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From Polar to Reed-Muller Codes: a Technique to
Improve the Finite-Length Performance

Marco Mondelli, S. Hamed Hassani, and Rudiger Urbanke

Abstract—We explore the relationship between polar and RM  I(W) — R and the block lengthiv when the error probability
codes and we describe a coding scheme which improves upon is a fixed valueP.. In particular, it has been observed that
the performance of the standard polar code at practical blok I(W) — R scales asN ~/# where ;, denotes the scaling
lengths. Our starting point is the experlmgntal observation that exponent[[5]. Note that, in general, the scaling exponenbts
R'Vé Col\ji% gaveda S“}ﬂ!er error probability thgn pola;r c_cl)d((ebs related to the error exponent, since they concern two differ
under ecoding. This motivates us to introduce a family : . : : e
codes that “interpolates” between RM and polar codes, calltis regimes: for the scallng exponent, we fix th_e error probabili

and study the scaling of the gap to capacity with respect to

family Cinter = {Ca : « € [0, 1]}, where Ca]a , Is the original

polar code, and C.| is an RM code. Based on numerical the block length; for the error exponent, we fix the rate and

observations, we remark that the error probability under MAp  Study the scaling of the error probability with respect te th
decoding is an increasing function ofa. MAP decoding has in  Plock length. For transmission over the binary erasure clan
general exponential complexity, but empirically the perfsmance ~ (BEC), an estimation for the scaling exponent is known,
of polar codes at finite block lengths is boosted by moving atm namely 4 ~ 3.627. Therefore, compared to random codes
the family Cinier €ven under low-complexity decoding schemes which have a scaling exponent ®f polar codes require larger
such as, for instance, belief propagation or successive azgllation  plock lengths to achieve the same rate and error probability
list decoder. We demonstrate the performance gain via numécal  For g generic BMSC, taking as a proxy of the error probability
simulations for transmission over the erasure channel as vieas the sum of the Bhattacharyya parameters, the scaling erpone

the Gaussian channel. is lower bounded by 3.5581[6] and upper bounded by 5.77 [7].
Keywords—Polar codes, RM codes, MAP decoding, SC decoding, Furthermore, it is conjectured that the lower boundionan
list decoding. be increased up to 3.627, namely, to the value for the BEC.

In order to improve the finite-length performance of po-
lar codes, several decoding algorithms have been proposed.
Maximum likelihood (ML) decoders are implemented via the

Polar Coding: Benefits and Drawback®olar codes, which  Viterbi algorithm [8] and via sphere decodingl [9], but are
were introduced by Arikan i [1], are a family of codes which practical only for relatively short block lengths. A linear
provably achieve the capacity of a large class of channelssrogramming (LP) decoder is introduced in][10], and the per-
including binary-input memoryless output-symmetric aiels  formance under belief propagation (BP) decoding is comsitle
(BMSCs), by means of encoding and decoding algorithms withn [11]. The stopping set analysis for transmission over the
complexity© (N log V), N being the block length of the code. BEC is also provided in[[12]. A successive cancellation list

In particular, for any BMSCW with capacity/(1W) and  (SCL) decoder is proposed in [13]. Empirically, the usage of
for any rateR < I(WW), the block error probability under the [, concurrent decoding paths yields a significant improvement
proposed successive cancellation (SC) decoding, nafgly  in the achievable error probability and allows to obtain an
scales roughly a2=vN as N grows large [[2]. This result error probability comparable to that under MAP decodindwit
has been further refined and extended to the MAP decodepractical values of the list size. However, it has been riégen
showing that botHog, (— log, PSC) andlog,(— log, PMAP)  shown that, under MAP decoding, the introduction of anydinit
behave aslog,(N)/2 + /log,(N)/2 - Q ' (R/I(W)) + list does not change the scaling exponent [14]. In particula
o(1/1og,(N)) for any fixed rate strictly less than capacity [3], for @ny BMSC and for any family of linear codes with
[4]. Consequently, even at moderate block lengths, errorglo Unbounded minimum distance, list decoding cannot modgy th
do not affect the performance of polar codes. scaling behawpr for finite valu_es of the list size. Analogiyu

However, when we consider rates close to capacity, siménder genie-aided SC decoding, the scaling exponent stays
ulation results show that large block lengths are required i constant for any fixed number of helps from the genie, when
order to achieve a desired error probability. Thereforas it transmission takes place over the BEC.

