
1

Reliability-output Decoding of
Tail-biting Convolutional Codes

Adam R. Williamson, Student Member, IEEE, Matthew J. Marshall, and Richard D. Wesel, Senior Member, IEEE

Abstract—We present extensions to Raghavan and Baum’s
reliability-output Viterbi algorithm (ROVA) to accommodate tail-
biting convolutional codes. These tail-biting reliability-output
algorithms compute the exact word-error probability of the
decoded codeword after first calculating the posterior probability
of the decoded tail-biting codeword’s starting state. One approach
employs a state-estimation algorithm that selects the maximum
a posteriori state based on the posterior distribution of the
starting states. Another approach is an approximation to the
exact tail-biting ROVA that estimates the word-error probability.
A comparison of the computational complexity of each approach
is discussed in detail. The presented reliability-output algorithms
apply to both feedforward and feedback tail-biting convolutional
encoders. These tail-biting reliability-output algorithms are suit-
able for use in reliability-based retransmission schemes with short
blocklengths, in which terminated convolutional codes would
introduce rate loss.

I. INTRODUCTION

Raghavan and Baum’s reliability-output Viterbi algorithm
(ROVA) [1] uses the sequence-estimation property of the
Viterbi algorithm to calculate the exact word-error probability
of a received convolutional code sequence. In general, the
ROVA can be used to compute the word-error probability
for any finite-state Markov process observed via memoryless
channels (i.e., processes with a trellis structure). However,
the ROVA is only valid for processes that terminate in a
known state (usually the all-zeros state). For codes with large
constraint lengths (ν+1), a significant rate penalty is incurred
due to the ν additional symbols that must be transmitted in
order to arrive at the termination state.

Tail-biting convolutional codes can start in any state, but
must terminate in the same state. The starting/terminating state
is unknown at the receiver. These codes do not suffer the rate
loss of terminated codes, making them throughput-efficient
(see, e.g., [2] and [3, Ch. 12.7]). The tail-biting technique is
commonly used for short-blocklength coding.

A. Overview and Contributions

In this paper, we extend the ROVA to compute the word-
error probability for tail-biting codes. First, we present a
straightforward approach, which we call the tail-biting ROVA
(TB ROVA). TB ROVA invokes the original ROVA for each of

A. R. Williamson, M. J. Marshall, and R. D. Wesel are with the
Electrical Engineering Department, University of California, Los Angeles,
CA 90095 USA (e-mail: adamroyce@ucla.edu; mmarshall@ucla.edu; we-
sel@ee.ucla.edu).

This material is based upon work supported by the National Science Foun-
dation under Grant Number 1162501. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

the possible starting states s. The complexity of this straight-
forward approach is large, proportional to 22ν for standard
binary convolutional codes (and q2ν for convolutional codes
over Galois field GF (q)).

We explore several approaches to reduce the complexity
of TB ROVA. We first introduce a post-decoding algorithm
that computes the reliability of codewords that have already
been decoded by an existing tail-biting decoder, including
possibly suboptimal decoders. We then propose a new tail-
biting decoder that uses the posterior distribution of the
starting states to identify the most probable starting state of
the received sequence. Finally, we discuss how to use Fricke
and Hoeher’s simplified (approximate) ROVA [4] for each of
the qν initial states, which reduces the complexity of the word-
error probability computation.

The reliability-output algorithms presented in this paper
apply to both feedforward (non-recursive) and feedback (re-
cursive) convolutional encoders. However, as pointed out by
Ståhl et al. [5], it is not possible to have a one-to-one mapping
from information words to codewords and still fulfill the
tail-biting restriction for feedback encoders at certain tail-
biting codeword lengths. Ståhl et al. [5] provide conditions
for when tail-biting will work for recursive encoders and also
describe how to determine the starting state corresponding to
an input sequence. In the cases that the tail-biting technique
works for feedback encoders, there is a one-to-one mapping
between input sequences and codewords, and the reliability-
output algorithms in this paper are valid.

The remainder of this paper proceeds as follows: Sec. I-B
reviews the related literature and Sec. I-C introduces notation.
Sec. II reviews Raghavan and Baum’s ROVA and discusses
how to extend it to tail-biting codes. The simplified ROVA for
tail-biting codes is discussed in Sec. III. Sec. IV presents the
Post-decoding Reliability Computation (PRC) for tail-biting
codes and Sec. V introduces the Tail-Biting State-Estimation
Algorithm (TB SEA). Sec. V-D discusses an alternative to TB
SEA using the tail-biting BCJR algorithm. Sec. VI evaluates
the complexity of the proposed algorithms, and Sec. VII shows
numerical examples of the computed word-error probability
and the actual word-error probability. Sec. VIII concludes the
paper.

B. Related Literature

There are a number of reliability-based decoders for ter-
minated convolutional codes, most notably the Yamamoto-
Itoh algorithm [6], which computes a reliability measure for
the decoded word, but not the exact word-error probability.
In [7], Fricke and Hoeher use Raghavan and Baum’s ROVA

ar
X

iv
:1

31
2.

10
24

v2
 [

cs
.I

T
]

 2
6

Fe
b

20
14

2

in a reliability-based type-I hybrid Automatic Repeat reQuest
(ARQ) scheme.

Hof et al. [8] modify the Viterbi algorithm to permit gen-
eralized decoding according to Forney’s generalized decoding
rule [9]. When the generalized decoding threshold is chosen
for maximum likelihood (ML) decoding with erasures and
the erasure threshold is chosen appropriately, this augmented
Viterbi decoder is equivalent to the ROVA.

A type-II hybrid ARQ scheme for incremental redundancy
using punctured terminated convolutional codes is presented
by Williamson et al. [10]. In [10], additional coded symbols
are requested when the word-error probability computed by the
ROVA exceeds a target word-error probability. This word-error
requirement facilitates comparisons with recent work in the in-
formation theory community [11], [12]. Polyanskiy et al. [12]
investigate the maximum rate achievable at short blocklengths
with variable-length feedback codes. While [10] shows that
terminated convolutional codes can deliver throughput above
the random-coding lower bound of [12], the rate loss from
termination is still significant at short blocklengths. To avoid
the termination overhead, it is imperative to have a reliability-
output decoding algorithm for tail-biting codes.

In contrast to the decoding algorithms for terminated codes,
Anderson and Hladik [13] present a tail-biting maximum
a posteriori (MAP) decoding algorithm. This extension of
the BCJR algorithm [14] can be applied to tail-biting codes
with a priori unequal source data probabilities. As with the
BCJR algorithm, [13] computes the posterior probabilities of
individual data symbols. In contrast, the ROVA [1] and the
tail-biting reliability-based decoders in this paper compute the
posterior probabilities of the codeword.

More importantly, the tail-biting BCJR of [13] is only
an approximate symbol-by-symbol MAP decoder, as pointed
out in [15] and [16]. Because the tail-biting restriction is
not strictly enforced, non-tail-biting “pseudocodewords” can
cause bit errors, especially when the ratio of the tail-biting
length L to the memory length ν is small (i.e., L/ν ≈ 1-
2). Further comparisons with the tail-biting BCJR are given
in Sec. V-D. An exact symbol-by-symbol MAP decoder for
tail-biting codes is given in [17, Ch. 7].

