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Abstract—Selection of relays is central to efficient utilization
of cooperative diversity gains when multiple relays are available
in the network. Such selection is generally based on some form
of channel state information (CSI), which is always imperfect in
practice. The effects of using imperfect CSI in a relay selection
process have been generally considered in existing literature with-
out the account for spatial distribution of relays, while current
works on relay selection in random networks mainly assume
perfect CSI. In this paper, we analyze the outage performance
of a single source–destination pair communicating through a
decode-and-forward relay, chosen from a Poisson point process
(PPP) of candidate relays using perfect and imperfect CSI. We
derive exact outage probability expressions for the selection coop-
eration strategy. Closed-form expressions are provided for special
cases, and asymptotic analysis is conducted to highlight the high-
SNR system behavior.

Index Terms—Relay selection, cooperative diversity, stochastic
geometry, imperfect channel estimation, decode-and-forward.

I. INTRODUCTION

R ELAY selection (RS) reduces coordination overhead in
cooperative systems with multiple relays while achieving

full diversity [1], [2]. The objective of RS is to select one relay
with the best channel state to the source and/or destination
from a set of candidates. With careful selection, same diver-
sity gain as in the case of coordinated all-relay transmission
can be achieved [2]. However, channel quality measurements
are necessary at the relays or at a central decision center to
realize distributed or centralized RS protocols (e.g., oppor-
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tunistic relaying or selection cooperation [3]–[7]). In practice
such measurements are subject to errors, leading to suboptimal
selection decisions and to performance loss in the employed
RS strategy [8], [9]. In this paper we aim to assess outage
performance of selection cooperation strategy in a scenario
where the channel state information (CSI) used in the selection
process is imperfect, while taking into account random spatial
distribution of candidate relays.

RS mechanisms and analysis of their performance are es-
pecially important for emerging dense, multi-hop, multi-tier
and decentralized network deployments to meet the expected
exponential growth in mobile user traffic [10]. Some moti-
vating application scenarios include uplink or downlink of a
macro base stations assisted by femto-access points, picocells
or relays with possibly wireless backhaul. Other applications
of relay-assisted source–destination communications include
sensor networks, emergency or battlefield communications.

The problem of RS based on imperfect CSI has been studied
in literature, e.g., [8], [9], [11]–[14]. Considered imperfection
models include feedback delays, where the measured CSI be-
comes outdated at the selection instant [8], [9], [11]–[13], and
noisy estimation where the estimated CSI contains unknown
channel noise component [9], [14]. The effect of these imper-
fections and their combinations on outage probability and di-
versity order has been analyzed extensively [8], [9], [11]–[14].
However the impact of the spatial randomness of relay positions
on RS system performance with imperfect CSI has not been
considered to date. In particular, references [15]–[23] have in-
vestigated RS with account for network topology, but assuming
perfect CSI. In this paper we analyze outage performance of RS
with combined effects of spatially random relays and imperfect
CSI used in the selection process.

The importance of inclusion of spatial node distribution
in performance analysis of wireless networks in general has
been advocated in [24], and specialized to RS in [15]–[23].
The main reason being that inter-node distances contribute to
the selection decision, and are subject to being random as is
small-scale fading. To this end, in [15] distance distribution to
the selected relay was derived, which allowed obtaining exact
outage probability expressions for an RS system with spatially
random decode-and-forward (DF) relays. In [16] authors in-
vestigate the trade-off between the number of candidate relays
participating in selection process and outage performance, and
propose a region-based spatial selection process. References
[17], [18], [23] apply thinning operation on point processes to
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derive outage probabilities for the cases of DF and AF relays.
Energy-fair relay selection in sensor networks has been studied
in [19] for the case of destination located in the far-field of the
source and cooperating AF relays. A multi-cell environment
with other-cell interference has been considered in [20] and
asymptotic results have been derived using stochastic geometry
instruments. Decentralized and uncoordinated RS algorithms
have been studied recently in [21], [22]. However, all above
works assume perfect CSI available in the selection process.
Scenarios with network topology-inclusive RS based on imper-
fect CSI have not been covered in existing literature to the best
of our knowledge. Few available works on random networks
with imperfect CSI used in the communication process do
not consider RS [25], [26]. In all above works, Poisson point
process is used to model node distributions in networks with
different degrees of planning, e.g., macro-cellular systems and
small-cell networks [10]. While a PPP is only an approximation
of the real node deployments, tractable performance analysis
is possible in contrast to uniform or regular node placement
models, e.g., [27].

In this paper we consider a two-hop interference-free com-
munication via a DF relay selected from a Poisson field of
candidate relays using selection cooperation (SC) [6] strategy.
In SC one relay with the strongest channel to the destina-
tion is selected from a set of relays that have decoded the
source transmission. Chosen relay is referred to as “best relay”
[28, p.530]. The selection of the best relay can be performed
using training sequence-based channel measurements, that are
subject to small-scale Rayleigh fading, propagation path loss
and AWGN, so that a relay chosen based on perceived channel
quality may not be the best. Channel reciprocity is assumed
in this paper, so that channel gain from relay to destination
is equivalent to channel gain from destination to relay. In this
way, results in this work are applicable to time division duplex
(TDD) systems.

