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Orthogonal Multiple Access with Correlated
Sources: Achievable Region and Pragmatic Schemes

A. Abrardo, G. Ferrari, M. Martalò, M. Franceschini, and R.Raheli

Abstract— In this paper, we consider orthogonal multiple
access coding schemes, where correlated sources are encoded in
a distributed fashion and transmitted, through additive white
Gaussian noise (AWGN) channels, to an access point (AP).
At the AP, component decoders, associated with the source
encoders, iteratively exchange soft information by takinginto
account the source correlation. The first goal of this paper is to
investigate the ultimate achievable performance limits interms
of a multi-dimensional feasible region in the space of channel
parameters, deriving insights on the impact of the number of
sources. The second goal is the design of pragmatic schemes,
where the sources use “off-the-shelf” channel codes. In order to
analyze the performance of given coding schemes, we propose
an extrinsic information transfer (EXIT)-based approach, which
allows to determine the corresponding multi-dimensional feasible
regions. On the basis of the proposed analytical framework,
the performance of pragmatic coded schemes, based on serially
concatenated convolutional codes (SCCCs), is discussed.

Index Terms— Correlated sources, orthogonal multiple access,
joint channel decoding (JCD), noisy Slepian-Wolf problem,EXIT
chart, serially concatenated convolutional code (SCCC).

I. I NTRODUCTION

The efficient transmission of correlated signals, observed
at different nodes, to one or more collectors is one of
the main challenges in various networking scenarios, e.g.,
wireless sensor networks [1]. In the case of one collector
node, this problem is often referred to as reach-back channel
problem [2]–[4]. In the case of separated additive white
Gaussian noise (AWGN) channels, the separation between
source (up to the Slepian-Wolf limit) and channel coding
is known to be optimal [2], [5]. However, implementing a
practical system based on separation, i.e., given by distributed
source coding (DSC) followed by channel encoding, is not
straightforward [6], [7] and the design of practically good
codes is still an open issue [8].

Alternative approaches are represented by cooperative
source-channel coding and distributed joint source-channel
coding (JSCC). In the JSCC case, no cooperation among
sources is required, each source is independently encoded,
and the correlation between the sources is exploited at the
joint decoder by means of joint channel decoding (JCD) [9]–
[12]. In other words, for a given source neither the data
transmitted from the other sources nor the correlation model
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are available at the encoder. The correlation model between
the sources must instead be assumed to be known at the
(common) receiver, which aims at the reconstruction of the
information streams transmitted by the sources. The problem
of designing good codes for this scenario has been, however,
only partially addressed. In [12], the authors state that for two
orthogonal channels the type of concatenated code utilized
for the encoding process is not critical, and good results
can be obtained, provided that powerful codes are employed.
In [13], recursive non-systematic convolutional encodersare
proposed as constituent encoders for heavily biased sources,
leading to a signal-to-noise ratio (SNR) penalty between
0.74 dB and 1.17 dB with respect to the Shannon limit.
In [14], optimized low-density parity-check (LDPC) codes
are designed, by means of puncturing and proper iterative
decoding schedule at the access point (AP). Extensions to
universal codes (i.e., capacity-achieving codes for all possible
channel parameters) through spatial coupling has been also
recently considered [14]–[16]. More precisely, the approaches
in [14]–[16], relative to a two-source scenario, have the
following characteristics: at each source, LDPC coding is used;
at the AP, message-passing decoding is carried out on a joint
bipartite graph (combining the graphs of the two codes) and
the asymptotic performance, for infinite codeword length, is
investigated. However, the extension of the proposed joint
graph-based approach to an arbitrary number of sources is
a challenging research direction. Another interesting approach
has been presented in [17], where practical concatenated coded
schemes are designed for faded multiple-input multiple-output
(MIMO) scenarios. However, the scheme is evaluated only for
the case of two sources.

In this paper, we consider a generic number of correlated
sources which transmit to a common AP through orthogonal
AWGN channels. The sources do not explicitly use source
codes, but only channel codes. At the AP, a proper itera-
tive receiver is used to exploit the source correlation. This
extends our previous works for two-source scenarios [18],
[19], as well as [20], where practical coding/decoding schemes
have been designed in the presence of block faded channels.
The first contribution of this paper is to shed light on the
characterization of JCD schemes with an arbitrary number
of correlated sources, by characterizing the multi-dimensional
achievable region in the space of channel parameters for an
arbitrary number of sources. It will be shown that a few
characteristic points are sufficient to accurately characterize
this achievable region. The asymptotic behavior, for a large
number of sources, is also investigated. The impacts of the
correlation level and of the number of sources, as well as
the speed of convergence of the achievable region to the
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asymptotic limit, are discussed. To the best of our knowledge,
this is the first work which considers scenarios with more than
two sources. This is of interest, for instance, in wireless sensor
networking, where many source nodes transmit their correlated
data to a common AP.

On the basis of the characterization of the feasible region,
as a second contribution of the paper, pragmatic schemes are
discussed, where “off-the-shelf” channel codes are used atthe
sources, making the proposed iterative receiver directly scal-
able. In particular, we consider serially concatenated convolu-
tional codes (SCCCs). By using density evolution, we propose
an operational extrinsic information transfer (EXIT)-inspired
approach to evaluate the performance, in terms of achievable
region, of the given SCCCs with iterative decoding at the AP.
Although optimal channel code design goes beyond the scope
of this work, our characterization of the achievable region
shows clearly that channel coding can be easily optimized in
the presence of unbalanced channel conditions, i.e., whereat
least one rate is sufficiently low. In this unbalanced scenario,
the beneficial impact of an increasing number of sources and,
therefore, a more reliable a priori information for a given
decoder, can be exploited. Our results also suggest that a code
optimized for unbalanced rates tends, for increasing number
of sources, to perform well also with balanced rates, provided
it is suitably “optimized.” These considerations are justified
by considering properly designed SCCCs.

This paper is structured as follows. In Section II, prelim-
inaries on the scenario of interest are given. In Section III,
the multi-dimensional achievable region is introduced together
with its information-theoretic asymptotic characterization. In
Section IV, the principle of JCD is concisely reviewed. In
Section V, an EXIT chart-based analysis is derived. In Sec-
tion VI, performance results relative to SCCCs are presented
and discussed. Finally, Section VII concludes the paper.

In the following sections, the notationp(AAA) denotes the
joint probability density function (PDF) of the continuous-
value elements of a matrixAAA. Similarly, P(BBB) denotes the
joint probability mass function (PMF) of the discrete-value
elements of a matrixBBB.

