
ar
X

iv
:1

20
6.

09
56

v4
 [

cs
.IT

]
3

Ju
n

20
14

1

Using Short Synchronous WOM Codes to Make
WOM Codes Decodable

Nicolas Bitouzé, Alexandre Graell i Amat,Senior Member, IEEE, and Eirik Rosnes,Senior Member, IEEE

Abstract—In the framework of write-once memory (WOM)
codes, it is important to distinguish between codes that can
be decoded directly and those that require that the decoder
knows the current generation to successfully decode the state
of the memory. A widely used approach to construct WOM
codes is to design first nondecodable codes that approach the
boundaries of the capacity region, and then make them decodable
by appending additional cells that store the current generation,
at an expense of a rate loss. In this paper, we propose an
alternative method to make nondecodable WOM codes decodable
by appending cells that also store some additional data. Thekey
idea is to append to the original (nondecodable) code a short
synchronous WOM code and write generations of the original
code and of the synchronous code simultaneously. We consider
both the binary and the nonbinary case. Furthermore, we propose
a construction of synchronous WOM codes, which are then used
to make nondecodable codes decodable. For short-to-moderate
block lengths, the proposed method significantly reduces the rate
loss as compared to the standard method.

Index Terms—Coding theory, decodable codes, flash memories,
synchronous write-once memory (WOM) codes.

I. I NTRODUCTION AND DEFINITIONS

The write-once memory (WOM) model was introduced in
[1] to study storage devices consisting ofq-ary (q ≥ 2)
memory cells whose values cannot be decreased. It was
originally introduced to model the behavior of optical disks
and study coding schemes that would allow one to write data
several times on a disk even though each bit can only be
written once. By allowing data from a previous write to be
“forgotten” when a new write occurs, one can show that the
total amount of information that can be stored on such a disk
is greater if several small pieces of information are stored
and forgotten one after the other than if the whole disk is
written at once. The model is now mainly studied because of
its similarity with flash memories, on which the value of a
cell can be decreased, but at an extremely high cost. Since the
original paper by Rivest and Shamir [1], several other workson
this topic have appeared, both in terms of code constructions,

A. Graell i Amat was supported by the Swedish Research Council under
Grant #2011-5961. E. Rosnes was supported by Simula@UiB. The material
in this paper was presented in part at the 2012 IEEE International Symposium
on Information Theory, Cambridge, MA, July 2012.

N. Bitouzé was with the Department of Electronics, Institut Télécom-
Télécom Bretagne, CS 83818 - 29238 Brest Cedex 3, France. He is now
with the Department of Electrical Engineering, Universityof California, Los
Angeles (UCLA), Los Angeles, CA 90095-1594. E-mail: bitouze@ucla.edu.

A. Graell i Amat is with the Department of Signals and Systems,
Chalmers University of Technology, Gothenburg, Sweden. E-mail: alexandre.
graell@chalmers.se.

E. Rosnes was with Ceragon Networks AS, Kokstadveien 23, N-5257 Kok-
stad, Norway. He is now with the Selmer Center, Department ofInformatics,
University of Bergen, N-5020 Bergen, Norway, and the SimulaResearch Lab.
E-mail: eirik@ii.uib.no.

capacity, and error-correction. See, for instance, [2–13]and
references therein. Recently, lattice-based constructions have
been proposed. For instance, in [14, 15] lattice-basedt-write
codes for multilevel cells were presented. For applications to
flash memories, see [16–18].

The fundamental problem in the WOM model is, consid-
ering an array ofn empty q-ary cells, to know how much
information one can store using exactlyt writes (also called
generations). The coding schemes that are used to fulfill this
goal are calledt-write WOM codes. The following definition
is taken from [11].

Definition 1: An [n, t : M1, . . . ,Mt]q t-write q-ary WOM
codeC is a coding scheme forn q-ary WOM cells, which
consists oft pairs of encoding and decoding mappingsEi and
Di (1 ≤ i ≤ t) such that

1) E1 : {1, . . . ,M1} → {0, . . . , q − 1}n.
2) For 2 ≤ i ≤ t:

• Ei : {1, . . . ,Mi} × Im(Ei−1)→ {0, . . . , q − 1}n,
• ∀(m,b) ∈ {1, . . . ,Mi} × Im(Ei−1),
∀j ∈ {1, . . . , n}, (Ei(m,b))j ≥ (b)j .

3) For 1 ≤ i ≤ t, Di : {0, . . . , q − 1}n → {1, . . . ,Mi},
and

• ∀m ∈ {1, . . . ,M1}, D1(E1(m)) = m,
• for 2 ≤ i ≤ t, ∀(m,b) ∈ {1, . . . ,Mi} × Im(Ei−1),
Di(Ei(m,b)) = m.

For simplicity, in the remainder of the paper, we will refer
to WOM codes simply as codes. The rate of the above code,
referred to as the WOM-rate, or sometimes just as the rate of
the code, is defined as follows [11].

Definition 2: The rate of generationi ∈ {1, . . . , t} of an
[n, t : M1, . . . ,Mt]q q-ary codeC is

Ri(C)
∆
=

log2 Mi

n

and the WOM-rate ofC is defined as

R(C)
∆
=

t
∑

i=1

Ri(C) =

∑t

i=1 log2 Mi

n
.

The fundamental problem of the WOM model is therefore
to find a code of maximum WOM-rate givent and q, and
sometimesn.

For some codes, the state of the cells is enough to determine
the current generation (i.e., how many times the memory has
been written). However, some codes have a structure such
that the same state of the memory can appear at different
generations. This is not a problem if the same state of the
memory at different generations corresponds to the same
message, but when it is not the case, the decoder has to

http://arxiv.org/abs/1206.0956v4

2

be given the knowledge of the current generation in order
to successfully decode the memory. We say that a code is
decodableif for any state of the cellsb and any i1 and
i2 with b ∈ Im(Ei1) ∩ Im(Ei2), Di1(b) = Di2(b). A code
that does not satisfy this property is callednondecodable. A
stronger property is given in [1]: a code is calledsynchronous1

if the current state of the memory provides enough information
to know the current generation, i.e., the setsIm(Ei) are
disjoint for 1 ≤ i ≤ t. Synchronous codes are decodable.
However, the reverse does not always hold. The work in [1]
also considers a way to guarantee synchronousness:laminar
codes are codes such that theweight of the cells, defined as
the ℓ1-norm of theq-ary cell vector, is an injective function
of the generation, i.e., forb1 ∈ Im(Ei1) andb2 ∈ Im(Ei2),
w(b1) = w(b2) ⇒ i1 = i2. In the binary case, the weight
reduces to the standard Hamming weight. The authors of [1]
give a construction of laminar codes forn = t being a power
of two, with WOM-rate log2(t)/2. However, synchronous
codes have not been extensively studied in the literature. Note
that nonsynchronous codes can still be directly decoded if,
when the decoder cannot determine the current generation,
the choice ofDi has no impact on the decoded symbol. In
Section II, we give examples of laminar, synchronous (but
nonlaminar), and decodable (but nonsynchronous) codes.

A nondecodable[nnd, tnd : M1, . . . ,Mtnd]2 binary codeC
can be made decodable (and even synchronous) by simply
concatenatingk instances ofC with a block oftnd−1 cells that
store the current generation (by being filled one by one at each
write, starting at the second generation). The resulting code is
a synchronous code with parameters[knnd + tnd − 1, tnd :
Mk

1 , . . . ,M
k
tnd

]2. As k goes to infinity, the WOM-rate of this
code approaches the WOM-rate of the original code,R(C).

Most of the state-of-the-art high-rate codes are notdirectly
decodable. Indeed, a common approach in the literature is
to design (nondecodable) codes that approach the boundaries
of the capacity region (see, e.g., [11, 12]), and then make
them decodable using the method above. However, for short-
to-moderate block lengths, making a nondecodable code de-
codable by appendingtnd − 1 cells containing no data can
significantly degrade its WOM-rate. For instance, consider
n = 6 andt = 4, and assume that we do not know a decodable
code of length6. In this case, we could select a nondecodable
4-write code of length3, and append3 cells to store the current
generation. The resulting WOM-rate is half the original one,
as the additional cells only carry information about the current
generation.

In this paper, we propose a different approach to make a
nondecodabletnd-write codeC decodable. Our main focus is
on binary codes, but we also extend our results toq > 2. The
key idea is to append (for atnd-write nondecodable binary
code of lengthnnd) tnd − 1 additional cells which store not
only the current generation but also new data, by using a
tnd-write synchronous code with lengthtnd − 1, and writing
generations ofC and of the synchronous code simultaneously.
Since synchronous codes are at the basis of the proposed

1Our concept of a synchronous code is equivalent to the concept of an
almost-synchronouscode from [1].

method, we consider first the construction of synchronous
codes. Our main focus is on laminar codes. The construction
of synchronous (laminar) codes was already addressed in [1].
However, [1] only considered the case wheren = t andt is a
power of2. Here, we construct small laminar codes for both
n = t andn > t, and propose a construction for synchronous
codes of higher values oft. Lifting the constraintn = t allows
to achieve higher WOM-rates. The obtained codes are then
used to make nondecodable codes decodable. Whereas the
main focus of this paper is onunrestricted-ratecodes [12],
i.e., we allow the individual writes to use a different number of
inputs, we also extend our construction tofixed-ratecodes, i.e.,
codes for which all writes store the same number of messages.