We derive exact outage probability expressions for the cases
of imperfect and perfect CSI using thinning operation on point
processes [29], and study the diversity behavior of the consid-
ered scenario. One key advantage of our analytical approach is
that explicit derivation of distance distributions as in [15], [17]
is not required. Contributions of this paper can be summarized
as follows:

• Exact outage probability expressions are derived for the
cases of perfect and imperfect CSI used in the selection of
the best relay from the pool of spatially distributed can-
didates. Closed-form expressions are provided for special
cases;1

• A simplified analytical approach is demonstrated. Our
method (a) bypasses complicated calculation of distance
distributions for the considered scenario, (b) is applicable
both to the cases of perfect and imperfect CSI, and (c) al-
lows extensions to different channel imperfection models.

• Asymptotic analysis is conducted to highlight the impact
of system parameters on outage performance at high SNR.

1For simplicity of exposition throughout the paper we assume that decoding
set is non-empty, i.e. that at least one relay always decodes source transmission.

Fig. 1. Network model: source aims to communicate with destination in
presence of a realization of the process Φ of candidate relays.

To focus on the system performance in the case of imperfect
CSI, and in order to make the discussion specific, we use
channel estimation error model from [30]–[32] rather than
the actual channel estimation process (e.g., MMSE). Another
important point is that our exact solutions require numerical
integration, which however can be easily accomplished using
available software packages.

This paper is organized as follows. System model is pre-
sented in Section II, where we propose and discuss a unified for-
mulation of outage probability for the cases of perfect/imperfect
CSI at relays. Sections III and IV respectively present perfor-
mance analysis of relay selection for the cases of perfect and
imperfect CSI about the relay–destination channels. Numeri-
cal results, corroborating presented analysis are provided and
discussed in Section V, and Section VI presents concluding
remarks.

II. SYSTEM MODEL

In this section we present network, signal and CSI error
models, define point processes used in this paper, and formulate
outage probability expression for an arbitrary CSI model. Thin-
ning operation operation on point processes is also described.
Presented outage formulation is then analyzed to (a) yield a
simple outage probability expression for the case of perfect CSI
and (b) highlight the fact that an increase in size of the decoding
set can either increase or decrease outage probability. Namely,
a larger decoding set may have larger outage probability since
there can be more relays with incorrect channel measurements.
Exact analysis of perfect and imperfect CSI cases is presented
in Sections III and IV, respectively.

A. General Setup

Consider a scenario depicted in Fig. 1, where a single source
s communicates with a destination d with assistance from a
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set of idle users acting as relays. Relays form a spatial Poisson
point process (PPP) Φ(W ) with a uniform intensity function λ.
We consider communication in a circular region W with radius
R. The region W can represent a single cell in a cellular system
or coverage area of an access point (femto, pico or other type
of a small cell), and can be applicable to scenarios discussed in
the Introduction. For compactness the references to cell W will
be suppressed in the rest of the paper.

Interference-free scenario is assumed, so that all nodes com-
municate over orthogonal channels. Half-duplex communica-
tion is considered as in [33], so that nodes cannot transmit and
receive at the same time, and direct source–destination link is
assumed to be unavailable.

In the first time slot the source broadcasts a message xs, and
each candidate relay j ∈ Φ receives

yj =
√
κPgs,jxs + nj , (1)

where P is the total available power, κ is the share of the power
P allocated for source transmission, nj is the AWGN with
variance σ2

n, coefficient gs,j = hs,j/
√

1 + rαs,j is the chan-
nel coefficient incorporating the small scale Rayleigh fading
through hs,j ∼ CN (0, σ2

h) and path loss effects through the
bounded path loss model l(rs,j) = 1 + rαs,j with rs,j standing
for the source–relay distance, and α ∈ [2, 6] is the path loss
exponent. Note that for a given relay j, gs,j ∼ CN (0, σ2

gs,j
) and

has variance σ2
gs,j

= σ2
h/(1 + rαs,j) [34, p.154]. The relays that

receive the source message xs correctly, form a realization of
the decoding set Φd:2

Φd =

{
j ∈ Φ : |gs,j |2 ≥ θ

κ

}
, (2)

where θ = 22R−1/(P/σ2
n) and R is the target data rate.

In the second time slot the destination broadcasts a training
sequence that allows each relay j ∈ Φd to obtain an estimate
ĝj,d for the channel to the destination d. An MMSE estimate of
the channel can be expressed as [30]–[32]

ĝj,d = gj,d + ε, (3)

where ε ∼ CN (0, σ2
ε ) is the estimation error component. In

this paper we focus on the effect estimation error on outage
probability of relays selection, rather than on performance of
channel estimation methods. As in [30], σ2

ε is assumed to
be given a priori, through, for example, channel estimation
using training sequence. Two simple models for estimation
error variance σ2

ε are employed [30], [32]: (a) SNR-independent
model, and (b) a relay transmission power-dependent model
σ2
ε = σ2

u + σ2
n/(1− κ)P . In the latter σ2

u can be treated as a
prediction error due to time variability of the channel, σ2

n is
the measurement error caused by AWGN, and (1− κ)P is the
transmit power used in estimation process, assumed to be equal
to the relay transmit power.