II. SCENARIO

ConsiderN spatially distributed nodes which sense, i.e.,
receive at their inputs, binary information sequencesxxx(ℓ) =
(x(ℓ)1 , . . . ,x(ℓ)k )T , whereℓ = 1, . . . ,N denotes the node index,k
is the sequence length assumed equal for all sources, and(·)T

denotes the transpose operator. The information symbols of
each sequence are assumed to be independent withP(x(ℓ)i =

0) = P(x(ℓ)i = 1) = 0.5 and the following sequence correlation
model is considered:

x(ℓ)i = bi ⊕ z(ℓ)i i = 1, . . . ,k ℓ= 1, . . . ,N (1)

where{bi} are independent and identically distributed (i.i.d.)
binary random variables and{z(ℓ)i } are i.i.d. binary random
variables withP(z(ℓ)i = 0) = ρ , with 1/2≤ ρ ≤ 1. This corre-
lation model corresponds to a scenario where the sources sense
the output of a set of binary symmetric channels (BSCs), with
cross-over probability 1− ρ , whose input, at thei-th epoch,
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Fig. 1. Proposed multiple access communication scenario:N source nodes
communicate directly to the AP.

i ∈ {1, . . . ,k}, is a common information bitbi. Obviously, if
ρ = 0.5 there is no correlation between the binary information
sequences{xxx(ℓ)}N

ℓ=1, whereas ifρ = 1 they are identical with
probability 1. According to the chosen correlation model, the
a priori joint PMF of the information sequences at the inputs
of theN nodes at thei-th epoch can be computed. By standard
manipulations, one can show that

P(xxxi)= ∑
bi=0,1

P(xxxi|bi)P(bi)=
1
2

[
ρnz(1−ρ)N−nz +(1−ρ)nzρN−nz

]

︸ ︷︷ ︸

f (ρ ,N,nz)

(2)
where xxxi = (x(1)i , . . . ,x(N)

i )T is the column vector denoting
the bits at the input of the various nodes at time epochi,
nz = nz(xxxi) is the number of zeros inxxxi, and the compact
notation f (ρ ,N,nz) has been introduced for later usage. The
considered model may be representative of several communi-
cation scenarios. For example, it may model wireless sensor
networks, where a set of nodes collect and transmit correlated
data (e.g., they arise from the same physical phenomenon) to
a common sink.

In Fig. 1, the overall model for the multiple access scheme
of interest is shown:n source nodes communicate directly
(and independently of each other) to the AP. The information
sequence at theℓ-th source node is encoded using a binary
linear code, denoted asCℓ (ℓ = 1, . . . ,N) with codewords
{sss(ℓ)}N

ℓ=1 (s(ℓ)i ∈ {0,1}, i = 1, . . . ,n)—for simplicity, the code-
word lengthn is assumed equal for all source nodes. Therefore,
the encoding rate at each source isr = k/n. The goal of the
communication system is to recover, at the AP, the information
signals{xxx(ℓ)}N

ℓ=1 with arbitrarily small probability of error.
Assuming that binary phase shift keying (BPSK) is the used
modulation format, after matched filtering and carrier-phase
recovery, the real observable at the AP, relative to a transmitted
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binary information symbol, can be expressed as

y(ℓ)i = ν(ℓ)
i +η(ℓ)

i =

√

E(ℓ)
c

(

2s(ℓ)i −1
)

+η(ℓ)
i i= 1, . . . ,n ℓ= 1, . . . ,N

(3)
where{ν(ℓ)

i } denote the antipodal transmitted BPSK symbols
with energyE(ℓ)

c and{η(ℓ)
i } are independent AWGN random

variables with zero mean and varianceN0/2.
For conciseness, the following matrices are introduced:

XXX , (xxx1,xxx2, . . . ,xxxk) =
(

xxx(1),xxx(2), . . . ,xxx(N)
)T

SSS , (sss1,sss2, . . . ,sssn) =
(

sss(1),sss(2), . . . ,sss(N)
)T

YYY , (yyy1,yyy2, . . . ,yyyn) =
(

yyy(1),yyy(2), . . . ,yyy(N)
)T

.

In other words,XXX is an N × k matrix whose rows are the
information bits at each source. Similarly,SSS is anN×n matrix
whose rows are the codewords transmitted by each source
encoder andYYY is anN×n matrix whose rows are the received
vectors at the output of each of theN orthogonal channels.

III. A CHIEVABLE REGION

A. Characterization

In the described scenario, the performance achievable by a
DSC scheme followed by channel coding is identical to that
achievable if the sources were jointly channel encoded [21,
Sec. 15.4]. The Slepian-Wolf (SW) theorem allows to deter-
mine the achievable rate region for the case of separate lossless
encoding of correlated sources. Denoting byrs

ℓ the source
encoding rate for theℓ-th transmitter, the SW region [21, Sec.
15.4.3] can be compactly formulated as the intersection of the
family of inequalities

p

∑
m=1

rs
ℓm

≥ H (N)−H (N − p) (4)

wherep ∈ {1, . . . ,N}, {ℓ1, . . . , ℓp} ⊆ {1, . . . ,N}, and

H(N),−
1
2

N

∑
nz=0

(
N
nz

)

f (ρ ,N,nz) log2

{
1
2

f (ρ ,N,nz)

}

(5)

with the conventional assumption thatH(0) = 0. The formu-
lation (4)-(5) can be derived by straightforward manipulations
and can be found, e.g., in [20]. By assuming that source coding
is followed by channel coding, the channel code rates{rc

ℓ}
N
ℓ=1

may be expressed as
rc
ℓ = rs

ℓ · r (6)

where we recall thatr = k/n. The channel code rates must
satisfy the following Shannon bounds:

rc
ℓ ≤ λℓ ℓ= 1, . . . ,N (7)

whereλℓ is the capacity1 (dimension: [bits per channel use])
at the AP, relative to theℓ-th link with SNR equal toγℓ [22].
As noted in Section I, compressing each source up to the
SW limit and then utilizing independent capacity-achieving

1The specific expression ofλℓ should take into account possible input
constraints, such as the modulation format BPSK used in Section VI.

Fig. 2. Achievable region forN = 3, ρ = 0.95, andr = 1/2 at each source.

channel codes allows to achieve the ultimate performance lim-
its [2], [5]. Combining (4), (6), and (7), an achievable region of
individual capacity values characterizing the set of orthogonal
channels can be identified by the following inequalities to be
jointly satisfied by the link capacities{λℓ}

N
ℓ=1:

p
∑

m=1
λℓm ≥ r [H (N)−H (N − p)] (8)

for p ∈ {1, . . . ,N} and {ℓ1, . . . , ℓp} ⊆ {1, . . . ,N}. For con-
ciseness, we refer to this region asachievable region. From
a geometric point of view, the achievable region defines a
polymatroid structure and its border corresponds to a non-
closed convexN-dimensional polytope [23]. In general, the
border of the achievable region is given by the intersectionof
the 2N −1 hyperplanes defined by (8). Fig. 2 depicts a typical
achievable region forN = 3, ρ = 0.95, andr = 1/2.

