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Abstract—Linear precoding and cooperative jamming for mul-
tiuser broadcast channel is studied to enhance the physicallayer
security. We consider the system where multiple independent
data streams are transmitted from the base station to multiple
legitimate users with the help of a friendly jammer. It is assumed
that a normalized linear precoding matrix is given at the base
station, whereas the power allocated to each user is to be
determined. The problem is to jointly design the power allocation
across different users for linear precoding and the cooperative
jamming at the friendly jammer. The goal is to maximize a
lower bound of the secrecy rate, provided that a minimum
communication rate to the users is guaranteed. The optimal
solution is obtained when the number of antennas at the friendly
jammer is no less than the total number of antennas at the users
and eavesdropper. Moreover, a suboptimal algorithm is proposed,
which can be applied for all the scenarios. Numerical results
demonstrate that the proposed schemes are effective for secure
communications.

Index Terms—Cooperative jamming, linear precoding, mul-
tiuser broadcast channel, physical layer security.

I. I NTRODUCTION

ENSURING security of communications at the physical
layer has attracted considerable attention in recent years

[1]–[7]. Different from the traditional cryptographic algo-
rithms at higher layers, physical layer security exploits the
physical characteristics of the wireless transmission medium.
For example, secrecy capacity was studied in [8]–[10] from
the information-theoretic perspective. Since secrecy capacity is
unknown in many cases, the achievable secrecy rate or signal-
to-interference-plus-noise ratio (SINR) was also adoptedin
some work as a metric of security [1]–[4], [11], [12].

Physical layer security for multiple antenna systems and/or
relay networks has been studied in [3], [7], [13]–[17]. Among
the existing work, the strategy of artificial noise or Cooperative
Jamming (CJ) is one of the effective approaches, which was
studied by Goel and Negi in [7], [13] and later by many other
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researchers [11], [12], [18], [19]. In most of existing works
on CJ, a most typical scenario is that the source transmits
only a single data stream to a single legitimate user in the
presence of one or multiple eavesdroppers, such as [1]–[3],[5].
In practice, however, multiple independent data streams may
be transmitted from the source to multiple legitimate users,
such as in multiuser broadcast channels, which has been a
very active research topic over the last decade. In the multiuser
broadcast channel, the eavesdropper may be interested in
any particular stream transmitted by the Base Station (BS).
Therefore, it is important to ensure that all the streams from
the BS should be kept confidential from the eavesdropper.
The zero-forcing approach solely carried out by the BS has
major limitations compared to the scheme of using CJ, since
it requires the number of antennas at the BS should be no
less than the total number of antennas at the eavesdropper and
the legitimate users. Also, the power required for zero-forcing
approach should be no less than a power budget. Using CJ,
the BS can benefit from the friendly jammer since the total
instantaneous power could be increases significantly. Also, the
CJ can be very effective since the friendly jammer can be
selected as the terminals who are close to the eavesdropper
but far from the intended receivers.

In the literature, the research on practical algorithms for
physical layer security in multi-user multi-stream broadcast
channels is limited. When the eavesdroppers’ channels are
known, which is a common assumption in the area of physical
layer security [3], [6], [20]–[24], it was shown in [3], [11],
[12] that jointly designing the linear precoding at the BS and
the optimal CJ is very difficult [3], [11], [12]. Very recently,
in [11], [12], some optimal CJ algorithms were studied under
the assumption that some existing linear precoding/decoding
schemes are applied at the BS and the legitimate users.
However, the algorithms in [11], [12] are somewhat limited
in the sense that the linear precoding matrix at the base
station is totally independent of the CJ, meaning that no
joint optimization between the BS and the friendly jammer
is considered at all. However, fully joint design of linear
precoding matrix and the CJ is very difficult. Actually, evenin
the case of conventional non-secure communications withno
security conditions orno eavesdropper, deriving truly optimal
linear precoding matrix is generally very difficult and remains
as an open problem. Addressing such shortcoming, in this
paper, we investigate joint designing of the CJ and the power
allocation of linear precoding matrix.