2Note that for sufficiently high source power Ps = κP , it can be shown that
Pr(Φd = ∅) → 0. Therefore in the following the case Φd = ∅ will be ignored
as this will substantially simplify exposition.

Selection cooperation (SC) strategy [6] is considered in this
paper. According to SC, from the set Φd of relays that decode
the source transmission successfully, one relay J that has the
best perceived channel gain for the relay–destination channel is
selected to forward the message. The selected relay J satisfies

J = argmax
j∈Φd

|ĝj,d|2, (4)

where |ĝj,d|2 is the perceived channel gain. If the channel es-
timation is perfect, i.e. ĝj,d = gj,d, ∀ j ∈ Φd, then the selected
relay J indeed has the best channel to the destination among
all other relays. However, for the case of non-zero error ε, the
relay J with the best estimate does not necessarily have the best
channel to the destination.

The signal model for the transmission from the selected relay
J can be written along similar to (1) as

yJ,d =
√

(1− κ)PgJ,dxs + nd, (5)

where 1− κ is the power share allocated to the relay trans-
mission. Relays in the cell W that have reliable links both to
the source and to the destination form a set of qualified relays
Φq ⊆ Φd:

Φq =

{
j ∈ Φ : |gs,j |2 ≥ θ

κ
, |gj,d|2 ≥ θ

1− κ

}
. (6)

In general, outage probability for relay-assisted communi-
cation is defined as the probability that the end-to-end SNR
γJ falls below some predefined threshold θ, i.e. Pr(γJ < θ),
were J is the index of relay selected for forwarding the source
message to the destination [5], [9]. For the case of selection co-
operation, outage probability can be defined as the conditional
probability that for a given size of decoding set Φd, the channel
gain |gJ,d|2 for the chosen relay–destination channel falls below
a threshold θ, averaged over all possible sizes of the decoding
set [9], [15], [18]:

Po = Pr(Φd = ∅) +
∞∑
l=1

Pr (|Φd| = l)

× Pr

(
|gJ,d|2 <

θ

1− κ
||Φd| = l

)
= Pr(Φd = ∅) + Pr(O|Φd 
= ∅) ≈ Pr(O) (7)

where the approximation in the last step is made for sufficiently
high source transmission power, such that Pr(Φd = ∅) → 0,
and the event O can be defined as

O =

(

 ∃Rj : |gs,j |2 >

θ

κ
, |gj,d|2 >

θ

1− κ
,

|ĝj,d|2 = max
i∈Φd

|ĝi,d|2
)

=

(
∃Rj : |gs,j |2 >

θ

κ
, |gj,d|2 <

θ

1− κ
,

|ĝj,d|2 > max
i∈Φq

|ĝi,d|2
)

(8)
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where the first step corresponds to the event that there is no
relay with a reliable connection both to the source and the
destination, and with the largest channel estimate |ĝj,d|2. The
second step corresponds to the event that there exists a relay
with reliable connection to the source, but not to destination,
yet with the channel estimate larger than any estimate at the
relays in the set of qualified relays Φq .

B. Thinning Operation

In its simplest form, thinning is realized by associating each
point of a point process with a probability of retention p that
is independent of point location and respective locations of
other points of the point process [29]. For example, each point
of the parent process Φ could be deleted in a random way
with probability 1− p. However, we are interested in a more
advanced type of thinning, termed as p(r)-thinning, where the
probability of retention of a point depends on the location r
of this point. It is important to note, that p- and p(r)-thinnings
of a PPP produce point processes that are still Poisson [29],
[35], although such processes may not retain stationarity and/or
isotropy properties, as we shall see later.

Specifically, to obtain the set of nodes (points) in (2) from the
original PPP of candidate relays Φ, one can apply a location-
dependent thinning pd(rs,j) that will select candidate relays
from Φ with respect to the connectivity of relays to the source.
In particular, the relay j located at distance rs,j from the source
will be retained with probability

pd(rs,j)=Pr

(
|hs,j |2
1+rαs,j

≥ θ

κ

)
=exp

(
−
(
1+rαs,j

) θ

κ

)
. (9)

The intensity measure Λd of such new thinned process Φd can
be found from the intensity measure Λ of the original point
process Φ as [29]:

Λd = λ

∫
W

p(w)Λ(dw), (10)

where pd(w) is equivalent to pd(rs,j) since the unique location
w in the region W can be defined in polar coordinates through
the distance rs,j from the source to relay j and the angle ϕ
between some reference direction and the line connecting s
and j. Connectivity between relays and the source is inde-
pendent of orientation ϕ, hence the angle ϕ is omitted from
(9). Element area dw of the region W can be represented as
dw = rs,jdrs,jdϕ. The intensity measure Λd can be interpreted
as an average number of relays satisfying the condition in pd
within certain area W . This metric is not to be confused with
intensity function λd(w), which denotes the average number of
points of the process Φd per unit area (length or volume) with
location w.