A few characteristic points can be identified, for each
finite value of N, on the border of the achievable region.
In particular, two types of characteristic operational regions,
denoted as “balanced” and “unbalanced,” are of interest. The
balanced case refers to the characteristic point, on the border
of the achievable region, corresponding to a scenario where
all sources are transmitted at a rate equal to the same single-
channel capacity, i.e.,λ1 = λ2 = · · · = λN . This common
value, denoted asλbal, can be determined by considering the
hyperplane associated withp = N in (8), thus obtaining

N

∑
i=1

λi = Nλbal = r H(N)

and, therefore,

λbal , r
H(N)

N
. (9)

The unbalanced case, instead, refers to the portion of the
achievable region characterized as follows:N−1 sources, e.g.,
sources from 1 toN − 1, are associated with values ofλi

(i= 1, . . . ,N−1) sufficiently large to satisfy the corresponding
constraints of type (8). In this case,λunb is the smallest value
of λN such that the operational point lies on the border of
the achievable region. This corresponds to considering the
hyperplane associated withp = 1 and ℓ1 = N in (8), thus
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Fig. 3. λbal, λunb, and λlim , as functions ofN, in a scenario withr = 1/2.
Three different values forρ are considered: (i) 0.9, (ii) 0.95, and (iii) 0.99.

obtaining

λN = r [H(N)−H(N −1)], λunb. (10)

Note thatλbal and λunb are functions ofN but, for the sake
of readability, we will not explicitly indicate the dependence
on N—the context will eliminate any ambiguity. For a given
value of N, unlike the unique characteristicpoint associated
with λbal, there are infinite operational points associated with
λunb. Fig. 2 shows the achievable region forN = 3, along
with the characteristic valuesλbal andλunb (associated with 3
hyperplanes on the border).

We now investigate the behavior of the characteristic values
λbal andλunb. To this end, the information sequence at theℓ-th
node andi-th epoch can be viewed as a stationary stochastic
process in the indexℓ (for fixed i). Due to stationarity, the
following facts can be observed [21, Ch. 4]:

λbal ≥ λunb ∀N

lim
N→+∞

λunb= lim
N→+∞

λbal , λlim = rHb(ρ) (11)

where Hb(ρ) is the entropy rate of the binary stochastic
process{x(ℓ)i }. In Fig. 3, λbal, λunb, and λlim are shown, as
functions ofN, in a scenario withr = 1/2 and three different
values ofρ : (i) 0.9, (ii) 0.95, and (iii) 0.99. First, one can
observe that, for increasing values ofn, λbal and λunb are
decreasing functions ofN. Therefore, the widest projection of
the border of the achievable region on a two-dimensional plane
(e.g., the(λ1,λ2) plane) enlarges for increasing values ofN.
Moreover, it can be also verified thatλbal≥ λunb∀N, and that
both λbal and λunb approach the same asymptotic valueλlim .
We can also observe that in the unbalanced case the conver-
gence is significantly faster, especially for increasing values
of ρ . Therefore, the shape of theN-dimensional achievable
region tends, for increasing values of the number of sources,
to that of a translated hyperoctant defined by the following set
of inequalities:

λi ≥ λlim i = 1,2, . . . ,N.

In fact, the asymptotic achievable region would not be a
translated hyperoctant only if a point in the hyperplane asso-
ciated with p = N did not have the same limit. However, the
achievable region is a polymatroid defined by the hyperplanes
in (4) and this is not allowed.

B. Speed of Convergence

We now analyze the speed of convergence of the considered
multiple access schemes in terms of how many sources are
needed to achieve the asymptotic performance associated with
a very large value ofN. On the basis of the observations car-
ried out at the end of the previous subsection, the convergence
speed can be interpreted as the speed at which the border of
the achievable region tends to adhere to the border of the
asymptotic translated hyperoctant (N →+∞).

In Fig. 4, the (λ1,λ2) projections (solid lines) of the
achievable region are shown for various values ofN and ρ
equal to: (a) 0.9, (b) 0.95, and (c) 0.99. For each projection
contour associated with each finite value ofN, the dashed
lines indicate, in the two-dimensional projection plane, the
“missing” triangle with respect to the projection of the cor-
responding translated hyperoctant. As one can observe from
Fig. 4, for N = 6 the projection of the achievable region is
very close to the asymptotic achievable region (i.e., that for
N → ∞) predicted by our analytical framework. In particu-
lar, the borders of the achievable region in the unbalanced
zones approach very quickly the corresponding borders of the
asymptotic translated hyperoctant. Even though convergence
is slower in the balanced zone, from Fig. 4 one may note that
most of the gap from the asymptotic translated hyperoctant is
“filled.”

In order to compare the scenarios associated with different
values ofN (i.e., different dimensionality), we consider, as a
convergence indicator, for given values ofN andρ , the area of
the triangle identified by the dashed (horizontal and vertical)
lines and the solid (diagonal) line. This area is denoted as
A(N,ρ) and two illustrative cases are shown in Fig. 4 (a)
(A(2,0.9)) and in Fig. 4 (c) (A(6,0.99)). The rationale behind
this choice is the fact that this area tends to zero forN → ∞.
Using straightforward geometric considerations, one can write

A(N,ρ) =
(2λbal−λunb−λunb)

2

2
= 2(λbal−λunb)

2.

Since the (missing) areaA(N,ρ) is asymptotically a de-
creasing function ofN, we can characterize the convergence
in terms of its rate of reduction, for increasing values ofN.
In particular, for a given value ofN, we introduce the relative
area reduction with respect to the case withN = 2, defined as
follows:

χ(N,ρ),
A(N,ρ)
A(2,ρ)

.

We will refer to χ(N,ρ) as “area ratio.”
In Fig. 5 (a), the area ratio is shown, as a function ofN,

for various values ofρ . For each value ofρ , the minimum
considered value ofN is the one which practically guarantees
convergence in the unbalanced zone. In particular, for each
value ofρ , practical convergence is obtained if the difference
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Fig. 5. (a) The area ratioχ, as a function ofN, for various values ofρ
and (b) the minimum value ofN, as a function ofρ , to achieve a given
convergence level (area reduction).

λunb−λlim is at most 1% of the value ofλlim . From the results
in Fig. 5 (a), one can derive the minimum number of sources
needed to achieve a given area ratio, i.e., a given convergence
level. Assuming that convergence is achieved when the area
ratio reduces below a desired value (i.e., there is a desiredarea
reduction), the corresponding minimum value ofN, denoted
asN(conv)

min , can be determined. In Fig. 5 (b),N(conv)
min is shown,

as a function ofρ , for various values ofχ , also highlighted by
the dashed horizontal lines in Fig. 5 (a). The obtained results
quantify the intuitive fact that the minimum number of sources
required to achieve the desired convergence level reduces for
increasing values ofρ . In particular, forρ ≥ 0.92, our results
show thatN(conv)

min can be accurately approximated as a linearly
decreasing function ofρ .