Handlery et al. [18] introduce a suboptimal, two-phase
decoding scheme for tail-biting codes that computes the ap-
proximate posterior probabilities of each starting state and then
uses the standard BCJR algorithm to compute the posterior
probabilities of the source symbols. This approach is compared
to the tail-biting BCJR of [13] and exact MAP decoding in
terms of bit-error-rate (BER) performance. Both the two-phase
approach of [18] and the tail-biting BCJR of [13] perform
close to exact MAP decoding when L/ν is large, but suffer a
BER performance loss when L/ν is small.

Although it does not compute the word-error probability,
Yu [19] introduces a method of estimating the initial state of
tail-biting codes, which consists of computing a pre-metric
for each state based on the last ν observations of the received
word. This pre-metric is then used to initialize the path metrics
of the main tail-biting decoder (e.g., the circular Viterbi
decoder [20]), instead of assuming that all states are equally
likely at initialization. The state-estimation method of [19],

which is not maximum-likelihood, is limited to systematic
codes and a special configuration of nonsystematic codes
that allows information symbols to be recovered from noisy
observations of coded symbols.

Because tail-biting codes can be viewed as circular pro-
cesses [2], [20], decoding can start at any symbol. Wu et al.
[21] describe a reliability-based decoding method that com-
pares the log likelihood-ratios of the received symbols in order
to determine the most reliable starting-location for tail-biting
decoders. Selecting a reliability-based starting location reduces
the error probability by minimizing the chance of choosing
non-tail-biting paths early in the decoding process. Wu et
al. [21] apply this approach to existing suboptimal decoders,
including the wrap-around Viterbi algorithm of [22]. As with
[19], [21] does not compute the word-error probability.

Pai et al. [23] generalizes the Yamamoto-Itoh algorithm to
handle tail-biting codes and uses the computed reliability mea-
sure as the retransmission criteria for hybrid ARQ. When there
is a strict constraint on the word-error probability, however,
this type of reliability measure is not sufficient to guarantee
a particular undetected-error probability. Providing such a
guarantee motivates the word-error probability calculations in
this paper (instead of bit-error probability as in [13], [15]–
[19]).

C. Notation

We use the following notation in this paper: P(X = x) de-
notes the probability mass function (p.m.f.) of discrete-valued
random variable X at value x, which we also write as P(x).
The probability density function (p.d.f.) of a continuous-valued
random variable Y at value y is f(Y = y), sometimes written
as f(y). In general, capital letters denote random variables
and lowercase letters denote their realizations. Boldface letters
with superscripts denote vectors, as in y` = (y1, y2, . . . , y`),
while subscripts denote a particular element of a vector: yi is
the ith element of y`. We use the hat symbol to denote the
output of a decoder, e.g., x̂ is the codeword chosen by the
Viterbi algorithm.

II. THE RELIABILITY-OUTPUT VITERBI ALGORITHM

Raghavan and Baum’s reliability-output Viterbi algorithm
[1] augments the canonical Viterbi decoder with the computa-
tion of the word-error probability of the maximum-likelihood
(ML) codeword. In this section, we provide an overview of
the ROVA.

For rate-k/n convolutional codes with L trellis segments
and input alphabet q, we denote the ML codeword as x̂L = x̂
and the noisy received sequence as yL = y. The probability
that the ML decision is correct given the received word is
P(X = x̂|Y = y) = P(x̂|y), and the word-error probabil-
ity is P(X 6= x̂|Y = y) = 1 − P(x̂|y). The probability of
successfully decoding can be expressed as follows:

P(x̂|y) =
f(y|x̂)P(x̂)

f(y)
=

f(y|x̂)P(x̂)∑
x′

f(y|x′)P(x′)
, (1)

3

where we have used f(y|x̂) to denote the conditional p.d.f. of
the real-output channel (e.g., the binary-input AWGN chan-
nel). This may be replaced by the conditional p.m.f. P(y|x̂) for
discrete-output channels (e.g., the binary symmetric channel).

The probability of correctly decoding can be further simpli-
fied if each of the codewords x′ is a priori equally likely, i.e.,
P(x̂) = P(x′) ∀ x′ 6= x̂, which we assume for the remainder
of the paper. This assumption yields

P(x̂|y) =
f(y|x̂)∑

x′
f(y|x′) . (2)

In general, the denominator in (2) may be computationally
intractable when the message set cardinality is large. However,
the ROVA [1] takes advantage of the trellis structure of convo-
lutional codes to compute P(x̂|y) exactly with complexity that
is linear in the blocklength and exponential in the constraint
length of the code (i.e., it has complexity on the same order as
that of the original Viterbi algorithm). This probability can also
be computed approximately by the simplified (approximate)
ROVA [4], which will be discussed further in Sec. III.

The ROVA can compute the probability of word error
for any finite-state Markov process observed via memoryless
channels (e.g., in maximum-likelihood sequence estimation for
signal processing applications). In the remainder of this paper,
we use the example of convolutional encoding and decoding,
but the ROVA and our tail-biting trellis algorithms apply to
any finite-state Markov process.

A. Conditioning on the Initial State

Raghavan and Baum’s ROVA applies only to codes that
begin and end at a known state. Each of the probabilities
f(y|x′) in (2) is implicitly conditioned on the event that the
receiver knows the initial and final state of the convolutional
encoder.

To be precise, ROVA beginning and ending at the same state
s, which we shall denote as ROVA(s), effectively computes the
following:

P(x̂s|y, s)︸ ︷︷ ︸
computed by ROVA(s)

=
f(y|x̂s, s)P(x̂s|s)

f(y|s) =
f(y|x̂s, s)∑

x′
s

f(y|x′s, s)
,

(3)

where the limit x′s in the summation of the denominator
denotes that the enumeration for the summation is over all
codewords x′s with starting state s, and f(y|x′s, s) is shorthand
for f(Y = y|X = x

′
s, S = s). In summary, ROVA(s) computes

the ML codeword x̂s corresponding to starting state s, the
posterior probability of that codeword given s, P(x̂s|y, s), and
the probability of the received sequence given s, f(y|s). The
inputs and outputs of ROVA(s) are illustrated in the block
diagram of Fig. 1.

For tail-biting codes, we are interested in computing the
quantity P(x̂|y) without conditioning on the unknown starting
and ending state s:

P(x̂|y) =
∑
s

P(x̂|y, s)P(s|y). (4)

ROVA(s) P(x̂Ls |yL, s)
yL

s x̂Ls

f(yL|s)

Fig. 1. Block diagram of Raghavan and Baum’s ROVA(s) [1].

ROVA
x̂0,P(x̂0|y, 0), f(y|0)

ROVAy

ROVA

...

TB ROVA

s=0

s=1

s=t

compute

Select x̂ŝ

and P(ŝ|y)

and ŝ,

P(x̂ŝ|y)

x̂1,P(x̂1|y, 1), f(y|1)

x̂t,P(x̂t|y, t), f(y|t)

Fig. 2. Block diagram of the straightforward tail-biting ROVA (TB ROVA),
which performs the ROVA(s) for each possible starting state s. The largest
possible state is t = qν − 1.