On the other hand, location-dependent thinning pq(rj,d) that
will retain relays from Φ with respect to the connectivity to
the destination can be applied to obtain the PPP Φq of relays
connected both to the source and to the destination:

pq(rj,d) = exp

(
−
(
1 + rαj,d

) θ

1− κ

)
, (11)

TABLE I
POINT PROCESSES AND THEIR PROPERTIES

where

r2j,d = r2s,j + r2s,d − 2rs,jrs,d cos(ϕ). (12)

Note that the two thinning stages are conditionally independent
for any given relay j, and can be applied in arbitrary order on
the original PPP of candidate relays Φ.

Based on the two thinning stages described above, in follow-
ing subsections we formulate and discuss the general expres-
sion for the probability of outage in SC, valid for arbitrary CSI
imperfection and processing models.

C. Outage Probability Formulation

Let Λq(λ, α,R) be the intensity measure of the process Φq ,
which we will denote as Λq for compactness. Further, let Λ̂q(x)

be the intensity measure the process Φ̂q(x) of such relays in
Φq that also have the estimation function |ĝj,d|2 > x, where
x ∈ [0,∞). Note that Λ̂q(x) is a decreasing function of x.
Similarly, let Λu be the intensity measure of the process Φu of
relays in that have reliable connections to the source but not to
the destination, so that Λ̂u(x) is the intensity measure of relays
in the process Φ̂u(x) that also have the function |ĝj,d|2 > x,
where x ∈ [0,∞). Table I summarizes the properties of the
point processes processes used above.

Then the probability of outage for the source–destination
communication via the set of candidate relays can be expressed
as in the following proposition.

Proposition 1 (Outage Probability Formulation): For suf-
ficiently high SNR, so that Pr(Φd = ∅) → 0, the outage
probability for SC strategy based on imperfect CSI can be
expressed as

Po = 1 +

∞∫
0

exp
(
−Λ̂u(x)− Λ̂q(x)

)
Λ̂′
q(x) dx, (13)

where (·)′ denotes first derivative.
Proof: Please see Appendix A. �
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Fig. 2. Schematic plot of the intensity measure Λ̂q(x) (solid blue) and its in-
verse x = Λ−1

q (t) (dashed red). There is a one-to-one correspondence between
the threshold x for estimated channel gain |ĝj,d|2 and the average number
Λ̂q(x) of qualified relays with the estimates |ĝj,d|2 above this threshold x.

D. Discussion of the Formulation

In this section we present an initial asymptotic analysis of the
outage probability formulation in (13).

First, note that in the case of no estimation error, there are no
unqualified relays in Φu that have estimates for the channel to
the destination larger than any estimate at the relays from the
qualified set Φq , hence Λ̂u(x) = 0 for ∀x. Then (13) can be
rewritten as

Po,imperf = 1 +

∞∫
0

exp
(
−Λ̂q(x)

)
Λ̂′
q(x) dx

(a)
= 1−

Λq∫
0

exp(−t) dt = exp(−Λq), (14)

where in step (a) integration by substitution was used:

b∫
a

f (g(x)) g′(x) dx =

g(b)∫
g(a)

f(y) dy.

Likewise, the penalty for erroneous relay selection originates
from the term Λ̂u(x), which reduces the value of the integrand
in (13), and consequently increases the outage probability Po.

Secondly, note that outage probability for the general case
can be expressed using integration by substitution as

Po,imperf = 1−
Λq∫
0

exp
(
−Λ̂u

(
Λ̂−1
q (t)

)
− t

)
dt, (15)

where Λ̂u(Λ̂
−1
q (t)) = Λ̂u(x), however the former was used to

show the dependence of the integrand on variable t. Then the
asymptotic behavior of the integrand in (13) can be determined
by inspection of the inverse function Λ̂−1

q (t), depicted schemat-
ically in Fig. 2. In particular, note that for sufficient power
level,3 as intensity Λ̂q(x) → 0 we have the threshold x → ∞,

3By sufficient power level we mean such combination of total power P and
power allocation ratio κ that the mean measure of qualified relays Λq �= 0, i.e.,
that even a small number of true qualified relays exist in the network.

so that Λ̂u(x) → 0. Therefore the integrand in (13) tends to one
as Λ̂q(x) → 0.

On the other hand, as the intensity measure Λ̂q(x) → Λq

we have x → 0, hence Λ̂u(x) → Λu (because any unqualified
relay has positive estimate of channel gains to the destination).
Therefore, the integrand in (13) tends to e−Λd as Λ̂q(x) → Λq,
where Λd is the mean number of relays in the decoding set.

This implies that the size of the decoding set can (a) increase
the probability of outage by reducing the integrand e−Λd , and
(b) improve the probability of successful communication by po-
tentially increasing the upper integration bound Λq in (13)—we
will revisit this trade-off in Section V. In the following
Sections III and IV we investigate exact system performance for
the cases of perfect and imperfect channel estimation at relays.

