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From Polar to Reed-Muller Codes: a Technique to
Improve the Finite-Length Performance

Marco Mondelli, S. Hamed Hassani, and Rüdiger Urbanke

Abstract—We explore the relationship between polar and RM
codes and we describe a coding scheme which improves upon
the performance of the standard polar code at practical block
lengths. Our starting point is the experimental observation that
RM codes have a smaller error probability than polar codes
under MAP decoding. This motivates us to introduce a family of
codes that “interpolates” between RM and polar codes, call this
family Cinter = {Cα : α ∈ [0, 1]}, where Cα

∣

∣

α=1
is the original

polar code, and Cα

∣

∣

α=0
is an RM code. Based on numerical

observations, we remark that the error probability under MA P
decoding is an increasing function ofα. MAP decoding has in
general exponential complexity, but empirically the performance
of polar codes at finite block lengths is boosted by moving along
the family Cinter even under low-complexity decoding schemes
such as, for instance, belief propagation or successive cancellation
list decoder. We demonstrate the performance gain via numerical
simulations for transmission over the erasure channel as well as
the Gaussian channel.

Keywords—Polar codes, RM codes, MAP decoding, SC decoding,
list decoding.

I. I NTRODUCTION

Polar Coding: Benefits and Drawbacks.Polar codes, which
were introduced by Arıkan in [1], are a family of codes which
provably achieve the capacity of a large class of channels,
including binary-input memoryless output-symmetric channels
(BMSCs), by means of encoding and decoding algorithms with
complexityΘ(N logN), N being the block length of the code.

In particular, for any BMSCW with capacityI(W ) and
for any rateR < I(W ), the block error probability under the
proposed successive cancellation (SC) decoding, namelyP SC

e ,
scales roughly as2−

√
N as N grows large [2]. This result

has been further refined and extended to the MAP decoder,
showing that bothlog2(− log2 P

SC
e ) and log2(− log2 P

MAP
e )

behave aslog2(N)/2 +
√

log2(N)/2 · Q−1(R/I(W )) +
o(
√

log2(N)) for any fixed rate strictly less than capacity [3],
[4]. Consequently, even at moderate block lengths, error floors
do not affect the performance of polar codes.

However, when we consider rates close to capacity, sim-
ulation results show that large block lengths are required in
order to achieve a desired error probability. Therefore, itis
interesting to explore the trade-off between the gap to capacity
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I(W )−R and the block lengthN when the error probability
is a fixed valuePe. In particular, it has been observed that
I(W ) − R scales asN−1/µ, where µ denotes the scaling
exponent [5]. Note that, in general, the scaling exponent isnot
related to the error exponent, since they concern two different
regimes: for the scaling exponent, we fix the error probability
and study the scaling of the gap to capacity with respect to
the block length; for the error exponent, we fix the rate and
study the scaling of the error probability with respect to the
block length. For transmission over the binary erasure channel
(BEC), an estimation for the scaling exponent is known,
namely µ ≈ 3.627. Therefore, compared to random codes
which have a scaling exponent of2, polar codes require larger
block lengths to achieve the same rate and error probability.
For a generic BMSC, taking as a proxy of the error probability
the sum of the Bhattacharyya parameters, the scaling exponent
is lower bounded by 3.553 [6] and upper bounded by 5.77 [7].
Furthermore, it is conjectured that the lower bound onµ can
be increased up to 3.627, namely, to the value for the BEC.

In order to improve the finite-length performance of po-
lar codes, several decoding algorithms have been proposed.
Maximum likelihood (ML) decoders are implemented via the
Viterbi algorithm [8] and via sphere decoding [9], but are
practical only for relatively short block lengths. A linear
programming (LP) decoder is introduced in [10], and the per-
formance under belief propagation (BP) decoding is considered
in [11]. The stopping set analysis for transmission over the
BEC is also provided in [12]. A successive cancellation list
(SCL) decoder is proposed in [13]. Empirically, the usage of
L concurrent decoding paths yields a significant improvement
in the achievable error probability and allows to obtain an
error probability comparable to that under MAP decoding with
practical values of the list size. However, it has been recently
shown that, under MAP decoding, the introduction of any finite
list does not change the scaling exponent [14]. In particular,
for any BMSC and for any family of linear codes with
unbounded minimum distance, list decoding cannot modify the
scaling behavior for finite values of the list size. Analogously,
under genie-aided SC decoding, the scaling exponent stays
constant for any fixed number of helps from the genie, when
transmission takes place over the BEC.