The remainder of this paper is organized as follows. In
Section II, we introduce the main idea to turn nondecodable
codes into decodable ones, and provide some examples. In
Section III, we consider a simple family of laminar codes with
n = t, as well as very short codes from this family. We also
give bounds on the sizes of their generations, and construct
better laminar codes withn > t by local manipulations of the
codes withn = t. In Section IV, we propose a construction of
synchronous codes with good properties to reach higher values
of t by concatenating instances of a synchronous code using a
second synchronous code to decide, at each generation, which
of the instances of the first code are going to be modified.
In Section V, we study the case of fixed-rate codes, and we
extend our results on the binary case to nonbinary scenariosin
Section VI. Finally, in Section VII, we compare our method
of making nondecodable codes decodable with the method
that only adds cells containing no data. Some conclusions are
drawn in Section VIII.

II. M AIN IDEA AND EXAMPLES

Let C be a nondecodable code with parameters[nnd, tnd :
M1, . . . ,Mtnd]2, and WOM-rateRnd. The standard approach
to turnC into a decodable code is to appendtnd−1 cells that
store the current generation, thus obtaining a code of length
n = nnd + tnd − 1. This incurs a rate loss

γbasic =
Rnd −Rnd

nnd

n

Rnd
=

tnd − 1

n
. (1)

The main idea in this paper is very simple: instead of
adding cells that do not contain information, we append to
the original code cells that also store actual data. This is
achieved by appending toC a tnd-write synchronous code
of length nsync = tnd − 1, and writing generations ofC
and of the synchronous code simultaneously. Appending a
synchronous code toC results in an overall decodable (and
also synchronous) code (the synchronousness of the appended
code guarantees that by observing thetnd − 1 new cells, the
decoder can always determine the current generation, and use
this knowledge to decode the overall code), while allowing to
store extra data.

Let Rsync > 0 be the WOM-rate of the synchronous
code that we append to the nondecodable code. The rate loss

3

introduced by this method, denoted byγsync, is

γsync =
Rnd − (Rnd(n− nsync) +Rsyncnsync) /n

Rnd

=
nsync

n

(

1−
Rsync

Rnd

)

(2)

which is smaller thanγbasic, since we can choosensync =
tnd − 1 (or slightly above). Note thatγsync is decreasing
with Rsync when n, nsync, and Rnd > 0 are fixed. The
main ingredient of the proposed technique is therefore a
tnd-write synchronous code of lengthtnd − 1. To increase
Rsync one may also consider synchronous codes withnsync

slightly larger thantnd− 1 (the length of the resulting overall
code would be slightly larger than that of the code obtained
applying the standard method. However, the increase in length
is compensated by a larger WOM-rateRsync).

The following sections are devoted to the construction of
t-write synchronous codes of lengthn = t − 1 (or slightly
larger) to be used to make a nondecodable code decodable as
explained above. Ideally, we would like to design synchronous
codes that maximize the WOM-rate. However, this is overly
complex. Instead we first construct small laminar codes, and
then propose a construction method to construct synchronous
codes for larger values oft by concatenating smaller codes.
The use of laminar codes makes the computer search more
tractable.

The construction method in Section IV requires component
codes which do not contain the all-zero codeword. Therefore,
in Section III we construct small laminar codes which do not
contain the all-zero codeword. Note that for codes that do not
contain the all-zero codeword, the number of writes is limited
by the code length,t ≤ n. Thus, our approach is to construct
(t − 1)-write synchronous codes with lengthn = t − 1 from
component codes which do not contain the all-zero codeword,
and then obtain at-write synchronous code with lengthn =
t − 1 by simply adding a generation that only contains the
all-zero codeword.

To ease the understanding of the paper, in the following
we clarify this and the concepts of synchronous, laminar,
and decodable (but not synchronous) codes with some exam-
ples. For later use, if an[n, t : M1, . . . ,Mt]q code is syn-
chronous, we will frequently use the superscript “sync”, [n, t :
M1, . . . ,Mt]

sync
q . Also, in the binary case, the cells that can

be written from0 to 1 but not from1 to 0 are calledwits [1].
Example 1:An example of a binary[4, 4 : 4, 2, 2, 1]2

laminar code is depicted in Fig. 1 by a state diagram describing
all four writes. The four-bit vector in each state is the memory-
state. The different types of edges (solid, dashed, dotted,and
dash-dotted) correspond to different input data bits. As can be
seen from the figure, the weight of the cells uniquely identifies
the generation.

Example 2:An example of a quaternary[2, 4 : 2, 2, 3, 3]4
synchronous (but nonlaminar) code is depicted in Fig. 2 by
a state diagram describing all four writes. The two-symbol
vector in each state is the memory-state. The different types of
edges (solid, dashed, and dotted) correspond to different input
data symbols. As can be seen from the figure, the cells of the
memory cannot be in the same state at different generations,

First write Second write Third write Fourth write

1100

0101

0011

1010

1101

0111

1110

1011

0100

0010

0001

1000

1111

Fig. 1. A binary [4, 4 : 4, 2, 2, 1]2 laminar four-write code. The different
types of edges (solid, dashed, dotted, and dash-dotted) correspond to different
input data bits.

which implies that the code is synchronous, but the weight (or
ℓ1-norm) of the cell state(22) of the third generation and the
weight of the cell state(31) (or (13)) of the fourth generation
are the same. Thus, the weight isnot an injective function of
the generation, and the code is not laminar.

23

32

31

13

33

30

12

21

22

03

02

11

20

10

01

Second writeFirst write Third write Fourth write

Fig. 2. A quaternary[2, 4 : 2, 2, 3, 3]4 synchronous (but nonlaminar) four-
write code. The different types of edges (solid, dashed, anddotted) correspond
to different input data symbols.

Example 3:A simple example of a decodable (but nonsyn-
chronous) binary code, taken from [1], that enables two bitsto
be written into three memory cells twice, is given in Table I,
which describes the encoding and decoding rules for the code.
The code is nonsynchronous, since for the second write, if the
information to be encoded does not change, then the state of
the memory does not change either. Thus, the current state of
the memory does not provide enough information to tell the
current generation.

TABLE I
A BINARY [3, 2 : 4, 4]2 DECODABLE (BUT NONSYNCHRONOUS) CODE.

Data bits First write Second write (if data changes)

00 000 111
10 100 011
01 010 101
11 001 110

Example 4:By adding a generation containing the all-zero
codeword prior to all other generations of the[4, 4 : 4, 2, 2, 1]2
code from Example 1 (and depicted in Fig. 1), the code is
turned into a[4, 5 : 1, 4, 2, 2, 1]2 code. The WOM-rate is the

4

same, but the number of writes is now the length plus one.
The code is depicted in Fig. 3.

Second write Third write Fourth write Fifth write

0010

First write

1100

0101

0011

1010

1101

0111

1110

1011

0100

0001

1000

11110000

Fig. 3. A binary [4, 5 : 1, 4, 2, 2, 1]2 code obtained from the code of
Example 1 by adding a generation prior to all other generations containing the
all-zero codeword only. The different types of edges (solid, dashed, dotted,
and dash-dotted) correspond to different input data bits.

III. SMALL LAMINAR WOM CODES

In this section, we construct small laminar codes. We first
consider codes withn = t that write exactly1 wit at each
generation, and then construct codes withn > t.

An exhaustive search for laminar codes that maximize the
WOM-rate is unfeasible even for very short codes. Thus, to
simplify the search, we use a greedy algorithm that maximizes
the values ofMi generation by generation. Consider a code
C with n = t that writes exactly1 wit per generation, and a
generationi > 1. Assuming that the previous generations are
already fixed, the condition we have onMi is that for every
x ∈ Im(Ei−1), and for everym ∈ {1, . . . ,Mi}, there exists
y ∈ Im(Ei) such thatx ≤ y andDi(y) = m (wherex ≤ y

if xk ≤ yk for all k, 1 ≤ k ≤ n). Denote byE(n, i) the
set of binary vectors of lengthn and Hamming weighti. It
follows that at each generationi, Im(Ei) ⊆ E(n, i). We use
this set inclusion to make our maximization at each generation
completely independent from the other generations, at the cost
of optimality.

Let us define the equivalence relation≡n
i on Im(Ei) by

y ≡n
i y′ if and only if Di(y) = Di(y

′). Let us refer to the
equivalence classes of this relation as thecodeword classesof
C at generationi. Codeword classes are subsetsY ⊆ E(n, i)
for which, if we do not take the previous generations into
account, the following must hold

∀x ∈ E(n, i− 1), ∃y ∈ Y : x ≤ y. (3)

We are also interested in the partitions ofE(n, i) as a set
of valid codeword classes. IfY denotes such a partition, we
want that

∀Y ∈ Y, ∀x ∈ E(n, i − 1), ∃y ∈ Y : x ≤ y. (4)

Each valid partitionY corresponds to a valid decoding map-
ping (modulo reordering), and thus each cardinality|Y| to a
valid Mi. We are therefore interested in finding the maximum
cardinality of such a partition. We make the following impor-
tant definition.

Definition 3: Let A(n, i) be the maximum cardinality of a
partitionY of E(n, i) satisfying (4).

We now give an upper bound onA(n, i).