interesting to explore the trade-off between the gap tocigpa Reed-Muller dees and Their Relation to Polar _Coding.
RM codes were introduced by Muller [15] and rediscovered
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also to improve the performance of RM codés][21],]1[22].where F®™ denotes the:-th Kronecker power of”. As it has
Furthermore, recursive techniques can be employed to decotbeen formerly pointed out in_[1], the generator matrices of
nested polarized codes in which the splitting process endsoth polar and RM codes are obtained by suitably selecting

at various short RM codes instead of the single informatiorrows fromGy = (g1,--- ,gn5)7.
bits used as end nodes in polar codes [23]] [24]. Numerical In particular, theRM rule for building a code of block length
simulations and analytical results suggest that RM codes ha N and minimum distance” for some fixedk € {0,1,--- ,n}

a bad performance under successive and iterative decdulihg, consists in choosing the rows 6fy with Hamming weight at
they outperform polar codes under MAP decoding [1].] [11].least2*. Thus, the rateR of this code is given by
Indeed, RM codes have better minimum distance properties

and an hybrid design which combines the construction of RM " /n

and polar codes is introduced in_[25]. However, no rigorous Z ;

results are known and the fundamental problem concerning R=1=k _° (2)
whether RM codes are capacity-achieving under MAP decod- N

ing, at least for some channels with a sufficient amount oin general, if we require an RM code with fixed block length
symmetry, remains opef [26]. N and rateR, whereR cannot be written in the fornii2) for

Contribution of the Present Workin this paper we propose somek € N, we take as generator matrix any subset\oR
an interpolation method between the polar code of blockifeng rows of Gy with the highest Hamming weights. Notice that
N and rateR and an RM code of the same block length andthis criterion is channel-independent in the sense thabétsd
rate. To do so, we describe a family of cod&s.. = {Ca :  not rely on the particular channel over which the transroissi
a € [0,1]} such thatC’a]a:1 is the original polar code, and takes place.
Ca‘a: is an RM code. We remark that experimentally the On the other hand, thaolar ruleis channel-specific. Indeed,
error probability under MAP decoding increases withfor  the N synthetic channeIsI/VJ(\,i) (G € {0,---,N —1}) are
transmission over the BEC and over the binary additive whiteybtained fromN independent copies of the original channel
Gaussian noise channel (BAWGNC). Even if MAP decodingyy pe rowg; is associated tWJ(Vi) and the synthetic channels
is in general an NP-complete task, this result is relevant in,ng ' therefore, the rows) with the lowest Bhattacharyya pa
practice because picking suitable codes frGfke: bOOSIS | ametef are selected. In general, different chanrigisyield

Qdifferent choices of rows. Let us consider the simple case of
: . ! : ' the transmission over the binary erasure channel with ezasu
particular, a remarkable performance improvement is edtic

. ‘ robability €, in short BECe), for fixed ¢ € (0,1). In this
adopting the SCL decoder proposed In][13] and the BI:Particular scenario, the Br(llatzacharyya pararrgﬁteﬂzssociated
decoder. This performance gain could be substantial in thEO W (and. therefore. ta.) is given b
sense of the reduction of the scaling exle)onent: according t v (and, 19:) is @ y
numerical simulations performed fdy = 2*° over the BEC, (o) — £ R
the error probability under MAP decoding for the transnuissi Zi(e) = fyw o fypp o=+ fy (€), (3)
of C,, for « sufficiently small is very close to that of random . 2 9 .
codes. As a result, the usage of codeCif., potentially Wherefo-(.:v) =1 _8 —2) (l)fl((gf)) -t ’(?) dTer.10tes quctlon
improves the speed at which capacity is reached. composition, and™” = (bl(l.)’ by’,--,bu’)" is the binary

Organization. Section[]) points out similarities and differ- €xpansion ofi overn bits, b;” being the most significant bit
ences between the polar and the RM construction and describand b the least significant bit. In order to construct a code
explicitly the interpolating famil\Ci,t, for the special case of of block length N and rateR, we select theV R rows which
the transmission over the BEC. Starting from the analysis ominimize the expression(3).
the two extreme cases of MAP and SC decoding, Se€iidn Ill The link between the RM rule and the polar rule is clarified
shows how to improve significantly the finite-length perfor- by the following proposition.
mance of polar codes by using codes of the féfmdecoded Proposition 1. The polar code of block lengtiv and rate
with low-complexity suboptimal schemes when transmissioniz designed for transmission over a BEJ, whene — 0, is
takes place over the BEC. The interpolation method betweean RM code.

