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Abstract—In the framework of write-once memory (WOM) capacity, and error-correction. See, for instance, [2-d8]
codes, it is important to distinguish between codes that can references therein. Recently, lattice-based constmstiave
be decoded directly and those that require that the decoder been proposed. For instance, in [14, 15] lattice-basedite

knows the current generation to successfully decode the s&a - .
of the memory. A widely used approach to construct WOM codes for multilevel cells were presented. For applicatitm

codes is to design first nondecodable codes that approach theflash memories, see [16-18].

boundaries of the capacity region, and then make them decodiée The fundamental problem in the WOM model is, consid-
by appending additional cells that store the current genertion, ering an array ofn. empty g-ary cells, to know how much
at an expense of a rate loss. In this paper, we propose anj,ormation one can store using exactlyvrites (also called

alternative method to make nondecodable WOM codes decodabl . . . .
by appending cells that also store some additional data. Thieey generationk The coding schemes that are used to fulfill this

idea is to append to the original (nondecodable) code a short goal are called-write WOM codesThe following definition
synchronous WOM code and write generations of the original is taken from [11].

code and of the synchronous code simultaneously. We conside  Definition 1: An [n,t: My,..., M, t-write g-ary WOM
both the binary and the nonbinary case. Furthermore, we prompse code C is a coding scheme for g-ary WOM cells, which

a construction of synchronous WOM codes, which are then used ists of pai f di dd di . d
to make nondecodable codes decodable. For short-to-modéea CONSIStS Oft pairs of encoding and decoding mappirgsan

block lengths, the proposed method significantly reduces thrate  Di (1 <@ < t) such that

loss as compared to the standard method. 1) & :{1,...,M;} = {0,...,q— 1}

Index Terms—Coding theory, decodable codes, flash memories, 2) For2 <i <t:
synchronous write-once memory (WOM) codes. o & A{L... M} xIm(&-1) = {0,...,q—1}",

. V(m,b) S {1, RN Mz} X Im(gifl),
|. INTRODUCTION AND DEFINITIONS Vje{l,....n}, (&(m,b)); > (b);.

The write-once memory (WOM) model was introduced in 3) Forl <i <t Di:{0,....q—1}" = {1,..., Mi},
[1] to study storage devices consisting gfary (g > 2) and
memory cells whose values cannot be decreased. It was o Vm € {1,..., M1}, Di(E1(m)) = m,
originally introduced to model the behavior of optical disk o for2<i <t v(m,b)€{l,..., M;} x Im(&-1),
and study coding schemes that would allow one to write data D;(&i(m, b)) =m.

several times on a disk even though each bit can only beFor simplicity, in the remainder of the paper, we will refer

written once. By allowing data from a previous write to béo WOM codes simply as codes. The rate of the above code,

“forgotten” when a new write occurs, one can show that theferred to as the WOM-rate, or sometimes just as the rate of

total amount of information that can be stored on such a dittke code, is defined as follows [11].

is greater if several small pieces of information are storedDefinition 2: The rate of generation € {1,...,t} of an

and forgotten one after the other than if the whole disk i&,t: M;,..., M,], g-ary codeC is

written at once. The model is now mainly studied because of

its similarity with flash memories, on which the value of a R;(C)

cell can be decreased, but at an extremely high cost. Siece th

original paper by Rivest and Shamir [1], several other warks and the WOM-rate of” is defined as

this topic have appeared, both in terms of code construgtion t t ,
P PP R(C) 2 Y Ri(C) = iz 108y My,

=1
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be given the knowledge of the current generation in orderethod, we consider first the construction of synchronous
to successfully decode the memory. We say that a codecsdes. Our main focus is on laminar codes. The construction
decodableif for any state of the celld and anyi; and of synchronous (laminar) codes was already addressed.in [1]
io with b € Im(&;,) N Im(E;,), Dsi, (b) = Dy, (b). A code However, [1] only considered the case where- ¢t andt is a
that does not satisfy this property is calladndecodableA power of2. Here, we construct small laminar codes for both
stronger property is given in [1]: a code is calgghchronous 7 =t andn > ¢, and propose a construction for synchronous
if the current state of the memory provides enough inforamati codes of higher values of Lifting the constraint: = ¢ allows
to know the current generation, i.e., the séts(&;) are to achieve higher WOM-rates. The obtained codes are then
disjoint for 1 < ¢ < t. Synchronous codes are decodableised to make nondecodable codes decodable. Whereas the
However, the reverse does not always hold. The work in [f}ain focus of this paper is oanrestricted-ratecodes [12],
also considers a way to guarantee synchronoustessénar i.e., we allow the individual writes to use a different numbg
codes are codes such that teight of the cells, defined as inputs, we also extend our constructiorfiteed-ratecodes, i.e.,
the ¢1-norm of theg-ary cell vector, is an injective function codes for which all writes store the same number of messages.
of the generation, i.e., fob; € Im(&;,) andby € Im(&;,), The remainder of this paper is organized as follows. In
w(by) = w(bz) = i1 = is. In the binary case, the weightSection II, we introduce the main idea to turn nondecodable
reduces to the standard Hamming weight. The authors of dddes into decodable ones, and provide some examples. In
give a construction of laminar codes for= ¢ being a power Section I, we consider a simple family of laminar codestwit
of two, with WOM-rate log,(t)/2. However, synchronousy = ¢, as well as very short codes from this family. We also
codes have not been extensively studied in the literatunée Ngive bounds on the sizes of their generations, and construct
that nonsynchronous codes can still be directly decoded htter laminar codes with > ¢ by local manipulations of the
when the decoder cannot determine the current generatieddes withn = ¢. In Section IV, we propose a construction of
the choice ofD; has no impact on the decoded symbol. Igynchronous codes with good properties to reach higheesalu
Section I, we give examples of laminar, synchronous (bwf ¢ by concatenating instances of a synchronous code using a
nonlaminar), and decodable (but nonsynchronous) codes. second synchronous code to decide, at each generatiorh whic

A nondecodablén,g, tna : M1, ..., M, ]2 binary codeC' of the instances of the first code are going to be modified.
can be made decodable (and even synchronous) by simpiySection V, we study the case of fixed-rate codes, and we
concatenating instances of” with a block oft,q—1 cells that extend our results on the binary case to nonbinary scenarios
store the current generation (by being filled one by one &t ea®ection VI. Finally, in Section VII, we compare our method
write, starting at the second generation). The resultirdeds of making nondecodable codes decodable with the method
a synchronous code with parametéts,.q + tna — 1,%na : that only adds cells containing no data. Some conclusioms ar
ME, ..., M} 2. As k goes to infinity, the WOM-rate of this drawn in Section VIII.
code approaches the WOM-rate of the original call&}).

Most of the state-of-the-art high-rate codes are digctly
decodable. Indeed, a common approach in the literature is [I. MAIN IDEA AND EXAMPLES
to design (nondecodable) codes that approach the bousdarie
of the capacity region (see, e.g., [11,12]), and then makelLet C' be a nondecodable code with paramefers, t,q :
them decodable using the method above. However, for shoifs, . .., M; ]2, and WOM-rateR, 4. The standard approach
to-moderate block lengths, making a nondecodable code tieturnC into a decodable code is to appefad — 1 cells that
codable by appending,q — 1 cells containing no data canstore the current generation, thus obtaining a code of tkengt
significantly degrade its WOM-rate. For instance, consider= nuq + tna — 1. This incurs a rate loss
n = 6 andt = 4, and assume that we do not know a decodable -
code of lengtts. In this case, we could select a nondecodable Abasic = Bnd — Bnd 75 _ tna — 1. 1)
4-write code of lengtl3, and append cells to store the current Rua n
generation. The resulting WOM-rate is half the original one

as the additional cells only carry information about therent ~ The main idea in this paper is very simple: instead of
generation. adding cells that do not contain information, we append to

In this paper, we propose a different approach to makelg original code cells that also store actual data. This is

nondecodable, q-write codeC' decodable. Our main focus isachieved by appending t6" a tuq-write synchronous code

on binary codes, but we also extend our resultg to 2. The ©f 1€ngth ngyne = tna — 1, and writing generations ot!

key idea is to append (for &,q-write nondecodable binary and of the synchronous code_ simultaneously. Appending a
code of lengthnng) taa — 1 additional cells which store not synchronous code t@' results in an overall decodable (and
only the current generation but also new data, by using@© Synchronous) code (the synchronousness of the appende
tnq-write synchronous code with lengthq — 1, and writing code guarantees that by ob_servmg the — 1 new ce_lls, the
generations of” and of the synchronous code simultaneouslg;ZCOder can always determine the current generation, and us

Since synchronous codes are at the basis of the propog knowledge to decode the overall code), while allowing t
store extra data.