The ML codeword x̂ has an associated initial state, ŝ. Note
that P(x̂|y, s) = 0 unless s = ŝ, since x̂ is not a possible
codeword for any starting state other than ŝ. Thus, we have:

P(x̂|y) = P(x̂|y, ŝ)P(ŝ|y). (5)

Thus, the tail-biting ROVA (TB ROVA) must compute the
probability P(x̂|y) of successful decoding in (5) by weighting
P(x̂|y, ŝ) with P(ŝ|y). (For the original ROVA with a known
starting state ŝ, P(ŝ|y) = 1 and P(s′|y) = 0 ∀ s′ 6= ŝ.)

Using the fact that each of the initial states s is equally
likely a priori (i.e., P(s) = P(s′) ∀s 6= s′), we have:

P(ŝ|y) =
f(y|ŝ)∑

s′
f(y|s′) . (6)

This finally yields

P(x̂|y)︸ ︷︷ ︸
computed by TB ROVA

=

computed by ROVA(ŝ)︷ ︸︸ ︷
P(x̂|y, ŝ)f(y|ŝ)∑

s′
f(y|s′)︸ ︷︷ ︸

computed by ROVA(s′)

, (7)

where the summation in the denominator of (7) is over all qν

possible initial states.

B. A Straighforward Tail-biting ROVA

A straightforward ML approach to decoding tail-biting
codes is to perform the Viterbi algorithm VA(s), for each
possible starting state s = 0, 1, . . . , qν −1. The ML codeword
x̂ is then chosen by determining the starting state with the
greatest path metric (i.e., the greatest probability). As shown in
Fig. 2, this approach will work for the ROVA as well: perform
ROVA(s) for each possible s and then pick x̂ and its starting
state ŝ. The probability P(x̂|y) is then computed as in (7),
using P(x̂|y, ŝ) from the ROVA for the ML starting state and
the f(y|s) terms produced by the ROVAs for all the states.
This approach is illustrated in the block diagram of Fig. 2.

4

III. THE SIMPLIFIED ROVA FOR TAIL-BITING CODES

This section proposes replacing the exact word-error com-
putations of Sec. II-B’s straightforward TB ROVA with an
estimated word-error probability, using Fricke and Hoeher’s
simplified (approximate) ROVA [4]. This approach requires
a Viterbi decoder for each starting state to select the ML
codeword for that state. Fricke and Hoeher’s [4] simplified
ROVA for starting state s, which we call Approx ROVA(s),
estimates the probability P(xs|y, s). Substituting this estimate
P̃(xs|y, s) into (7), we have the following approximation:

P̃(x̂|y) =

computed by Approx ROVA(ŝ)︷ ︸︸ ︷
P̃(x̂|y, ŝ) f(y|ŝ)∑

s
f(y|s) . (8)

While f(y|s) is not computed directly by Approx ROVA(s),
we can approximate it with quantities available from Approx
ROVA(s) as

f(y|s) ≈ f̃(y|s) =
f(y|xs, s)P(xs|s)

P̃(xs|y, s)
(9)

=
f(y|xs, s)

qkKP̃(xs|y, s)
, (10)

when all qkK codewords with starting state s are equally likely,
where K = L − ν is the number of trellis segments before
termination. Note f(y|xs, s) can be calculated by the Viterbi
algorithm for starting state s.

Equations (8) and (10) lead to the following estimate of the
word-correct probability:

P̃(x̂|y) ≈

computed by Approx ROVA(ŝ)︷ ︸︸ ︷
P̃(x̂|y, ŝ)̃f(y|ŝ)∑

s
f̃(y|s)︸ ︷︷ ︸

computed by Approx ROVA(s)

. (11)

We refer to the overall computation of P̃(x̂|y) in (11) as
Approx TB ROVA. Sec. VI provides a discussion of its
complexity and Sec. VII presents simulation results.

Note that despite the approximations, the simplified ROVA
chooses the ML codeword for terminated codes. For the tail-
biting version Approx TB ROVA, as long as the winning
path metric of each starting/ending state is used to determine
the ML state ŝ, the decoded codeword will also be ML (and the
same as the codeword chosen by the exact tail-biting ROVA in
Sec. II-B). However, if the approximate reliabilities P̃(xs|y, s)
are used instead of the path metrics to select the decoded word
x̂ as x̂ = arg max

s
P̃(xs|y, s), it is possible that the decoded

word will not be ML (if the channel is noisy enough).

IV. POST-DECODING RELIABILITY COMPUTATION

There are qν possible starting states that must be evaluated
in the straightforward TB ROVA of Sec. II-B and Fig. 2.
Thus it may be beneficial to instead use an existing reduced-
complexity tail-biting decoder to find x̂, and then compute
the reliability separately. Many reduced-complexity tail-biting
decoders take advantage of the circular decoding property of
tail-biting codes. Some of these approaches are not maximum

PRC
P(x̂L|yL)

yL

ŝ

x̂L
P(ŝ|yL)

Fig. 3. Block diagram of the Post-decoding Reliability Computation (PRC).

likelihood, such as the wrap-around Viterbi algorithm or
Bidirectional Viterbi Algorithm (BVA), both discussed in [22].
The A* algorithm [24]–[26] is one ML alternative to the tail-
biting decoding method described in Sec. II-B. Its complexity
depends on the SNR.

Suppose that a decoder has already been used to determine
x̂ and its starting state ŝ, and that we would like to determine
P(x̂|y). One operation of ROVA(ŝ) would compute the prob-
ability P(x̂|y, ŝ), but the probability P(ŝ|y) required by (5)
would still be undetermined. Must we perform ROVA(s) for
each s 6= ŝ in order to compute P(ŝ|y) as in (6)? This section
shows how to avoid this by combining the computations
of the straightforward approach into a novel Post-decoding
Reliability Computation (PRC) for tail-biting codes.

Fig. 3 shows a block diagram of PRC. For a rate-k/n
tail-biting convolutional code with ν memory elements, PRC
takes the following inputs: a received sequence yL with L
trellis segments, a candidate codeword x̂L corresponding to
a candidate path in the trellis, and the starting/ending state
ŝ of the candidate codeword. The goal is to compute the
posterior probability of the candidate codeword, P(x̂L|yL).
The candidate codeword selected by the decoder may not
be the ML codeword. PRC computes its true reliability
regardless.

Raghavan and Baum’s ROVA [1] performs the traditional
add-compare-select operations of the Viterbi algorithm and
then computes, for every state in each trellis segment, the
posterior probability that the survivor path is correct and the
posterior probability that one of the non-surviving paths at the
state is correct. Upon reaching the end of the trellis (the Lth
segment), having selected survivor paths at each state, there
will be one survivor path corresponding to the ML codeword.

In contrast, with the candidate path already identified, PRC
processes the trellis without explicitly selecting survivors. PRC
computes the reliability of the candidate path and the overall
reliability of all other paths.