In this paper, we assume that the BS is able to collect the
channel information associated with the users, with which the
BS can pre-determine a normalized linear precoding matrix

http://arxiv.org/abs/1407.8494v1
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Fig. 1. System model.

except an individual power allocation to each user. Then the
power allocation is jointly optimized with the CJ. Also, we
assume the eavesdropper who has multiple antennas could
maximize the SINR for each data stream using optimal receive
beamforming [3], [25]–[29]. We assume that each user has one
antenna, and the eavesdropper is the legitimate terminal who
is currently unscheduled in the downlink. Thus, the channelof
eavesdropper is assumed known to the friendly jammer since
the eavesdropper is actually an active node in the wireless
network whose channel can be monitored. In the area of
physical layer security, this is a widely adopted common
assumption [3], [6], [20]–[24].

Notation: (·)H denotes the operator of conjugate transpose
and E[·] is the expectation operator. For positive Hermitian
matrix, (·) 1

2 denotes the Hermitian squared root.0N×M de-
notes anN × M matrix with all zero elements;IN denotes
an N × N diagonal matrix with diagonal elements equal to
one; andC denotes the set of complex numbers. Moreover,
we use A := B to denote thatA by definition equals
to B, and useA =: B to denote thatB by definition
equals toA. The notation‖ · ‖ denotes the Frobenius norm,
and ‖ · ‖1 denotes theL1 norm. Furthermore, the curled
inequality symbols� and� (and their strict forms≺ and≻)
are used to denote generalized inequalities: between vectors,
they represent componentwise inequalities; between Hermitian
matrices, they represent matrix inequalities. Finally, for two
matricesA ∈ CN×N andB ∈ CM×M , diag{A,B} denotes

the matrix

[

A 0N×M

0M×N B

]

.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multiuser broadcast channel as shown in Fig.
1, in which the BS transmitsK independent1 data streams
to K users, each of whom has a single antenna. We assume
the BS, the friendly jammer (FJ), and the eavesdropper (Eve)
haveN , L, andZ antennas, respectively. The channels from
the BS to the users, the BS to Eve, the FJ to the users, and
the FJ to Eve are denoted byF = [f1, · · · ,fK ] ∈ CN×K ,
H = [h1, · · · ,hZ ] ∈ CN×Z , B = [b1, · · · , bK ] ∈ CL×K ,
and G = [g1, · · · , gZ ] ∈ CL×Z , respectively. The CJ is
composed of several independent noises and it is denoted by

1This is widely adopted assumption for multi-user broadcastchannels.

J(t) =
∑Z

j=1 qjzj(t), whereqj denotes the weight vector for
the j-th noise andzj(t) is the j-th independently generated
Gaussian noise with zero mean and E[|zj(t)|2] = 1. Let W
denote the precoding matrix used at the BS, which is designed
for transmitting multiple data streams to multiple users with
single receive antennas. In the case of conventional communi-
cations withno security conditions orno eavesdropper, there
are many different ways to designW . For example,W can
be obtained in closed-form based on zero-forcing or minimum
mean squared error (MMSE) criterions [30]. Or,W might
be optimized while guaranteeing the QoS requirements of the
users. Unfortunately, in most scenarios where the users’ QoS
constraints are given, deriving truly optimalW is generally
very difficult and optimal solutions are generally unknown
[31]–[33].2

For secure communications, there might be few different ap-
proaches in determiningW . A simplest approach is to design
W simply as in the conventional non-secure communications.
A clear benefit is that one can utilize the existing results in
the literature. In this approach, however, the security issue
or jamming the eavesdropper is totally up to the CJ only
(i.e.,J(t)), with no coordination with precoderW . Thus, the
overall performance can be limited. This approach was used
in [11], [12]. The other extreme approach is that one tries to
perfectly carry out joint optimization ofW andJ(t). If such
optimization were doable, a clear benefit would be as follows:
the system could be perfectly optimized and the security issue
would be addressed by joint optimal coordination ofW and
J(t). Unfortunately, this approach is analytically intractable in
general. In fact, as discussed above, even optimizing onlyW

for the conventional (non-secure) communications is generally
very difficult when the users’ QoS constraints are given.