IV. JCD PRINCIPLE

As the ultimate performance limits (in terms of achievable
region) have been characterized, it is of interest to understand
how given (pragmatic) channel coding schemes perform. To
this end, in the remainder of this paper we first recall the JCD
principle and then generalize the EXIT chart-based method,
introduced in [18], [19], to the performance analysis of channel
codes in the multiple access scenario of interest with an
arbitrary number of nodes.

Using the matrix notation introduced in Section II, the joint
maximum a posteriori probability (MAP) decoding rule, given
thatYYY is received, reads:

x̂(ℓ)i = argmax
x
(ℓ)
i =0,1

∑
XXX∼x(ℓ)i

p(YYY |XXX)P(XXX) (12)

where i = 1, . . . ,k, ℓ = 1, . . . ,N, and the notationXXX ∼ x(ℓ)i
denotes that the summation runs over all variables inXXX except
x(ℓ)i . From (12), using standard manipulations one can write:

x̂(ℓ)i = argmax
x
(ℓ)
i =0,1

∑
XXX∼x(ℓ)i

p(YYY |SSS)P(SSS|XXX)P(XXX)

= argmax
x
(ℓ)
i =0,1

∑
XXX∼x(ℓ)i

N

∏
ℓ=1

P
(

sss(ℓ)|xxx(ℓ)
) n

∏
i=1

p
(

y(ℓ)i |s(ℓ)i

) k

∏
i=1

P(xxxi)(13)
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where we have used the facts that the information sequences
are coded independently and sent over orthogonal AWGN
channels. The probabilityP(sss(ℓ)|xxx(ℓ)) is equal to 1 ifsss(ℓ) is
the codeword associated withxxx(ℓ) and 0 otherwise.

Equation (13) admits a Tanner graph representation and a
corresponding belief propagation (BP) solution, providedthat
P(sss(ℓ)|xxx(ℓ)) (ℓ= 1, . . . ,N) can be expressed as a product of fac-
tors which depend on restricted subsets of all symbol variables.
This is always possible ifCℓ (ℓ= 1, . . . ,N) are convolutional
codes or a serial or parallel concatenation of convolutional
codes (i.e., turbo codes). Another situation where equation (13)
easily admits a Tanner graph-based representation is whenCℓ

are LDPC systematic codes.
ConsiderN separate Tanner graphs corresponding to the

codes{Cℓ}
N
ℓ=1. A pictorial description of the global Tanner

graph is shown in Fig. 6, where, for clarity, the variable
nodes{xxxi}

k
i=1 are explicitly shown. Each single variable node

x(ℓ)j ( j = 1, . . . ,k, ℓ = 1, . . . ,N) of the Tanner graph ofCℓ is

connected to the corresponding nodex(m)
j ( j = 1, . . . ,k, m 6= ℓ)

of the Tanner graph ofCm through a connection node, marked
by the joint PMFP(xxx j). Note that this PMF depends onρ . The
connection nodes, upon receiving the logarithmic likelihood
ratios (LLRs) messages fromN − 1 of the N component
Tanner graphs, send input LLRs to the other Tanner graph. The
LLR output by the connection node for theℓ-th component
Tanner graph at thej-th position, denoted as LLR(ℓ)out, j, can be
expressed as

LLR(ℓ)
out, j = ln

P
(

x(ℓ)j = 0
)

P
(

x(ℓ)j = 1
) = ln

∑
xxx′j

P
(

x(ℓ)j = 0|xxx′j
)

P
(

xxx′j

)

∑
xxx′j

P
(

x(ℓ)j = 1|xxx′j

)

P
(

xxx′j

)

(14)
where j = 1, . . . ,k, ln denotes the natural logarithm, andxxx′j =

xxx j \ x(ℓ)j is the column vector denoting the bits at the input of
the various nodes, with the exception of theℓ-th one, at time

epoch j. The factors{P(xxx′j)} denote the probabilities coming
from the otherN − 1 decoders (corresponding to the other
sources). Assuming theseN −1 outputs are independent, one
can write

P
(
xxx′j
)
=

N

∏
m=1
m6=ℓ

P
(

x(m)
j

)

=
N

∏
m=1
m6=ℓ

ex(m)
j LLR(m)

in, j

1+ eLLR(m)
in, j

where LLR(m)
in, j is the LLR associated with thej-th bit coming

from them-th decoder andx(m)
j is the logical negation ofx(m)

j .

Note that LLR(m)
in, j (m= 1, . . . ,N; m 6= ℓ) may be seen as a priori

information on the transmitted bits and can thus be easily taken
into account by standard soft-input soft-output decoders.

The conditional a posteriori probabilitiesP(x(ℓ)j = 0|xxx′j)

and P(x(ℓ)j = 1|xxx′j) in (14) can be computed by relying on

the statistical characterization of the random variables{z(ℓ)j }
given at the beginning of Section II. After straightforward
manipulations, one can write

LLR(ℓ)
out, j = ln

∑
xxx′j

f (ρ ,N,n′z+1)
N
∏

m=1
m6=ℓ

e
x
(m)
j LLR

(m)
in, j

1+e
LLR

(m)
in, j

∑
xxx′j

f (ρ ,N,n′z)
N
∏

m=1
m6=ℓ

e
x
(m)
j LLR

(m)
in, j

1+e
LLR

(m)
in, j

. (15)

wheren′z is the number of zeros in the sequencexxx′j. In [20],
a simplified sub-optimal version of (15), which takes into
account pairwise a priori probabilities only, can be found.It
is worth noting that the optimal combination rule (15) and
its sub-optimal (pairwise) version in [20] coincide forN = 2.
Therefore, (15) reduces to equation (10) in [19] forN = 2.2

Note also that the LLR transformation (15) is monotonic with
respect to each input variable{LLR(m)

in, j}.
The scheduling of the BP procedure on the overall graph

can be serially performed as follows. The messages emitted
by the function nodes{P(xxx j)}

k
j=1 can be initialized to zero

and “internal” BP iterations within the component Tanner
graphC1 run. At the end of these BP iterations, the messages
{LLR(ℓ)

in, j}
k
j=1 are fed to the connecting nodes{P(xxx j)}

k
j=1

which, in turn, emit new LLRs for the other component Tanner
graphC2. This operation is repeated for the computation of
the LLRs to be fed intoC3, and so on untilCN . The iterations
between theN Tanner graphs, through the connection nodes,
are referred to as “external.” Note that the results in Section VI
are obtained using this BP scheduling. However, different
scheduling can be considered, leading to slightly different
performance. As an example, in [14] the BP procedure is
performed, forN = 2, on the overall Tanner graph, without
resorting to internal and external iterations. Extending this
approach to a scenario withN ≥ 3 is an open and challenging
issue.