A. PRC Overview

We define the following events at trellis stage ` (` ∈
{1, 2, . . . , L}):
• pŝ→j` = {the candidate path from its beginning at state ŝ

to its arrival at state j in segment ` is correct}
• p̄s→r` = {some path from its beginning at state s to

its arrival at state r in segment ` is correct (including
possibly the candidate path if ŝ = s) }

• bi→j` = {the branch from state i to state j at time ` is
correct}

For ν = 3 memory elements, Fig. 4 gives some examples
of the paths corresponding to each of these events. The black

5

1 2 3 4 5 6 7

s

m

u

r

ŝ

i j

Fig. 4. An example of a trellis for a rate-1/n code with ν = 3 memory
elements is shown for ` = 1, 2, . . . , 7. The red branches show the candidate
path from its beginning at state ŝ to its arrival at state j. The black branches
show all of the paths originating at state s from their beginning to their arrival
at state r. Note that the figure does not show the final stage of the tail-biting
trellis where all paths must return to their starting states.

branches in Fig. 4 constitute all of the paths in the event
p̄s→r7 . The red branches in Fig. 4 show the candidate path
corresponding to the event pŝ→j7 . The posterior probability
that the red candidate path starting at state ŝ is correct is
P(pŝ→j7 |y7). The posterior probability that any of the paths
that started at state s and arrive at state r in segment 7 are
correct is P(p̄r→s7 |y7). Note that since some branch transitions
are invalid in the trellis, P(pŝ→j`) and P(bi→j`) may be zero
for invalid states and branches in segment `.

The path-correct probabilities P(pŝ→j`) and P(p̄r→s`) can
be expressed recursively in terms of the probabilities of the
previous trellis segments’ paths being correct. Conditioned
on the noisy channel observations y` = (y1, y2, . . . , y`), the
path-correct probability for the candidate path (which passes
through state i in segment `− 1) is

P(pŝ→j` |y`) = P(pŝ→i`−1 , b
i→j
` |y`) (12)

= P(bi→j` |y`, pŝ→i`−1)P(pŝ→i`−1 |y`) (13)

=
f(y`|y`−1, pŝ→i`−1 , b

i→j
`)

f(y`|y`−1)
(14)

× P(bi→j` |y`−1, pŝ→i`−1)P(pŝ→i`−1 |y`−1).

The decomposition in (14) uses Bayes’ rule and follows [1].
Fig. 4 identifies an example of states i and j used to compute
the probability of bi→j7 .

By the Markov property, f(y`|y`−1, pŝ→i`−1 , b
i→j
`) =

f(y`|bi→j`), which is the conditional p.d.f., related to the
familiar Viterbi algorithm branch metric. Similarly, the second
term is P(bi→j` |y`−1, pŝ→i`−1) = P(bi→j` |pŝ→i`−1). With these
simplifications, (14) becomes

P(pŝ→j` |y`) =
f(y`|bi→j`)P(bi→j` |pŝ→i`−1)P(pŝ→i`−1 |y`−1)

f(y`|y`−1)
. (15)

The denominator can be expressed as a sum over all branches
in the trellis T` at time `, where each branch from m to r is

denoted by a pair (m, r) ∈ T`:

f(y`|y`−1) =
∑

(m,r)∈T`

f(y`|y`−1, bm→r`)P(bm→r` |y`−1) (16)

=
∑

(m,r)∈T`

f(y`|bm→r`)P(bm→r` |y`−1). (17)

The derivation thus far has followed [1], which focused on
terminated convolutional codes.

For tail-biting codes, we can further expand the term
P(bm→r` |y`−1) by summing over all the possible starting states
s′ as follows:

P(bm→r` |y`−1) =
∑
s′

P(bm→r` , p̄s
′→m
`−1 |y`−1) (18)

=
∑
s′

P(bm→r` |y`−1, p̄s′→m`−1)P(p̄s
′→m
`−1 |y`−1)

=
∑
s′

P(bm→r` |p̄s′→m`−1)P(p̄s
′→m
`−1 |y`−1),

(19)

where the last equality follows from the Markov property
P(bm→r` |y`−1, p̄s′→m`−1) = P(bm→r` |p̄s′→m`−1). Thus, (17) be-
comes

f(y`|y`−1) =
∑

(m,r)∈T`

f(y`|bm→r`) (20)

×
∑
s′

P(bm→r` |p̄s′→m`−1)P(p̄s
′→m
`−1 |y`−1).

The term P(bm→r` |p̄s′→m`−1) is the probability that the branch
from state m to state r is correct, given that one of the paths
that started at state s′ and arrived at state m at time `− 1 is
correct. Recall that K = L − ν. P(bm→r` |p̄s′→m`−1) = q−k for
1 ≤ ` ≤ K (i.e., all ` except for the last ν trellis segments).
This is because there are qk equiprobable next states for these
values of `.

Using the notation r ⇒ s′ to indicate there is a valid path
from state r at time ` to state s′ at time L, we define the
following indicator function I(bm→r` , s′), which indicates that
the trellis branch from state m to state r at trellis stage ` is a
branch in a possible trellis path that terminates at s′:

I(bm→r` , s′) =

1, 1 ≤ ` ≤ K, (m, r) ∈ T`,
1, K + 1 ≤ ` ≤ L, (m, r) ∈ T`, r ⇒ s′

0, K + 1 ≤ ` ≤ L, (m, r) ∈ T`, r 6⇒ s′

0, (m, r) 6∈ T`,
(21)

The branch-correct probabilities can now be written as

P(bm→r` |p̄s′→m`−1) =

{
I(bm→r` , s′) q−k, 1 ≤ ` ≤ K
I(bm→r` , s′), K + 1 ≤ ` ≤ L

(22)

P(bm→r` |pŝ→m`−1) =

{
I(bm→r` , ŝ) q−k, 1 ≤ ` ≤ K
I(bm→r` , ŝ), K + 1 ≤ ` ≤ L .

(23)

6

We now define the following normalization term for the `th
trellis segment using the above indicators:

∆` =
∑

(m,r)∈T`

f(y`|bm→r`)
∑
s′

I(bm→r` , s′)P(p̄s
′→m
`−1 |y`−1)

(24)

=

{
f(y`|y`−1) qk, 1 ≤ ` ≤ K
f(y`|y`−1), K + 1 ≤ ` ≤ L .

(25)

The ∆` normalization term includes most of (20) but excludes
the potential q−k in P(bm→r` |p̄s′→m`−1) because it cancels with
P(bi→j` |pŝ→i`−1) in the numerator of (15). (Either both have q−k

or both are 1, depending only on `.) Substituting (25) into
(15), we have

P(pŝ→j` |y`) =
1

∆`
f(y`|bi→j`)P(pŝ→i`−1 |y`−1). (26)

Thus, for the `th trellis segment, (26) expresses the candidate
path-correct probability in terms of the candidate path-correct
probability in the previous segment.

The corresponding expression for the overall path proba-
bilities P(p̄s→r` |y`) involves more terms. Instead of tracing
a single candidate path through the trellis, we must add the
probabilities of all the valid tail-biting paths incident on state
r in segment ` as follows:

P(p̄s→r` |y`) =
1

∆`

∑
m:(m,r)∈T`

f(y`|bm→r`) (27)

×I(bm→r` , s)P(p̄s→m`−1 |y`−1).

The summation above is over the qk incoming branches to
state r. In the special case of a rate- 1

n binary code (q=2),
there are 2 incoming branches, which we will label as (m, r)
and (u, r), so (27) becomes

P(p̄s→r` |y`) =
1

∆`

[
f(y`|bm→r`)I(bm→r` , s)P(p̄s→m`−1 |y`−1)

+ f(y`|bu→r`)I(bu→r` , s)P(p̄s→u`−1 |y`−1)
]
. (28)

Fig. 4 illustrates how the paths from starting state s merge
into state r at trellis segment ` = 7.