Proposition 1: Let B(n, i) be defined by

B(n, i)
∆
=









(

n
i

)

min
Y s.t. (3) holds

|Y |







 .

Then, the maximum cardinalityA(n, i) of a partitionY that
satisfies (4) is upper-bounded byA(n, i) ≤ B(n, i).

Proof: Let Y be any partition ofE(n, i). Then,

|Y| ·

(

min
Y s.t. (3) holds

|Y |

)

≤
∑

Y ∈Y

|Y | = |E(n, i)| =

(

n

i

)

.

This holds in particular whenY is of maximum cardinality.

This bound can be computed using a computer search for
the smallestY that satisfies (3). The search is relatively slow,
but notice that by lower-bounding|Y | by

⌈

|E(n,i−1)|
i

⌉

(each

elementy ∈ E(n, i) covers exactlyi elementsx ∈ E(n, i −
1)), we obtain a closed-form bound,

A(n, i) ≤ B(n, i) ≤









(

n
i

)

⌈

|E(n,i−1)|
i

⌉







 =













(

n
i

)

⌈

(n

i−1)
i

⌉













.

While the closed-form bound can be computed efficiently
and is reached for some values of(n, i) (for instance, for
n ≤ 3, or for i ≤ 2, or i = n), even for relatively low
values ofn and i, it can be strictly higher thanA(n, i). For
instance,A(4, 3) = 1, while the closed-form bound is2.
Indeed,E(4, 3) = {1110, 1101, 1011, 0111} and E(4, 2) =
{1100, 1010, 1001, 0110, 0101, 0011}, and while each element
of E(4, 3) covers3 elements ofE(4, 2), it is not possible to
pick two elements ofE(4, 3) such that the subsets ofE(4, 2)
that they cover are disjoint. Therefore, the codeword classes
in E(4, 3) have cardinality at least3, and not |E(n,i−1)|

i
= 2.

For very small values ofn, the exact value ofA(n, i) can be
computed by conducting a simple exhaustive search on the set
of codeword classes. Values ofB(n, i) are also obtained with
an exhaustive search, but on the minimum size of codeword
classes, which is significantly faster. The results of the two
searches are reported forn ≤ 16 in Table II. The values in
bold font areA(n, i), the others areB(n, i). The few values
of A(n, i) that were computed exactly matchB(n, i), so it is
unknown whether there are pairs(n, i) such thatA(n, i) <
B(n, i). Note that these values are constructive. For instance,
a [4, 4 : 4, 3, 1, 1]sync2 and a[5, 5 : 5, 3, 2, 1, 1]sync2 code can be
obtained from the search. The upper bounds from Table II in
italics match the exact values ofA(n, i) by Propositions 4, 5,
and 7, or by the lower bounds of Propositions 2 and 3, and
are also constructive (see Section III-A below).

A. Bounds on the Sizes of Generations

We give bounds on the sizes of the generations of the codes
defined above. In particular, we give lower bounds that are
constructive and allow us to effectively build codeword classes
for the corresponding generations.

5

TABLE II
UPPER BOUNDB(n, i) ON A(n, i). VALUES IN BOLD ARE EXACT VALUES FORA(n, i) FOUND BY COMPUTER SEARCH(A(n, i) = B(n, i) IN ALL

CASES). THE VALUES FORB(n, i) IN ITALICS MATCH THE EXACT VALUES OF A(n, i) BY PROPOSITIONS4, 5,AND 7, OR BY THE LOWER BOUNDS OF
PROPOSITIONS2 AND 3.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n

1 1
2 2 1
3 3 1 1
4 4 3 1 1
5 5 3 2 1 1
6 6 5 3 2 1 1
7 7 5 5 2 2 1 1
8 8 7 5 5 2 2 1 1
9 9 7 6 5 3 2 2 1 1

10 10 9 6 5 4 3 2 2 1 1
11 11 9 7 6 5 4 3 2 2 1 1
12 12 11 8 6 6 5 3 3 2 1 1 1
13 13 11 10 7 6 5 4 3 3 2 2 1 1
14 14 13 10 9 7 6 5 5 3 3 2 2 1 1
15 15 13 13 9 9 6 5 5 4 3 3 2 2 1 1
16 16 15 13 13 9 9 7 6 5 4 3 3 2 2 1 1

For x = (x1, . . . , xn) ∈ {0, 1}
n andx′ = (x′

1, . . . , x
′
n) ∈

{0, 1}n
′

, we denote byx · x′ the vector of{0, 1}n+n′

that is
the concatenation ofx andx′:

x · x′ = (x1, . . . , xn, x
′
1, . . . , x

′
n).

We also callY a suitable partitionof E(n, i) if (4) holds,
and we do not mind if the union of the elements ofY is only
a strict subset ofE(n, i).

Proposition 2: For anyn ≥ 2 and 2 ≤ i ≤ n, A(n, i) ≥
min(A(n− 1, i− 1), A(n− 1, i)).

Proof: LetY be a suitable partition ofE(n−1, i) andZ a
suitable partition ofE(n−1, i−1) such that|Y| = A(n−1, i)
and |Z| = A(n − 1, i − 1). Consider two bijectionsfY :
{1, . . . , A(n−1, i)} → Y andfZ : {1, . . . , A(n−1, i−1)} →
Z. Now, define a suitable partitionY ′ of E(n, i) as the union
for all 1 ≤ k ≤ min(A(n − 1, i − 1), A(n − 1, i)) of the
codeword classes

(fY(k).0) ∪ (fZ(k).1) .

There is no collision between these codeword classes, sincewe
can sort their elements according to their last symbol, and for
a given last symbol, the firstn− 1 symbols of the codewords
in a codeword class match a (suitable) partition ofE(n−1, i)
or one ofE(n−1, i−1). The cardinality ofY ′ is min(A(n−
1, i− 1), A(n− 1, i)).

Proposition 3: For n ≥ 1, A(2n, 2) ≥ 2A(n, 2) + 1.
Proof: Let Y be a partition ofE(n, 2) with cardinality

A(n, 2) such that for allY ∈ Y and for allx ∈ E(n, 1), there
is y ∈ Y such thatx ≤ y. Notice that anyy ∈ Y ⊆ E(n, 2)
can be written as the sum of two weight-one words of length
n. Let us denote byenj the word of lengthn whose only
nonzero coordinate is a1 at indexj. Then everyy ∈ Y can
be writteny = enj + enk . Let Y ′ ⊆ E(2n, 2) be defined by the
union of 3 sets of codeword classes as follows.

1) For eachY ∈ Y, the codeword class

{e2nj +e2nk |e
n
j +enk ∈ Y }∪{e2nj+n+e2nk+n|e

n
j +enk ∈ Y }.

2) For eachY ∈ Y, the codeword class

{e2nj +e2nk+n|e
n
j +enk ∈ Y }∪{e2nj+n+e2nk |e

n
j +enk ∈ Y }.

3) The codeword class

{e2nj + e2nj+n|1 ≤ j ≤ n}.

These codeword classes are trivially disjoint, and each of them
coversE(2n, 1). Thus,A(2n, 2) ≥ A(n, 2) + A(n, 2) + 1 =
2A(n, 2) + 1.

Proposition 4: For anyn ≥ 1, A(n, 1) = n.
Proof: PartitionE(n, 1) into n singletons{enj } for 1 ≤

j ≤ n.
Proposition 5: For anyn ≥ 0, A(2n, 2) = 2n − 1.

Proof: We useA(2n, 2) ≥ 2A(n, 2) + 1 from Propo-
sition 3 and the simple boundA(n, i) ≤ n − i + 1, which
for i = 2 becomesA(n, 2) ≤ n − 1, and proceed by
induction. A(1, 2) = 0. AssumingA(2n, 2) = 2n − 1, we
haveA(2n+1, 2) ≥ 2 · (2n − 1) + 1 = 2n+1 − 1, and we have
A(2n+1, 2) ≤ 2n+1 − 1.

Proposition 6: For anyn ≥ 1, A(2n+ 1, 2) ≤ 2n− 1.

Proof: This is the boundA(n, i) ≤













(

n
i

)

⌈

(n

i−1)
i

⌉













applied

to i = 2.
Proposition 7: For anyn ≥ 1, A(2n + 1, 2) = 2n − 1.

Proof: A(2n+1, 2) ≥ 2n− 1 comes from a direct use of
Proposition 2 on the results of Propositions 4 and 5.A(2n +
1, 2) ≤ 2n − 1 comes from Proposition 6.

B. Laminar WOM Codes withn > t

The constraintn = t results in relatively low WOM-rates.
Lifting this constraint allows to achieve higher WOM-rates.
Laminar codes withn slightly larger thant can easily be de-
rived from the codes withn = t above by merging several gen-
erations together: taking, as the new set of codeword classes,
the union of the sets of codeword classes of two or more
consecutive generations.2 For instance, the[4, 4 : 4, 3, 1, 1]sync2

2n should remain small, because we do not expect to find synchronous
codes of WOM-rate higher than nondecodable ones, thus a larger number of
cells should be reserved to the nondecodable code.