Reed-Muller Codes and Their Relation to Polar Coding.
RM codes were introduced by Muller [15] and rediscovered
shortly thereafter with an efficient decoding algorithm by Reed
[16]. The relation between polar codes and RM codes was first
pointed out in [1]. Performance comparisons were carried out
in [17], [18]. It was observed in [19] that Dumer’s recursive
algorithm for RM codes [20] is similar to the SC decoder
for polar codes. In addition, list decoding has been used
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also to improve the performance of RM codes [21], [22].
Furthermore, recursive techniques can be employed to decode
nested polarized codes in which the splitting process ends
at various short RM codes instead of the single information
bits used as end nodes in polar codes [23], [24]. Numerical
simulations and analytical results suggest that RM codes have
a bad performance under successive and iterative decoding,but
they outperform polar codes under MAP decoding [1], [11].
Indeed, RM codes have better minimum distance properties
and an hybrid design which combines the construction of RM
and polar codes is introduced in [25]. However, no rigorous
results are known and the fundamental problem concerning
whether RM codes are capacity-achieving under MAP decod-
ing, at least for some channels with a sufficient amount of
symmetry, remains open [26].

Contribution of the Present Work.In this paper we propose
an interpolation method between the polar code of block length
N and rateR and an RM code of the same block length and
rate. To do so, we describe a family of codesCinter = {Cα :
α ∈ [0, 1]} such thatCα

∣

∣

α=1
is the original polar code, and

Cα

∣

∣

α=0
is an RM code. We remark that experimentally the

error probability under MAP decoding increases withα for
transmission over the BEC and over the binary additive white
Gaussian noise channel (BAWGNC). Even if MAP decoding
is in general an NP-complete task, this result is relevant in
practice because picking suitable codes fromCinter boosts
the finite length performance of the original polar code also
when low-complexity suboptimal algorithms are employed. In
particular, a remarkable performance improvement is noticed
adopting the SCL decoder proposed in [13] and the BP
decoder. This performance gain could be substantial in the
sense of the reduction of the scaling exponent: according to
numerical simulations performed forN = 210 over the BEC,
the error probability under MAP decoding for the transmission
of Cα for α sufficiently small is very close to that of random
codes. As a result, the usage of codes inCinter potentially
improves the speed at which capacity is reached.

Organization.Section II points out similarities and differ-
ences between the polar and the RM construction and describes
explicitly the interpolating familyCinter for the special case of
the transmission over the BEC. Starting from the analysis of
the two extreme cases of MAP and SC decoding, Section III
shows how to improve significantly the finite-length perfor-
mance of polar codes by using codes of the formCα decoded
with low-complexity suboptimal schemes when transmission
takes place over the BEC. The interpolation method between
RM and polar codes is described for the transmission over
a generic BMSCW in Section IV, where the simulation
results for the BAWGNC are presented as a case study. Finally,
Section V draws the conclusions of the paper.

II. FROM POLAR TO RM CODES: AN INTERPOLATION
METHOD FOR THEBEC

Let n ∈ N andN = 2n. Consider theN × N matrix GN

defined as follows,

GN = F⊗n, F =

[

1 0
1 1

]

, (1)

whereF⊗n denotes then-th Kronecker power ofF . As it has
been formerly pointed out in [1], the generator matrices of
both polar and RM codes are obtained by suitably selecting
rows fromGN = (g1, · · · , gN)T .