RM and polar codes is described for the transmission over  Proof: Suppose that the thesis is false, i.e., that we include
a generic BMSCW in Section[1V, where the simulatipn gj=, but not g;«, with wy(g;+) > wu(g;~), where wy(+)
results for the BAWGNC are presented as a case study. Finalljj.otes the Hamming weight. Sinag:(g;) — 2571 b _

SectionV draws the conclusions of the paper. g (b)) for anyi € {0, , N — 1} (Proposition 17 of[L]),
thenwy (b(z*)) > Wy (b(J*))

when low-complexity suboptimal algorithms are employed. |

Il. FROM POLAR TO RM CODES. AN INTERPOLATION

METHOD FOR THEBEC e Bratac — o charmay ()
. . e Bhattacharyya parametgs; of the synthetic chann represents
L.et n € NandN = 2". Consider theN x N matrix Gy a measure of the reliability of the channg; is close to 0 or tgl if and only
defined as follows, if the entropy of thei-th position given the previous— 1 bits is close to 0
or to 1, respectively. Hence, &; is close to 0, then thé-th position can be
F = 10 (1) decoded with high probability given the previous- 1 bits, while if Z; is
1 17 close to 1, the decoding fails with high probability.

Gy = F®",



From formula [(B), one deduces th#j(<) is a polynomial 0
in £ with minimum degree equal 1), Hence,

ZZ* -1 v

im () =0, 10 ¢ 1
=0 Zj-(e)

which means that there exists> 0 s.t. for alle < ¢, Z;-(¢) < 2 102

)

Z;«(g). Consequently, a polar code designed for transmission &

over a BEGe), with ¢ < §, which includesg;- must also

include g;+. This is a contradiction. [ | 3
Recall that the transmission takes place d#ér= BEC(e).

Let C, be the polar code of block lengtiv and rate R

designed for a BEQxe). Whena = 1, C,, reduces to the polar 107 ‘ ‘

code for the channél’, while, whena — 0, C,, becomes an 0 0.2 04

RM code by Propositionl 1. Consider the family of codgg.,

defined as,
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Figure 1. Error probabilityP™A" under MAP decoding for the transmission
Cinter = {Ca = [()7 1]} (4) of C, over the BEQe), whena varies from0 to 1 with a step 0f0.05 and
e is given four distinct values. The block length % = 210 and the rate

. . : . is R = 0.5. Observe thatPMAP s increasing ina for all values ofe,
The codes inCiyer prowde anmterpdatlon method to pass which means that the minimeilm error probability is achievgdhe RM code

smoothly from a polar code to an RM code of the same rate;
and block length. Indeed, consider the generator matri€es o
the codes inCi,; Which are obtained reducing from 1

to 0. We start from the generator matrix of the polar codea  \otivation: MAP Decoding

and the successive matrices are obtained by changing ONeg. o it has been observed that under MAP decoding

row at a time. In particular, numerical simulations showttha .~ . e
b (,Plcklng the rows ofGy according to the RM rule significantly

the row which is included in the next code (associated to improves the performance with respect to the polar choitf [1
smallera) has a higher Hamming weight than the row which tr is interesting to analyze the error probabiliMAF ()

was removed from the previous code (associated to a high ihder MAP decoding for the transmission of the code

«). Heuristically, this happens for the following reason.eTh AR
P : P over the BEQs). Although MAP decoding is in general an
row indices chosen by, are the ones which minimize the NP-complete task, for the particular case of the BEC it is

?f(s,xo)mit% (i)h ?(t)t? gf;?/riyg ?S‘ rﬁr'n:ppglﬁyi% %V?nnstté);? gfgs equivalent to the in.versio3n of a suitable matrix and, thenesf
makes the Bhattacharyya parameter decrease. However, aI%?)E.be p;arfcl)lrrr;_ed L'(D(Nl)' f q ider howPMAP
the order in which the functions are applied is importamtcsi Irst of all, fix the value ofs and consider how’s,
foofr(x) < frofo(x) foranyz € [0, 1]: if we fix wi (6®), Z; varies as a function ofe. As it is shown in Figurgll for four

isti MAP is i ing i
is minimized by applying first all the functiorn§g and then the distinct value; of, P, . () is increasing ina. In short,
functions f,. Therefore, the goodness of the indedepends the proposed interpolation method to pass from the polag cod

both on the number of's in its binary expansion® and on Cal,_, to an RM codeC, |, _, yields a family of codes with
the positions of thesé’s. On the other hand, when designing decreas_ng MAP error probability. This conjecture, .'f proved,
an RM code onlywy (b)) matters and, forx small enough, would imply that RM codes are capacity-achieving for the
C., tends to an RM code. As a result, agjoes froml to 0, BEC, which is a long-standing open problem in coding theory.