2Note that (10) in [19] contains a typographical error. In fact, eLLRx, j

and e−LLRx, j should be replaced byeLLRx, j/(1+ eLLRx, j ) and 1/(1+ eLLRx, j ),
respectively.
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V. EXIT CHART-BASED ANALYSIS

In order to evaluate the performance of the overall joint
decoder, we consider an EXIT chart-based approach. In partic-
ular, we build upon the EXIT chart-based approach proposed
in [24] and further analyzed in [18], [19], for the two-source
scenario, to characterize the evolution of the LLRs within each
component decoder. An extension of this EXIT chart-based
analysis method to generic scenarios withN ≥ 2 is presented in
the remainder of this section. As mentioned in Section I, in this
paper we will focus on component SCCCs, as this will allow
to provide simple guidelines to select “off-the-shelf” SCCCs.
We remark that the proposed framework can be applied also
to a scenario where LDPC component codes (and decoders)
are used [18], [19]. However, it is difficult to provide simple
guidelines for the selection of standard LDPC codes. Proper
LDPC code design forN ≥ 3, as shown in [14], [15] forN = 2,
is an interesting research direction which goes beyond the
scope of this paper.

Without loss of generality, we focus on codeCℓ, ℓ =
1, . . . ,N, and assume that the corresponding source transmits
the all-zero sequence. Therefore, the corresponding decoder
receives, at its input, a sequence of Gaussian observables
specified by the channel SNRγℓ. The channel LLRs are
fed to the inputs of the variable nodes. Density consistency
is imposed by modeling the LLR pdf3 Γch(z) as Gaussian
with mean µch and variance 2µch [25]. Accordingly, γℓ =
µ2

ch/2µch = µch/2. Using this assumption, the EXIT chart-
based approach proposed in [24] allows to evaluate the SNR
of the extrinsic information messages at the output of the
component decoder.

In Fig. 7, an illustrative scheme to analyze the evolution
of the a priori information through theℓ-th component de-
coder (ℓ= 1, . . . ,N), taking into account the soft information
generated by the other decoders, is shown. To account for
the presence of a priori information coming from the other
component decoders, let us denote by SNR(m)

in (m = 1, . . . ,N,

m 6= ℓ) the SNR of external messages{LLR(m)
j }k

j=1 entering
the set of connection nodes characterized by the joint PMF
P(XXX). We assume that also the messages{LLR(m)

j }k
j=1 have

a Gaussian distribution with mean 2SNR(m)
in and standard

deviation
√

4SNR(m)
in , so that each PDF is completely deter-

mined by the single parameter SNR(m)
in . These messages are

processed by the set of connection nodes with joint PMFP(XXX)

to produce a priori information messages{LLR(ℓ)
out, j}

k
j=1 for the

variable nodes of the Tanner graph ofCℓ.
Denote the PDFs of the messages{LLR(m)

j }k
j=1 as a(m)(z)

(m= 1, . . . ,N; m 6= ℓ) and the PDF of{LLR(ℓ)
out, j}

k
j=1 asb(ℓ)out(z).

It is worth noting that an EXIT chart-based approach requires
that all {a(m)(z)}N

m=1 are densities of messages corresponding
to all-zero transmitted information sequences. Hence, taking
into account the correlation model of{xxx(m)}N

m=1 introduced
in Section II and based on a common virtual originating bit,
for the purpose of analysis it is necessary to introduce two

3The variablez should not be confused with the output of the BSCs in the
correlation model (1).

(From the

channel)

γℓ

decoder

SNR
(ℓ)
out

P (XXX)

ℓ-th component

b
(ℓ)
out(z)

Γch(z)
{

LLR
(ℓ)
ch,j

}

b
(1)
in (z) {

LLR
(N)
in,j

}
b
(N)
in (z)

{

LLR
(1)
in,j

}
{

LLR
(ℓ−1)
in,j

}
b
(ℓ+1)
in (z)
{

LLR
(ℓ+1)
in,j

}

BSC(ρ)

BSC(ρ)BSC(ρ)BSC(ρ) . . .

a(1)(z) a(ℓ−1)(z){

LLR
(1)
j

} {

LLR
(ℓ−1)
j

} {

LLR
(ℓ+1)
j

}
a(ℓ+1)(z) a(N)(z)

SNR
(ℓ−1)
in SNR

(ℓ+1)
inSNR

(1)
in

BSC(ρ) . . .

{

LLR
(N)
j

}

a
(ℓ−1)
in (z) a

(ℓ+1)
in (z) a

(N)
in (z)a

(1)
in (z) {

LLR′(ℓ−1)
j

} {

LLR′(ℓ+1)
j

} {

LLR′(N)
j

}

{

LLR
(ℓ)
out,j

}

b
(ℓ−1)
in (z)

SNR
(N)
in

{

LLR′(1)
j

}

(From the other decoders)

Fig. 7. Scheme for the analysis of the evolution of the a priori information.

consecutive BSC-like blocks, each with cross-over probability
ρ , for each sequencexxx(ℓ), ℓ 6= m. Since a BSC with parameter
ρ “flips” a bit at its input with probabilityρ , the BSC-like
block flips the sign of an input LLR with the same probability.
The second BSC-like block is common for the set of the first
BSC-like blocks, in the sense that it flips all outputs of the first
BSC-like blocks exactly in the same way. At the output of the
first block there is an estimate of the sequence{bℓ}, whereas
at the output of the second block there is an estimate ofxxxℓ.
We remark that each of the first BSC-like blocks is associated
with each of the otherN − 1 decoders, whereas the second
(common) BSC-like block is the same for all soft messages
at the output of the previousN −1 BSC-like blocks. This is
compliant with the correlation model (1).

The messages at the input of the second BSC-like block
(i.e., at the output of the first set of BSC-like blocks), denoted
as{LLR′(m)

j }, are then characterized by the following PDFs:

a(m)
in (z) = ρa(m)(z)+ (1−ρ)a(m)(−z) m = 1, . . . ,N; m 6= ℓ.

(16)
The messages at the input of the set of connection nodes are
denoted as{LLR(m)

in, j}
k
j=1. Note that this scheme is compliant

with that, relative to a scenario withN = 2, proposed in [18],
[19]: in fact, for N = 2,the cascade of two BSC-like blocks
with parameterρ is equivalent to a single BSC-like block
with parameterpf = ρ2+(1−ρ)2. We remark that this block
combination can not be extended toN > 2, as the second BSC-
like block is common for the set of the first BSC-like blocks.

The PDFb(ℓ)out(z) of {LLR(ℓ)
out, j}

k
j=1 can eventually be com-

puted according to (15), with input messages{LLR(m)
in, j}

k
j=1,
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by applying well-known results for PDF transformation [26].
Note that, unlikea(m)(z) andΓ(ℓ)

ch , b(m)
in (z) cannot be Gaussian.