10our concept of a synchronous code is equivalent to the cormfepn Let Rsync > 0 be the WOM-rate of the SynChronous
almost-synchronousode from [1]. code that we append to the nondecodable code. The rate loss




. . . First write Second write Third write Fourth writ
introduced by this method, denoted By, is ¢

Rnd - (Rnd (n - nsync) + Rsyncnsync) /n

0001 [~

Ysync =
R
R nd | 0010
— nsync (1 _ sync) (2) N
n Rna ‘ 0100
which is smaller thany,,sc, since we can choosesyn. =
tna — 1 (or slightly above). Note thaty,.. iS decreasing \ 1000

with Rgyne When n, nene, and R,q > 0 are fixed. The

main Ingredlent of the proposed teChmque is therefore F%. 1. Abinary[4,4 : 4,2,2,1]2 laminar four-write code. The different

tna-Write synchronous code of lengthy — 1. To incr.ease types of edges (solid, dashed, dotted, and dash-dotteddspand to different
Rsyne ONe may also consider synchronous codes wif),. input data bits.

slightly larger thant,q4 — 1 (the length of the resulting overall
code would be slightly larger than that of the code obtained
applying the standard method. However, the increase irthengvhich implies that the code is synchronous, but the weight (o
is compensated by a larger WOM-raly ). ¢1-norm) of the cell stat€22) of the third generation and the
The following sections are devoted to the construction afeight of the cell stat¢31) (or (13)) of the fourth generation
t-write synchronous codes of length= ¢ — 1 (or slightly are the same. Thus, the weightriet an injective function of
larger) to be used to make a nondecodable code decodabléhasgeneration, and the code is not laminar.
explained above. Ideally, we would like to design synchimo
codes that maximize the WOM-rate. However, this is overly First write Second write Third write Fourth write
complex. Instead we first construct small laminar codes, and
then propose a construction method to construct synchsonou
codes for larger values of by concatenating smaller codes.
The use of laminar codes makes the computer search more

tractable. em/ o1
The construction method in Section IV requires componegt”

codes which do not contain the all-zero codeword. Therefore { 10

in Section Il we construct small laminar codes which do not

contain the all-zero codeword. Note that for codes that do no

contain the all-zero codeword, the number of writes is kit

by the code length, < n. Thus, our approach is to ConStruq:ig. 2. A quaternanf2,4 : 2,2, 3, 3]4 synchronous (but nonlaminar) four-

(t — 1)-write synchronous codes with length=t — 1 from write code. The different types of edges (solid, dashed darieéd) correspond

component codes which do not contain the all-zero codewofeidifferent input data symbols.

and then obtain a-write synchronous code with lengih =

t — 1 by simply adding a generation that only contains the Example 3:A simple example of a decodable (but nonsyn-

all-zero codeword. chronous) binary code, taken from [1], that enables twotbits
To ease the understanding of the paper, in the followidig written into three memory cells twice, is given in Table |,

we clarify this and the concepts of synchronous, laminarhich describes the encoding and decoding rules for the.code

and decodable (but not synchronous) codes with some exarhe code is nonsynchronous, since for the second writegif th

= ]

32 ‘

31 ‘

23 ‘

33 ‘

ples. For later use, if afn,t : My,..., M;], code is syn- information to be encoded does not change, then the state of
chronous, we will frequently use the superscrigtic”, [n,¢: the memory does not change either. Thus, the current state of
My, ..., M. Also, in the binary case, the cells that caithe memory does not provide enough information to tell the

be written from0 to 1 but not from1 to 0 are calledwits [1]. ~ current generation.
Example 1:An example of a binary[4,4 : 4,2,2,1],
laminar code is depicted in Fig. 1 by a state diagram desqyibi
all four writes. The four-bit vector in each state is the meyno
state. The different types of edges (solid, dashed, dottedl,
dash-dotted) correspond to different input data bits. Aslma

TABLE |
A BINARY [3,2 : 4, 4]2 DECODABLE (BUT NONSYNCHRONOUS CODE.

Data bits  First write  Second write (if data changes)

seen from the figure, the weight of the cells uniquely idesgifi (1)8 288 éﬂ
the generation. 0

1 010 101

Example 2:An example of a quaternari2, 4 : 2,2, 3, 3]s 11 001 110

synchronous (but nonlaminar) code is depicted in Fig. 2 by
a state diagram describing all four writes. The two-symbol
vector in each state is the memory-state. The differentstggfe = Example 4:By adding a generation containing the all-zero
edges (solid, dashed, and dotted) correspond to diffengnti codeword prior to all other generations of tHe4 : 4,2, 2, 1],
data symbols. As can be seen from the figure, the cells of tbede from Example 1 (and depicted in Fig. 1), the code is
memory cannot be in the same state at different generationsned into a[4,5 : 1,4, 2,2, 1], code. The WOM-rate is the




same, but the number of writes is now the length plus one.Proposition 1: Let B(n,:) be defined by
The code is depicted in Fig. 3.
A (1)

Yl

First write Second write Third write Fourth write Fifth write B (n, Z) ;
min
Y s.t. (3) holds

0001 [~ 0011 [~

0111

Then, the maximum cardinalityi(n, ) of a partition)’ that
satisfies (4) is upper-bounded by(n,i) < B(n,1).

‘ 0010 [ ’{ 1011

Z>{ 0101 [

[ o0 1100 ————f—’i—,\f# 1101 Proof: Let ) be any partition ofE(n, 7). Then,
‘ 1000 { 1010 1110 n
. 1 < = ) = .
|y| <Y s.tI.n(%iI)lhoIds|Y|) o 1;)} |Y| |E(TL, Z>| (2)

Fig. 3. A binary [4,5 : 1,4,2,2,1]2 code obtained from the code of

Example 1 by adding a generation prior to all other genematwontaining the This holds in particu|ar whep) is of maximum Cardinality_
all-zero codeword only. The different types of edges (salidshed, dotted, B

and dash-dotted) correspond to different input data bits. . .
This bound can be computed using a computer search for

the smallest” that satisfies (3). The search is relatively slow,

but notice that by lower-boundind’| by [MW (each

elementy € E(n,i) covers exactlyi elementsx € E(n,i —

In this section, we construct small laminar codes. We firgt) e obtain a closed-form bound,
consider codes witlh = ¢ that write exactlyl wit at each
generation, and then construct codes with ¢.