6

code can be turned into a[4, 3 : 4, 3, 2]sync2 code by merging
its third and fourth generations together. Instead of having one
codeword class at generation3 ({1110, 1101, 1011, 0111}) and
one at generation4 ({1111}), now the third generation has
two codeword classes:{1110, 1101, 1011, 0111} and{1111},
and there is no fourth generation anymore. Likewise, a[5, 3 :
5, 3, 4]sync2 code (of WOM-rate1.181) can be derived from
the [5, 5 : 5, 3, 2, 1, 1]sync2 code by merging the last three
generations together. However, consider the codeword classes
of vectors of weight4. These were constructed in order to
cover every word of weight3, while they now only have to
cover every word of weight2. The optimization also did not
allow codeword classes of mixed weights. We can reorganize
the set of vectors of weight3 or more into a better balanced
set of codeword classes. In (5), we give the codeword classes
of the third generation of a[5, 3 : 5, 3, 6]sync2 code (of WOM-
rate 1.298) obtained by reorganizing the third generation of
the [5, 3 : 5, 3, 4]sync2 code,

{01111, 11001, 10110}, {10111, 11100, 01011},

{11011, 01110, 10101}, {11101, 00111, 11010},

{11110, 10011, 01101}, {11111}. (5)

For comparison, the4 codeword classes of the third gener-
ation of the[5, 3 : 5, 3, 4]sync2 code are

{11100, 11010, 10101, 01011, 00111} (weight 3 only),

{11001, 10110, 10011, 01110, 01101} (weight 3 only),

{11110, 11101, 11011, 10111, 01111} (weight 4 only),

{11111} (weight 5). (6)

Other choices can be made regarding which generations to
merge to obtain a3-write code from the[5, 5 : 5, 3, 2, 1, 1]sync2

code, but lower WOM-rates are obtained.

IV. A C ONSTRUCTION FORSYNCHRONOUSWOM CODES

OF HIGHER t

In this section, we propose a construction to obtain syn-
chronous codes for higher values oft by concatenatingn′

instances of a synchronous code of lengthn, and using a
second synchronous code of lengthn′ to decide, at each
generation, which of then′ instances of the first code are
going to be modified.

Theorem 1:Let C be a binary[n, t : M1, . . . ,Mt]2 syn-
chronous code of WOM-rateR, and C′ a binary [n′, t′ :
M ′

1, . . . ,M
′
t′]2 synchronous code of WOM-rateR′, both not

containing the all-zero codeword. Then there exists a binary
[nn′, tt′ : M1M

′
1, . . . ,M1M

′
t′ , . . . ,MtM

′
1, . . . ,MtM

′
t′]2 syn-

chronous codeC1 of WOM-rateR1 = t′

n′
R+ t

n
R′.

This construction is based on three algorithms.
1) An algorithm to determine the current generationi of

C1 from the state of thenn′ memory cells.
2) An encoding algorithm, whose input range depends on

i.
3) A decoding algorithm.
Forp ∈ {1, . . . , t} andl ∈ {1, . . . , t′}, we denote byEp and
Dp the encoding and decoding mappings, respectively, ofC
at generationp, and byE ′l andD′

l the encoding and decoding

mappings, respectively, ofC′ at generationl. We also write
Im(E0) = {0n} (resp.Im(E ′0) = {0n′}) to denote the fact that
the state of a block prior to any write byC (resp.C′) is the
all-zero codeword of lengthn (resp.n′). We then denote byg
(resp.g′) the function that takes a codeword fromC (resp.C′)
and returns the unique generation ofC (resp.C′) of which it
is a codeword. Formally,

g :
⋃

p∈{0,...,t} Im(Ep) → {0, . . . , t}

b 7→ p s.t.b ∈ Im(Ep),
g′ :

⋃

l∈{0,...,t′} Im(E ′l) → {0, . . . , t′}

b′ 7→ l s.t.b′ ∈ Im(E ′l).

The fact thatC andC′ are synchronous guarantees thatp and
l are unique.

Algorithm 1 Algorithm to Recover the Current Generation
1: Input: b1, . . . ,bn′

2: Output:p, l, i, andb′

3: p← 0
4: for k ← 1 to n′ do
5: pk ← g(bk)
6: if pk > p then
7: p = pk

8: for k ← 1 to n′ do
9: b′k ← pk + 1− p ⊲ Should always be0 or 1

10: if b′ = 1n′ or g′(b′) = t′ then
11: l ← 0
12: p← p+ 1
13: b′ ← 0n′

14: else
15: l ← g′(b′)

16: i← (p− 1)t′ + l

The key idea is that thenn′ wits of C1 are divided into
n′ blocks ofn wits denoted bybk for k ∈ {1, . . . , n′}, and
the tt′ generations are divided intot stages oft′ generations.
For p ∈ {1, . . . , t} and l ∈ {1, . . . , t′}, generationi = (p −
1)t′ + l of C1 is the l-th generation of thep-th stage. At
this point, we guarantee that each of then′ blocks ofn wits
contains a codewordbk ∈ Im(Ep−1) ∪ Im(Ep). We callb′ =
(b′1, . . . , b

′
n′) ∈ Im(E ′l) the binary vector of lengthn′ with

entriesb′k = g(bk)− p+1, k ∈ {1, . . . , n′}. Then, Algorithm
1 can take a codeword ofC1, and use functionsg and g′ to
determine the current generationi.

Both the encoder and the decoder first use this algorithm to
determine the current generationi (actually, they usep and
l). They also use the value ofb′. Algorithm 2, described
below, is the encoding algorithm, which takes a message
m1 ∈ {1, . . . ,MpM

′
l+1} and encodes it. This message is

decomposed into a messagem ∈ {1, . . . ,Mp} and a message
m′ ∈ {1, . . . ,M ′

l+1}. We then compute the newb′ as
E ′l+1(m

′,b′) and compare the positions at which it differs from
the old one. These positions are the indicesk ∈ {1, . . . , n′}
of the blocks that will be written (hence switching from
generationp − 1 to generationp). The only requirement on
how these blocks will be written is that after this encoding
stage, the moduloMp sum (in {1, . . . ,Mp}) of the Dp(bk)

7

for bk ∈ Im(Ep) is m. Algorithm 2 shows a simple way to
achieve this.

Algorithm 2 Encoding Algorithm

1: Input: b1, . . . ,bn′ , andb′, m1, p, and l
2: Output:b1, . . . ,bn′

3: m← 1 +
⌊

(m1 − 1)/M ′
l+1

⌋

4: m′ ← 1 + ((m1 − 1) mod M ′
l+1)

5: b̂′ ← E ′l+1(m
′,b′)

6: for k ← 1 to n′ do
7: if b′k = 1 then
8: m← m−Dp(bk)

9: else if b′k = 0 ∧ b̂′k = 1 then
10: k0 ← k

11: m← 1 + ((m− 1) mod Mp)
12: for k ← 1 to n′ do
13: if b̂′k = 1 ∧ b′k = 0 ∧ k 6= k0 then
14: bk ← Ep(Mp,bk)

15: bk0
← Ep(m,bk0

)

The messagesm andm′ can be decoded by decodingb′

with the decoder ofC′, and then decoding every blockbk for
bk ∈ Im(Ep) with the decoder ofC, and finally taking the
moduloMp sum (in {1, . . . ,Mp}) of the decoded messages.
The original messagem1 is thenm1 = (m− 1)M ′

l +m′. See
Algorithm 3 for details.

Algorithm 3 Decoding Algorithm

1: Input: b1, . . . ,bn′ , andb′, p, and l
2: Output:m, m′, andm1

3: m′ ← D′
l(b

′)
4: m← 0
5: for k ← 1 to n′ do
6: if b′k = 1 then
7: m← m+Dp(bk)

8: m← 1 + ((m− 1) mod Mp)
9: m1 ← (m− 1)M ′

l +m′

Let us now establish the WOM-rateR1 of C1.

R1 =

∑t

p=1

∑t′

l=1 log2(MpM
′
l)

nn′

=
1

nn′



log2

(

t
∏

p=1

M t′

p

)

+ log2





t′
∏

l=1

(M ′
l)

t









=
1

nn′
(t′ · nR+ t · n′R′) =

t′

n′
R+

t

n
R′.

Example 5:Let C be the[4, 3 : 4, 3, 2]sync2 code defined by

1 2 3 4

D−1
1 {0001} {0010} {0100} {1000}
D−1

2 {1100, 0011} {1010, 0101} {1001, 0110} −

D−1
3

{0111, 1011,
1101, 1110}

{1111} − −

andC′ the [2, 2 : 2, 1]sync2 code defined by

1 2
(D′

1)
−1 {01} {10}

(D′
2)

−1 {11} −
.

The codeC1 obtained with the construction is a[8, 6 :
8, 4, 6, 3, 4, 2]sync2 code. Consider that the eight cells are in
state (b1,b2) = (1100, 0010). Let us first consider the
decoding of the message following Algorithms 1 and 3. The
generation inC of the first blockb1 is 2, and that of the
second blockb2 is 1, thusp = 2 (the highest of the two) and
b′ = (10). The fact thatC′ is synchronous guarantees that
only one encoding function ofC′ hasb′ in its range: here, it
is the encoding function forl = 1. Thus, we are at the first
generation (l = 1) of the second stage (p = 2), so the overall
generation isi = (p − 1)t′ + l = (2 − 1) × 2 + 1 = 3. The
flow of Algorithm 1 is illustrated in Fig. 4.