B. PRC Algorithm Summary

The path probabilities are initialized as follows:
• P(pŝ→j0 |y0) = P(ŝ) = q−ν if ŝ = j, or 0 otherwise.
• P(p̄s→r0 |y0) = P(s) = q−ν if s = r, or 0 otherwise.
In each trellis-segment ` (1 ≤ ` ≤ L), do the following:
1) For each branch (m, r) ∈ T`, compute the conditional

p.d.f. f(y`|bm→r`).
2) For each branch (m, r) ∈ T` and each starting state

s, compute the branch-valid indicator I(bm→r` , s), as in
(21).

3) Using the above values, compute the normalization
constant ∆`, as in (24).

4) For the current state j of the candidate path, compute
the candidate path-correct probability P(pŝ→j` |y`), as in
(26).

5) For each starting state s and each state r, compute the
overall path-correct probabilities P(p̄s→r` |y`), as in (27).

After processing all L stages of the trellis, the following
meaningful quantities emerge:
• The posterior probability that the tail-biting candidate

path from ŝ to ŝ is correct is P(pŝ→ŝL |yL) = P(x̂L|yL),
which is the probability that the decoded word is correct,
given the received sequence.

• The posterior word-error probability is then
1 − P(pŝ→ŝL |yL) = 1− P(x̂L|yL).

• The posterior probability that any of the tail-biting
paths (any of the codewords) from s to s is correct is
P(p̄s→sL |yL) = P(s|yL), which is the state reliability
desired for (5).

Numerical results of PRC are shown in Fig. 7 in Sec. VII.

V. THE TAIL-BITING STATE-ESTIMATION ALGORITHM

The Post-decoding Reliability Computation described above
relies on a separate decoder to identify the candidate path. If,
on the other hand, we would like to compute the word-error
probability of a tail-biting code without first having determined
a candidate path and starting state, we may use the following
Tail-Biting State-Estimation Algorithm (TB SEA). TB SEA
computes the MAP starting state ŝ = arg max

s′
P(s′|yL), along

with its reliability P(ŝ|yL). ROVA(ŝ) can then be used to
determine the MAP codeword x̂ŝ corresponding to starting
state ŝ, as illustrated in Fig. 5.

TB SEA ŝyL
P(ŝ|yL)

ROVA(ŝ)
P(x̂Lŝ |yL)

x̂Lŝ

Fig. 5. Block diagram of the Tail-Biting State-Estimation Algorithm (TB
SEA), followed by ROVA(ŝ) for the ML starting state ŝ.

PRC relied on tracing a single candidate path through the
trellis and computing the candidate path-correct probability,
as in (26). However, the overall path-correct probabilities in
(27) do not rely on the candidate path or its probability.
The proposed TB SEA aggregates all the previous-segment
path-correct probabilities P(p̄s→m`−1 |y`−1) as in (27), without
regard to a candidate path. As a result, TB SEA replaces the
traditional add-compare-select operations of the Viterbi algo-
rithm with the addition of all the path probabilities merging
into a state that emanate from a particular origin state. Once
the entire trellis has been processed, the state reliabilities are
compared and the MAP starting state is selected.

A. TB SEA Algorithm Summary

The path probabilities are initialized as follows:
• P(p̄s→r0 |y0) = P(s) = q−ν if s = r, or 0 otherwise.
In each trellis-segment ` (1 ≤ ` ≤ L), do the following:
1) For each branch (m, r) ∈ T`, compute the conditional

p.d.f. f(y`|bm→r`).
2) For each branch (m, r) ∈ T` and each starting state

s, compute the branch-valid indicator I(bm→r` , s), as in
(21).

7

3) Using the above values, compute the normalization
constant ∆`, as in (24).

4) For each starting state s and each state r, compute the
overall path-correct probabilities P(p̄s→r` |y`), as in (27).

After processing all L stages of the trellis, the following
meaningful quantity emerges:
• The posterior probability that any of the tail-biting

paths (any of the codewords) from s to s is correct is
P(p̄s→sL |yL) = P(s|yL).

TB SEA selects the starting state with the maximum value
of P(s|yL) (the MAP choice of starting state), yielding ŝ
and its reliability P(ŝ|yL). Thus, TB SEA has selected the
MAP starting state without explicitly evaluating all possible
codewords (i.e., paths through the trellis). This result is not
limited to error control coding; it can be applied in any context
to efficiently compute the MAP starting state of a tail-biting,
finite-state Markov process.

B. TB SEA + ROVA(ŝ)

After finding the MAP starting state ŝ with TB SEA,
ROVA(ŝ) may be used to compute the MAP codeword x̂Lŝ
and P(x̂Lŝ |yL, ŝ). We have used the subscript ŝ to indicate
that x̂Lŝ is the MAP codeword for the terminated code starting
and ending in ŝ. The overall reliability P(x̂Lŝ |yL) can then be
computed as in (5), which we have replicated below to show
how the TB SEA and ROVA(ŝ) provide the needed factors:

P(x̂|y) = P(x̂|y, ŝ)︸ ︷︷ ︸
computed by ROVA(ŝ)

× P(ŝ|y).︸ ︷︷ ︸
computed by TB SEA

(29)

C. MAP States vs. MAP Codewords

Is it possible that the maximum a posteriori codeword x̂
corresponds to a starting state other than the MAP state ŝ?
The following theorem proves that the answer is no, given a
suitable probability of error.

Theorem 1. The MAP codeword x̂ for a tail-biting convolu-
tional code begins and ends in the MAP state ŝ, as long as
P(x̂|y) > 1

2 .

Proof: Consider a codeword x̂ with P(x̂|y) > 1
2 . By

(5), P(x̂|y) = P(x̂|y, sx̂)P(sx̂|y), where sx̂ is the starting
state of x̂. This implies that P(sx̂|y) > 1

2 . The MAP state is
arg max

s′
P(s′|y), which must be sx̂, since all other states s′

must have P(s′|y) < 1
2 .

Theorem 1 shows that the application of TB SEA followed
by the Viterbi algorithm (or the ROVA) will always yield the
MAP codeword x̂ of the tail-biting code, not just the MAP
codeword for the terminated code starting in ŝ (as long as the
probability of error is less than 1

2). In most practical scenarios,
the word-error probability (1 − P(x̂|y)), even if unknown
exactly, is much less than 1

2 , so the theorem holds. As a result,
in these cases TB SEA selects the same codeword x̂ as would
the TB ROVA of Sec. II-B, and computes the same reliability
P(x̂|y).

D. The TB BCJR Algorithm for State Estimation
While several related papers such as [18] and [19] have

proposed ways to estimate the starting state of a tail-biting
decoder, none computes exactly the posterior probability of the
starting state, P(s|yL), as described for TB SEA. Upon a first
inspection, the tail-biting BCJR (TB BCJR) of [13] appears to
provide a similar method of computing this probability. Ap-
plying the forward recursion of the BCJR algorithm provides
posterior probabilities that are denoted as αL(s) = P(s|yL)
in [13]. Thus, it would appear that the state-estimation algo-
rithm of Sec. V-A can be replaced by a portion of the TB
BCJR algorithm. This would yield a significant decrease in
computational complexity, from roughly q2ν operations per
trellis segment for TB SEA to qν for the TB BCJR. However,
as will be shown in Sec. VII, the word-error performance of
the tail-biting BCJR when used in this manner is significantly
inferior to that of TB SEA.