An exhaustive search for laminar codes that maximize the (n,i) < B(n,i) < (9 (3
WOM-rate is unfeasible even for very short codes. Thus, to T T PE(”’?*HW (™)
simplify the search, we use a greedy algorithm that maximize ! { i -‘
the values ofM; generation by generation. Consider a code _ -
C with n = t that writes exactlyl wit per generation, and a While the closed-form bound can b_e computed efficienty
generation; > 1. Assuming that the previous generations adnd is reacheq for some.values of,q) (for instance, for
already fixed, the condition we have dd; is that for every 7 = 3, Or fori < 2, ori = n), even for relatively low
x € Im(&i_1), and for everym € {1, ..., M;}, there exists yalues ofn andi, it can b(_e strictly higher thami(n, ). F_or
y € Im(&) such thatx < y andD;(y) = m (wherex < y instance, A(4,3) = 1, while the closed-form bound i8.
if 2, < m forall k, 1 < k < n) Denote byE(n,z) the |ndeed,E(4,3) = {1110,1101,1011,0111} a.nd E(4,2) =
set of binary vectors of length and Hamming weight. It {1100, 1010,1001, 0110, 0101, 0011}, and_ vyh|le each e_Iement
follows that at each generatian Im(&;) C E(n,i). We use of E(4,3) covers3 elements ofE(4,2), it is not possible to
this set inclusion to make our maximization at each germmatiPICk two elements ofZ(4, 3) such that the subsets @f(4,2)

completely independent from the other generations, atdie ctat they cover are disjoint. Therefore, thelg&die_v;/)c‘)rd emss
of optimality. in E(4,3) have cardinality at least, and not'——— = 2

Let us define the equivalence relatiesf® on Im(€;) by For very small valugs of, the exactvalue_oﬁ(mz‘) can be
y = y' if and only if D;(y) = D;(y’). Let us refer to the computed by conducting a simple exhaustive search on the set
=! : _ . .
equivalence classes of this relation as toeleword classesf ©f codeword classes. Values 8(n, i) are also obtained with
C at generation. Codeword classes are subskts E(n,i) an exhaustive search, but on the minimum size of codeword

for which, if we do not take the previous generations intglasses, which is significantly faster. The results of the tw
account, the following must hold searches are reported far< 16 in Table Il. The values in

bold font areA(n, ), the others ard3(n,i). The few values
Vxe€ E(n,i—1),JyeY:x<y. (3) of A(n,i) that were computed exactly matdh(n, i), so it is
) ] N ) unknown whether there are paifs,:) such thatA(n,i) <
We are also interested in the partitions I6fn, 7) as a set g, ;). Note that these values are constructive. For instance,
of valid codeword classes. [¥ denotes such a partition, we, [4,4:4,3,1,13" and a[5,5 : 5,3,2, 1,1]3™ code can be

want that obtained from the search. The upper bounds from Table Il in
- ) italics match the exact values df(n, i) by Propositions 4, 5,
Wey vxeBni-l) dyely: xsy. @ and 7, or by the lower bounds of Propositions 2 and 3, and
Each valid partition) corresponds to a valid decoding mapare also constructive (see Section IlI-A below).
ping (modulo reordering), and thus each cardinaligy to a
valid M;. We are therefore interested in finding the maximum ) .
cardinality of such a partition. We make the following imporA' Bounds on the Sizes of Generations

Ill. SMALL LAMINAR WOM CODES

tant definition. We give bounds on the sizes of the generations of the codes
Definition 3: Let A(n, ) be the maximum cardinality of a defined above. In particular, we give lower bounds that are
partition Y of E(n,i) satisfying (4). constructive and allow us to effectively build codewordsskes

We now give an upper bound afi(n, 7). for the corresponding generations.



TABLE Il
UPPER BOUNDB(n, %) ON A(n,%). VALUES IN BOLD ARE EXACT VALUES FORA(n, i) FOUND BY COMPUTER SEARCHA(n,i) = B(n, %) IN ALL
CASES). THE VALUES FORB(n, %) IN ITALICS MATCH THE EXACT VALUES OF A(n,%) BY PROPOSITIONS4, 5,AND 7, OR BY THE LOWER BOUNDS OF
PROPOSITIONS2 AND 3.

il 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n
1] 1
2| 2 1
3] 3 1 1
41 4 3 1 1
5|5 3 2 1 1
6| 6 5 3 2 1 1
717 5 5 2 2 1 1
8/ 8 7 5 5 2 2 1 1
9| 9 7 6 5 3 2 2 1 1
0(10 9 6 5 4 3 2 21 1
1111 9 7 6 5 4 3 2 2 1 1
1212 11 8 6 6 5 3 3 2 1 1 1
13(13 11 10 7 6 5 4 3 3 2 2 1 1
14|14 13 10 9 7 6 5 5 3 3 2 2 1 1
15(15 13 13 9 9 6 5 5 4 3 3 2 2 1 1
6|16 15 13 13 9 9 7 6 5 4 3 3 2 2 1 1
Forx = (x1,...,2,) € {0,1}" andx’ = (2,...,2)) € 3) The codeword class
{0,1}™, we denote by - x’ the vector of{0, 1}"*™ that is
; . {e]" +eh,[1 <j<n}.
the concatenation ot andx’: itn
x-x' = (z1,... 20, 2),..., 7). These codeword classes are trivially disjoint, and eacherft
. " _ coversE(2n,1). Thus, A(2n,2) > A(n,2) + A(n,2)+1 =
We also cally a suitable partitionof E(n,:) if (4) holds, 2A(n,2) + 1 O
: .

and we do not mind if the union of the elements)ofs only Proposition 4: For anyn > 1, A(n, 1) = n.
a strict subset ofs(n, 7). _ _ Proof: Partition £(n, 1) into n singletons{e”} for 1 <

Proposition 2: For anyn > 2 and2 < i < n, A(n,i) > j<n J 0
min(A(n 1,5~ 1), A(n ~ 1,7)). _ Proposition 5: For anyn > 0, A(2",2) = 2" — 1.

_ Proof: L_er be a suitable partition af(n—1,¢) andZ a Proof: We use A(2n,2) > 2A(n,2) + 1 from Propo-
suitable partition oiE(@—l,i—l) such that | = A(n—l,z‘) sition 3 and the simple bouaﬁ(n,z’) < n—i+ 1, which
and | 2| = A(n —1,i —1). Consider two bijectionsly : o ; _ o becomesA(n,2) < n — 1, and proceed by
{1,..., A(n— 12)}—>yandf3 {1,...,A(n—-1,i—1)} — ' = '

nduction. A(1 = 0. Assuming A(2",2) = 2" — 1, we
Z. Now define a suitable partitiop’ of E(n i) as the union Ihavue/;(znﬂ( 2) )> 2. (2n — 11; +| lg: énJr’l z 1 and we hvz\;/lve

forall 1 < k < min(A(n — 1,4 — 1), A(n — 1,4)) of the A(2n+,2) < 9l _ g -

codeword classes Proposition 6: For anyn > 1, A(2n+1,2) < 2n — 1.

(f(k).0) U (fz(K).1).

There is no collision between these codeword classes, siace Proof: This is the boundA(n,i) < & applied
can sort their elements according to their last symbol, and f {(iil)-‘
a given last symbol, the first — 1 symbols of the codewords

= 2.
in a codeword class match a (suitable) partitionfgh — 1, 4)

, o L Proposnion 7:Foranyn >1, A(2" +1,2) =2" —1.
/
(1)r _on(i)ot]f((n B i’ ?); 1)- The cardinality 0f/" is min(A(n — Proof: A(2" 4 1,2) > 2" — 1 comes from a direct use of
,i—1),A(n — 1,7)).