III. OUTAGE ANALYSIS: PERFECT CSI CASE

In this section we focus on the case when relays possess
exact CSI for the channels to the destination. Using thinning
operation on point processes, we demonstrate a simplified
analytical framework that provides exact results that are easy
to evaluate, and closed-form expressions for special cases.
Asymptotic analysis is also presented to characterize the high-
SNR system performance in terms of diversity.

A. Exact Analysis

The expression for outage probability Po,perf is given in (14).
To estimate Po,perf the intensity measure Λq must be found.
Following proposition provides a general expression for Λq that
can be evaluated numerically. Closed-form results for special
cases are presented and discussed afterwards.

Proposition 2 (Mean Number of Qualified Relays): The in-
tensity measure Λq of the PPP Φq of relays with reliable links
both to the source s and destination d is

Λq = λe−
θ

κ(1−κ)

R∫
0

2π∫
0

rs,j exp

(
−
θrαs,j
κ

)

× exp

⎛
⎜⎝−

θ
(
r2s,j + r2s,d − 2rs,jrs,d cos(ϕ)

)α
2

1− κ

⎞
⎟⎠ drs,j dϕ,

(16)

where λ is the intensity function of the process Φ of all candi-
date relays, θ = 22R − 1/(P/σ2

n), P is the total transmission
power, κ and 1− κ are respectively the source and relay power
shares, ϕ ∈ [0, 2π) is the angle between the relay j and the
destination, rs,j and rs,d are distances from the source to the
relay j and the destination respectively, and R is the cell radius.

Proof: See Appendix B. �
Following corollaries provide closed-form solutions for spe-

cial cases of system parameters.4

4Note that we now use full notation for the intensity measure Λ(λ, α,R) to
highlight the parameters for special cases.
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Fig. 3. Intensity measure Λq(x) for cases of R = 10, R = ∞ and high SNR.

Corollary 3 (Special Case of α = 2): For the special case
of the path loss exponent α = 2 the intensity measure of the
process Φq can be expressed as

Λq(λ, 2, R) =
κ(1− κ)πλ

θ
exp

(
− θ

κ(1− κ)
− θr2s,d

)

×
(
1−Q1

(
rs,d

√
2κθ

1− κ
,R

√
2θ

κ(1− κ)

))
, (17)

where Q1(·, ·) is the first-order Marcum-Q function [36], [37].
Proof: See Appendix C. �

Corollary 4 (Special Case of α = 2 and R → ∞): For the
special cases of path loss exponent α = 2 and R → ∞ the
intensity measure of the process Φq simplifies to

Λq(λ, 2,∞)=
κ(1− κ)πλ

θ
exp

(
− θ

κ(1−κ)
−θr2s,d

)
. (18)

Proof: The proof is obtained similarly to Corollary 3
using [38, 6.614.1]. �

Note that the effect of limited cell size is captured in (17)
through the Macrum-Q function, which is not involved in (18)
where the cell size and supply of candidate relays are unlimited.

B. Asymptotic Analysis and Diversity Behavior

For high total power P , we have θ → 0, so that the argument
in the exponent in (17) and (18) becomes small. Hence using
Taylor expansion we can further approximate (17) as

Λq(λ, 2, R) ≈
(
κ(1− κ)πλ

θ
− πλ

(
1 + κ(1− κ)r2s,d

))

×
(
1− e−

θR2

κ(1−κ)

)
, (19)

where the last step is obtained using Q1(0, x) = e−(x2/2) [37].
Fig. 3 illustrates the behavior of expressions for the intensity
measure Λq derived in this section (SNR = P/σ2

n).

The diversity order of the considered communication scheme
can be shown to be infinite or equal to λπR2 for the case of
infinite and finite5 sizes of the cell respectively. This can be
explained by the fact that with increase of available power, the
number of qualified relays increases infinitely in an infinite cell.
In other words, as for the cases of infinite cell dimensions and
increasing power, the supply of relays should increase as well.
However in a finite cell, the number of qualified relays becomes
capped with the total number of candidate relays, with average
of λπR2.

IV. OUTAGE ANALYSIS: IMPERFECT CSI CASE

In this section outage probability of SC is analyzed with
account for imperfect channel estimates at randomly distributed
relays. As in previous section, we first derive exact expressions
that can be numerically evaluated, and discuss asymptotic sys-
tem performance afterwards.

A. Outage Probability Analysis

Outage probability expressions (13) and (15) offer initial
intuition on the impact of important factors on communication
outage probability, however it may be difficult to obtain the
inverse function Λ̂u(Λ̂

−1
q (t)). Nevertheless, it is possible to

obtain an exact outage probability expression by utilizing (13)
in the form of

Po = 1 +

∞∫
0

exp
(
−Λ̂d(x)

) d

dx
Λ̂q(x) dx, (20)

where Λ̂d(x) is the intensity measure of the process of relays in
the decoding set with estimates of the channel to the destination
larger than some value x. Similarly, Λ̂q(x) is the intensity mea-
sure of the process of qualified relays with channel estimates
to the destination larger than x. In the following we derive the
quantities Λ̂d(x) and (d/dx)Λ̂q(x) individually.