i Another evidence in support of this statement is as follows.
the value ofZ;(as) depends more and more an; (b)) than . : : , :
on the position of thd’s in b, As it has been pointed out in Sectibn Il, the polar rule dgfer

from the RM rule in the fact that not only the number, but
also the position of thd’s in b(Y) matters in the choice of
IIl. | MPROVING THE FINITE-LENGTH PERFORMANCE o  the row indices. In particular, polar codes prefer to set the
POLAR CODES FOR THEBEC I's in the least significant bits of the binary expansion:of
However, if one is concerned with achieving the capacity of
The focus of this section is on the performance of the codethe BEC under MAP decoding, the specific order of e
in Cinter When transmission takes place over the BECWe in the binary expansions of the row indices does not play any
start considering the MAP decoder and then move to the S@ile. Indeed, denote h¥ the set of row indices off y which
decoder introduced by Arikan. By taking into account low-are not chosen for the generator matrix of the polar codeé¢the
complexity suboptimal decoding schemes which outperfornindices arefrozen, since they are not used for the transmission
the original SC algorithm (e.g., SCL and BP), we highliglg th of information bits) and letF¢ be its complement. Then, it
advantage of employing codes of the fofip. The simulation is possible to arbitrarily permute the binary expansiofis
results of this section refer to codes of fixed block lenth= (1 € F°) and still get a set of row indices which yields a
210 and rateR = 0.5. The number of Monte Carlo trials is capacity-achieving family of codes under MAP decodingsThi
M = 10°. fact is formalized in the following proposition.

a=0"



Proposition 2: Denote byF* the set of row indices chosen 10° ‘

by polar coding. Letr : {1,---,n} — {1,---,n} be a ——a=1.0
permutation and leP, be the associated permutation matrix. oz 8Z
Construct the code”; by taking the rows ofGx whose 10471—&:(10.3

- ~random

indices have binary expansionB b for i e F¢. Let
e € (0,1) and denote by??(C) the error probability under

the decoderD for the transmission o, over the BEGe). 2 Lol
Then, PMAP(C,) < PS$€(C,), C, being the original polar Y
code.

Proof: As observed in[[11], there exist! different rep- 10

resentations of the polar cod&, of block lengthN = 2"

obtained by permuting the layers of connections. Let us
apply the permutationr to these layers and then run the SC 4 ‘ ‘ ‘
algorithm, denoting byPS®7(C,) the error probability for 0.3 0.35 0.4 0.45 0.5
transmission over the BEE). The application of the permu-
tation r affects the Bhattacharyya paramefgrassociated to

i (i) A ; Figure 2. Error probabilityP™ AP under MAP decoding for the transmission
the synthetic channél’, which is now given by of C,, over the BEGe), whene varies from0.30 to 0.49 with a step 0f0.005
and« is given four distinct values. The block lengthis = 210 and the rate
Z:(e) = (1)) © (i), O+ - @ (). is R = 0.5. Remark that already fox = 0.3 the error performance of’,
Z( ) f"(bl ) fT(b2 ) f"(b" )( ) is comparable to that of random codes.

On the other hand, the generator matrix (and, consequently,
the set/) does not change, because the code stays the same. g pecodin
Therefore, the probability that the SC decoder fails when tter deali g ith imal decodi | |
applying the permutation to the layers of the cod€, equals After dealing with optimal MAP decoding, let us analyze
the probability that the SC decoder fails when the c6teis ::gi %eerfggg‘r??ﬁel:gut%e 30?38%65;13;3#225{/ jged;oct?“i'ré% (;‘}‘S
employed. In formulas, for any permutatio -~ , e
Ploy . Y permutation probability PS€(«, ¢) under SC decoding for transmission of

PSST(0,) = PSC(C,). the codeC,, over the BEQ¢) is a decreasing function af.