In this paper, we attempt a balanced approach between
the two extremes. Specifically, we carry outpartial joint
optimization of J(t) and W . To this end, we first rewrite
W asW = [

√
p1u1, · · · ,√pKuK ], where{‖uk‖ = 1 : k =

1, · · · ,K}. It is easy to see thatpk can be interpreted as the
power allocated to thek-th user, anduk can be interpreted as
the normalized precoding vector designed for thek-th user.3

In this paper, we will carry out joint optimization of the power
allocation {pk} and CJJ(t). For {uk}, one can use any
existing results derived for the non-secure communications.
Compared to the naive approach (with no joint optimization as
in [11], [12]), in our approach, the security issue is addressed
by joint optimal coordination of{pk} and J(t). Thus, our
approach outperforms the naive approach, which will be
numerically demonstrated in Section IV. Compared to the full
joint optimization ofJ(t) andW , which seems analytically
intractable, our approach is analytically tractable.

Note that ifL < Z, the degrees of freedom (DoF) at Eve
is larger than the DoF at FJ. Then it is always possible for

2Typically, only some iterative optimization methods were proposed, which
are not necessarily provide the truly optimal performance [33].

3The expressionW = [
√
p1u1, · · · ,

√
pKuK ] has been used in many

existing works in the non-secure communication to designW , such as in [32],
[34]–[36]. For example, in [34], the power assignment problem was considered
to design{pk : k = 1, · · · ,K} given {uk : k = 1, · · · , K}. In [32], [35],
[36], alternating optimizing{uk : k = 1, · · · ,K} and{pk : k = 1, · · · ,K}
were studied.
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Eve to cancel any jamming signal transmitted by FJ. In order
to ensure that CJ be an effective approach, we will always
assumeL ≥ Z throughout this paper and this assumption will
not be explicitly stated in what follows.

B. Problem Formulation

The SINR of thek-th stream at thek-th user can be written
as

SINRk(p,J(t)) =
pk|fH

k uk|2
∑

i6=k pi|fH
k ui|2 + bHk Σbk + σ2

:= SINRk(p,Σ),

(1)

whereΣ :=
∑Z

j=1 qjq
H
j ∈ CL×L is the covariance matrix

of CJ4, and σ2 is the noise variance at the users. Note that
the SINR depends onJ(t) only through Σ. This means
that the design ofJ(t) can be reduced to the design of
Σ. Thus, we will use notation SINRk(p,Σ) rather than
SINRk(p,J(t)). In order to guarantee reliable transmission
to each user, we design the power allocation vectorp =
[p1, p2, · · · , pK ]T and the CJ,J(t), such that the commu-
nication rate to userk is larger than a given rate threshold,
i.e., Ck := log (1 + SINRk(p,Σ)) ≥ C =: log(1 + τ),
whereC is the rate threshold andτ is the corresponding QoS
threshold for each user. On Eve’s side, using her multiple
antennas, it is possible for Eve to maximize the output
SINR of thek-th stream using optimal receive beamforming,

w̃k =
(

HHWWHH + σ2I +GH
ΣG

)−1

HHuk. The
output SINR can be written as

SINRe,k(p,Σ) :=

|√pkw̃
H
k HHuk|2

w̃H
k

(

∑K
i6=k piH

Huiu
H
i H + σ2I +GH

ΣG
)

w̃k

=

pku
H
k HH

(

∑K
i=1 piH

Huiu
H
i H + σ2I +GH

ΣG
)−1

Huk

1− pkuH
k HH

(

∑K
i=1 piH

Huiu
H
i H + σ2I +GH

ΣG
)−1

Huk

.

(2)

Note that in the above expression of SINR, the other(K − 1)
streams except the particulark-th stream are considered as
interferences when Eve tries to decode thek-th stream.

A possible optimization problem is to maximize the min-
imum secrecy rate under a total power constraint5 of linear
precoding and CJ, and constraints on the minimum rates to
the users:

max
p,Σ

{min
k

Cse,k} s.t.
K
∑

k=1

pk + tr(Σ) ≤ Ptot, Ck ≥ C,

pk ≥ 0, k = 1, · · · ,K,
(3)

whereCse,k = [log(1 + SINRk(p,Σ))− log(1 + SINRe,k(p,Σ))]+

is the secrecy rate for thek-th user’s data stream andPtot

4The number ofqj is Z because the expression of SINRU
e,k is a function

of Σ only throughGH
ΣG, which is aZ × Z matrix.