For the decoding part, we havem′ = D′
1(10) = 2 and

m as the moduloMp sum (in {1, . . . ,Mp}) of Dp(bk) for
all indices k of a block at generationp of C. Here, there
is only one block at generationp = 2 for C: block b1 =
(1100), thereforem = (D2(b1) − 1) (mod 3) + 1 = 1. The
original message pair was therefore(1, 2). This can be mapped
to m1 ∈ {1, . . . ,MpM

′
l} by m1 = (m − 1)M ′

l +m′, which
gives m1 = 0 × 2 + 2 = 2. The flow of Algorithm 3 is
illustrated in Fig. 5.

For the encoding part, let us now encode a new message
m1 = 2 ∈ {1, 2, 3} for generation4 following Algorithm 2.
Our newm andm′ are 2 and 1, respectively, so that(m −
1)M ′

l+1 +m′ = (2− 1)× 1 + 1 = 2. b′ = (10) will become
b′ = (11) becauseE ′2(1, 10) = (11). Therefore, the second
block is going to be written (because the second wit ofb′

changes). We first decode all the blocks already at generation
p = 2: here, we only have one block at generationp = 2, and
D2(b1) = D2(1100) = 1. We therefore encode in the second
block b2 a messagem0 = (m − D2(b1) − 1) (mod Mp) +
1, whereMp = M2 = 3 and m = 2. Thus,m0 = 1 and
b2 is replaced byEp(1, 0010) = (0011). The state of the
cells is (1100, 0011) after this encoding phase. The flow of
Algorithm 2 is illustrated in Fig. 6.

We remark that the construction above requires that codeC
does not contain the all-zero codeword. In that case, if the all-
zero codeword ofC is written in a block, the generation ofC1

would be improperly identified and the componentm′ of the
message could not be written/decoded. The construction also
requiresC′ to not contain the all-zero codeword, in which case
the componentm of the message could not be written/decoded
when the all-zero codeword is chosen forC′.

As a final remark, note that the construction above re-
sembles a tensor-product code construction, but with some
important differences. For instance, it is required that the
different blocks contain codewords fromC of neighboring
generations.

A. Results

Let us denote byF (C,C′) the code obtained by applying
the construction of Theorem 1 toC andC′. We can iterate the

8

1 01 00 10 0

b1 = 1100 b2 = 0010

g(b1) = 2 g(b2) = 1 p = 2

g() g()

1 0 b
′ = 10

l = g′(b′) = 1

g′()

i = (p− 1)t′ + l = 3

Input

Lines 4-7

Lines 8,9

Lines 10-15

Line 16

Fig. 4. Example of a run of Algorithm 1.

b1 = 1100 b2 = 0010b′ = 10

gen.p = 2 gen.p− 1 = 1gen. l = 1

m′ = D′

1(b
′) = 2

D′

l
()

D2(b1) = 1 ignored

Dp() not gen.p

∑
k D2(bk) = 1

m = 1

proj. to {1, . . . ,Mp}

m1 = (m − 1)M ′

l
+m′ = 2

Input

Line 3

Lines 4-8

Line 9

Fig. 5. Example of a run of Algorithm 3.

m1 = 2

m′ = 1 m = 2

b1 = 1100 b2 = 0010

gen.p = 2 gen.p− 1 = 1

D2(b1) = 1 ignored

Dp() not gen.p

m̃0 =
∑

k D2(bk) = 1

b
′ = 10

gen. l = 1

b̂
′ = E ′2(m

′,b′) = 11

E ′
l+1

()

k0 = 2

b′ = 10

b̂′ = 11

b2 ← E2(m ⊖ m̃0,b2) = 0011 (where⊖ is the moduloMp subtraction in{1, . . . ,Mp})

1 01 00 10 1

Input

Lines 3,4

Line 5

Lines 9,10

Lines 7,8,11

Lines 12-15

Output

Fig. 6. Example of a run of Algorithm 2.

9

above construction by choosingC andC′, and then defining
C0 = C and Cm = F (Cm−1, C

′) for all m > 0. This
generates codes with even higher values oft, which have to
be compared with a construction of synchronous codes from
[1] (wheren = t is any power of two and the WOM-rate is
log2(t)/2). Notice that the two constructions happen to match
when we take asC = C′ the trivial [2, 2 : 2, 1]sync2 code.

First, we restrict ourselves to codes withn = t (which are
easier to compare) and we fixC′ = C. The WOM-rate of the
tm-write codeCm afterm iterations of the construction is

R(Cm) = mR(C) = logt(tm)R(C) =
R(C)

log2(t)
log2(tm).

Therefore, for codes withn = t, the higher R(C)
log

2
(t) is, the better

this iterated construction works. The code that maximizes this
ratio among those found by our computer search is the one
with n = t = 2 (with R(C)

log
2
(t) = 1

2), making the codes from
[1] the best in terms of asymptotic WOM-rate until codes
for higher values ofn = t are found. For instance, Table II
suggests that a[8, 8 : 8, 7, 5, 5, 2, 2, 1, 1]sync2 code could exist,
with a ratio of0.519 (and even better synchronous codes could
exist even forn = t = 8, if we remove the added constraints
from Section III). However, whent is not a power of two, our
construction can yield codes wheret has either2, 3, or 5 as a
divisor, but no other prime divisors, i.e., the number of writes
is of the form2a3b5c. This is achieved by mixing different
elementary codesC′ with 2, 3, and5 generations, instead of
always using thet = 2 code. This is a much denser coverage
of the potential values oft. Furthermore, if we consider codes
with n slightly greater thant, we can reach higher WOM-rates
at equal values oft. Consider, for instance, the codeF (C,C′)
with C the [4, 3 : 4, 3, 2]sync2 code andC′ the [2, 2 : 2, 1]sync2

code. The construction then yields a[8, 6 : 8, 4, 6, 3, 4, 2]sync2

code of WOM-rate1.521 (larger thanlog2(t)/2 both fort = 6
and t = 8). This is the example code of Example 5.

V. FIXED-RATE WOM CODES

In Sections III and IV we did not impose any constraint on
the values{Mi}. Therefore, the obtained codes are in general
unrestricted-rate codes, i.e., the codes store in general adiffer-
ent number of messages at different generations. Appending
these codes to a nondecodable code to make it decodable will
clearly result into an unrestricted-rate code.

In this section, given a fixed-rate nondecodable code, we
consider the problem of efficiently generating a fixed-rate
decodable code. Note that the standard method of appending
tnd− 1 cells to atnd-write nondecodable code that only store
the current generation results in a fixed-rate code, since it
does not change the values of{Mi}. However, we can also
improve the WOM-rate of the overall code, by appending
a short synchronous code as in the previous sections, with
the additional constraint that the synchronous code must also
be fixed-rate. We are therefore interested in finding short
synchronous fixed-rate codes.

The main result of this section is that the construction of
Section IV yields a fixed-rate code when applied to two fixed-
rate codes. To find fixed-rate synchronous codes for many

values oft, one therefore only has to find a few such codes
for small values oft. In the following, we propose two such
codes.

• A [3, 2 : 2, 2]sync2 code of WOM-rate2/3 given by

1 2

D−1
1 {001} {010}
D−1

2 {110, 101} {011}
.

• A [5, 3 : 4, 4, 4]sync2 code of WOM-rate1.2 where the
classes are:

– At generation1: {00001}, {00010}, {00100}, and
{01000}.

– At generation 2: {11000, 10100, 10010, 10001},
{01100, 00011}, {01010, 00101}, and
{01001, 00110}.

– At generation3: the same codeword classes as in (6).

We remark that fixed-rate codes have not only lower WOM-
rate than unrestricted-rate codes, but when we add the con-
straint that the codes must be synchronous and withn = t−1,
this gets even worse as the last generation of a synchronous
code withn = t− 1 will always have size1, forcing the size
of every generation to be1 for a fixed-rate code, and making
its WOM-rate0. This explains why the two codes that we give
haven larger thant− 1.

VI. EXTENSION TOq-ARY WOM CODES

The proposed method of Section II for making a nonde-
codable code decodable in the binary case can be extended to
the problem of making nondecodableq-ary codes decodable
for q > 2. The number of additional cells required to make
a q-ary tnd-write nondecodable code decodable is

⌈

tnd−1
q−1

⌉

.
Indeed, during each of the lasttnd − 1 generations, the sum
of the values in the additional cells is increased by at least1,
and this sum is at mostq − 1 times the number of additional
cells. We consider the problem of building synchronousq-
ary (tnd − 1)-write codes with length

⌈

tnd−1
q−1

⌉

(or slightly
above) which do not contain the all-zero codeword, since,
as in the binary case, we can later add an extra generation
containing only the all-zero codeword, turning the code into
a tnd-write code of length

⌈

tnd−1
q−1

⌉

. If tnd ≤ q, then only
one additional cell is required. This case applies to the codes
in [11], for instance, withq = 8 and tnd = 2, 3, 4, 5, 6, 7,
or q = 4 and tnd = 2, 3, 4. Then, the WOM-rate of a code
is determined entirely by the assignment of theq possible
values of the cell to its generations. For instance, ifq = 5 and
tnd = 3, we can chooseIm(E1) = {0, 1}, Im(E2) = {2, 3},
andIm(E3) = {4}. The WOM-rate of the resulting code would
therefore belog2(2 × 2 × 1). Maximizing the WOM-rate of
the code is equivalent to maximizing the product