As noted in [15] and [16], the tail-biting BCJR algorithm
is an approximate symbol-by-symbol MAP decoder. It is
approximate in the sense that the forward recursion of the TB
BCJR in [13] does not strictly enforce the tail-biting restric-
tion, allowing non-tail-biting “pseudocodewords” to appear
and cause errors. [13] requires the probability distributions
of the starting and ending states to be the same, which is a
weaker condition than requiring all codewords to start and
end in the same state. [15] and [16] have shown that when
the tail-biting length L is large relative to the memory length
ν, the suboptimality of the TB BCJR in terms of the bit-
error rate is small. However, we are concerned with word-error
performance in this paper. We find that when the TB BCJR is
used to estimate the initial state ŝ and its probability P(ŝ|yL),
followed by ROVA(ŝ) for the most likely state ŝ, the impact
on word error is severe (Fig. 7). Frequent state-estimation
errors prevent the Viterbi algorithm in the second phase from
decoding to the correct codeword. Thus, the approximate tail-
biting BCJR of [13] is not effective as a replacement for TB
SEA when using the word-error criterion.

In contrast, the exact symbol-by-symbol MAP decoder for
tail-biting codes in [17, Ch. 7] does enforce the tail-biting
restriction, and has complexity on the same order as that
of TB SEA. However, because the symbol-by-symbol MAP
decoder selects the most probable input symbols while TB
SEA + ROVA(ŝ) selects the most probable input sequence,
TB SEA + ROVA(ŝ) is recommended for use in retransmis-
sion schemes that depend on the word-error probability.

VI. COMPLEXITY ANALYSIS

Table I compares the complexity per trellis segment of each
of the discussed algorithms, assuming that the conditional
p.d.f. f(y`|bm→r`) has already been computed for every branch
in the trellis. The columns labeled ‘Path metrics’, ‘Cand.
prob.’, and ‘Overall prob.’ refer to the number of quantities
that must be computed and stored in every trellis segment, for
the path metrics of the Viterbi algorithm, the candidate path
probability of (26), and the overall path probability of (27),
respectively. The number of operations per trellis segment
required to compute these values is listed in the columns
labeled ‘Additions’, ‘Multiplications’, and ‘Divisions’.

8

The ROVA(s) row of Table I corresponds to Raghavan and
Baum’s ROVA [1] for a terminated code starting and ending
in state s. The operations listed include the multiplications
required for the path metric computations of the Viterbi
algorithm for state s, VA(s). The TB ROVA row represents
performing the ROVA for each of the qν possible starting states
as described in Sec. II-B, so each of the quantities is multiplied
by qν .

The PRC row corresponds to the proposed Post-decoding
Reliability Computation of Sec. IV. The complexity incurred
to determine the candidate path (e.g., by the BVA or the
A* algorithm) is not included in this row and must also be
accounted for, which is why no path metrics are listed for
PRC. Compared to TB ROVA, due to combining computations
into a single pass through the trellis, the complexity of PRC
is reduced by approximately a factor of 2. This is because
TB ROVA calculates a candidate path probability for each of
the qν starting states (due to decoding to the ML codeword
each time), whereas the combined trellis-processing of PRC
involves only one candidate path. Both algorithms compute qν

overall path probabilities, so the ratio of complexity is roughly
1+qν

qν+qν ≈ 1
2 .

The reduction in complexity of TB SEA compared to PRC
is modest, with slightly fewer multiplications and divisions
required due to the absence of the candidate path calculations
in TB SEA. Importantly, performing TB SEA followed by
ROVA(ŝ) for the ML state ŝ is shown to be an improvement
over TB ROVA for moderately large ν. TB SEA + ROVA(ŝ)
requires approximately one half the additions, one third the
multiplications, and one half the divisions of TB ROVA. TB
SEA’s complexity reduction is partly due to the fact that it does
not require the add-compare-select operations of the Viterbi
algorithm, which TB ROVA performs for each starting state.
Note also that the number of trellis segments processed in
TB SEA is constant (L segments), whereas the number of
trellis segments processed by many tail-biting decoders (e.g.,
the BVA) depends on the SNR.

Lastly, the computational costs of performing Fricke and
Hoeher’s simplified ROVA [4] are listed in the Approx
ROVA(s) row, along with the tail-biting approximate version
of Sec. III (Approx TB ROVA). In both of these cases, the

0

0.5

1

1.5

2

2.5

x 10
4

O
p
er
a
ti
o
n
s
p
er

T
re
ll
is
S
eg
m
en
t

Exact TB ROVA
TB SEA + ROVA(ŝ)
Approx. TB ROVA

Additions

Multiplications

Divisions

Fig. 6. Examples of the computations per trellis segment for the tail-biting
decoders listed in Table I corresponding to rate-1/n binary convolutional
codes, for ν = 6 memory elements.

TABLE II
GENERATOR POLYNOMIALS g1 , g2 , AND g3 CORRESPONDING TO THE

SIMULATED RATE-1/3 TAIL-BITING CONVOLUTIONAL CODE. dfree IS THE
FREE DISTANCE, Adfree IS THE NUMBER OF NEAREST NEIGHBORS WITH

WEIGHT dfree , AND LD IS THE ANALYTIC TRACEBACK DEPTH.

ν 2ν g1 g2 g3 dfree Adfree LD

6 64 117 127 155 15 3 21

word-error outputs are estimates. In contrast, TB ROVA and
TB SEA + ROVA(ŝ) compute the exact word-error probabil-
ity of the received word.

For the special case of rate-1/n binary convolutional codes
with ν = 6 memory elements, Fig. 6 gives an example of
the number of additions, multiplications, and divisions that
must be performed per trellis segment for the three tail-biting
decoders in Table I. TB SEA + ROVA(ŝ) is competitive with
Approx TB ROVA in terms of the number of multiplications
and divisions that must be performed, but Approx TB ROVA
requires fewer additions than TB SEA + ROVA(ŝ).

VII. NUMERICAL RESULTS

A. Convolutional Code

Table II lists the rate-1/3, binary convolutional encoder
polynomials from Lin and Costello [3, Table 12.1] used in
the simulations. The number of memory elements is ν, 2ν

is the number of states, and {g1, g2, g3} are the generator

TABLE I
COMPLEXITY PER TRELLIS SEGMENT OF THE PROPOSED ALGORITHMS (DISREGARDING BRANCH METRIC COMPUTATIONS).

Algorithm Path
metr

ics

Can
d.

pro
b.

Ove
ral

l pro
b.