¢ ¢ Hence, the best performance are obtained using the polar cod

Denote by OSC the algorithm which runs SC decoding oveFs|,—,- The theoretical reason of this behavior lies in the
all then! possible overcomplete representation of a polar coddact that P can be well approximated by the sum of the
When transmission takes place over the BEC, the OSC decodBhattacharyya parameters of the synthetic channels whieh a
fails if and only if there exists an information bit which gart ~ Selected by the polar code for transmission of the inforomati
be decoded by any of thes¢ SC decoders. LeP°SC(C;) be  bits [27]. Formally, let7<(«) be the set of indices which are
the error probability under OSC decoding for transmissibn oselected by the polar codg,. Then,
the codeC; over the BECe). Then,POSC(C,) < PSC7(C,)

o)
for any 7. Taking T = 7! and recalling that MAP decoding P (@) < Z Zi(e)- (5)
minimizes the error probability, we obtain that i€Fe(a)
. The bound((p) is tight an@d_,_ ..., Zi(¢) is minimized for
PYAP(C) < POSC(Cr) < PEOT(Ca) = PI9(C),  a =1, e
which gives us the desired result. [ ]

In Figure[2 we fix the value of and we analyze?MAP C. Something Between the Two Extremes. List Decoding and

as a function ok. It is interesting to remark that already for Belief P.ropaganon ) _

o = 0.3, the error probability for the transmission 6%, is CosnglLder the SCL scheme introduced [n![13] and denote

very close to that of random coding, which not only achievedy Fe~~(a.¢, L) the error probability under SCL decoding

capacity, but does so with a more favorable tradeoff betwéen With list size L for transmission of the polar cod€, over

andI(W)— R. Indeed, random codes have a scaling exponerie BEQe). Clearly, if L = 1, this scheme reduces to E\tlg SC

1 = 2, while the scaling exponent of polar codesis=  algorithm originally proposed by Arikan, while fdr > 27,

3.6274. the SCL decoder is equivalent to the MAP decoder, since the

list is big enough to contain all the possidl&® codewords.

2Note that there is no conflict between the facts that (i) thereexponent 1 herefore, ad. increases, we gradually pass from SC decoding

of RM codes under MAP decoding cannot be as good as that obrand to MAP decoding.

codes because of their minimum distancel [11] and (i) thdirgraxponent If we fix a and we letL grow, PSCL (o, ¢, L) monotonically

of RM codes can match that of random codes. Indeed, the exmnent o ragses frOHPCSC(a,s) to Pév[ P(oz,s). Recall that, as»

and the scaling exponent concern two different limits. Baneple, an error e ¢ < OMAP
probability of the form2—aVN 4+ 2-6N(C=R)* for some constanta and 995 from1 to 0, P>%(a,¢) increases, whilel’ (@)

: L
b yields the error exponent of polar codes and, at the same thieescaling ~ decreases. Values ef close tol lmpl_y_ that Pfé (a,e, L)
exponent of random codes. gets close to the MAP error probability for small values of
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Figure 3. Error probability?SC under SC decoding for the transmission of
Co over the BEQe), when a varies from0 to 1 with a step 0f0.05 and

e is given four distinct values. The block length % = 210 and the rate
is R = 0.5. Observe thatPSC is decreasing imy, which means that the
minimum PS¢ is achieved by the original polar cod&, | _,.

(@ a=0.9

the list size. Ifa is reduced, a bigger list size is required =L=8 /
to obtain performance comparable to MAP decoding since ——MAP (L = o) .
the underlying SC algorithm gets worse, bBMAP (a,¢) {2 MAD xandom 3
becomes significantly smaller. In other words, a smaller
implies a slower converge (in terms @f) toward a smaller °
error probability. This trade-off between MAP error probigp 1072 N
and list size required to reach it is illustrated in Fighteo# f
a = 0.9 anda = 0.4, where, as a benchmark, we represent ¢
also the average error probability under MAP decoding fer th 10

transmission of random codes. 03 035 04 045 05

In order to show that the usage of codesCip.. Signifi-
cantly improves the finite-length performance of polar code
for pra_Ctl(,:al values of Fhe list size, fiX, and consider the Figure 4. Error probability?SCL under SCL decoding for the transmission of
transmission ofC,, for different Va|UeS_0f0<-_ The results for ¢, over the BEGe) for different values of the list sizé&, whene varies from
L = 8 and L = 32 are represented in Figufé 5. The code0.30 to 0.49 with a step 00.005. The block length isV = 210 and the rate is