Proposition 3: Forn > 1, A(2n,2) > 2A(n,2) + 1. Trg)pc;sglnoi? gg;:fs :c(rasrl:]lt;r%fpz;c&;i)oor;sgons 4 andi@ E
Proof: Let ) be a partition ofE(n,2) with cardinality 7/ — '
A(n,2) such that for all” € Y and for allx € E(n, 1), there
isy € Y such thatx < y. Notice that anyy € Y C E(n,2) B. Laminar WOM Codes with > ¢
can be written as the sum of two weight-one words of length The constraint: = ¢ results in relatively low WOM-rates.
n. Let us denote by} the word of lengthn whose only |ifting this constraint allows to achieve higher WOM-rates
nonzero coordinate is & at index;j. Then everyy € Y can Laminar codes witm slightly larger thant can easily be de-
be writteny = e +ej.. Let)’ C E(2n,2) be defined by the rived from the codes with = ¢ above by merging several gen-
union of 3 sets of codeword classes as follows. erations together: taking, as the new set of codeword dasse
1) For eachyY” € Y, the codeword class the union of the sets of codeword classes of two or more

; : H . sync
{e2n+ein|e tel € Y}U{eﬁn-#ekmle}l-i-ez €Yl consecutive generatioRg-or instance, thét, 4 : 4,3, 1, 115
2) For eacht” € Y, the codeword class °n should remain small, because we do not expect to find synohson

5 9 codes of WOM-rate higher than nondecodable ones, thus erlagmber of
{ej "+ek+n|e +ej € Y}U{ej+n+ekn|e?+ez €Y}. cells should be reserved to the nondecodable code.



sync

code can be turned into [d, 3 : 4, 3,2]5"° code by merging mappings, respectively, af” at generatiori. We also write
its third and fourth generations together. Instead of fgaine Im(&,) = {0, } (resp.Im(&)) = {0,-}) to denote the fact that
codeword class at generatidif{1110, 1101, 1011,0111})and the state of a block prior to any write by (resp.C"’) is the
one at generatiod ({1111}), now the third generation hasall-zero codeword of length (resp.n’). We then denote by
two codeword classeg1110,1101,1011,0111} and{1111}, (resp.¢’) the function that takes a codeword frath(resp.C")
and there is no fourth generation anymore. Likewisé,8 : and returns the unique generation@f(resp.C’) of which it
5,3,4]5" code (of WOM-ratel.181) can be derived from is a codeword. Formally,
the [5,5 : 5,3,2,1,1]5"° code by merging the last three .
genérations together.]QHowever, consider the codewordesas Upeo...p Tm(&p) - = {01}
of vectors of weight4. These were constructed in order to , , — pStb 6, Tm(&p),

i : 9" Uego,. oy (&) — {0,..., ¢}
cover every word of weighs, while they now only have to €{0,...t"} f ) ,
cover every word of weigh?. The optimization also did not b" = Istb’elm(&)
allow codeword classes of mixed weights. We can reorganizie fact thatC' andC’ are synchronous guarantees thand
the set of vectors of weiglt or more into a better balanced! are unique.
set of codeword classes. In (5), we give the codeword classes
of the third generation of &, 3 : 5, 3, 6]5" code (of WOM- Algorithm 1 Algorithm to Recover the Current Generation
rate 1.298) obtained by reorganizing the third generation of1: Input: by,..., b,
the 5,3 : 5,3,4]5™ code, 2: Output:p, 1, i, andb’

3 p+0
{01111,11001,10110}, {10111,11100,01011}, 4 for k« 1ton do
{11011, 01110, 10101}, {11101,00111, 11010}, 5 ppg(by)
{11110,10011,01101}, {11111}. (5) &  if p, >pthen
For comparison, thd codeword classes of the third gener- v p= Dk ,
ation of the[5,3 : 5,3, 4] code are 8 for k + 1ton'do
o: b, <~ pr+1—p > Should always bé or 1
{11100,11010,10101,01011,00111} (weight 3 only), 10: if b’ =1,/ or ¢/(b’) = ¢’ then
{11001, 10110, 10011, 01110, 01101} (weight 3 only), 11 1«0
{11110,11101,11011,10111,01111} (weight 4 only), 12: pp+1
/
11111} (weight 5). 6) 13 b On
{ b (weight 5) © 14: else
Other choices can be made regarding which generationsit I+ ¢g'(b)
merge to obtain 8-write code from the5,5: 5,3,2, 1, 15" 1. ; ¢ () — 1) +1

code, but lower WOM-rates are obtained.

The key idea is that then’ wits of C; are divided into
n’ blocks of n wits denoted byb;, for k € {1,...,n'}, and

) ) ) ] the tt’ generations are divided intostages of’ generations.
In this section, we propose a construction to obtain Syfl'orp € {1,....t} andl € {1,...,¢'}, generation = (p —

chronous codes for higher values bfoy concatenating’ )¢’ + 1 of C, is the I-th generation of the-th stage. At

instances of a synchronous code of lengthand using a his point, we guarantee that each of theblocks of n wits
second synchronous code of length to decide, at each contains a codewory, € Im(&,_1) U Im(E,). We callb’ =
generation, which of they’ instances of the first code are(b/1 ...,b.,)) € Im(&]) the binary vector of length’ with

e Ut

going to be modified. _ entriest), = g(bg) —p+1, k € {1,...,n'}. Then, Algorithm
Theorem 1:Let C' be a binary[n, ¢ : M,..., Mi]s Syn- 1 ¢an take a codeword af;, and use functiong and ¢’ to

chronous code of WOM-raté?, and C’ a binary [n',t" :  jatermine the current generation

Mj, ..., Mj]> synchronous code of WOM-rat®’, both not g the encoder and the decoder first use this algorithm to

containing the all-zero codeword. Then there exists a Binafatermine the current generation(actually, they use and
[nn/ tt' « MaM{, ..., MM, ..., MtM,{, oo, MyM]]2 syn-

IV. A CONSTRUCTION FORSYNCHRONOUSWOM CODES
OF HIGHER ¢

). They also use the value d#’. Algorithm 2, described

chronous code’; of WOM-rate Ry = ;R + . below, is the encoding algorithm, which takes a message
This constrqcﬂon is based pn three algorithms. ., my € {1,...,M,M/,,} and encodes it. This message is
1) An algorithm to determine the current generatioof decomposed into a messagec {1, ..., M,} and a message
C; from the state of thexn’ memory cells. m! € {1""7Mll+l}' We then compute the new’ as
2) An encoding algorithm, whose input range depends @n_, (m/, b’) and compare the positions at which it differs from
2 the old one. These positions are the indiées {1,...,n'}
3) A decoding algorithm. of the blocks that will be written (hence switching from

Forp e {1,...,t} andl € {1,...,t'}, we denote by, and generationp — 1 to generatiorp). The only requirement on
D, the encoding and decoding mappings, respectively(’ of how these blocks will be written is that after this encoding
at generatiorp, and by&; andD; the encoding and decodingstage, the moduld/,, sum (in{1,...,M,}) of the D,(by)



for by, € Im(&,) is m. Algorithm 2 shows a simple way to andC’ the [2,2 : 2,1]5""° code defined by
achieve this.

| 1 2
/\—1
Algorithm 2 Encoding Algorithm Eg};*l }?H {1_0} :
1: Input: by, ..., b,/ andb’, my, p, andl 2
2: Output:by,..., b, The codeC; obtained with the construction is [&,6 :
I m— 1+ L(ml - 1)/Ml’+1j 8,4,6,3,4,2]3"° code. Consider that the eight cells are in
4:m/ <1+ ((m1 —1) mod M;,,) state (by,by) = (1100,0010). Let us first consider the
5 b — &1 (m',b) decoding of the message following Algorithms 1 and 3. The
6 for k<~ 1ton’ do generation inC' of the first blockb; is 2, and that of the
7: if b, = 1 then second blockbs is 1, thusp = 2 (the highest of the two) and
8: m < m — Dy(by) b’ = (10). The fact thatC’ is synchronous guarantees that
9: else ifb), =0 A 32 — 1 then only one encoding function af” hasb’ in its range: here, it
10: ko + k is the encoding function fot = 1. Thus, we are at the first
11: m 1+ ((m — 1) mod M,) generation (= 1) of the second stage & 2), so the overall
12- for k < 1 to n’ do generationis = (p— 1)’ +1=(2-1) x2+1=3. The
13- if b, =1 A b, =0 A k# ko then flow of Algorlthm_l is illustrated in lflg; 4, / -
14: by, < &,(M,,by) For the decoding part, we hawe’ = D}(10) = 2 and
15 by, & (m, b,) m as the modula), sum (in{1,...,My}) of D,(by) for

all indices k of a block at generatiop of C. Here, there
is only one block at generation = 2 for C: block b; =
(1100), thereforem = (Ds(by) — 1) (mod 3) + 1 = 1. The
original message pair was therefgie2). This can be mapped
tomy € {1,...,M,M]} by mi = (m — 1)M] + m/, which
Sgives m1 = 0 x 2+ 2 = 2. The flow of Algorithm 3 is
illustrated in Fig. 5.