Add
itio

ns

M
ult

ipl
ica

tio
ns

Divi
sio

ns

Key modules of decoders
VA(s) qν 0 0 0 qν+k 0
ROVA(s) [1] qν qν qν 2qν(2qk − 1)− 1 3qν+k 2qν

PRC 0 1 q2ν q2ν(2qk − 1)− 1 q2ν+k q2ν + 1
TB SEA 0 0 q2ν q2ν(2qk − 1)− 1 q2ν+k q2ν

Approx ROVA(s) [4] qν qν 0 qν(qk − 1) qν+k + 1 qν

Tail-biting decoders that provide reliability output
TB ROVA q2ν q2ν q2ν 2q2ν(2qk − 1)− qν 3q2ν+k 2q2ν

TB SEA + ROVA(ŝ) qν qν q2ν + qν (q2ν + 2qν)(2qk − 1)− 2 q2ν+k + 3qν+k q2ν + 2qν

Approx TB ROVA q2ν q2ν 0 q2ν(qk − 1) q2ν+k + qν q2ν

9

polynomials in octal notation. The code selected has the
optimum free distance dfree, which is listed along with the
analytic traceback depth LD [27]. Adfree is the number of
nearest neighbors with weight dfree. The simulations in this
section use a feedforward encoder realization of the generator
polynomial.

B. Additive White Gaussian Noise (AWGN) Channel

For antipodal signaling (i.e., BPSK) over the Gaussian
channel, the conditional density f(y`|bi→j`) can be expressed
as

f(y`|bi→j`) =

n∏
m=1

1√
2πσ2

exp

{
− [y`(m)− x`(m)]2

2σ2

}
,

(30)

where y`(m) is the mth received BPSK symbol in trellis-
segment `, x`(m) is the mth output symbol of the encoder
branch from state i to state j in trellis segment `, and σ2 is
the noise variance. For a transmitter power constraint P , the
encoder output symbols are x`(m) ∈ {+

√
P ,−

√
P} and the

energy per bit is Eb = P n
k . This yields an SNR equal to

P/σ2 = 2 kn
Eb
N0

when the noise variance is σ2 = N0/2.

C. Simulation Results

This section provides a comparison of the average word-
error probability computed by the tail-biting reliability-output
algorithms for the AWGN channel using the rate-1/3, 64-state
tail-biting convolutional code listed in Table II. The simula-
tions in Fig. 7 use L = 128 input bits and 384 output bits. The
‘Actual’ curves in the figures show the fraction of codewords
that are decoded incorrectly, whereas the ‘Computed’ curves
show the word-error probability computed by the receiver.
‘Actual’ values are only plotted for simulations with more than
100 codewords in error.

Fig. 7 evaluates the performance of Sec. II-B’s TB ROVA
and Sec. IV’s PRC. In the figure, PRC is applied to the output
of the Bidirectional Viterbi Algorithm (BVA), a suboptimal
tail-biting decoder. The ‘Actual’ word-error performance of
the suboptimal ‘BVA’ is slightly worse than that of the ML
‘Exact TB ROVA’, but the difference is not visible in Fig. 7.
However, even though the bidirectional Viterbi decoder may
choose a codeword other than the ML codeword, the posterior
probability P (x̂L|yL) computed by PRC is exact. Thus, PRC
provides reliability information about the decoded word that
the receiver can use as retransmission criteria in a hybrid ARQ
setting.

Fig. 7 also shows the performance of the combined TB
SEA + ROVA(ŝ) approach in comparison with TB ROVA. As
shown in Thm. 1, the word-error probability calculated by the
computationally efficient TB SEA + ROVA(s) is identical to
that of TB ROVA, except when the probability of error is
extremely high (i.e., when P(x̂|y) < 1

2). Even in the high-
error regime, however, the difference is negligible.

The performance of the exact and approximate versions
of TB ROVA is compared in Fig. 7. For each starting state
s, the ‘Exact TB ROVA’ uses Raghavan and Baum’s ROVA

−1 0 1 2 3 4 5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

W
o
rd
-E

rr
o
r
P
ro
b
a
b
il
it
y

Exact TB ROVA (Computed)
TB VA (Actual)
TB SEA + ROVA(ŝ) (Computed)
TB SEA + VA(ŝ) (Actual)
BVA + PRC (Computed)
BVA (Actual)
Approx. TB ROVA (Computed)
TB BCJR + Exact ROVA(s) (Computed)
TB BCJR + Exact ROVA(s) (Actual)

Fig. 7. Computed and actual word-error probability of the exact TB ROVA,
TB SEA followed by ROVA(ŝ), and the Bidirectional Viterbi Algorithm
(BVA) followed by the Post-decoding Reliability Computation (PRC). Also
shown are the computed word-error probability estimates for Approx TB
ROVA. All simulations use the rate-1/3, 64-state convolutional code listed in
Table II with L = 128 input bits and 384 output bits and transmission over
the AWGN channel. The ‘Computed’ values are the word-error probabilities
calculated by the receiver (averaged over the simulation) and the ‘Actual’
values count the number of words decoded incorrectly. The ‘TB BCJR’
method of estimating the initial state is included for comparison, indicating
that there is a severe penalty for disregarding the tail-biting restriction.
Note that all curves except for the two ‘TB BCJR’ curves are almost
indistinguishable.

[1] and the ‘Approx. TB ROVA’ uses Fricke and Hoeher’s
simplified ROVA [4], as described in Sec. III. The approximate
approach results in an estimated word-error probability that is
very close to the exact word-error probability. Both reliability
computations invoke the same decoder, the tail-biting Viterbi
algorithm (‘TB VA’), so the ‘Actual’ curves are identical.

Finally, Fig. 7 also shows that when the forward recursion of
the ‘TB BCJR’ of [13] is used to estimate the starting/ending
state, there is a severe word-error penalty for disregarding
the tail-biting restriction, as discussed in Sec. V-D. The ‘TB
BCJR’ simulations used one iteration through L = 128 trellis
segments. Simulations with additional loops around the cir-
cular trellis did not improve the actual word-error probability,
since the tail-biting condition was not enforced. Care should be
taken when estimating the starting-state probability P(s|yL)
based on observations of yL in multiple trellis-loops.

Fig. 8 provides a histogram of the word-error probabilities
computed by the receiver for the rate-1/3, 64-state convolu-
tional code listed in Table II, with L = 32 input bits, 96 output
bits and SNR 0 dB (Eb/N0 = 1.76 dB). Fig. 8 illustrates
that the exact and approximate TB ROVA approaches give
very similar word-error probabilities, whereas the word-error
probabilities computed by the tail-biting BCJR followed by
ROVA(ŝ) differ significantly. The difference in the histogram
for the TB BCJR is due to poorer decoder performance.
Frequent errors in the state-estimation portion of the tail-biting
BCJR cause the word-error probability to be high.

10

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60
Exact TB ROVA

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60
Approx. TB ROVA

N
u
m
b
er

o
f
O
cc
u
rr
en

ce
s

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150
TB BCJR + ROVA(ŝ)

− log10 Word-Error Probability (Computed)

Fig. 8. Histograms of the word-error probability, plotted on a logarithmic
scale, computed by three reliability-output decoders: TB ROVA with ML
decoding and exact reliability computations, Approx TB ROVA with ML
decoding and approximate reliability computations, and the TB BCJR for
sub-optimal estimation of the starting state ŝ followed by ROVA(ŝ). Each
histogram includes simulations of the same 2000 transmitted codewords and
noise realizations. The vertical axis is the number of times among the 2000
decoded words that the word-error probability falls within the histogram bin.
The two ML decoders compute P(x̂L|yL) for the same decoded word x̂L,
whereas the suboptimal BCJR-based decoder decodes to a codeword that is
not necessarily the same as x̂L. All simulations use the rate-1/3, 64-state
convolutional code listed in Table II, with L = 32 input bits, 96 output bits
and SNR 0 dB (Eb/N0 = 1.76 dB).