5Note that individual power constraint of the BS and the jammer might
also be of interest, which will be considered in further work.

denotes the maximum available power for both FJ and
BS. This problem (3) is generally very difficult to solve
because it is non-convex. For analytical tractability, we obtain
a lower-bound of the secrecy rate and use it as the cost
function. To this end, we first consider an upper bound of
SINRe,k(p,Σ) as

SINRU
e,k(pk,Σ) =

pku
H
k HH

(

pkH
Huku

H
k H + σ2I +GH

ΣG
)−1

Huk

1− pkuH
k HH

(

pkH
Huku

H
k H + σ2I +GH

ΣG
)−1

Huk

,

(4)

where it is easy to prove that SINRe,k(p,Σ) ≤
SINRU

e,k(pk,Σ) and the equality holds when
∑K

i=1 piH
Huiu

H
i H = pkH

Huku
H
k H . Using the upper

bound SINRUe,k(p,Σ), it is possible to obtain a lower bound
of the achievable secrecy rate:Cse,k ≥ CL,1

se,k, where

CL,1
se,k =

[

log(1 + SINRk(p,Σ))− log(1 + SINRU
e,k(pk,Σ))

]+
.

(5)
If CL,1

se,k is used as the cost function, the optimization problem
is given by

max
p,Σ

{min
k

CL,1
se,k} s.t.

K
∑

k=1

pk + tr(Σ) ≤ Ptot, Ck ≥ C,

pk ≥ 0, k = 1, · · · ,K.
(6)

Unfortunately, this problem is still difficult to solve in general.
Thus, we lower-boundCL,1

se,k again. Specifically, fromCk =

log(1 + SINRk(p,Σ)) ≥ C, we haveCL,1
se,k ≥ CL,2

se,k, where
CL,2

se,k = [C− log(1+SINRU
e,k(pk,Σ))]+. WhenCL,2

se,k is used
as the cost function, the optimization problem is given by

max
p,Σ

{min
k

CL,2
se,k} s.t. ‖p‖1 + tr(Σ) ≤ Ptot, Ck ≥ C,

pk ≥ 0, k = 1, · · · ,K.
(7)

Finally, from maxp,Σ{mink C
L,2
se,k} =

[

C −minp,Σ maxk log(1 + SINRU
e,k(pk,Σ))

]+
, the problem

(7) is equivalent to the following:

min
p�0,Σ

{

max
k

SINRU
e,k(pk,Σ)

}

s.t. ‖p‖1 + tr(Σ) ≤ Ptot,

SINRk(p,Σ) ≥ τ, k = 1, · · · ,K.

(8)

In the rest of the paper, we focus on solving the problem
(7) or its equivalent form (8). We will later show that when
L ≥ K + Z, the solution to (7) is also the solution to (6).
Unfortunately, the optimization problems (7) and (8) are still
non-convex since both SINRUe,k(pk,Σ) and SINRk(p,Σ) are
non-convex functions. Thus, it is generally not possible to
directly solve (7) or (8). In the next section, the solutionsto
(7) or (8) are studied.

Remark: In the sense of detection error probability, the
optimal strategy for Eve is the maximum likelihood (ML)
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detection. However, due to the nonlinearity of ML detection,
directly analyzing ML detection is very difficult. In this
paper, instead of the ML detection, we assume Eve uses
beamforming, which is optimal in the sense of maximizing
the SINR. Then a lower bound of the secrecy rate based on
the SINR upper bound is maximized, which is equivalent to
minimizing the SINR upper bound. An interesting question
is, “Which gives better performance for Eve?” LetPU-SINR

s

denote the symbol error rate (SER) when the optimal receive
beamforming to maximize the upper bound of the SINR is
used, andPML

s denote the SER for ML detection. We can
show thatPML

s ≥ PU-SINR
s . That is, using the upper bound of

the SINR is even more conservative than ML dedetection. The
proof is given in Appendix A.

III. O PTIMAL POWER ALLOCATION AND COOPERATIVE

JAMMING

In this section, we investigate the solution to problem (7).
Specifically, we first give the necessary and sufficient condition
for the existence of the solution to problem (7). Then we
derive the optimal solution to (7) whenL ≥ K + Z. Finally,
we propose an alternating algorithm based on an asymptotic
approximation to get a suboptimal solution to (7), which does
not require the conditionL ≥ K + Z.