∏tnd
i=1 Mi

where the only constraints on theMi’s are that they are
integers from{1, . . . , q} and that

∑tnd
i=1 Mi ≤ q. Maximizing

a product of integers given their sum is achieved by choosing
them as close to each other as possible, here by picking
Mi ∈ {⌊q/tnd⌋, ⌈q/tnd⌉} for all i. Let us consider the two
extreme regimes. Iftnd = q/2 (resp. tnd > q/2), we pick
Mi ∈ {2, 2} (resp.Mi ∈ {1, 2}) and the resulting WOM-rate

10

TABLE III
Aq(n, i) IN THE TERNARY CASE(q = 3). THE VALUES ARE

CONSTRUCTIVE(I .E., THEY CORRESPOND TO ACTUAL CODES FOUND BY
AN EXHAUSTIVE SEARCH). VALUES IN ITALICS CAN ALSO BE TAKEN

FROM PROPOSITION9.

i 1 2 3 4 5 6 7 8
n

1 1 1
2 2 2 1 1
3 3 3 2 1 1 1
4 4 4 3 3 1 1 1 1
5 5 5 - - - - - -

TABLE IV
Aq(n, i) IN THE QUATERNARY CASE(q = 4). THE VALUES ARE

CONSTRUCTIVE(I .E., THEY CORRESPOND TO ACTUAL CODES FOUND BY

AN EXHAUSTIVE SEARCH). VALUES IN ITALICS CAN ALSO BE TAKEN
FROM PROPOSITION9.

i 1 2 3 4 5 6 7 8 9
n

1 1 1 1
2 2 2 2 1 1 1
3 3 3 3 2 1 1 1 1 1
4 4 4 4 3 - - - - -

is log2(2
q−tnd) = q − tnd (resp. log2(2

q−tnd) = q − tnd),
while if tnd is small compared toq, the optimal WOM-
rate can be closely approximated bylog2

(

∏tnd
i=1 q/tnd

)

=

tnd log2(q/tnd).
If tnd > q, then several additional cells are required. Using

a computer search, we can find a few very short synchronous
codes forq > 2 under the same constraints as the codes from
Section III (laminar, withn =

⌈

t
q−1

⌉

, and where generation
i is built assuming that all codewords of weight (orℓ1-norm)
i−1 are used by generationi−1). Furthermore, in analogy with
the binary case, we make the following important definition.

Definition 4: Let Eq(n, i) be the set ofq-ary vectors of
lengthn and weighti, andAq(n, i) the maximum size of a
partitionY of Eq(n, i) so that

∀Y ∈ Y, ∀x ∈ Eq(n, i − 1), ∃y ∈ Y : x ≤ y.

As in the binary case, we would like to computeAq(n, i)
for different values ofn and i. Tables III and IV show the
results of such a search forq = 3, 4 and small values ofn.
As an example, a[2, 6 : 2, 2, 2, 1, 1, 1]sync4 code of WOM-rate
3/2 (which corresponds to the second row of Table IV) given
by

1 2

D−1
1 {01} {10}
D−1

2 {11} {20, 02}
D−1

3 {21, 03} {12, 30}
D−1

4 {13, 31, 22} −
D−1

5 {23, 32} −
D−1

6 {33} −

was found.

A. Bounds on the Sizes of Generations

The bounds from Section III-A can also be extended to the
q-ary case for laminar codes withn =

⌈

t
q−1

⌉

and the size

of each generation maximized assuming no knowledge of the
previous generation.

Proposition 8: For anyn ≥ 2, q ≥ 2, and 2 ≤ i ≤ n,
Aq(n, i) ≥ min(Aq(n− 1, i− 1), Aq(n− 1, i)).

Proof: The proof follows the same lines as the proof of
Proposition 2, with the suitable partitionY ′ of Eq(n, i) defined
as the union for all1 ≤ k ≤ min(Aq(n−1, i−1), Aq(n−1, i))
of the codeword classes

(fY(k).0) ∪

q−1
⋃

s=1

(fZ(k).s) .

Proposition 9: For anyn ≥ 1 andq ≥ 2, Aq(n, 1) = n.
Proof: Same proof as for Proposition 4.

Proposition 10: For n ≥ 1 and q ≥ 3, Aq(n, 2) ≥
A2(n, 2) + 1.

Proof: Consider a suitable partitionY of E2(n, 2) of car-
dinality A2(n, 2). Now considerY ′ = Y ∪{2enk | 1 ≤ k ≤ n}.
The cardinality ofY ′ isA2(n, 2)+1, the words in its codeword
classes have weight2, and they belong toEq(n, 2). There is
no collision sinceY has no collision, and the words we add
are not inE2(n, 2).

Proposition 11: For n ≥ 0 andq ≥ 3, Aq(2
n, 2) ≥ 2n.

Proof: It follows from direct application of Propositions 5
and 10.

Proposition 12: For n ≥ 0 and q ≥ 3, Aq(2n + 1, 2) ≥
2n+ 1.

Proof: The idea is to consider a codeword class whose
circular permutations do not overlap. Forn = 3, such a
codeword class is{0002000, 0010100, 0100010, 1000001}.

Formally, let us consider the following codeword classY0

of Eq(2n+ 1, 2):

Y0 = {en+1−k + en+1+k | 0 ≤ k ≤ n} .

Y0 coversEq(2n + 1, 1). If Y = {Y0, Y1, . . . , Y2n} is the
family of the circular permutations ofY0, thenY is a suitable
partition of Eq(2n + 1, 2). Indeed, for a given right circular
permutation of(en+1−k + en+1+k), k can be identified as
follows.

• The vector has a2 if and only if k = 0.
• Otherwise, it has two1’s at indicesi1 andi2 with i1 < i2.

If i2 − i1 is even,k = i2−i1
2 and we have permuted

(en+1−k + en+1+k) to the righti1 − n− 1+ k times. If
i2 − i1 is odd,k = 2n+1+i1−i2

2 and we have permuted
(en+1−k + en+1+k) to the righti2 − n− 1 + k times.

The cardinality ofY is 2n+1, which is a lower bound on the
maximum cardinality of a suitable partition ofEq(2n+ 1, 2).

Finally, we remark that the lower bounds of Propositions 8,
10, 11, and 12 match the exact values ofAq(n, i) from Tables
III and IV for several values of(n, i).

B. The Construction from Section IV

The construction of Section IV can be extended toq-ary
codes as follows.

Theorem 2:Let C be an [n, t : M1, . . . ,Mt]q syn-
chronousq-ary code of WOM-rateR, and C′ an [n′, t′ :

11

M ′
1, . . . ,M

′
t′]2 synchronous binary code of WOM-rateR′,

both not containing the all-zero codeword. Then there exists
an [nn′, tt′ : M1M

′
1, . . . ,M1M

′
t′ , . . . ,MtM

′
1, . . . ,MtM

′
t′]q

synchronousq-ary codeC1 of WOM-rateR1 = t′

n′
R+ t

n
R′.

Proof: The proof thatC1 is a valid synchronousq-ary
code is the same as in the binary case.

Notice that the codeC′ in the construction is still binary:
the requirement is thatC andC1 must have the same alphabet
size. Using aq′-ary code (withq′ > 2) instead of a binary code
is also possible regardless ofC andC1. WhenC′ is binary,
the two values0 and 1 will be matched, at each stage, to2
successive generationsp−1 andp of C. In the first stage they
are matched to generations0 (i.e., empty memory) and1, then
to generations1 and2, and so on. However, whenC′ is q′-ary
with q′ > 2, each stage hasq′ possible values to match toq′

generations. For instance, ifq′ = 4, the values(0, 1, 2, 3) will
be matched to generations(0, 1, 2, 3) of C at stage1, then
to generations(3, 4, 5, 6) at stage2, generations(6, 7, 8, 9) at
stage3, and so on.

If a nonbinary codeC′ is to be used, then eitherC or C′

must have a suitable structure. The following conditions, for
example, would ensure this.

• A first sufficient condition is that each write ofC′

increases the sum of the values of its cells by exactly one.
This prevents the following situation from happening.
Consider the case where at the first generation of a
nonbinaryC′, a cell can go both from0 to 1 and from0
to 2 depending on which message we encode. Then, in
the corresponding block, we will write a codeword ofC
of either generation1 or generation2. When encoding a
pair (m,m′) of messages, the number of messages among
which we can choosem therefore depends onm′, which
means that the encoder cannot predict how much data it
will be able to store at a given generation.

• Another possible condition to avoid the above issue is that
we choose a fixed-rate codeC. In the previous example,
if M1 = M2, it does not matter if we do not know
whether we will be using generation1 or generation2
of C; we have the same number of messages to choose
from anyway.