It can be verified that the analytical computation ofb(ℓ)out(z) has
an exponential complexity on the order ofNN−1

PDF , whereNPDF

is the number of samples of the numerical representation of
the PDFs used in the computer solver. In fact, for each output
sample inb(ℓ)out(z), all possible combinations (of lengthN −1)
from the input PDFs{a(ℓ)(z)} which return this sample should
be analyzed. In order to limit the computational complexity,
we resort to simulations to compute the distributionb(ℓ)out(z) at
the input of the decoder. A closed-form expression forb(ℓ)out(z)
is provided in [19] forN = 2 and can be extended directly to
scenarios with a generic value ofN.

After a fixed number of internal message passing decoding
operations,4 the extrinsic information sequence is extracted
from the soft-output information sequence at the output of
the decoder and the output SNR, denoted as SNR(ℓ)

out, is
evaluated. For a fixed value of the channel SNR, the above
steps allow to numerically determine theN-dimensional input-
output characteristic functionZ such that:

SNR(ℓ)
out= Z

(

SNR(1)
in , . . . ,SNR(ℓ−1)

in ,SNR(ℓ+1)
in , . . . ,SNR(N)

in ,γℓ
)

.

(17)
As previously shown, the component decoder can now be

analyzed through a classical density evolution approach [25],
the only difference being the fact that the messages at the
input of the decoder associated with the information bits need
to be modified in order to model the presence of a priori
information. In particular, in the iterative decoding procedure
the a priori information from the other decoder is added to the
channel information at the input of the information bits of the
decoder. From a message density viewpoint, this corresponds
to convolving the a priori message PDFb(ℓ)out(z) by the Gaussian
channel message PDFΓch(z):

m(ℓ)(z) = Γch(z)⊗ b(ℓ)out(z) (18)

where ⊗ denotes the convolution operator. However, one
should note that this operation is performedonly in correspon-
dence with the information bits, since the correlation model
applies only to those bits. At this point, the density evolution
procedure can be implemented in the classical way, by iterating
the concatenated decoder or the sum-product algorithm for a
fixed number of iterations. Note that the PDF at the input
of the decoder is no longer exactly Gaussian, due to the
transformation (15). However, the shape ofm(ℓ)(z) is similar to
that of a Gaussian PDF (see, e.g., [19]) and, therefore, one can
conclude that the proposed EXIT chart-based approach is still
accurate, although not exact. Numerical results, not reported
here for lack of space, confirm this statement.

The characteristic valuesλbal and λunb can be obtained
from the EXIT surface (17) in the following way. In the
unbalanced case, the value of the asymptote of the achievable
region can be computed by, first, assuming that the a priori
information sequences coming from the other decoders are
characterized by sufficiently large SNRs, assumed to be equal,

4In our numerical results with SCCCs, the number of internal iterations
between convolutional decoders employing the BCJR algorithm is set to 10.

i.e., SNR(m)
in = SNRin ≫ 0 (m = 1, . . . ,N; m 6= ℓ), and, then,

finding the value ofλℓ (or, equivalently,γℓ) for which there is
decoding convergence, e.g., SNRout ≫ SNRin.

In the balanced case, theN channels are characterized by
the same SNRγℓ = γbal, ℓ= 1, . . . ,N (balanced channels). We
can thus analyze the joint decoding convergence by drawing,
for a given value ofγ, the Z hypersurface and its inverse,
with respect to one of the inputs,Z−1. Moreover, since the
decoder is operating in a region characterized by the same
SNR for all channels, it is reasonable to assume the same
a priori SNR from all the sources, i.e., SNR(m)

in = SNRin

(m = 1, . . . ,N; m 6= ℓ). Therefore, the analysis, carried out
in [18], [19] for a scenario with two sources, can be ap-
plied here, by considering the curveZbal = Z(SNRin,γ) and
characterizing the decoding convergence during external iter-
ations (between the component decoders associated with the
n sources): the farther the curves, the faster the joint decoding
convergence to (theoretically) zero BER. When the two curves
touch each other, then global decoding convergence is not
achieved and the BER is bounded away from zero. The value
of γbal (or, equivalently, ofλbal) is the minimum for which
convergence is guaranteed.

VI. PERFORMANCEEVALUATION

We now evaluate the performance, in terms of achievable
rate and bit error rate (BER), considering various pragmatic
SCCC schemes. In particular, we assume that the transmitters
use identical rate-1/2 linear codes, consisting of the cascade
of an outer convolutional code (CC), a bit interleaver, and
an inner CC [27]. This code structure has been shown to
guarantee a very good performance in a classical AWGN
scenario [27], [28]. Moreover, as already observed in [12],our
results confirm that, forbalanced channels, SCCCs designed
for the single-user AWGN scenario (i.e., without a priori
information) work well also in the presence of correlation
(i.e., with a priori information in a JCD scheme). However,
the performance is still far from the capacity limit and
further optimization is needed. On the other hand, in the
unbalanced case, i.e., when the SNRs in the channels are
unequal, different channel coding strategies may entail better
performance. Therefore, the design of good SCCCs, which
allow to approach the theoretical performance limits, is of
interest.

A possible example of an SCCC which works very well in
the unbalanced regime was originally presented in [20] (on
the basis of the guidelines given in [29]) and is characterized
by the following generators:

Ginner(D) =

[
1+D2

1+D+D2+D3

]

Gouter(D) =

[
1+D2

1+D+D2

1
1+D+D2

]

.

The inner and outer codes have ratesrinner= 1 androuter= 1/2,
respectively. In the following, this SCCC will be denoted as
SCCC1.

On the other hand, we denote as SCCC2 the SCCC op-
timized for single-user AWGN scenarios with the following
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generators (as considered in [27]):

Ginner(D) =

[

1
1+D+D2+D3

1+D2+D3

]

Gouter(D) =
[
1+D2+D3 1+D+D2+D3] .

In this case, an overall 1/2 code rate is obtained via classical
puncturing, by selecting coded bits alternately from the two
component encoders with the following respective puncturing
matrices:

Pinner=

[
1 1 0
1 1 0

]

Pouter=

[
1 1
1 0

]

.

The inner and outer punctured CCs of SCCC2 have thus rates
rinner= 3/4 androuter= 2/3, respectively.

We remark that although the original SCCC in [27] has
a rate 1/4 and operates with a 0.7 dB gap from capacity,
other results, not shown here for lack of space, show that also
the punctured rate-1/2 SCCC considered here (i.e., SCCC2)
guarantees a similar performance in a single-user AWGN
scenario. It is worth noting that, unlike SCCC2 (optimized for
transmission over a single-user AWGN channel [27]), SCCC1

requires the use of an outerrecursive non-systematic CC.
Moreover, observe that the inner code of SCCC1 has rate 1
and, therefore, no puncturing is needed.