VIII. CONCLUSION

We have extended the reliability-output Viterbi algorithm
to accommodate tail-biting codes, providing several tail-biting
reliability-output decoders. TB ROVA invokes Raghavan and
Baum’s ROVA for each possible starting state s, and then
computes the posterior probability of the ML starting state,
P(ŝ|y), in order to compute the overall word-error probability.
We then demonstrated an approximate version of TB ROVA
using Fricke and Hoeher’s simplified ROVA. We introduced
the Post-decoding Reliability Computation, which calculates
the word-error probability of a decoded word, and the Tail-
Biting State-Estimation Algorithm, which first computes the
MAP starting state ŝ and then decodes based on that starting
state with ROVA(ŝ).

A complexity analysis shows that TB SEA followed by
ROVA(ŝ) reduces the number of operations by approximately
half compared to TB ROVA. Importantly, Theorem 1 proved
that the word-error probability computed by TB SEA +
ROVA(ŝ) is the same as that computed by TB ROVA in SNR
ranges of practical interest. Because of this, TB SEA is a
suitable tail-biting decoder to use in reliability-based retrans-
mission schemes (i.e., hybrid ARQ), being an alternative to
Approx TB ROVA.

REFERENCES

[1] A. Raghavan and C. Baum, “A reliability output Viterbi algorithm with
applications to hybrid ARQ,” IEEE Trans. Inf. Theory, vol. 44, no. 3,
pp. 1214–1216, May 1998.

[2] H. Ma and J. Wolf, “On tail biting convolutional codes,” IEEE Trans.
Commun., vol. 34, no. 2, pp. 104–111, Feb. 1986.

[3] S. Lin and D. J. Costello, Error Control Coding, Second Edition. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

[4] J. Fricke and P. Hoeher, “Word error probability estimation by means
of a modified Viterbi decoder,” in Proc. 66th IEEE Veh. Technol. Conf.
(VTC), Oct. 2007, pp. 1113–1116.

[5] P. Ståhl, J. Anderson, and R. Johannesson, “A note on tailbiting codes
and their feedback encoders,” IEEE Trans. Inf. Theory, vol. 48, no. 2,
pp. 529–534, Feb. 2002.

[6] H. Yamamoto and K. Itoh, “Viterbi decoding algorithm for convolutional
codes with repeat request,” IEEE Trans. Inf. Theory, vol. 26, no. 5, pp.
540–547, Sep. 1980.

[7] J. Fricke and P. Hoeher, “Reliability-based retransmission criteria for
hybrid ARQ,” IEEE Trans. Commun., vol. 57, no. 8, pp. 2181–2184,
Aug. 2009.

[8] E. Hof, I. Sason, and S. Shamai (Shitz), “On optimal erasure and list
decoding schemes of convolutional codes,” in Proc. Tenth Int. Symp.
Commun. Theory and Applications (ISCTA), July 2009, pp. 6–10.

[9] G. Forney, “Exponential error bounds for erasure, list, and decision
feedback schemes,” IEEE Trans. Inf. Theory, vol. 14, no. 2, pp. 206–220,
Mar. 1968.

[10] A. R. Williamson, T.-Y. Chen, and R. D. Wesel, “Reliability-based error
detection for feedback communication with low latency,” in Proc. 2013
IEEE Int. Symp. Inf. Theory (ISIT), Istanbul, Turkey, July 2013.

[11] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.

[12] ——, “Feedback in the non-asymptotic regime,” IEEE Trans. Inf.
Theory, vol. 57, no. 8, pp. 4903–4925, Aug. 2011.

[13] J. B. Anderson and S. M. Hladik, “Tailbiting MAP decoders,” IEEE J.
Sel. Areas Commun., vol. 16, no. 2, pp. 297–302, Feb. 1998.

[14] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, no. 2, pp. 284–287, Mar. 1974.

[15] J. B. Anderson and K. E. Tepe, “Properties of the tailbiting BCJR
decoder,” in Codes, Systems, and Graphical Models, B. Marcus and
J. Rosenthal, Eds. New York: Springer-Verlag, 2001, pp. 211–238.

[16] J. B. Anderson and S. M. Hladik, “An optimal circular Viterbi decoder
for the bounded distance criterion,” IEEE Trans. Commun., vol. 50,
no. 11, pp. 1736–1742, Nov. 2002.

[17] R. Johannesson and K. Zigangirov, Fundamentals of convolutional
coding. Piscataway, NJ, USA: IEEE Press, 1999.

[18] M. Handlery, R. Johannesson, and V. Zyablov, “Boosting the error
performance of suboptimal tailbiting decoders,” IEEE Trans. Commun.,
vol. 51, no. 9, pp. 1485–1491, Sep. 2003.

[19] N. Y. Yu, “Performances of punctured tail-biting convolutional codes
using initial state estimation,” in Proc. 68th IEEE Veh. Technol. Conf.
(VTC), Sep. 2008, pp. 1–5.

[20] R. Cox and C.-E. W. Sundberg, “An efficient adaptive circular Viterbi
algorithm for decoding generalized tailbiting convolutional codes,” IEEE
Trans. Veh. Technol., vol. 43, no. 1, pp. 57–68, Feb. 1994.

[21] T.-Y. Wu, P.-N. Chen, H.-T. Pai, Y. S. Han, and S.-L. Shieh, “Reliability-
based decoding for convolutional tail-biting codes,” in Proc. 71st IEEE
Veh. Technol. Conf. (VTC), May 2010.

[22] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two decoding algorithms for
tailbiting codes,” IEEE Trans. Commun., vol. 51, no. 10, pp. 1658–1665,
Oct. 2003.

[23] H.-T. Pai, Y. S. Han, and Y.-J. Chu, “New HARQ scheme based on
decoding of tail-biting convolutional codes in IEEE 802.16e,” IEEE
Trans. Veh. Technol., vol. 60, no. 3, pp. 912–918, Mar. 2011.

[24] P. Shankar, P. N. A. Kumar, K. Sasidharan, and B. Rajan, “ML decoding
of block codes on their tailbiting trellises,” in Proc. 2001 IEEE Int. Symp.
Inf. Theory (ISIT), Washington, DC, June 2001, p. 291.

[25] P. Shankar, P. N. A. Kumar, K. Sasidharan, B. S. Rajan, and A. S.
Madhu, “Efficient convergent maximum likelihood decoding on tail-
biting trellises,” 2006. Available: http://arxiv.org/abs/cs/0601023.

[26] J. Ortı́n, P. Garcı́a, F. Gutiérrez, and A. Valdovinos, “A* based algo-
rithm for reduced complexity ML decoding of tailbiting codes,” IEEE
Commun. Lett., vol. 14, no. 9, pp. 854–856, Sep. 2010.

[27] J. Anderson and K. Balachandran, “Decision depths of convolutional
codes,” IEEE Trans. Inf. Theory, vol. 35, no. 2, pp. 455–459, Mar. 1989.