For the encoding part, let us now encode a new message
my = 2 € {1,2,3} for generatiord following Algorithm 2.
Our newm andm’ are2 and 1, respectively, so thatm —
DM +m'=(2-1)x1+1=2.b"=(10) will become

The messages: andm’ can be decoded by decodirg
with the decoder o€, and then decoding every blogk; for
b, € Im(&,) with the decoder of”, and finally taking the
modulo M, sum (in{1,...,M,}) of the decoded message
The original message; is thenm; = (m —1)M,+m/. See
Algorithm 3 for detalils.

Algorithm 3 Decoding Algorithm

1: Input: by, ..., b,,, andb’, p, and! b’ = (11) becausef(1,10) = (11). Therefore, the second
2: Output:m, m/, andm, block is going to be written (because the second withdf

3 m’ + Dy(b') changes). We first decode all the blocks already at genaratio
4:m <0 p = 2: here, we only have one block at generatjos 2, and

5 for k< 1ton'do Dy(by) = D5(1100) = 1. We therefore encode in the second
6: if bj, =1 then block b, a messageny = (m — Da(b1) — 1) (mod M,) +

7 m < m + Dy(bx) 1, where M, = M, = 3 andm = 2. Thus,mo = 1 and

8 m < 1+ ((m—1) mod M) b, is replaced by&,(1,0010) = (0011). The state of the

9: my + (m—1)M] +m’ cells is (1100,0011) after this encoding phase. The flow of

Algorithm 2 is illustrated in Fig. 6.

We remark that the construction above requires that ¢ode
does not contain the all-zero codeword. In that case, if lhe a
zero codeword o’ is written in a block, the generation 6f

Let us now establish the WOM-rate; of C;.

t t
R, = szl 211 logy (M, M) would be improperly identified and the componenmt of the
nn' message could not be written/decoded. The constructian als
1 L ¢ s requiresC” to not contain the all-zero codeword, in which case
= log, M, | +log, H(Mz) the component: of the message could not be written/decoded
p=1 =1 when the all-zero codeword is chosen fof.

1, e t’ t As a final remark, note that the construction above re-
= o/ (t'-nR+t-n'R) = ERJF ER' sembles a tensor-product code construction, but with some
important differences. For instance, it is required that th
Example 5:Let C be the[4,3 : 4,3, 2|5 code defined by different blocks contain codewords fro of neighboring
generations.

1 2 3 4
D; ! {0001} {0010} {0100} {1000}
Dy' | {1100,0011} {1010,0101} {1001,0110} - A Results
D1 {0111,1011, (111} B Let us denote by¥'(C,C") the code obtained by applying
3 the construction of Theorem 1 @ andC’. We can iterate the

1101,1110}
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. ) —
Line 5\ =
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Lines 9,1 b =11,
ko =2
Dp() not gen.p

Da(by) =1 ignored
Lines 7,8,12
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’ b + E2(m © mo, ba) = 0011 ‘ (whereo is the moduloM,, subtraction in{1,..., Mp})
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Fig. 6. Example of a run of Algorithm 2.
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above construction by choosing and C’, and then defining values oft, one therefore only has to find a few such codes
Co = C and C,,, = F(Cy,—1,C") for all m > 0. This for small values of:. In the following, we propose two such
generates codes with even higher valueg,ofthich have to codes.

be compared with a construction of synchronous codes from, A [32: 2 .29 code of WOM-rate2/3 given by

[1] (wheren = t is any power of two and the WOM-rate is

log,(t)/2). Notice that the two constructions happen to match - | 1 2
when we take a§’ = C’ the trivial [2,2 : 2,1]5""° code. Dll {oo1t {010} .
First, we restrict ourselves to codes with= t (which are Dy | {110,101} {011}

easier to compare) and we fiX' = C. The WOM-rate of the A 5,3 : 4,4,4]3™ code of WOM-ratel.2 where the
t.-Write codeC,,, afterm iterations of the construction is ’ 2

classes are:
_ _ _ R(©) — At generation1: {00001}, {00010}, {00100}, and
R(Cy,) = mR(C) =log,(tm)R(C) = Tog, (1) logy (tm,)- {01000}
R(C) — At generation 2: {11000,10100, 10010, 10001},
Therefore, for codes with = ¢, the higher; RG] is, the better {01100, 00011}, {01010,00101}, and
this iterated construction works. The code ‘that maximibes t {01001, 00110}.
ratio among those found by our computer search is the one  _ ¢ generatior8: the same codeword classes as in (6).

with n = ¢t = 2 (with li(c) = 1), making the codes from

[1] the best in terms 01‘2 asymptotic WOM-rate until COdeFa

for higher values ofn = t are found. For instance, Table I
sync

sqggests_that ®,8:8,7,5,5,2,2,1,1];"™ code could exist, is gets even worse as the last generation of a synchronous

with a ratio 0f0.519 (and even better synchronous codes cou

st form — ¢ — 8. if the added traint de withn = ¢ — 1 will always have sizd, forcing the size
exist even fom =i = o, It we remove the added cons rain of every generation to be for a fixed-rate code, and making
from Section Ill). However, whenis not a power of two, our

. . . its WOM-rate0. This explains why the two codes that we give
construction can yield codes wherdas either, 3, or5 as a P y 9

. ) - . . haven larger thant — 1.
divisor, but no other prime divisors, i.e., the number oftesi nlarg

is of the form223°5¢, This is achieved by mixing different
elementary code§” with 2, 3, and5 generations, instead of
always using the = 2 code. This is a much denser coverage The proposed method of Section Il for making a nonde-
of the potential values aof. Furthermore, if we consider codescodable code decodable in the binary case can be extended to
with n slightly greater tham, we can reach higher WOM-ratesthe problem of making nondecodahjeary codes decodable

at equal values of. Consider, for instance, the cod&C,C’") for ¢ > 2. The number of additional cells required to make
with C' the [4,3 : 4,3,2]5" code andC’ the [2,2: 2,1]5""  a g-ary t,q-write nondecodable code decodable[i@qd_—‘ﬂ.

code. The construction then yields{&6 : 8,4,6,3,4,2]3™° |ndeed, during each of the lasty — 1 generations, the sum
code of WOM-ratel.521 (larger thanlog, (¢ )/2 both fort — 6 of the values in the additional cells is increased by at léast

We remark that fixed-rate codes have not only lower WOM-
te than unrestricted-rate codes, but when we add the con-
straint that the codes must be synchronous and witht — 1,

VI. EXTENSION TOg-ARY WOM CODES

andt = 8). This is the example code of Example 5. and this sum is at most— 1 times the number of additional
cells. We consider the problem of building synchronagus
V. FIXED-RATE WOM CODES ary (tna — 1)-write codes with length “d 1 (or slightly