In particular, theRM rule for building a code of block length
N and minimum distance2k for some fixedk ∈ {0, 1, · · · , n}
consists in choosing the rows ofGN with Hamming weight at
least2k. Thus, the rateR of this code is given by

R =

n
∑

i=k

(

n

i

)

N
. (2)

In general, if we require an RM code with fixed block length
N and rateR, whereR cannot be written in the form (2) for
somek ∈ N, we take as generator matrix any subset ofNR
rows of GN with the highest Hamming weights. Notice that
this criterion is channel-independent in the sense that it does
not rely on the particular channel over which the transmission
takes place.

On the other hand, thepolar rule is channel-specific. Indeed,
the N synthetic channelsW (i)

N (i ∈ {0, · · · , N − 1}) are
obtained fromN independent copies of the original channel
W . The rowgi is associated toW (i)

N and the synthetic channels
(and, therefore, the rows) with the lowest Bhattacharyya pa-
rameters1 are selected. In general, different channelsW yield
different choices of rows. Let us consider the simple case of
the transmission over the binary erasure channel with erasure
probability ε, in short BEC(ε), for fixed ε ∈ (0, 1). In this
particular scenario, the Bhattacharyya parameterZi associated
to W

(i)
N (and, therefore, togi) is given by

Zi(ε) = f
b
(i)
1

◦ f
b
(i)
2

◦ · · · f
b
(i)
n

(ε), (3)

wheref0(x) = 1 − (1 − x)2, f1(x) = x2, ◦ denotes function
composition, andb(i) = (b

(i)
1 , b

(i)
2 , · · · , b

(i)
n )T is the binary

expansion ofi over n bits, b(i)1 being the most significant bit
and b

(i)
n the least significant bit. In order to construct a code

of block lengthN and rateR, we select theNR rows which
minimize the expression (3).

The link between the RM rule and the polar rule is clarified
by the following proposition.

Proposition 1: The polar code of block lengthN and rate
R designed for transmission over a BEC(ε), whenε → 0, is
an RM code.

Proof: Suppose that the thesis is false, i.e., that we include
gj∗ , but not gi∗ , with wH(gi∗) > wH(gj∗), where wH(·)

denotes the Hamming weight. SincewH(gi) = 2
∑

n

k=1 b
(i)
k =

2wH(b(i)) for any i ∈ {0, · · · , N − 1} (Proposition 17 of [1]),
thenwH(b

(i∗)) > wH(b
(j∗)).

1The Bhattacharyya parameterZi of the synthetic channelW (i)
N

represents
a measure of the reliability of the channel:Zi is close to 0 or to 1 if and only
if the entropy of thei-th position given the previousi − 1 bits is close to 0
or to 1, respectively. Hence, ifZi is close to 0, then thei-th position can be
decoded with high probability given the previousi − 1 bits, while if Zi is
close to 1, the decoding fails with high probability.
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From formula (3), one deduces thatZi(ε) is a polynomial
in ε with minimum degree equal to2wH(b(i)). Hence,

lim
ε→0

Zi∗(ε)

Zj∗(ε)
= 0,

which means that there existsδ > 0 s.t. for allε < δ, Zi∗(ε) <
Zj∗(ε). Consequently, a polar code designed for transmission
over a BEC(ε), with ε < δ, which includesgj∗ must also
includegi∗ . This is a contradiction.

Recall that the transmission takes place overW = BEC(ε).
Let Cα be the polar code of block lengthN and rateR
designed for a BEC(αε). Whenα = 1, Cα reduces to the polar
code for the channelW , while, whenα → 0, Cα becomes an
RM code by Proposition 1. Consider the family of codesCinter
defined as,

Cinter = {Cα : α ∈ [0, 1]}. (4)