B. Intensity Measure Λ̂d(x)

In this subsection we derive the intensity measure Λ̂d(x) of
relays that are in the decoding set and have estimates of the
channel to the destination |ĝj,d|2 > x (see Fig. 4). The quantity
Λ̂d(x) can be expressed as [29]:

Λ̂d(x) = λ

∫
W

pdx(w) dw, (21)

where pdx(w) is the probability that a relay j at some location
w will (a) be in the decoding set, i.e., |gs,j |2 > (θ/(1− κ)),
and (b) have the estimate |ĝj,d|2 > x:

pdx(w) = Pr

(
|gs,j |2 >

θ

1− κ
, |ĝj,d|2 > x

)
= exp

(
−
1 + rαs,j

σ2
h

θ

1− κ

)
Pr

(
|ĝj,d|2 > x

)
(22)

5By infinite and finite cells we mean respectively cells with infinite and finite
radii R.
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Fig. 4. Exact and asymptotic plots of the intensity measure Λ̂d(x). Intensity
measure Λd is provided for reference.

where the last step follows from the fact that the two events in
the probability are conditionally independent given the location
w. The estimate of the channel ĝj,d = gj,d + ε is distributed as
ĝj,d ∼ CN (0, σ2

ĝ), where σ2
ĝ = (σ2

h/(1 + rαj,d)) + σ2
ε . There-

fore, the second probability can be expressed as

Pr
(
|ĝj,d|2>x

)
=exp

⎛
⎝−

⎛
⎝1− σ2

h

σ2
h+σ2

ε

(
1+rαj,d

)
⎞
⎠ x

σ2
ε

⎞
⎠. (23)

Then the intensity Λ̂d(x) can be rewritten as

Λ̂d(x)=λe
− x

σ2
ε
− θ

σ2
h
(1−κ)

∫
W

e
−

rα
s,j

σ2
h

θ
1−κ+

σ2
h

rα
j,d

+1+σ2
h
/σ2

ε

x

σ4
ε dw. (24)

Above integral can be easily evaluated using numerical methods,
while closed-form solutions for general α can be infeasible.

C. Derivative (d/dx)Λ̂q(x)

In this section we obtain the derivative of the intensity
measure Λ̂q(x) of relays that are qualified to retransmit the
source message to the destination, and have estimates of the
channels to the destination |ĝj,d|2 > x:

d

dx
Λ̂q(x) = λ

∫
W

d

dx
pqx(w)dw, (25)

where pqx(w) is the probability that a relay j at some location w
will (a) be qualified for end-to-end transmission of the message,
i.e., |gs,j |2 > (θ/(1− κ)), |gj,d|2 > (θ/κ), and (b) have the
estimate |ĝj,d|2 > x:

pqx(w) = Pr

(
|gs,j |2 >

θ

κ
, |gj,d|2 >

θ

1− κ
, |ĝj,d|2 > x

)
= exp

(
−
1 + rαs,j

σ2
h

θ

1− κ

)
× Pr

(
|gj,d|2 >

θ

κ
, |ĝj,d|2 > x

)
. (26)

Hence the quantity of our interest can be expressed as

d

dx
Λ̂q(x) = λe

− θ

σ2
h
(κ)

∫
W

e
− θ

σ2
h
(κ)

rαs,j

× d

dx
Pr

(
|gj,d|2 >

θ

1− κ
, |ĝj,d|2 > x

)
︸ ︷︷ ︸

f ′

dw, (27)

where the derivative f ′ of the probability can be found as

f ′ =
d

dx

∞∫
θ/(1−κ)

∞∫
x

f|ĝj,d|2||gj,d|2(y|t)f|gj,d|2(t) dy dt

= −
∞∫

θ/(1−κ)

f|ĝj,d|2||gj,d|2(x|t)f|gj,d|2(t) dt (28)

The conditional PDF f|ĝj,d|2||gj,d|2(x|t) can be found following
the methodology in [9], [11], [39] as

f|ĝj,d|2||gj,d|2(x|t) =
1

σ2
ε

exp

(
−x+ t

σ2
ε

)
I0

(
2

σ2
ε

√
xt

)
, (29)

where I0(·) is zero-order Bessel function of imaginary argu-
ment [38, 8.447]. The second PDF can be expressed as

f|gj,d|2(t) =
1 + rαj,d

σ2
h

exp

(
−
1 + rαj,d

σ2
h

t

)
. (30)

Substituting the PDFs (29) and (30) into (28), the exact expres-
sion for the derivative of the intensity measure Λ̂q(x) can be
obtained as

d

dx
Λ̂q(x) = −λ exp

(
− θ

σ2
hκ

− x

σ2
ε

)∫
W

1 + rαj,d
σ2
h

β

× exp

(
− θ

σ2
hκ

rαs,j + β
x

σ2
e

)
Q1

(√
2βx

σ2
e

,

√
1

βσ2
e

2θ

1− κ

)
dw,

(31)

where Q1(·, ·) is the Marcum Q-function of first kind, and
β = σ2

h/(σ
2
h + σ2

e(1 + rαj,d)).
Finally, the desired communication outage probability can be

obtained numerically by substituting (24) and (31) into (20).