A. Condition for Existence of Solution

The solution to (7) may not exist since the constraints
{SINRk(p,Σ) ≥ τ : k = 1, · · · ,K} may not be satisfied with
any p andΣ. Thus, studying the condition that the solution
exists is particularly important. In the following lemma, the
necessary and sufficient condition for the existence of the
solution is given.

Lemma 1: The solution to (7) exists if and only if

−σ2
(

∆
H
)−1

1K×1 � 0 and ‖−σ2
(

∆
H
)−1

1K×1‖1 ≤ Ptot,

(9)
where thek-th column of∆ ∈ CK×K is defined as
[

|fH
k u1|

2
, · · · , |fH

k uk−1|
2
,−

|fH
k uk|

2

τ
, |fH

k uk+1|
2
, · · · , |fH

k uK |2
]H

.

(10)
Proof: See Appendix B.

The condition given by (9) can be intuitively explained as
follows: For givenp, since SINRk(p,Σ) is maximized when
Σ = 0, the solution of (7) exists if and only if there existsp
satisfying‖p‖1 ≤ Ptot and SINRk(p) ≥ τ for all k, which are
actually the constraints in (7) when no CJ is transmitted. The
existence condition given by (9) is equivalent to the existence
for p that satisfies both‖p‖1 ≤ Ptot and SINRk(p) ≥ τ for
all k.

From Lemma 1, one can know that the optimal solution
exists if and only if (9) is satisfied. However, with the condition
(9), the problem (7) is still non-convex and solving the
non-convex problem is still very difficult. In the following
subsection, we first derive a necessary condition forΣ to
be optimal whenL ≥ K + Z and this condition turns out
to be very useful to obtain the actual optimal solution when
L ≥ K + Z.

B. Optimal Solution for L ≥ K + Z

In this subsection, we solve the problem (7) whenL ≥
K + Z. We first derive a very important condition for the
optimality of CJ’s covariance matrixΣ. Specifically, it turns
out that designing CJ to be orthogonal to the users’ channel is
optimal whenL ≥ K+Z. The result is given in the following
lemma.

Lemma 2: WhenL ≥ K + Z and the condition of (9) is
satisfied, the solutionΣopt to problem (7) must be orthogonal
to the users’ channels, which meansBH

Σopt = 0K×L.
Proof: See Appendix C.

Note that in the existing literature for CJ design, designing CJ
such that it has nulls at the users, i.e., zero-forcing condition,
is generally suboptimal (rather than optimal) [1], [6]. The
result of Lemma 2 shows the if the jammer has enough DoF,
the best scheme for the CJ to do is to jam the eavesdropper
without interfering the users since the jammer cannot help the
legitimate users.

In the following theorem, we show that using the result of
Lemma 2, it is possible to transform the non-convex problem
(7) to a convex problem, which can be readily solved.

Theorem 1: WhenL ≥ K + Z and the condition of (9) is
satisfied, the optimal power allocation vector,popt, is given by

popt = −σ2
(

∆
H
)−1

1K×1 � 0, (11)

and the optimal CJ is obtained byΣopt = Γ
H
optΓopt, where

Γ
H
opt =

[

G B
]

[

GHG GHB

BHG BHB

]−1 [
Λ

1/2

0K×Z

]

∈ C
L×Z ,

(12)
in which

Λ
1/2 = diag{

√

x1
−1 − σ2, · · · ,

√

xZ
−1 − σ2} ∈ C

Z×Z .
(13)

Denoting new variableη := maxk{SINRU
e,k(pk,Σ)}, the

vector x = [x1, · · · , xZ ]
T is the solution to the following

convex optimization problem:

x =arg min
0Z×1≺x� 1

σ2
1Z×1,η

η

s.t.
Z
∑

j=1

φjxj
−1 ≤ Ptot + σ2

Z
∑

j=1

φj − ‖popt‖1

pk

Z
∑

j=1

|akj |2xj ≤ η, k = 1, · · · ,K.

(14)

where ak = [ak1, ak2, · · · , akZ ]T := HHuk ∈ CZ×1

and φj is defined as thej-th diagonal element of
[

GHG−GHB
(

BHB
)−1

BHG

]−1

.