The codes inCinter provide aninterpolation method to pass
smoothly from a polar code to an RM code of the same rate
and block length. Indeed, consider the generator matrices of
the codes inCinter which are obtained reducingα from 1
to 0. We start from the generator matrix of the polar code
and the successive matrices are obtained by changing one
row at a time. In particular, numerical simulations show that
the row which is included in the next code (associated to a
smallerα) has a higher Hamming weight than the row which
was removed from the previous code (associated to a higher
α). Heuristically, this happens for the following reason. The
row indices chosen byCα are the ones which minimize the
associated Bhattacharyya parametersZi(αε) given by (3). As
f1(x) ≤ f0(x) for any x ∈ [0, 1], applyingf1 instead off0
makes the Bhattacharyya parameter decrease. However, also
the order in which the functions are applied is important, since
f0◦f1(x) ≤ f1◦f0(x) for anyx ∈ [0, 1]: if we fix wH(b

(i)), Zi

is minimized by applying first all the functionsf1 and then the
functionsf0. Therefore, the goodness of the indexi depends
both on the number of1’s in its binary expansionb(i) and on
the positions of these1’s. On the other hand, when designing
an RM code onlywH(b

(i)) matters and, forα small enough,
Cα tends to an RM code. As a result, asα goes from1 to 0,
the value ofZi(αε) depends more and more onwH(b

(i)) than
on the position of the1’s in b(i).

III. I MPROVING THE FINITE-LENGTH PERFORMANCE OF
POLAR CODES FOR THEBEC

The focus of this section is on the performance of the codes
in Cinter when transmission takes place over the BEC(ε). We
start considering the MAP decoder and then move to the SC
decoder introduced by Arıkan. By taking into account low-
complexity suboptimal decoding schemes which outperform
the original SC algorithm (e.g., SCL and BP), we highlight the
advantage of employing codes of the formCα. The simulation
results of this section refer to codes of fixed block lengthN =
210 and rateR = 0.5. The number of Monte Carlo trials is
M = 105.
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Figure 1. Error probabilityPMAP
e under MAP decoding for the transmission

of Cα over the BEC(ε), whenα varies from0 to 1 with a step of0.05 and
ε is given four distinct values. The block length isN = 210 and the rate
is R = 0.5. Observe thatPMAP

e is increasing inα for all values ofε,
which means that the minimum error probability is achieved by the RM code
Cα

∣

∣

α=0
.

A. Motivation: MAP Decoding

Since it has been observed that under MAP decoding
picking the rows ofGN according to the RM rule significantly
improves the performance with respect to the polar choice [11],
it is interesting to analyze the error probabilityPMAP

e (α, ε)
under MAP decoding for the transmission of the codeCα

over the BEC(ε). Although MAP decoding is in general an
NP-complete task, for the particular case of the BEC it is
equivalent to the inversion of a suitable matrix and, therefore,
can be performed inO(N3).

First of all, fix the value ofε and consider howPMAP
e

varies as a function ofα. As it is shown in Figure 1 for four
distinct values ofε, PMAP

e (α, ε) is increasing inα. In short,
the proposed interpolation method to pass from the polar code
Cα

∣

∣

α=1
to an RM codeCα

∣

∣

α=0
yields a family of codes with

decreasing MAP error probability. This conjecture, if proved,
would imply that RM codes are capacity-achieving for the
BEC, which is a long-standing open problem in coding theory.
Another evidence in support of this statement is as follows.
As it has been pointed out in Section II, the polar rule differs
from the RM rule in the fact that not only the number, but
also the position of the1’s in b(i) matters in the choice of
the row indices. In particular, polar codes prefer to set the
1’s in the least significant bits of the binary expansion ofi.
However, if one is concerned with achieving the capacity of
the BEC under MAP decoding, the specific order of the1’s
in the binary expansions of the row indices does not play any
role. Indeed, denote byF the set of row indices ofGN which
are not chosen for the generator matrix of the polar code (these
indices arefrozen, since they are not used for the transmission
of information bits) and letFc be its complement. Then, it
is possible to arbitrarily permute the binary expansionsb(i)

(i ∈ Fc) and still get a set of row indices which yields a
capacity-achieving family of codes under MAP decoding. This
fact is formalized in the following proposition.
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Proposition 2: Denote byFc the set of row indices chosen
by polar coding. Letπ : {1, · · · , n} → {1, · · · , n} be a
permutation and letPπ be the associated permutation matrix.
Construct the codeCπ by taking the rows ofGN whose
indices have binary expansionsPπb