D. Asymptotic Analysis

To understand the asymptotic outage performance in the case
of relay selection with imperfect CSI, let us consider the high-
SNR behavior of the components Λ̂d(x) and Λ̂q(x) of the
outage probability expression (20). When available transmis-
sion power P is large, the mean number Λq of relays in the
qualified set Φq approaches the mean number Λd of relays in
the decoding set Φd. Consequently, Λ̂q(x) → Λ̂d(x). Then, at
high SNR, (20) can be rewritten as

Po ≈ 1 +

∞∫
0

exp
(
−Λ̂q(x)

)
dΛ̂q(x) = exp(−Λq). (32)
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Therefore, outage probability of imperfect CSI-based RS at
high SNR approaches outage probability of perfect CSI-based
selection. In the next section we provide numerical study of out-
age performance based on the relations derived in Sections III
and IV.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we consider outage performance of a system
depicted in Fig. 1. Monte Carlo simulations with 106 iterations
were conducted to model the outcome of message transmission
via a DF relay, selected from a realization of the decoding set
Φd. Objectives of these simulations are to (a) verify analytical
results presented in Sections III and IV, and (b) investigate
the outage behavior of DF relaying with random spatial dis-
tribution of relays as a function of available power P , power
allocation κ and channel estimation error variance σ2

ε . Analyt-
ical results in this section were obtained from expressions for
outage probability using numerical integration in Matlab. For
the case of SC with perfect CSI, we compare our results with
[23, Eq(14a, 16)].

Two estimation error variance models are used as in [30],
[32]. For the SNR-independent model, the estimation error vari-
ance σ2

ε = {0.05, 0.1}, and for the power-dependent estimation
error σ2

ε = 0.03 + 0.8/(1− κ)P . Small-scale fading variance
σ2
h is set to unity as in [32].
Three series of outage event simulations were conducted:

(a) for different levels of total available power P and equal
power allocation κ = 0.5 between the source and relay trans-
missions, (b) for a fixed SNR = 20 dB (where SNR = P/σ2

n)
and variable power allocation coefficient κ, and (c) for a fixed
SNR = 20 dB and variable channel estimation error σ2

ε . The
source–destination distance is set as rs,d = 5, candidate relay
PPP intensity is λ = 1 relay per unit area in a cell with radius
R = 10. In all three cases presented analytical results are fully
corroborated by simulations. In the following we discuss results
of each simulation scenario in detail.

Outage probability for the case of blind selection, where the
retransmitting relay is selected randomly from the decoding
set, are included to put the performance of SC in perspective.
Analytical results for blind selection can be obtained following
the same line of development as in [40].

Fig. 5 illustrates the outage probability behavior as a function
of SNR. As expected, in the case of exact CSI available at
relays, outage probability drops with growing speed as available
power increases. This can be explained by the fact that with
growing available power it becomes increasingly unlikely that
none of the candidate relays has reliable connections both to
the source and the destination. Note that our results are in good
agreement with results in [23, Eqs. (14a, 16)]. On contrary,
blind selection with no information about the relay–destination
link leads to a very slow decay in outage probability as diversity
gains become unavailable.

When the CSI at relays contains a random error, the relay
selection outcome may be sub-optimal. The outage probabil-
ity curves for different levels of the channel estimation error
variance σ2

ε are shown in Fig. 5. One can observe that even
for error variance of σ2

ε = 0.05 outage probability deviates

Fig. 5. Outage probability Po as a function of SNR (SNR = P/σ2
n) for

equal power distribution between transmission stages.

Fig. 6. Outage probability Po as a function of power distribution coefficient
κ for the SC strategy.

significantly from the curve for perfect CSI-based selection.
For larger error variances, outage probability deteriorates sig-
nificantly, so that for σ2

ε = 0.1 erroneous CSI-based selection
is equivalent to position-based selection (results from [40]). For
the case of power-dependent error model, outage probability is
high at lower SNR values, however as the measurement error
component diminishes, outage behavior follows the case with
power-independent error of σ2

ε = σ2
u.

Fig. 6 depicts the dependence of outage probability on power
allocation coefficient κ. One can observe that by investing more
power in source transmission, better performance in the case of
blind relay selection can be achieved; however in the considered
case of perfect CSI, equal power allocation between stages
is optimal. In presence of channel estimation errors the role
of power allocation is mixed, as pointed out in Section II-D.
In particular, for the cases of σ2

ε = 0.05 and σ2
ε = 0.1, the

minimum of outage probability is shifted to κ > 0.5, i.e., more
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Fig. 7. Outage probability Po as a function of channel estimation error
variance σ2

ε for the SC strategy.

powerful source transmission is favorable. On the other hand,
for σ2

ε = 0.03 + 0.8/(1− κ)P , higher source power leads to an
increase in the outage probability, which is due to larger contri-
bution of the measurement error. In addition, as the decoding
set becomes larger, more relays contend for retransmission
based on the channel measurements to the destination. Then
for large estimation error and large decoding set, more relays
wrongly perceive themselves qualified for the retransmission.
Conversely, with small error and larger source power, more
relays can become truly qualified, while only few have their
CSI corrupted enough to cause outage.