Ca‘ outperforms the original polar scheme already when? = 0.5. As a benchmark, we represent also the error probabilitetuhAP
L 22%7 If the decoder is allowed to také — 32. the decoding for the transmission @f, (in black) and for the transmission of a

. - f . inifi drandom code (in red). Observe thabifs big (upper plot) PSCT converges to
Improvement in performance IS even more significant andpMAP gjready for small values of the list size. On the other hahd,is small

for example, the target error probabilit). = 1073 can  (lower plot), bigger list sizes are required to get to theeprobability of MAP
be obtained fors = 0.385 if we employ C, , While decoding, which in return becomes much smaller in value tredefore, much
c = 0.325 is required if we employ the origlﬁgp'ﬁolar code closer to the error probability of a random code. The fact 8wme curves

) ] - are not always increasing iis not caused by a problem in the simulation.
Ca‘azl' Rer_na,lrk that if ,the target e_rror prObab”'t_y to be metIndeed, the code changes withand, for a small variation of the channel
IS very low, it is convenient to Cons_|der _COdéS W'th small  parameter, this can lead to such unexpected effects, whittbe noticed also
«, since they will be able to achieve it for higher erasurein Figured andl6.
probabilities of the BEC. Indeed, observe that in the case

L = 32, Ca‘a—og outperforms the original polar code for _ _ o
SCL ~ 10-3. This effect is due to the fact that, for any outperforming polar codes is known. As can be seen in Figure

A ; . X ; ) '
. L oSO . VN [6, the interpolating family;,.;., contains codes which achieve
fixed rate less than capacity;,™ scales with\V as 2 a smaller error probability than that of the original polade

and, hence, polar codes are not affected by error floors. . .
. : . Ca\ _, for an appropriate choice of the parameter

In general, it is convenient to consider codes of the fatm a=1
whenever the decoding algorithm yields better results than
SC decoder. As another example, consider the case of the BP IV. " GENERALIZATION TO ANY BMSC
decoder. It has been already pointed out that the polar ehoic This section is devoted to the generalization of the ideas
of the row indices to be selected frofy is not optimal for  expressed for the BEC in Sectidnk Il [ to the transraissi
the BP algorithm[[111],[[12], but no systematic rule capalfle o over a BMSCIV. In particular, first we propose a method for

() o = 0.4
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Figure 5. Error probabilityPSC under SCL decoding for the transmission
of C, over the BEGe), whene varies from0.30 to 0.49 with a step 0f0.005
and for different values ofv. The block length isN = 210 and the rate is
R = 0.5. Already whenL = 8 (upper plot), a performance improvement is
obtained reducinge with respect to the original polar codg, |a: . If the list
size is increased td = 32 (lower plot), the advantage in considering codes
C with a smaller value of the tuning parameteris even more evident.

constructing the family of code§;., and, then, we analyze
the performance for the transmission over a BAWGNC.

A. General Construction of an Interpolating Family

—4—a =1
——a =038
» —6—a =06
A ——a=04
10 ; ; ;
0.3 0.35 0.4 0.45 0.5

Figure 6. Error probabilityP2F under BP decoding for the transmission of
C over the BEQe), whene varies from0.30 to 0.49 with a step 0f0.005
and« is given four distinct values. The block lengthis = 210 and the rate
is R = 0.5. Remark that the optimal performance is obtained with théeco

Ca!a:O.S'

where W, = W with probability o, W, = W°P* with
probability 1 — «, and the receiver knows which channel has
been used. In formulasy, = aW + (1 — «)W°Pt.

Since the convex combination of BMS channels is a BMS
channel,IW,, is also a BMSC with Bhattacharyya parameter
Z, = aZ. Denote byC,, the polar code for transmission over
We. Then, the interpolating familg;,..., is defined as in[{4).
This is a reasonable choice 64, because of the following
result, which extends Propositigh 1.

Proposition 3: Let W be a BMSC,W°Pt be the perfect
channel andx € [0, 1]. Denote byC,, the polar code of block
length NV and rateR designed for transmission over the BMSC
Wy = aW + (1 — a)W°Pt, Then, whem — 0, C,, is an RM
code.