(i) for i ∈ Fc. Let
ε ∈ (0, 1) and denote byPD

e (Cπ) the error probability under
the decoderD for the transmission ofCπ over the BEC(ε).
Then, PMAP

e (Cπ) ≤ P SC
e (Cι), Cι being the original polar

code.
Proof: As observed in [11], there existn! different rep-

resentations of the polar codeCι of block lengthN = 2n

obtained by permuting then layers of connections. Let us
apply the permutationτ to these layers and then run the SC
algorithm, denoting byP SC,τ

e (Cι) the error probability for
transmission over the BEC(ε). The application of the permu-
tation τ affects the Bhattacharyya parameterZi associated to
the synthetic channelW (i)

N , which is now given by

Zi(ε) = f
τ(b

(i)
1 )

◦ f
τ(b

(i)
2 )

◦ · · · f
τ(b

(i)
n )

(ε).

On the other hand, the generator matrix (and, consequently,
the setFc) does not change, because the code stays the same.
Therefore, the probability that the SC decoder fails when
applying the permutationτ to the layers of the codeCι equals
the probability that the SC decoder fails when the codeCτ is
employed. In formulas, for any permutationτ ,

P SC,τ
e (Cι) = P SC

e (Cτ ).

Denote by OSC the algorithm which runs SC decoding over
all then! possible overcomplete representation of a polar code.
When transmission takes place over the BEC, the OSC decoder
fails if and only if there exists an information bit which cannot
be decoded by any of thesen! SC decoders. LetPOSC

e (Cπ) be
the error probability under OSC decoding for transmission of
the codeCπ over the BEC(ε). Then,POSC

e (Cπ) ≤ P SC,τ
e (Cπ)

for any τ . Taking τ = π−1 and recalling that MAP decoding
minimizes the error probability, we obtain that

PMAP
e (Cπ) ≤ POSC

e (Cπ) ≤ P SC,π−1

e (Cπ) = P SC
e (Cι),

which gives us the desired result.
In Figure 2 we fix the value ofα and we analyzePMAP

e
as a function ofε. It is interesting to remark that already for
α = 0.3, the error probability for the transmission ofCα is
very close to that of random coding, which not only achieves
capacity, but does so with a more favorable tradeoff betweenN
andI(W )−R. Indeed, random codes have a scaling exponent
µ = 2, while the scaling exponent of polar codes isµ =
3.6272.

2Note that there is no conflict between the facts that (i) the error exponent
of RM codes under MAP decoding cannot be as good as that of random
codes because of their minimum distance [11] and (ii) the scaling exponent
of RM codes can match that of random codes. Indeed, the error exponent
and the scaling exponent concern two different limits. For example, an error
probability of the form2−a

√

N + 2−bN(C−R)2 for some constantsa and
b yields the error exponent of polar codes and, at the same time, the scaling
exponent of random codes.
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Figure 2. Error probabilityPMAP
e under MAP decoding for the transmission

of Cα over the BEC(ε), whenε varies from0.30 to 0.49 with a step of0.005
andα is given four distinct values. The block length isN = 210 and the rate
is R = 0.5. Remark that already forα = 0.3 the error performance ofCα

is comparable to that of random codes.

B. SC Decoding

After dealing with optimal MAP decoding, let us analyze
the performance of the codes inCinter under SC decoding. As
can be seen in Figure 3 for four distinct values ofε, the error
probabilityP SC

e (α, ε) under SC decoding for transmission of
the codeCα over the BEC(ε) is a decreasing function ofα.
Hence, the best performance are obtained using the polar code
Cα

∣

∣

α=1
. The theoretical reason of this behavior lies in the

fact thatP SC
e can be well approximated by the sum of the

Bhattacharyya parameters of the synthetic channels which are
selected by the polar code for transmission of the information
bits [27]. Formally, letFc(α) be the set of indices which are
selected by the polar codeCα. Then,

P SC
e (α) >

∑

i∈Fc(α)

Zi(ε). (5)

The bound (5) is tight and
∑

i∈Fc(α) Zi(ε) is minimized for
α = 1.