In Sections Il and IV we did not impose any constraint oAPove) which do not contain the all- zero codeword, since,
the values{ ), }. Therefore, the obtained codes are in gener@$ in the binary case, we can later add an extra generation
unrestricted-rate codes, i.e., the codes store in geneliffea-  containing only the all-zero codeword, turning the code int
ent number of messages at different generations. Appendig.q-write code of Iength[ o2 ﬂ If tha < g, then only
these codes to a nondecodable code to make it decodable wilé additional cell is required. This case applies to theesod
clearly result into an unrestricted-rate code. in [11], for instance, withg = 8 andt,q = 2,3,4,5,6,7,

In this section, given a fixed-rate nondecodable code, we ¢ = 4 andt,q = 2,3,4. Then, the WOM-rate of a code
consider the problem of efficiently generating a fixed-raie determined entirely by the assignment of #heossible
decodable code. Note that the standard method of appendmtues of the cell to its generations. For instance,# 5 and
tna — 1 cells to at,q-write nondecodable code that only store,q = 3, we can choosém(&;) = {0, 1}, Im(&) = {2, 3},
the current generation results in a fixed-rate code, sinceaitdlm(&3) = {4}. The WOM-rate of the resulting code would
does not change the values §#/;}. However, we can also therefore bdog,(2 x 2 x 1). Maximizing the WOM-rate of
improve the WOM-rate of the overall code, by appendingne code is equivalent to maximizing the prodlﬂﬁ“;‘l M;

a short synchronous code as in the previous sections, withere the only constraints on th&f;'s are that they are

the additional constraint that the synchronous code msst aintegers from{1,...,q} and thatz 1 M; < ¢. Maximizing
be fixed-rate. We are therefore interested in finding shatproduct of integers given their sum is achieved by choosing
synchronous fixed-rate codes. them as close to each other as possible, here by picking

The main result of this section is that the construction d¥/; € {|q/tna], [¢/tna]} for all i. Let us consider the two
Section IV yields a fixed-rate code when applied to two fixedxtreme regimes. If,q = ¢/2 (resp.t,a > ¢/2), we pick
rate codes. To find fixed-rate synchronous codes for many; € {2,2} (resp.M; € {1,2}) and the resulting WOM-rate
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TABLE Il

Ag(n,4) IN THE TERNARY CASE(q = 3). THE VALUES ARE of each generation maximized assuming no knowledge of the
CONSTRUCTIVE(I .E., THEY CORRESPOND TO ACTUAL CODES FOUND BY previous generation.
AN EXHAUSTIVE SEARCH).VALUESINITALICS CAN ALSO BE TAKEN PrOpOSition 8: For anyn > 9 q > 9 and 2 <4< n
FROM PROPOSITIONO. ) . ot =T - =7
Ag(n,i) > min(A4(n—1,i— 1), Ag(n — 1,1)).
ill1 2 3 4 5 6 7 8 Proof: The proof follows the same lines as the proof of
”1 T Proposition 2, with the suitable partitioi of E,(n, i) defined
>l2 2 1 1 as the union for all <k < min(A,(n—1,i—1), A,(n—1,7))
3({3 3 2 1 1 1 of the codeword classes
414 4 3 3 1 1 1 1 1
5|5 5 - - - - H
(fy(k).0) U [ (f2(k).5).
TABLE IV s=1
Ag(n, 1) IN THE QUATERNARY CASE(q = 4). THE VALUES ARE 0
CONSTRUCTIVE(I.E., THEY CORRESPOND TO ACTUAL CODES FOUND BY e . o
AN EXHAUSTIVE SEARCH). VALUES IN ITALICS CAN ALSO BE TAKEN PrOpOSItlon 9 For anyn Z 1 andq Z .2’ Aq(n’ 1) =n
FROM PROPOSITIONO. Proof: Same proof as for Proposition 4.
Proposition 10:For n > 1 and ¢ > 3, A4(n,2) >
ill 2 3 4 5 6 7 8 9 A
n 2(71, 2) —|— 1
171 1 1 Proof: Consider a suitable partitioyl of E2(n,2) of car-
212 2 2 1 1 1 dinality As(n,2). Now conside)’ = Y U{2e} |1 <k < n}.
i i i i g 1 1111 The cardinality of)’ is A3(n, 2)+1, the words in its codeword

classes have weigf and they belong t&,(n,2). There is
no collision since) has no collision, and the words we add
are not inEx(n, 2). 0
Proposition 11:Forn > 0 andq > 3, 4,(2",2) > 2™.
Proof: It follows from direct application of Propositions 5
and 10. O

tnalogs(q/tna). Proposmon 12:Forn > 0 andq > 3, A,(2n +1,2) >
If t,q > ¢, then several additional cells are required. Usmgn

a computer search, we can find a few very short synchronous Proof The idea is to consider a codeword class whose
codes forg > 2 under the same constraints as the codes frof}cylar permutations do not overlap. Far = 3, such a
Section Il (laminar, withn = lrﬁ—‘ and where generation codeword class i$0002000, 0010100, 0100010, 1000001 }.
1 is built assuming that all codewords of weight (@rnorm) Formally, let us consider the followmg codeword clags
i—1are used by generatian-1). Furthermore, in analogy with of £,(2n + 1, 2):
the binary case, we make the following important definition.
Definition 4: Let E,(n,i) be the set ofg-ary vectors of Yo={ent1-k +ent1r |0 <k <n}.
lengthn and weighti, and A,(n, ) the maximum size of a v, covers E,(2n + 1,1). If ¥ = {Y;,Y3,...,Ys,} is the
partition ) of E,(n,i) so that family of the circular permutations dfy, then) is a suitable
. partition of E,(2n + 1,2). Indeed, for a given right circular
VY EY Vx€Ey(ni—1),dy €Y :x<y. permutation ((Z)Ec(en+1fk )+ e.+1+k), k can be identified as
As in the binary case, we would like to computg(n,i) follows.
for different values ofn andi. Tables Ill and IV show the « The vector has & if and only if £ = 0.

is log, (297 1d) = q — thq (resp.logy(297d) = ¢ — tnq),
while if t,q is small compared ta;, the optimal WOM-
rate can be closely approximated kyg, (Hf‘:l q/tnd) =

results of such a search fgr= 3,4 and small values of. « Otherwise, it has twa’s at indicesi; andi, with 71 < 5.

As an example, .6 : 2,2,2,1,1,1];"" code of WOM-rate If i — 41 is even,k = 2% and we have permuted

3/2 (which corresponds to the second row of Table IV) given  (en1+1-x + €nt1+%) to the righti; —n — 1+ k times. If

by iy — iy is odd, k = 22Hdh=% and we have permuted

1 2 (€n+1—k + €ni1+k) to the rightias —n — 1 + k times.

Dyt {01} {10} The cardinality ofY is 2n + 1, which is a lower bound on the
D;! {11} {20,02} maximum cardinality of a suitable partition &, (2n +1,2).
Dy | {21,03}  {12,30} 0
Dt | {13,31,22} — Finally, we remark that the lower bounds of Propositions 8,
Dy | {23,32) - 10, 11, and 12 match the exact valuesdyn, i) from Tables
Dyt {33} - [l and 1V for several values ofn, ).

was found.

B. The Construction from Section IV

The construction of Section IV can be extendedgtary

codes as follows.