Finally, for comparison purposes we consider another
SCCC, denoted as SCCC3, which is optimized for a two-
source scenario in the presence of a priori information (i.e., an
unbalanced scenario), but it has very poor performance in the
balanced regime [20]. The component CCs of SCCC3 have
the following generators:

Ginner(D) =

[

1
1+D2+D3

1+D+D2+D3

]

Gouter(D) =

[
1+D2

1+D+D2

]

.

The outer and inner CCs have ratesrinner= 1/2 androuter= 1,
respectively.

The need for arecursive outer CC has been highlighted
in [29], where a BER-based optimization approach to design
SCCCs in a single-source scenario with a priori information
is presented. In fact, the scenario with a priori information
considered in [29] is equivalent to the unbalanced case of
interest in this paper, since a priori information is obtained
from the correlation among sources. The results in [29] show
that for sufficiently reliable a priori information and large
code memory, a recursive outer CC is needed to optimize the
performance (in [29], an exhaustive search is performed by
fixing the SCCC’s overall code rate to 1/2).

We do not explicitly consider LDPC codes. In fact, classical
systematic LDPC codes have similar performance to that of
SCCC2 [20], since they are optimized for a single AWGN
channel. In the considered orthogonal multiple access schemes
with correlated sources, proper LDPC code design is needed.
For instance, in [14], [15] the authors determine optimized
node distributions of LDPC codes for a two-source scenario,
together with a spatially-coupled graph-based detector. In
particular, the LDPC code proposed in [15] performs very well
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Fig. 8. EXIT charts of the component CCs for SCCC1 and SCCC3 and
various values of the SNR of input extrinsic a priori information. The number
of sources is equal toN = 50, the channel SNR isγ =−5.2 dB, andρ = 0.95.
Solid lines correspond to theZ2 curve, whereas the others correspond toZ−1

1 .

in all sub regions (balanced and unbalanced) of the achievable
region and is thus referred to as “universal.” However, the
generalization of this LDPC code design approach (and asso-
ciated decoding strategy) to a scenario withN > 2 represents
an interesting research direction.

A. EXIT Chart-based Analysis

We start analyzing the convergence of the considered codes
by means of the EXIT chart-based method proposed in Sec-
tion V. In particular, we first focus on the convergence of the
codes denoted as SCCC1 and SCCC3 for large numbers of
sources. We use the notation introduced in [18, Fig. 3], where
Z1 and Z2 are the transfer functions of the outer and inner
CCs, respectively. SNRe,in and SNRe,out denote, respectively,
the SNRs of input and output extrinsic a priori information:
the input a priori information comes from the otherN − 1
decoders (relative to correlated sources), whereas theoutput
a priori information is desired to the otherN − 1 decoders.
According to [18, Fig. 3], the input a priori information is fed
only to the input of the inner decoder of each SCCC decoder.

In Fig. 8, we show the EXIT charts of the component
CCs for various values of the SNR of input extrinsic a priori
information. The number of sources is equal toN = 50,
ρ = 0.95, and the channel SNR isγ =−5.2 dB (which is the
asymptotic value of the threshold achievable by both SCCCs
for large numbers of sources, as it will be more clearly shown
in Fig. 9). In the figure, the subscriptG corresponds to the
considered CC, i.e.,G = 1 for the inner code,G = 2 for
the outer code. As in classical EXIT chart-based analysis,
convergence is guaranteed if the tunnel between the transfer
functions of the component CCs is open. This is the case if
the SNR of the extrinsic a priori information (i.e., SNRe,in)
is sufficiently high. Since a large a priori information corre-
sponds to the unbalanced scenario of interest in this paper,
we can conclude that both codes converge in this scenario.
When the SNR of the a priori information is sufficiently small
(corresponding to the balanced case of interest in this paper),
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Fig. 9. EXIT charts of SCCC1 in the balanced regime forγ = −5.2 dB,
ρ = 0.95, and various values ofN.

instead, convergence is guaranteed only for SCCC1 and not
SCCC3. In fact, for SCCC1 SNRe,out = 0.08 is achieved for
an input value SNRe,in = 0.05 and, therefore, the extrinsic in-
formation increases with code iterations. With SCCC3, instead,
one obtains SNRe,out = 0.038 for SNRe,in = 0.05. This means
that the extrinsic information decreases with code iterations
and no convergence can be achieved. This behavior can be
explained by observing that SCCC1 has a powerful half-rate
outer CC which can perform well also in the absence of
reliable a priori information. SCCC3, instead, is characterized
by a rate-1 outer code which is not reliable for limited a priori
information (small values of the extrinsic SNR).

In Fig. 9, we present the EXIT charts of SCCC1 in a bal-
anced regime. In particular, the valueγ =−5.2 dB guarantees
convergence in this regime. In all cases,ρ = 0.95 and various
values ofN are considered. First, one should observe that all
curves tend to infinity for sufficiently large values of the input
SNR, meaning that there is convergence, in the unbalanced
scenario, for all considered values ofN. Moreover, forN ≥ 30
all EXIT curves are above the bisector line (see the zoom on
the side) and, therefore, the tunnel opens. This confirms that
both the balanced and the unbalanced cases converge to the
same SNR value for sufficiently large values ofN (in this case
γ =−5.2 dB).

B. Achievable Rate Results

We now present the achievable region for the considered
SCCCs. The achievable rates are measured by simply extrap-
olating, from the EXIT charts, the lowest rate for which the
tunnel opens. Our simulation results show a good agreement
between the EXIT chart-based rate identification method and
BER-based simulation results. In the latter case, the rate is
determined, through the formulaλ = 0.5log2(1+ γ), from the
SNR value for which BER= 10−5. Although the used capacity
formula is exact only for Gaussian inputs, it is approximately
valid also for BPSK modulation in the low-rate regime of
interest here. These results are partly presented in [18] and
the others are not shown here for conciseness.
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Fig. 10. λbal and λunb of the considered SCCC1 (case (a)) and SCCC2
(case (b)), as functions onN, for various values ofρ . Theoretical limits are
also reported as performance benchmarks.

In Fig. 10, the values ofλbal andλunb, with SCCC1 (case (a))
and SCCC2 (case (b)), are shown, as functions onN, for
various values ofρ . Theoretical limits are also reported as
performance benchmarks. First, one should observe that in
the unbalanced regime SCCC1 always outperforms SCCC2:
this is expected, as SCCC1 is optimized for these settings.
On the other hand, SCCC2 has a better performance in the
balanced case for small values ofN (e.g., N ≤ 5), since
the balanced case is “more similar” to a single-user AWGN
scenario. However, when the number of sources increases,
SCCC2 achieves the performance limits of the unbalanced
case (as predicted by our theoretical framework), but this
asymptotic limit is lower than that of SCCC1. Therefore,
SCCC1 becomes more effective. These results confirm the
predictions of our theoretical framework and lead to pragmatic
channel coding schemes that can be directly applied (with
good performance) to large scale scenarios.