C. Something Between the Two Extremes: List Decoding and
Belief Propagation

Consider the SCL scheme introduced in [13] and denote
by P SCL

e (α, ε, L) the error probability under SCL decoding
with list size L for transmission of the polar codeCα over
the BEC(ε). Clearly, if L = 1, this scheme reduces to the SC
algorithm originally proposed by Arıkan, while forL ≥ 2NR,
the SCL decoder is equivalent to the MAP decoder, since the
list is big enough to contain all the possible2NR codewords.
Therefore, asL increases, we gradually pass from SC decoding
to MAP decoding.

If we fix α and we letL grow,P SCL
e (α, ε, L) monotonically

decreases fromP SC
e (α, ε) to PMAP

e (α, ε). Recall that, asα
goes from1 to 0, P SC

e (α, ε) increases, whilePMAP
e (α, ε)

decreases. Values ofα close to1 imply that P SCL
e (α, ε, L)

gets close to the MAP error probability for small values of
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Figure 3. Error probabilityP SC
e under SC decoding for the transmission of

Cα over the BEC(ε), whenα varies from0 to 1 with a step of0.05 and
ε is given four distinct values. The block length isN = 210 and the rate
is R = 0.5. Observe thatP SC

e is decreasing inα, which means that the
minimum P SC

e is achieved by the original polar codeCα

∣

∣

α=1
.

the list size. Ifα is reduced, a bigger list size is required
to obtain performance comparable to MAP decoding since
the underlying SC algorithm gets worse, butPMAP

e (α, ε)
becomes significantly smaller. In other words, a smallerα
implies a slower converge (in terms ofL) toward a smaller
error probability. This trade-off between MAP error probability
and list size required to reach it is illustrated in Figure 4 for
α = 0.9 andα = 0.4, where, as a benchmark, we represent
also the average error probability under MAP decoding for the
transmission of random codes.

In order to show that the usage of codes inCinter signifi-
cantly improves the finite-length performance of polar codes
for practical values of the list size, fixL and consider the
transmission ofCα for different values ofα. The results for
L = 8 and L = 32 are represented in Figure 5. The code
Cα

∣

∣

α=0.7
outperforms the original polar scheme already when

L = 8. If the decoder is allowed to takeL = 32, the
improvement in performance is even more significant and,
for example, the target error probabilityPe = 10−3 can
be obtained forε = 0.385 if we employ Cα

∣

∣

α=0.5
, while

ε = 0.325 is required if we employ the original polar code
Cα

∣

∣

α=1
. Remark that if the target error probability to be met

is very low, it is convenient to consider codesCα with small
α, since they will be able to achieve it for higher erasure
probabilities of the BEC. Indeed, observe that in the case
L = 32, Cα

∣

∣

α=0.3
outperforms the original polar code for

P SCL
e < 10−3. This effect is due to the fact that, for any

fixed rate less than capacity,P SC
e scales withN as 2−

√
N

and, hence, polar codes are not affected by error floors.
In general, it is convenient to consider codes of the formCα

whenever the decoding algorithm yields better results thanthe
SC decoder. As another example, consider the case of the BP
decoder. It has been already pointed out that the polar choice
of the row indices to be selected fromGN is not optimal for
the BP algorithm [11], [12], but no systematic rule capable of
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(a) α = 0.9
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(b) α = 0.4

Figure 4. Error probabilityP SCL
e under SCL decoding for the transmission of

Cα over the BEC(ε) for different values of the list sizeL, whenε varies from
0.30 to 0.49 with a step of0.005. The block length isN = 210 and the rate is
R = 0.5. As a benchmark, we represent also the error probability under MAP
decoding for the transmission ofCα (in black) and for the transmission of a
random code (in red). Observe that ifα is big (upper plot),P SCL

e converges to
PMAP
e already for small values of the list size. On the other hand, if α is small