The bounds from Section Ill-A can also be extended to the Theorem 2:Let C be an [n,t : M, ... , M), syn-

g-ary case for laminar codes with = | -7 | and the size chronousg-ary code of WOM-rateR, and C’ an [/t :

A. Bounds on the Sizes of Generations
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Mj,...,M],]2 synchronous binary code of WOM-rat®’, of WOM-rate 2.5850.2 This is the example code of Exam-
both not containing the all-zero codeword. Then there sxigile 2. Obviously, a2,5 : 2,2,3,2,1]}"° code can be made
an [nn/,tt" © MyMj,...,M\M],...,MM{,....,M;M], by splitting the fourth generation into the two generations
synchronousg-ary codeC; of WOM-rate R = fl—’/RJr Lr. {{13,32},{31,23}} and{33}. Finally, by using the construc-
Proof: The proof thatC; is a valid synchronoug-ary tion of Theorem 2, using th€,5 : 2,2,3,2,1]7 code as

code is the same as in the binary case. 0 C and the[2,2 : 2,1]5"" code from Example 5ag’, a

Notice that the cod&” in the construction is still binary: [4,10:4,2,4,2,6,3,4,2,2, 13" code of WOM-rate3.5425
the requirement is that' andC; must have the same alphabegan be constructed.
size. Using a’-ary code (withy’ > 2) instead of a binary code
is also possible regardless 6f and C;. WhenC’ is binary,  VII. RESULTS AND COMPARISON WITH THE STANDARD
the two valued) and 1 will be matched, at each stage, 20 METHOD
successive generatiops- 1 andp of C. In the first stage they
are matched to generatiofgi.e., empty memory) antl, then
to generationg and2, and so on. However, whetl’ is ¢'-ary
with ¢’ > 2, each stage hag possible values to match ig
generations. For instance,qf = 4, the valueg0, 1, 2, 3) will
be matched to generatiorg, 1,2, 3) of C at stagel, then
to generation$3,4,5,6) at stage2, generationg6,7,8,9) a
stage3, and so on.

If a nonbinary code”’ is to be used, then eithe&r or C’
must have a suitable structure. The following conditions, f
example, would ensure this.

In this section, we use the synchronous codes derived
in the previous sections to construct decodable codes from
nondecodable ones as explained in Section Il (binary case)
and Section VI (nonbinary case). We compare the proposed

method with the basic method that ad e 11 cells con-
taining no data. For this comparison, we conS|der two daffier
target code lengths, = 64 andn = 256. We then assume for
each value ofi and for some specific values tfy, that there
exists at,q-write code with WOM-rate equal to the best (i.e.,
of highest WOM-rate) codes from [11,12], and with length
Nnd = N — Neyne, Wherengy,. is the length of the synchronous
« A first sufficient condition is that each write of” code. Note that we do not use the actual code lengths at which
increases the sum of the values of its cells by exactly onfiese state-of-the-art WOM-rates are reached becausatbey
This prevents the following situation from happeningyery large [19] and not explicitly stated in [11,12]. Howeve
Consider the case where at the first generation ofigs gives a meaningful comparison, since the rate losseith
nonblnaryC’ a cell can go both fromd to 1 and from0 approach (See (2)) is an |ncreas|ng funcuonmti Whenn
to 2 depending on which message we encode. Then,;in = and R.,,. > 0 are fixed. Since no code (for any block
the corresponding block, we will write a codeword@f |ength) of strictly higher WOM-rate than the ones reported
of either generation or generatior2. When encoding a in [11,12] is (as far as we can tell) currently known, and
pair (m,m’) of messages, the number of messages amogghsidering a specific block length,q will likely reduce the
which we can choose: therefore depends on’, which  \wOM-rate of the best nondecodable code, the comparison is
means that the encoder cannot prediCt how much dat%|gort of worst-case scenario for our approach_
will be able to store at a given generation. The results for the binary case are reported in Tables
« Another possible condition to avoid the above issue is that 3nd VI. We consider values fot,q between4 and 7.
we choose a fixed-rate code In the previous example, The second column of each table reports the state-of-the-
if My = M, it does not matter if we do not knowart WOM-rate of nondecodable codes, for each value of
whether we will be using generationor generatior2 ¢ , The third column shows the WOM-rate that is ob-
of C; we have the same number of messages to choqgged by appending,q — 1 cells with no data to a length

from anyway. Nnd = N — (twa — 1) code with WOM-rate equal to the
As an example, 84,10 : 4,2,4,2,6,3,4,2,2,1]7"° code one reported in the second column. The next two columns
can be constructed in the following way. First, (2,4 : show, for various synchronous codes, the WOM-rate that we

2,2,3,3]7™ code can be made by merging together thebtain for the same target length. TH4 : 1,3, 1, 1]5™,

Iast three generations of the,6 : 2,2,2,1,1,13° code [4,5 : 1,4, 3,1,113™, [5,6 : 1,5,3,2,1,13™, and [6,7 :
displayed above in Section VI by taking as the new set f6,5,3,1,1,1]5"™° codes are obtained by adding to the codes
codeword classes the union of the sets of codeword classe$3o8 : 3,1,1]5", [4,4 : 4,3,1,1]5™, [5,5 : 5,3,2, 1, 1]5"™,

the three last generations, and reorganizing them, asiegpla and [6,6 : 6,5,3,1,1,1]5"° from Section Ill a generation
for the binary case in Section III-B. Also, if the codewordontaining the all-zero codewofdThe [5,4 : 1,5,3,6]5"™
classes are reorganized properly, then an additional amdiewcode is obtained in a similar manner from {Be3 : 5, 3, 657
class{22} can be added to the third generation, resulting @0de in Section I1I-B, and th§8,7: 1,8,4,6, 3,4, ]bync code

the following [2,4 : 2,2, 3, 3|7 code
3By adding a generation containing the all-zero codewordgatea|[2, 5 :
1,2,2,3,3]7"¢ code of the same WOM-rate, which is significantly higher

. 1 2 3 than the correspondingorst-caseVOM-rate of the synchronous lattice-based
Dy {01} {10} — code from [14, Table I].
—1 4 o . . . .
Dgl {11} {20’ 02} N 6, 5,,\1??}(23, Tallt] ;J’r“%n;ogibrlsa)lll (fq(sﬁt’ ﬂov;evz;', \\//vvzl%gvg]np(llteSeér:]a;b?ge;tbﬁidéntify
Ds {21, 03} {127 30} {22} such a code in a (nonexhaustive) computer search. The bastfoond was

D' | {13,32} {31,23} {33} al6,6:6,53,1,1, 13 code.
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TABLE V
WOM-RATES OF BINARY DECODABLE CODES OBTAINED BY CONCATENATING $NCHRONOUS CODESWITH TARGET CODE LENGTHn = 64. THE
NUMBERS IN THE PARENTHESE$IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSEJCOMPUTED FROM(1) AND (2), RESPECTIVELY) IN PERCENT,
WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION

tnd Rate of nondec. Rate of dec. With data Rate loss
code from [12, Table VI] with no data Sync. code Rate reducfactor
N [3,4:1,3,1,1]2 1.7943 (3.35%) 1.40
4 1.8566 1.7696 (4.69%) 5415 3 6] 1.8130 (2.35%) 2.00
5 1.9689 1.8458 (6.25%) [4,5:1,4,3,1,1]2 1.9019 (3.41%) 1.84
6 2.1331 1.9665 (7.81%) [5,6:1,5,3,2,1,1]2  2.0431 (4.22%) 1.85
o 16,7:1,6,5,3,1,1,1]2  2.0701 (4.71%) 1.99
7 21723 1.9686 (9.38%) [5'7.18/4.6.3,4,2],  2.0909 (3.75%) 2.50
TABLE VI