Proof: When transmission takes place over the BMSC
W, the Bhattacharyya parametgy(WW,,) of thei-th synthetic

channelWéfz\, (i € {0,--- , N —1}) has the form[{3), where
e is replaced byZ, = aZ, fi(z) = 2%, and fo(z) can be
bounded as [1]

z < fo(x) < 2z — 2% 7
Suppose thay;- is included in the generator matrix of the
code, but notg;-, with ww(gi+) > wu(g;~). Then, using
(@), Z;- can be upper bounded by a polynomial anwith

Suppose that the t(ansmission takes place over the BMS@iinimum degreevy (g;-) and Z;- can be lower bounded by
W and let Z(W) be its Bhattacharyya parameter. In ordera polynomial ina with minimum degreevy (g;-). Thus, for

to construct the interpolating familg;,;..,, we consider the
family of channelsW,,., ordered by degradation [28] such
that the element of the family with the biggest Bhattacharyy
parameter idV itself and the element of the family with the
smallest Bhattacharyya parameter is the perfect chdiiet,

in which the output is equal to the input with probability

a small enough?;- < Z;+ and we reach a contradictionm
Remark that ifiW = BEC(¢), then W, = BEC(ae). In
general, there might be more natural ways to obtain the yamil
of codesCiner, according to the particular choice of the
channellV. Indeed, in Sectionh TV-B which deals with the case
of the BAWGNC, the interpolating family is constructed in a

There are many ways of performing such a task. In particularifferent way.

we can set

Winter = {Wa : @ € [0, 1]}, (6)

Once obtained a family of codes of the forfi},, where

Ca\azl is the polar code designed for transmission over the



channellW andC’a\Ot:0 is an RM code, numerical simulations 0
show that the error probability under MAP decoding is an in-
creasing function ofr. On the other hand, under SC decoding,
the optimal performance is still achieved usiﬁg\a:l. If one o)
considers low-complexity decoding algorithms which gesel

to the error probability under MAP decoding, the finite-léng
performance of polar codes is significantly improved by gsin 3 a2
the codeC,, for a suitable choice of the parameter Al

oo
= o oo

)

B. Case Sudy: W = BAWGNC(o?)

Let W be a binary additive white Gaussian noise channel
with variance of the noise?, in shortiW” = BAWGNC(c?), 107
and defineC, as the polar code designed for transmission
over W, = BAWGNC(ac?). As a — 0, W, tends to the
perfect channelW°Pt and C,, becomes an RM code. In order
to show the performance improvement guaranteed by the usage
of codes in the interpolating familg;,.., defined as in[{4),
consider the SCL decoder. To be coherent with the simulation
setup of [13], the numerical simulations refer to codes adix
block lengthN = 2! and rateR = 0.5. The number of Monte
Carlo trials isM = 10°. The codes are optimized for an SNR
= 2 dB, namely,o? = 0.6309 (recall that SNR =1/0?). The
results of Figur€l7 are qualitatively similar to those regraged
in Figurel® for the BEC and testify the remarkable perforneanc
gain achievable by codes of the forf¥}, with respect to the
original polar codeC, | _

25 3

1 1.5

2
SNR (dB)

(@ L=8

1

V. CONCLUDING REMARKS 107"] s : T .
As pointed out in[[1B], the error probability of polar codes SNR (dB)
at practical block lengths can be reduced by acting both (b) L =32

on the decoder and on the code itself. Unfortunately, an

improvement only in the decoding algorithm does not seem tcﬁigge 7. EtLrorfo\cI)\?gt’ili“tyl-;’eSCL hunder2SCL0d6%%%dirtE fOSr ’\tlge transmfission
H H « over the o“), whereo” = 0. , the varies from

be enough to Change the sca_llng eXp.Or.lent [14]. In this Wor@ to 3 with a step of0.12% arzda € {0.4,0.6,0.8,1}. The block length is

we address the issue of boosting the finite-length perfocan 511 anq the rate igz = 0.5. For the target error probability. — 103

of polar codes by modifying jointly the code and the SCan improvement> 0.5 dB with respect to the original polar codga |, _,

decoding algorithm. In particular, we construct a family of can be noticed using the cod@. | _, , whenL = 32.

codesCinter = {Cy : « € [0,1]} of fixed block length and

rate which interpolates from the original polar cod’g]oé:1

to the RM codeC,| _,. Numerically, the error probability ACKNOWLEDGEMENT
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