As an example, a[4, 10 : 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]sync4 code
can be constructed in the following way. First, a[2, 4 :
2, 2, 3, 3]sync4 code can be made by merging together the
last three generations of the[2, 6 : 2, 2, 2, 1, 1, 1]sync4 code
displayed above in Section VI by taking as the new set of
codeword classes the union of the sets of codeword classes of
the three last generations, and reorganizing them, as explained
for the binary case in Section III-B. Also, if the codeword
classes are reorganized properly, then an additional codeword
class{22} can be added to the third generation, resulting in
the following [2, 4 : 2, 2, 3, 3]sync4 code

1 2 3

D−1
1 {01} {10} −
D−1

2 {11} {20, 02} −
D−1

3 {21, 03} {12, 30} {22}
D−1

4 {13, 32} {31, 23} {33}

of WOM-rate 2.5850.3 This is the example code of Exam-
ple 2. Obviously, a[2, 5 : 2, 2, 3, 2, 1]sync4 code can be made
by splitting the fourth generation into the two generations
{{13, 32}, {31, 23}} and{33}. Finally, by using the construc-
tion of Theorem 2, using the[2, 5 : 2, 2, 3, 2, 1]sync4 code as
C and the [2, 2 : 2, 1]sync2 code from Example 5 asC′, a
[4, 10 : 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]sync4 code of WOM-rate3.5425
can be constructed.

VII. R ESULTS AND COMPARISON WITH THE STANDARD

METHOD

In this section, we use the synchronous codes derived
in the previous sections to construct decodable codes from
nondecodable ones as explained in Section II (binary case)
and Section VI (nonbinary case). We compare the proposed
method with the basic method that adds

⌈

tnd−1
q−1

⌉

cells con-
taining no data. For this comparison, we consider two different
target code lengths,n = 64 andn = 256. We then assume for
each value ofn and for some specific values oftnd, that there
exists atnd-write code with WOM-rate equal to the best (i.e.,
of highest WOM-rate) codes from [11, 12], and with length
nnd = n−nsync, wherensync is the length of the synchronous
code. Note that we do not use the actual code lengths at which
these state-of-the-art WOM-rates are reached because theyare
very large [19] and not explicitly stated in [11, 12]. However,
this gives a meaningful comparison, since the rate loss withour
approach (see (2)) is an increasing function ofRnd whenn,
nsync, andRsync > 0 are fixed. Since no code (for any block
length) of strictly higher WOM-rate than the ones reported
in [11, 12] is (as far as we can tell) currently known, and
considering a specific block lengthnnd will likely reduce the
WOM-rate of the best nondecodable code, the comparison is
a sort of worst-case scenario for our approach.

The results for the binary case are reported in Tables
V and VI. We consider values fortnd between4 and 7.
The second column of each table reports the state-of-the-
art WOM-rate of nondecodable codes, for each value of
tnd. The third column shows the WOM-rate that is ob-
tained by appendingtnd − 1 cells with no data to a length
nnd = n − (tnd − 1) code with WOM-rate equal to the
one reported in the second column. The next two columns
show, for various synchronous codes, the WOM-rate that we
obtain for the same target length. The[3, 4 : 1, 3, 1, 1]sync2 ,
[4, 5 : 1, 4, 3, 1, 1]sync2 , [5, 6 : 1, 5, 3, 2, 1, 1]sync2 , and [6, 7 :
1, 6, 5, 3, 1, 1, 1]sync2 codes are obtained by adding to the codes
[3, 3 : 3, 1, 1]sync2 , [4, 4 : 4, 3, 1, 1]sync2 , [5, 5 : 5, 3, 2, 1, 1]sync2 ,
and [6, 6 : 6, 5, 3, 1, 1, 1]sync2 from Section III a generation
containing the all-zero codeword.4 The [5, 4 : 1, 5, 3, 6]sync2

code is obtained in a similar manner from the[5, 3 : 5, 3, 6]sync2

code in Section III-B, and the[8, 7 : 1, 8, 4, 6, 3, 4, 2]sync2 code

3By adding a generation containing the all-zero codeword, weget a[2, 5 :
1, 2, 2, 3, 3]sync4 code of the same WOM-rate, which is significantly higher
than the correspondingworst-caseWOM-rate of the synchronous lattice-based
code from [14, Table I].

4Note that from Table II,B(6, 4) = 2, which implies that a[6, 6 :
6, 5, 3, 2, 1, 1]sync2 code may exist. However, we have not been able to identify
such a code in a (nonexhaustive) computer search. The best code found was
a [6, 6 : 6, 5, 3, 1, 1, 1]sync2 code.

12

TABLE V
WOM-RATES OF BINARY DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS CODES, WITH TARGET CODE LENGTHn = 64. THE

NUMBERS IN THE PARENTHESES(IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSES(COMPUTED FROM(1) AND (2), RESPECTIVELY) IN PERCENT,
WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION.

tnd Rate of nondec. Rate of dec. With data Rate loss
code from [12, Table VI] with no data Sync. code Rate reduction factor

4 1.8566 1.7696 (4.69%)
[3, 4 : 1, 3, 1, 1]2 1.7943 (3.35%) 1.40
[5, 4 : 1, 5, 3, 6]2 1.8130 (2.35%) 2.00

5 1.9689 1.8458 (6.25%) [4, 5 : 1, 4, 3, 1, 1]2 1.9019 (3.41%) 1.84
6 2.1331 1.9665 (7.81%) [5, 6 : 1, 5, 3, 2, 1, 1]2 2.0431 (4.22%) 1.85

7 2.1723 1.9686 (9.38%) [6, 7 : 1, 6, 5, 3, 1, 1, 1]2 2.0701 (4.71%) 1.99
[8, 7 : 1, 8, 4, 6, 3, 4, 2]2 2.0909 (3.75%) 2.50

TABLE VI
WOM-RATES OF BINARY DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS CODES, WITH TARGET CODE LENGTHn = 256. THE

NUMBERS IN THE PARENTHESES(IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSES(COMPUTED FROM(1) AND (2), RESPECTIVELY) IN PERCENT,
WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION.

tnd Rate of nondec. Rate of dec. With data Rate loss
code from [12, Table VI] with no data Sync. code Rate reduction factor

4 1.8566 1.8348 (1.17%) [3, 4 : 1, 3, 1, 1]2 1.8410 (0.84%) 1.40
[5, 4 : 1, 5, 3, 6]2 1.8457 (0.59%) 2.00

5 1.9689 1.9381 (1.56%) [4, 5 : 1, 4, 3, 1, 1]2 1.9521 (0.85%) 1.84
6 2.1331 2.0914 (1.95%) [5, 6 : 1, 5, 3, 2, 1, 1]2 2.1106 (1.05%) 1.85

7 2.1723 2.1214 (2.34%)
[6, 7 : 1, 6, 5, 3, 1, 1, 1]2 2.1467 (1.18%) 1.99
[8, 7 : 1, 8, 4, 6, 3, 4, 2]2 2.1520 (0.94%) 2.50

is obtained by adding a generation with the all-zero codeword
to the [8, 6 : 8, 4, 6, 3, 4, 2]sync2 code from the construction of
Section IV.

To better quantify the gains of the proposed approach,
we have included in the tables the rate losses compared to
the nondecodable code, and also their fraction (the rate loss
reduction factor), which quantifies the reduction in rate loss
of the proposed approach compared to the basic approach of
appendingtnd − 1 cells containing no data. For both lengths,
our technique yields higher WOM-rates compared to just
appending a block oftnd − 1 cells with no information. For
instance, fortnd = 7 andn = 64, the rate loss with the basic
approach is as high as9.38%. With the improved approach the
rate loss is reduced to3.75%, which is a reduction by a factor
of 2.5 (see the sixth column of Table V). As can be seen from
the tables, the rate loss of the basic approach grows withtnd.
In all cases we are able to demonstrate a rate loss reduction
factor of 1.8 to 2.5 using our approach, which is significant.
Furthermore, the tabulated WOM-rates are (to the best of our
knowledge) also higher than the best WOM-rates for binary
multiple-write codes (and hence better than the WOM-rates
of any directly decodable code) known prior to [12], which
justifies our approach.

The results for the nonbinary case withq = 4 are reported
in Tables VII and VIII forn = 64 andn = 256, respectively.
Here, we consider values fortnd between5 and11. As in the
binary case, the second column of each table reports the state-
of-the-art WOM-rate of nondecodable quaternary codes, for
each value oftnd that we consider. The third column shows the
WOM-rate that would be obtained by appending

⌈

tnd−1
3

⌉

cells
containing no data to a code of lengthn−

⌈

tnd−1
3

⌉

and WOM-
rate equal to the one reported in the second column. Note

that similar to the binary case, the codes that we have con-
structed in Section VI can be extended by a single generation
containing the all-zero codeword only. Thus, when we speak
below about codes that are constructed in previous sections,
we implicitly assume that they have been extended in this
way. Now, the codes[2, 7 : 1, 2, 2, 2, 1, 1, 1]sync4 and [3, 10 :
1, 3, 3, 3, 2, 1, 1, 1, 1, 1]sync4 are taken from Section VI (the sec-
ond and third rows of Table IV, respectively), the codes[3, 8 :
1, 3, 3, 3, 2, 1, 1, 3]sync4 and [3, 9 : 1, 3, 3, 3, 2, 1, 1, 1, 2]sync4 are
obtained by merging the last three (resp. two) generations of
the [3, 10 : 1, 3, 3, 3, 2, 1, 1, 1, 1, 1]sync4 code, and the codes
[2, 5 : 1, 2, 2, 3, 3]sync4 , [2, 6 : 1, 2, 2, 3, 2, 1]sync4 , and [4, 11 :
1, 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]sync4 are taken from Section VI-B.
Note that as in the binary case our technique yields higher
WOM-rates compared to just appending a block of

⌈

tnd−1
3

⌉

cells with no information, for both target lengths. Also, asin
the binary case, the rate loss of the basic approach grows
with tnd, and we demonstrate a rate loss reduction by a
factor between1.5 and 4.0 in all cases considered, which is
significant.