WOM-RATES OF BINARY DECODABLE CODES OBTAINED BY CONCATENATING $NCHRONOUS CODES$WITH TARGET CODE LENGTHn = 256. THE
NUMBERS IN THE PARENTHESE%IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSEJCOMPUTED FROM(1) AND (2), RESPECTIVELY) IN PERCENT,
WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION

tnd Rate of nondec. Rate of dec. With data Rate loss
code from [12, Table VI] with no data Sync. code Rate reducfactor
o (3,4:1,3,1,1]2 1.8410 (0.84%) 1.40
4 1.8566 1.8348 (1.17%) [5,4:1,5,3,6]2 1.8457 (0.59%) 2.00
5 1.9689 1.9381 (1.56%) [4,5:1,4,3,1,1]2 1.9521 (0.85%) 1.84
6 2.1331 2.0914 (1.95%) [5,6:1,5,3,2,1,1]2 2.1106 (1.05%) 1.85
ony 16,7:1,6,5,3,1,1,1]2  2.1467 (1.18%) 1.99
7 21723 2.1214 (2.34%) (8,7:1,8,4,6,3,4,2]2 2.1520 (0.94%) 2.50

is obtained by adding a generation with the all-zero coddwathat similar to the binary case, the codes that we have con-
to the (8,6 : 8,4,6,3,4,2]5""° code from the construction of structed in Section VI can be extended by a single generation
Section V. containing the all-zero codeword only. Thus, when we speak

To better quantify the gains of the proposed approacﬁ’f?'o_"v ap(_)ut codes that are constructed in previous S(_actions
we have included in the tables the rate losses compared™® implicitly assume that they have been extended in this
the nondecodable code, and also their fraction (the rate 1§y- Now, the code$2,7 : 1,2,2,2, 1,1, 1" and [3, 10 :
reduction factor), which quantifies the reduction in rateslo 1 3,3:3,2,1,1,1,1, 1] are taken from Section VI (the sec-
of the proposed approach compared to the basic approactP®fl and third rows of Table IV, respectively), the coess :
appending.q — 1 cells containing no data. For both lengths!:3:3.3,2, 1,1, 3] and([3,9: 1,3,3,3,2,1,1, 1, 2] are
our technique yields higher WOM-rates compared to jugptalned by merging the last three (resp. two) generatiéns o
appending a block of,q — 1 cells with no information. For the [3,10 : 1,3,3,3,2,1,1,1,1, 1] code, and the codes
instance, fort,q = 7 andn = 64, the rate loss with the basic(2:5 : 1,2,2,3,3[7"™, [2,6 : 1,2,2,3,2,1];"™, and [4,11 :
approach is as high @38%. With the improved approach thel4:2,4,2,6,3,4,2,2, 1] are taken from Section VI-B.
rate loss is reduced ®175%, which is a reduction by a factor NOte that as in the binary case our technique yields higher
of 2.5 (see the sixth column of Table V). As can be seen froffOM-rates compared to just appending a block[ &= |
the tables, the rate loss of the basic approach growsaith cells Wlth no information, for both target Ier_lgths. Also,ins
In all cases we are able to demonstrate a rate loss reducfidf Pinary case, the rate loss of the basic approach grows
factor of 1.8 to 2.5 using our approach, which is significantWith tna, and we demonstrate a rate loss reduction by a
Furthermore, the tabulated WOM-rates are (to the best of Jgftor betweenl.5 and 4.0 in all cases considered, which is

knowledge) also higher than the best WOM-rates for binafjgnificant.
multiple-write codes (and hence better than the WOM-ratesgq, the ternary case, to the best of our knowledge, no tables
of any directly decodable code) known prior to [12], whicly the pest possible WOM-rates have been presented in the
justifies our approach. literature. There are however constructions that can bd.use
The results for the nonbinary case with= 4 are reported See, for instance, [12, Theorem 7] for constructingry 2-
in Tables VII and VIII forn = 64 andn = 256, respectively. write codes. Here, we will use a construction from [11] (whic
Here, we consider values fory between5 and11. As in the was inspired by a similar idea proposed in [20]) giving-ary
binary case, the second column of each table reports the stafq — 1)-write code of WOM-ratgq — 1) Ry, whereR is the
of-the-art WOM-rate of nondecodable quaternary codes, foest possible WOM-rate of Zwrite binary code. Thus, there
each value of,,4 that we consider. The third column shows thexists a ternarg-write code of WOM-ratg3 — 1) - 1.4928 =
WOM-rate that would be obtained by appendgﬁgLﬂ cells 2.9856 where the WOM-rate of the-write code is taken from

3
containing no data to a code of length- [% and WOM- [12, Table VI]. Now, from the second row of Table Ill, we

sync

rate equal to the one reported in the second column. Nat@n see that there existd& 3 : 2,2, 2]5""° code (by merging
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TABLE VII
WOM-RATES OF QUATERNARY(q = 4) DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS COBS, WITH TARGET CODE LENGTH
n = 64. THE NUMBERS IN THE PARENTHESE$IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSEJ COMPUTED FROM(1) AND (2), RESPECTIVELY)
IN PERCENT, WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION

tna Rate of nondec. Rate of dec. With data Rate loss
code with no data Sync. code Rate reduction factor

5 3.9328 [11] 3.8099 (3.13%) [2,5:1,2,2,3,3]4 3.8907 (1.07%) 2.92

6 4.2594 [11] 4.1263 (3.13%) 2,6:1,2,2,3,2,1]4 4.1979 (1.44%) 217

7 4.3394 [11] 4.2038 (3.13%) 2,7:1,2,2,2,1,1,1]4 4.2507 (2.04%) 1.53

8 4.5088 4.2975 (4.69%) [3,8:1,3,3,3,2,1,1,3]4 4.4121 (2.14%) 2.19

9 4.5836% 4.3687 (4.69%) 3,9:1,3,3,3,2,1,1,1,2]4 4.4743 (2.38%) 1.97

10 4.6932 4.4732 (4.69%) [3,10:1,3,3,3,2,1,1,1,1,1]4 4.5631 (2.77%) 1.69

11 4.719% 4.4243 (6.25%) [4,11:1,4,2,4,2,6,3,4,2,2,1]4 4.6457 (1.56%) 4.01

20btained by applying Construction A from [11] to the WOMesitfrom [12, Table VI].
bObtained by applying Construction A from [11] to the WOMastfrom the recursion foR; of Section VI in [12].

TABLE VIII
WOM-RATES OF QUATERNARY(q = 4) DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS COES, WITH TARGET CODE LENGTH
n = 256. THE NUMBERS IN THE PARENTHESE$IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSEJCOMPUTED FROM(1) AND (2), RESPECTIVELY)
IN PERCENT, WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION

tnq Rate of nondec. Rate of dec. With data Rate loss
code with no data Sync. code Rate reduction factor
5 3.9328 [11] 3.9021 (0.78%) [2,5:1,2,2,3,3]4 3.9223 (0.27%) 2.92
6 4.2594 [11] 4.2261 (0.78%) 2,6:1,2,2,3,2,1]4 4.2440 (0.36%) 2.17
7 4.3394 [11] 4.3055 (0.78%) 2,7:1,2,2,2,1,1,1]4 4.3172 (0.51%) 1.53
8 4.5088 4.4560 (1.17%) [3,8:1,3,3,3,2,1,1,3]4 4.4846 (0.54%) 2.19
9 4.5836 4.5299 (1.17%) [3,9:1,3,3,3,2,1,1,1,2]4 4.5563 (0.60%) 1.97
10 4.6932 4.6382 (1.17%) [3,10:1,3,3,3,2,1,1,1,1,1]4 4.6607 (0.69%) 1.69
11 4.7199 4.6456 (1.56%) [4,11:1,4,2,4,2,6,3,4,2,2,1]4 4.7009 (0.39%) 4.01

20btained by applying Construction A from [11] to the WOMaestfrom [12, Table VI].
bObtained by applying Construction A from [11] to the WOMaesitfrom the recursion foR, of Section VI in [12].

the last two generations) that does not contain the all-zero ACKNOWLEDGMENT
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ives a WOM-rate 0£.9392, while the method of appending . )
1-1] _ 9 cells with no data gives a WOM-rate of onl and the anonymous reviewers for their valuablg comments and
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.8923. This amounts to a rate loss reduction by a factor of
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