall that̃πb is

the steady-state of the Markov chaiñBi, which can be calculated from the transition probabilities
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detailed in Appendix A. From the discussion above, we conclude that the following limit holds

with probability one

lim
i→∞

Bmax
∑

b=0

Nb(i)
∑

j=1

Ũb,j

i
=

Bmax∑

b=0
(E[Ũb].π̃b)

E[I] . (52)

The same limit is obtained by applying the approach detailedabove to the right-hand side of

the inequality (46). This concludes the proof of (29) in Proposition 1. The overflow probability

(28) is obtained following the same approach.
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