(lower plot), bigger list sizes are required to get to the error probability of MAP
decoding, which in return becomes much smaller in value and,therefore, much
closer to the error probability of a random code. The fact that some curves
are not always increasing inε is not caused by a problem in the simulation.
Indeed, the code changes withε and, for a small variation of the channel
parameter, this can lead to such unexpected effects, which can be noticed also
in Figures 5 and 6.

outperforming polar codes is known. As can be seen in Figure
6, the interpolating familyCinter contains codes which achieve
a smaller error probability than that of the original polar code
Cα

∣

∣

α=1
for an appropriate choice of the parameterα.

IV. GENERALIZATION TO ANY BMSC

This section is devoted to the generalization of the ideas
expressed for the BEC in Sections II and III to the transmission
over a BMSCW . In particular, first we propose a method for
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(a) L = 8

0.3 0.35 0.4 0.45 0.5
10

−4

10
−3

10
−2

10
−1

10
0

ε

P
S
C
L

e

 

 

α = 1
α = 0.7
α = 0.5
α = 0.3

(b) L = 32

Figure 5. Error probabilityP SCL
e under SCL decoding for the transmission

of Cα over the BEC(ε), whenε varies from0.30 to 0.49 with a step of0.005
and for different values ofα. The block length isN = 210 and the rate is
R = 0.5. Already whenL = 8 (upper plot), a performance improvement is
obtained reducingα with respect to the original polar codeCα

∣

∣

α=1
. If the list

size is increased toL = 32 (lower plot), the advantage in considering codes
Cα with a smaller value of the tuning parameterα is even more evident.

constructing the family of codesCinter and, then, we analyze
the performance for the transmission over a BAWGNC.

A. General Construction of an Interpolating Family

Suppose that the transmission takes place over the BMSC
W and let Z(W ) be its Bhattacharyya parameter. In order
to construct the interpolating familyCinter, we consider the
family of channelsWinter ordered by degradation [28] such
that the element of the family with the biggest Bhattacharyya
parameter isW itself and the element of the family with the
smallest Bhattacharyya parameter is the perfect channelW opt,
in which the output is equal to the input with probability1.
There are many ways of performing such a task. In particular,
we can set

Winter = {Wα : α ∈ [0, 1]}, (6)
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Figure 6. Error probabilityPBP
e under BP decoding for the transmission of

Cα over the BEC(ε), whenε varies from0.30 to 0.49 with a step of0.005
andα is given four distinct values. The block length isN = 210 and the rate
is R = 0.5. Remark that the optimal performance is obtained with the code
Cα

∣

∣

α=0.8
.

where Wα = W with probability α, Wα = W opt with
probability 1 − α, and the receiver knows which channel has
been used. In formulas,Wα = αW + (1− α)W opt.

Since the convex combination of BMS channels is a BMS
channel,Wα is also a BMSC with Bhattacharyya parameter
Zα = αZ. Denote byCα the polar code for transmission over
Wα. Then, the interpolating familyCinter is defined as in (4).
This is a reasonable choice forCinter because of the following
result, which extends Proposition 1.

Proposition 3: Let W be a BMSC,W opt be the perfect
channel andα ∈ [0, 1]. Denote byCα the polar code of block
lengthN and rateR designed for transmission over the BMSC
Wα = αW +(1−α)W opt. Then, whenα → 0, Cα is an RM
code.

Proof: When transmission takes place over the BMSC
Wα, the Bhattacharyya parameterZi(Wα) of thei-th synthetic
channelW (i)

α,N (i ∈ {0, · · · , N − 1}) has the form (3), where
ε is replaced byZα = αZ, f1(x) = x2, and f0(x) can be
bounded as [1]

x ≤ f0(x) ≤ 2x− x2. (7)

Suppose thatgj∗ is included in the generator matrix of the
code, but notgi∗ , with wH(gi∗) > wH(gj∗). Then, using
(7), Zi∗ can be upper bounded by a polynomial inα with
minimum degreewH(gi∗) andZj∗ can be lower bounded by
a polynomial inα with minimum degreewH(gj∗). Thus, for
α small enoughZi∗ < Zj∗ and we reach a contradiction.