For the ternary case, to the best of our knowledge, no tables
of the best possible WOM-rates have been presented in the
literature. There are however constructions that can be used.
See, for instance, [12, Theorem 7] for constructingq-ary 2-
write codes. Here, we will use a construction from [11] (which
was inspired by a similar idea proposed in [20]) giving aq-ary
2(q− 1)-write code of WOM-rate(q− 1)R2, whereR2 is the
best possible WOM-rate of a2-write binary code. Thus, there
exists a ternary4-write code of WOM-rate(3− 1) · 1.4928 =
2.9856 where the WOM-rate of the2-write code is taken from
[12, Table VI]. Now, from the second row of Table III, we
can see that there exists a[2, 3 : 2, 2, 2]sync3 code (by merging

13

TABLE VII
WOM-RATES OF QUATERNARY(q = 4) DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS CODES, WITH TARGET CODE LENGTH

n = 64. THE NUMBERS IN THE PARENTHESES(IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSES(COMPUTED FROM(1) AND (2), RESPECTIVELY)
IN PERCENT, WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION.

tnd Rate of nondec. Rate of dec. With data Rate loss
code with no data Sync. code Rate reduction factor

5 3.9328 [11] 3.8099 (3.13%) [2, 5 : 1, 2, 2, 3, 3]4 3.8907 (1.07%) 2.92
6 4.2594 [11] 4.1263 (3.13%) [2, 6 : 1, 2, 2, 3, 2, 1]4 4.1979 (1.44%) 2.17
7 4.3394 [11] 4.2038 (3.13%) [2, 7 : 1, 2, 2, 2, 1, 1, 1]4 4.2507 (2.04%) 1.53
8 4.5088a 4.2975 (4.69%) [3, 8 : 1, 3, 3, 3, 2, 1, 1, 3]4 4.4121 (2.14%) 2.19
9 4.5836a 4.3687 (4.69%) [3, 9 : 1, 3, 3, 3, 2, 1, 1, 1, 2]4 4.4743 (2.38%) 1.97
10 4.6932a 4.4732 (4.69%) [3, 10 : 1, 3, 3, 3, 2, 1, 1, 1, 1, 1]4 4.5631 (2.77%) 1.69
11 4.7193b 4.4243 (6.25%) [4, 11 : 1, 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]4 4.6457 (1.56%) 4.01

aObtained by applying Construction A from [11] to the WOM-rates from [12, Table VI].
bObtained by applying Construction A from [11] to the WOM-rates from the recursion forR′

t of Section VI in [12].

TABLE VIII
WOM-RATES OF QUATERNARY(q = 4) DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS CODES, WITH TARGET CODE LENGTH

n = 256. THE NUMBERS IN THE PARENTHESES(IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSES(COMPUTED FROM(1) AND (2), RESPECTIVELY)
IN PERCENT, WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION.

tnd Rate of nondec. Rate of dec. With data Rate loss
code with no data Sync. code Rate reduction factor

5 3.9328 [11] 3.9021 (0.78%) [2, 5 : 1, 2, 2, 3, 3]4 3.9223 (0.27%) 2.92
6 4.2594 [11] 4.2261 (0.78%) [2, 6 : 1, 2, 2, 3, 2, 1]4 4.2440 (0.36%) 2.17
7 4.3394 [11] 4.3055 (0.78%) [2, 7 : 1, 2, 2, 2, 1, 1, 1]4 4.3172 (0.51%) 1.53
8 4.5088a 4.4560 (1.17%) [3, 8 : 1, 3, 3, 3, 2, 1, 1, 3]4 4.4846 (0.54%) 2.19
9 4.5836a 4.5299 (1.17%) [3, 9 : 1, 3, 3, 3, 2, 1, 1, 1, 2]4 4.5563 (0.60%) 1.97
10 4.6932a 4.6382 (1.17%) [3, 10 : 1, 3, 3, 3, 2, 1, 1, 1, 1, 1]4 4.6607 (0.69%) 1.69
11 4.7193b 4.6456 (1.56%) [4, 11 : 1, 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]4 4.7009 (0.39%) 4.01

aObtained by applying Construction A from [11] to the WOM-rates from [12, Table VI].
bObtained by applying Construction A from [11] to the WOM-rates from the recursion forR′

t of Section VI in [12].

the last two generations) that does not contain the all-zero
codeword. Assuming a block length ofn = 64, our method
gives a WOM-rate of2.9392, while the method of appending
⌈

4−1
3−1

⌉

= 2 cells with no data gives a WOM-rate of only
2.8923. This amounts to a rate loss reduction by a factor of
2.01.

VIII. C ONCLUSION

In this paper, we proposed short synchronous WOM codes
as a basic tool to make nondecodable codes decodable while
preserving the WOM-rate as much as possible. We consid-
ered both binary and nonbinary codes, as well as the fixed-
rate and the unrestricted-rate setups. We constructed short
synchronous (laminar) codes for small values oft. We also
proposed a construction method to build synchronous codes
for higher values oft by concatenating shorter synchronous
codes. Compared to the construction by Rivest and Shamir,
which considersn = t with t being a power of2, our
construction is more general, since it lifts both constraints.
Finally, we used the obtained synchronous codes to make some
nondecodable codes decodable. Compared to the standard
approach of appending cells containing no data, the proposed
approach achieves a significant reduction of the rate loss for
short-to-moderate block lengths.

ACKNOWLEDGMENT

The authors wish to thank S. Kayser for valuable discussions
and the anonymous reviewers for their valuable comments and
suggestions that helped improve the presentation of the paper.

REFERENCES

[1] R. L. Rivest and A. Shamir, “How to reuse a “write-once” memory,”
Information and Control, vol. 55, no. 1-3, pp. 1–19, Oct./Nov./Dec.
1982.

[2] F. Merkx, “Womcodes constructed with projective geometries,” Traite-
ment du Signal, vol. 1, no. 2–2, pp. 227–231, 1984.

[3] A. Fiat and A. Shamir, “Generalized “write-once” memories,” IEEE
Trans. Inf. Theory, vol. 30, no. 3, pp. 470–480, May 1984.

[4] C. Heegard, “On the capacity of permanent memory,”IEEE Trans. Inf.
Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.

[5] G. D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,”IEEE Trans. Inf. Theory, vol. 32, no. 5, pp. 697–700,
Sep. 1986.

[6] G. Zémor and G. D. Cohen, “Error-correcting WOM-codes,” IEEE
Trans. Inf. Theory, vol. 37, no. 3, pp. 730–734, May 1991.

[7] F.-W. Fu and A. J. H. Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 308–313, Jan. 1999.

[8] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple error-
correcting WOM-codes,” inProc. IEEE Int. Symp. Inf. Theory (ISIT),
Austin, TX, Jun. 2010, pp. 1933–1937.

[9] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Efficient
two-write WOM-codes,” inProc. IEEE Inf. Theory Workshop (ITW),
Dublin, Ireland, Aug./Sep. 2010.

14

[10] S. Kayser, E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple-
write WOM-codes,” in Proc. 48th Annual Allerton Conf. Commun.,
Control, and Computing, Monticello, IL, Sep./Oct. 2010, pp. 1062–1068.

[11] R. Gabrys, E. Yaakobi, L. Dolecek, P. H. Siegel, A. Vardy, and J. K.
Wolf, “Non-binary WOM-codes for multilevel flash memories,” in Proc.
IEEE Inf. Theory Workshop (ITW), Paraty, Brazil, Oct. 2011, pp. 40–44.

[12] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes
for write-once memories,”IEEE Trans. Inf. Theory, vol. 58, no. 9, pp.
5985–5999, Sep. 2012.

[13] A. Shpilka, “New constructions of WOM codes using the Wozencraft
ensemble,”IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4520–4529, Jul.
2013.

[14] A. Bhatia, M. Qin, A. R. Iyengar, B. M. Kurkoski, and P. H.Siegel,
“Lattice-based WOM codes for multilevel flash memories,”IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 933–945, May 2014.

[15] A. Bhatia, A. R. Iyengar, and P. H. Siegel, “Multilevel2-cell t-

write codes,” inProc. IEEE Inf. Theory Workshop (ITW), Lausanne,
Switzerland, Sep. 2012, pp. 247–251.

[16] A. Jiang, “On the generalization of error-correcting WOM codes,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Nice, France, Jun. 2007, pp.
1391–1395.

[17] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” inProc.
IEEE Int. Symp. Inf. Theory (ISIT), Toronto, ON, Canada, Jul. 2008, pp.
1741–1745.

[18] H. Mahdavifar, P. H. Siegel, A. Vardy, J. K. Wolf, and E. Yaakobi, “A
nearly optimal construction of flash codes,” inProc. IEEE Int. Symp.
Inf. Theory (ISIT), Seoul, Korea, Jun./Jul. 2009, pp. 1239–1243.

[19] S. Kayser, private communication.
[20] Q. Huang, S. Lin, and K. A. S. Abdel-Ghaffar, “Error-correcting codes

for flash coding,”IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6097–6108,
Sep. 2011.