For N = 2 sources, it is of interest to compare the per-
formance of the proposed “off-the-shelf” SCCCs with that
of the “universal” LDPC coded scheme proposed in [14],
[15]. In Fig. 11, we directly compare the two-dimensional
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Fig. 11. Two-dimensional (N = 2) region for the following coded schemes:
SCCC1, SCCC2, and the LDPC code-based proposed in [15].

achievable regions for the following three coded schemes:
SCCC1-, SCCC2-, and LDPC code-based, the latter from [15].
One can observe that the coded scheme in [15] outper-
forms our schemes. In fact, it is optimally designed for all
operational zones (both balanced and unbalanced), with a
spatially coupled decoding approach operating on the overall
joint graph obtained from the two component Tanner graphs.
The proposed approach, instead, is based on the idea of
passing messages between “standard” pragmatic component
decoders. Despite this inherent suboptimality, one can observe
that SCCC1, which is optimized for the unbalanced case,
allows to approach the performance of the scheme in [15]
in the unbalanced zone, with a standard decoding structure.
Similarly, the scheme based on SCCC2 (optimized for the
balanced regime) approaches the performance of the scheme
in [15] in the balanced zone. Building upon the proposed
pragmatic approach, our SCCC schemes can be implemented
and perform well with relatively short codewords, whereas,
to the best of our knowledge, we are not aware of a finite-
length parity-check matrix for the LDPC code in the scheme
in [15]—the results presented in [15] are based on a belief
propagation-based analysis for infinite codeword length.

C. BER Results

We now investigate the performance, in terms of BER,
of some of the proposed coding schemes (namely, SCCC1-
and SCCC2-based), considering various values of the number
of sources.5 All simulations have been performed using an
information word length equal to 50000. In Fig. 12, the BERs
of the proposed SCCC-based schemes, in both (a)unbalanced

5The performance of the SCCC3-based scheme is not shown since it is
much worse than that of the other schemes in the balanced caseand similar
to that of the SCCC1-based scheme in the unbalanced case.
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Fig. 12. BER, as a function of the SNR, for different coding schemes,
number of sources, andρ = 0.95. Theunbalanced case is considered in (a),
whereas thebalanced case is considered in (b).

and (b)balanced scenarios, is analyzed, considering various
values of N. In the unbalanced case, one can observe that
the SCCC1-based scheme, whose design is optimized for this
scenario, significantly outperforms the SCCC2-one scheme. As
expected, the SCCC2-based scheme has very poor performance
in the unbalanced case, as it is optimized for a single-source
scenario and cannot properly exploit the a priori information
coming from other decoders, even when this information is
very reliable. In the balanced case, instead, one should note
that the SCCC2-based scheme outperforms the SCCC1-based
scheme for small values ofN, whereas the latter scheme
becomes preferable for larger numbers of sources (e.g.,N = 9).
It can be observed that, for increasing values ofN, the perfor-
mance improvement of the SCCC1-based scheme, with respect
to the SCCC2-based one, increases. This is in agreement with
the convergence behavior of the (theoretical) achievable region
analyzed in Section III, according to which a good coding
scheme for the unbalanced case, for increasing values ofN,
guarantees a good performance in the balanced case as well.
This is also in agreement with the results in Fig. 10 for the
achievable rates.

On the basis of the theoretical considerations in Section III
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and the above presented results, practical channel code design
guidelines can be summarized as follows. If a channel code is
optimized in the unbalanced scenario, then itmay reach, for
increasing values ofN, the same asymptotic limit also in the
balanced case. However, the effective behavior in the balanced
scenario depends on the specific code design. For instance,
as shown in Fig. 8 through an EXIT chart-based analysis,
both SCCC1 and SCCC3 perform well in the unbalanced
case, but in the balanced scenario SCCC3 does not converge,
while SCCC1 does, as confirmed by the BER-based results in
Fig. 12 (b). If, on the other hand, the channel code has limited
convergence in the unbalanced case, then the asymptotic limit
will never be reached in the balanced case. In Fig. 12 (a),
SCCC1 is shown to outperform SCCC2 in the unbalanced
scenario for all considered values ofN, and the relative gap
increases for increasing values ofN. This indicates that the
asymptotic limit of SCCC1 in the unbalanced case is closer
to the theoretical limit than that of SCCC2, suggesting that
SCCC1 might asymptotically outperform SCCC2 also in the
balanced case: this happens for sufficiently large values ofN,
i.e., N ≥ 9. However, for smaller values ofN (i.e., N < 9),
SCCC2 outperforms SCCC1 in the balanced case.

Finally, it is of interest to understand what is the impact
of the number of sources when the correlation model (i.e., the
value of the parameterρ) is not perfectly known at the AP. To
this end, we investigate a mismatched scenario in which, while
the transmitted data are generated according to the correlation
model introduced in Section II with parameterρ , the receiver
uses an estimateρest of the true correlation parameterρ .
The performance is evaluated in terms of the minimum SNR
required to guarantee a target BER equal to 10−5. In Fig. 13,
the threshold SNR (denoted asγth) is shown, as a function
of ρest, in the unbalanced case and withρ = 0.95. Various
values of N are considered, and in all cases the SCCC1-
based scheme is used. As expected, the threshold SNR is
lowest forρ = ρest, i.e., when exact correlation knowledge is
available at the receiver. As already observed in [29] forN = 2,
SCCC1 guarantees a limited penalty even in the presence of a

moderate reliability estimation error. In other words, SCCC1-
based schemes are robust against estimation errors. Moreover,
the number of sources has no impact on the “shape” of the
threshold BER curve.

VII. C ONCLUDING REMARKS

In this paper, we have considered orthogonal multiple access
schemes with a generic number of correlated sources, where
the correlation is exploited at the AP. In particular, each source
uses an “off-the shelf” channel code to transmit, through an
AWGN channel, its information to the AP, where component
decoders, associated with the sources, iteratively exchange
soft information by taking into account the correlation. Inthe
presence ofN sources, we have first characterized the multi-
dimensional achievable region, defined as the ensemble of the
channel parameterN-tuples where arbitrarily small probability
of error is achievable. Our results show that, for asymptoti-
cally large values of the number of sources, the achievable
region approaches a translated hyperoctant. We also discussed
the speed of convergence of the achievable region to this
translated hyperoctant. Then, on the basis of an EXIT chart-
based approach, we computed the main (i.e., in unbalanced
and balanced scenarios) parameters of the achievable region
for a few representative pragmatic SCCCs. Our results with
these pragmatic coding schemes confirm the predictions of our
information-theoretic framework: in particular, a good coding
scheme for the unbalanced scenario tends, for large values of
N, to achieve the same asymptotic performance in the balanced
case as well. We also presented BER-based results of our
coding schemes, thus showing that they can be effectively
implemented for finite-length codewords.
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