Fig. 7 illustrates the impact of the variance of channel esti-
mation error on outage performance. In general, system perfor-
mance deteriorates rapidly as the CSI estimation error variance
σ2
ε increases, so that statistical CSI-based relay selection [40]

outperforms noisy CSI-based selection from σ2
ε ≈ 0.1 onwards

for the considered case. However, selection cooperation still
provides lower outage rate compared to blind selection across a
wide range of estimation error variances.

VI. CONCLUSION

In this paper we analyzed outage performance of selection
cooperation strategy where the retransmitting DF relay was
chosen using CSI, which is not necessarily perfect. Different
from existing works on imperfect CSI-based relay selection,
we explicitly considered network topology, and unlike current
literature on RS in random networks, we considered the case
of imperfect CSI. Using thinning operation on point processes
allowed bypassing some analytical complexity involved in pre-
vious works, such as derivation of distance distributions. In this
way, we obtained exact outage probability expressions for the
considered RS scenario, and provided closed-form expressions
for special cases of system parameters.

Asymptotic analysis has shown that in the case of perfect
CSI, the diversity order rapidly increases, potentially up to
the number of available relay candidates in the cell. Similar
diversity behavior is present in the case of imperfect CSI-based

selection, however, for SNR values, where most relay candi-
dates become qualified for the retransmission. In low SNR
region, the channel estimation error variance σ2

ε has been shown
to significantly affect outage performance, so that for high σ2

ε

outage rate becomes comparable to those of blind or position-
based relay selection schemes.

The focus of this paper was on systems with channel reci-
procity, applicable to TDD systems. In frequency division
duplex (FDD) mode correlation between uplink and downlink
channels gains need to be established, which may result in
a different channel estimation error model. In the case of
Gaussian error, presented results are technically applicable
to FDD case, however an explicit account for FDD channel
estimation specifics is left as future work.

APPENDIX

A. Proof of Proposition 1

Proof: Outage probability can be expressed as

Po ≈ Pr(O) =

∞∫
0

Pr(O|M = x)fM (x) dx

=1−
∞∫
0

Pr (Φu(x) = ∅|M = x) fM (x) dx, (33)

where O is defined in (8), and M = maxj∈Φq
(|ĝi,d|2) is the

maximal value of the function of the channel estimate |ĝi,d|2
among all qualified relays in the process Φq . The estimate
|ĝj,d|2 at some unqualified relay j ∈ Φu may still be larger
than M because it is a perceived channel state at the relay. In
other words, the outage event in Proposition 1 corresponds to
the case when there exists at least one unqualified relay, whose
perceived estimate of the channel to the destination is greater
than any of the perceived estimates at qualified relays, provided
the decoding set is non-empty.

The probability density function (PDF)fM(x) can be written as

fM (x) =
d

dx
Pr

(
max
j∈Φq

(
|ĝi,d|2

)
< x

)
=

d

dx
Pr (Φq(x) = ∅) . (34)

The PDF of the outcome of a general Poisson point processes
Φi [29] is

Pr (|Φi| = k) = e−Λi
(Λi)

k

k!
. (35)

Hence substituting (34) into (33) and invoking (35) on both
processes Φq(x) and Φu(x), we obtain the result in (13) as

Po =1−
∞∫
0

Pr (Φu(x) = ∅|x) d

dx
Pr (Φq(x)) dx

=1 +

∞∫
0

exp
(
−Λ̂u(x)− Λ̂q(x)

) d

dx
Λ̂q(x) dx. (36)

�
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B. Proof of Proposition 2

Following the logic of SC strategy, we will first apply the first
thinning stage with retention probability defined in (9) to obtain
the process of relays connected to the source (the decoding set
Φd), and then apply the second stage characterized in (11). Then
the mean number of relays that are retained after these two
thinning stages can be found as

Λq =

∫
W

pq(w)Λd(dw)

a
=λ

R∫
0

2π∫
0

rs,jpq(rs,j , ϕ)pd(rs,j) drs,j dϕ, (37)

where Λd(dw) is the mean number of relays in the decoding set
in a small region dw of the cell W , and in step (a) Λd(dw) =
λd(w) · dw = λpd(w)dw was used [29].

Note that the probability of retention pq(rs,j , ϕ) in (37) is
equivalent to pq(rj,d) in (11) with the distance rj,d represented
as in (12). Then by substituting (9) and (11) into (37) we obtain
the result in (16). Outage probability Po,perf is then obtained
from (14).

C. Proof of Corollary 3

Proof: For the case of α = 2 the relation (16) reads as

Λq(λ, 2, R) = 2πλe−
θ(κ−1−r2

s,d)
1−κ

×
R∫
0

rs,je
−

θr2
s,j

κ(1−κ) I0

(
2θrs,jrs,d
1− κ

)
drs,j , (38)

where [38, 3.364.2] was used. Introducing a change of variables
rs,j = t

√
κ(1− κ)/2θ in the last integral and after some alge-

bra we obtain (17). �
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