Remark that ifW = BEC(ε), then Wα = BEC(αε). In
general, there might be more natural ways to obtain the family
of codes Cinter, according to the particular choice of the
channelW . Indeed, in Section IV-B which deals with the case
of the BAWGNC, the interpolating family is constructed in a
different way.

Once obtained a family of codes of the formCα, where
Cα

∣

∣

α=1
is the polar code designed for transmission over the
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channelW andCα

∣

∣

α=0
is an RM code, numerical simulations

show that the error probability under MAP decoding is an in-
creasing function ofα. On the other hand, under SC decoding,
the optimal performance is still achieved usingCα

∣

∣

α=1
. If one

considers low-complexity decoding algorithms which get close
to the error probability under MAP decoding, the finite-length
performance of polar codes is significantly improved by using
the codeCα for a suitable choice of the parameterα.

B. Case Study: W = BAWGNC(σ2)

Let W be a binary additive white Gaussian noise channel
with variance of the noiseσ2, in shortW = BAWGNC(σ2),
and defineCα as the polar code designed for transmission
over Wα = BAWGNC(ασ2). As α → 0, Wα tends to the
perfect channelW opt andCα becomes an RM code. In order
to show the performance improvement guaranteed by the usage
of codes in the interpolating familyCinter defined as in (4),
consider the SCL decoder. To be coherent with the simulation
setup of [13], the numerical simulations refer to codes of fixed
block lengthN = 211 and rateR = 0.5. The number of Monte
Carlo trials isM = 105. The codes are optimized for an SNR
= 2 dB, namely,σ2 = 0.6309 (recall that SNR =1/σ2). The
results of Figure 7 are qualitatively similar to those represented
in Figure 5 for the BEC and testify the remarkable performance
gain achievable by codes of the formCα with respect to the
original polar codeCα

∣

∣

α=1
.

V. CONCLUDING REMARKS

As pointed out in [13], the error probability of polar codes
at practical block lengths can be reduced by acting both
on the decoder and on the code itself. Unfortunately, an
improvement only in the decoding algorithm does not seem to
be enough to change the scaling exponent [14]. In this work
we address the issue of boosting the finite-length performance
of polar codes by modifying jointly the code and the SC
decoding algorithm. In particular, we construct a family of
codesCinter = {Cα : α ∈ [0, 1]} of fixed block length and
rate which interpolates from the original polar codeCα

∣

∣

α=1
to the RM codeCα

∣

∣

α=0
. Numerically, the error probability

under MAP decoding decreases asα goes from 1 to 0. Since
MAP decoding is not practical for transmission over general
channels, we develop a trade-off between complexity and
performance by considering low-complexity decoders (e.g.,
BP, SCL). As a result, we show the significant benefit coming
from the adoption of codes inCinter via numerical simulations
for the BEC and the BAWGNC. This improvement in the
finite-length performance of polar codes can be substantial:
we provide experimental evidence of the fact that the error
probability under MAP decoding for the transmission over
the BEC ofCα for α sufficiently small is very close to that
of random codes, which achieve a better scaling exponent
than polar codes. An interesting open question concerns the
extension of the findings of this paper to non-binary channels
by constructing polar codes with arbitrary input alphabet sizes
[29].
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(b) L = 32

Figure 7. Error probabilityP SCL
e under SCL decoding for the transmission

of Cα over the BAWGNC(σ2), whereσ2 = 0.6309, the SNR varies from
1 to 3 with a step of0.125 andα ∈ {0.4, 0.6, 0.8, 1}. The block length is
N = 211 and the rate isR = 0.5. For the target error probabilityPe = 10−3

an improvement≥ 0.5 dB with respect to the original polar codeCα

∣

∣

α=1
can be noticed using the codeCα

∣

∣

α=0.8
whenL = 32.
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