Proof: See Appendix D.
In Theorem 1, the optimal power allocation,popt, for linear
precoding can be computed in closed form by (11), and the
optimal CJΣopt can be computed in partially closed form by
(12) and (13), wherexj are readily obtained by solving the
convex optimization problem of (14) numerically, e.g., using
the interior-point method. The proposed optimal algorithmcan
also be implemented distributively, i.e.,popt can be computed
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by the BS using only the information ofF and then be
transmitted to the CJ. The CJ does not need to knowF . After
receivingpopt, the optimal CJ can be designed.

Finally, in the following lemma, we prove that the two
problems in (7) and (6) are equivalent whenL ≥ K + Z,
i.e., DoF at the FJ is equal to or larger than the total DoF at
the legitimate users and Eve.

Lemma 3: If L ≥ K + Z, the problems of (7) and (6) are
equivalent.

Proof: See Appendix E.

C. Suboptimal Solution

Note that the optimal algorithm given by Theorem 1 requires
the condition thatL ≥ K + Z. If L < K + Z, the inversion
in (12) does not exists since the matrix[G,B] ∈ CL×(Z+K)

does not have full row rank. Thus, the main limitation of the
optimal algorithm in Theorem 1 is that it cannot be applied
whenL < K+Z. Also, note that the conditionBH

Σ = 0 in
Lemma 2 is no longer a necessary condition for optimality of
Σ in the case ofL < K+Z, which can be intuitively explained
as follows. To make the conditionBH

Σ = 0 satisfied,K DoF
have been used for the FJ. Then the residual DoF at the FJ
to design CJ are just(L − K), which are less thanZ when
L < K + Z. In this case, Eve can easily null any CJ since
Eve has more DoF. Thus, the CJ is not effective anymore by
BH

Σ = 0 whenL < K + Z. This result is consistent with
what is known in the literature, i.e., zero-forcing is not optimal
in general. Consequently, in the case ofL < K + Z, the CJ
should be designed such that some power of jamming signal is
leaked to the users in order to effectively interfere Eve, rather
than zero-forcing. Unfortunately, the optimal solution to(7)
when L < K + Z is very difficult to obtain, because it is
non-convex.

In this subsection, we propose a suboptimal algorithm that
does not require the conditionL ≥ K + Z, which means
the suboptimal algorithm can be always used whetherL is
greater thanK +Z or not. The proposed suboptimal solution
is based on alternating algorithms. Note that the well-known
expectation-maximization (EM) algorithm and iterative water-
filling algorithm [37] are examples of the alternating opti-
mization algorithms. In particular, the alternating optimization
method is a common approach to handle non-convex problems
[35], [38]–[40].

The first step is to reformulate the problem (7) as an
equivalent optimization problem. We therefore consider its
equivalent problem (8). Since the rank ofΣ is Z, we can
always write6 Σ = Γ

H
Γ whereΓ ∈ CZ×L. Moreover, if we

defineck := Γbk, then‖ck‖2 = bHk Σbk is the amount of CJ
power received by thek-th user. Using this notation, the opti-
mal p andΣ of problem (8) can be denoted as functions ofΓ

andck asp({ck}) = −(∆H)−1[‖c1‖+σ2, · · · , ‖cK‖+σ2]T

andΣ = Γ
H
Γ. The optimal{ck : k = 1, · · · ,K} andΓ are

6Let the eigenvalue decomposition of Σ be Σ =

Ṽ diag{Λ̃, 0(L−Z)×(L−Z)}Ṽ
H

, where Λ̃ is a Z × Z diagonal matrix.

Then we can getΓ = [Λ̃
1

2 ,0Z×(L−Z)]V
H ∈ CZ×L.

obtained by the following non-convex optimization problem:

min
Γ,{ck},{xj},η

η

s.t. GH
Γ
H = [Λ1/2,0]TV H , bHk Γ

H = cHk , k = 1, · · · ,K,

Λ
1/2 = diag{x1, x2, · · · , xZ}, xj ≥ 0, j = 1, · · · , Z,

tr{ΓH
Γ} − ‖(∆H)−1[‖c1‖+ σ2, · · · , ‖cK‖+ σ2]T ‖1 ≤ Ptot,

δHk [‖c1‖+ σ2, · · · , ‖cK‖+ σ2]T
Z
∑

j=1

|akj |2
σ2 + x2

j

≤ η, k = 1, · · · ,K,

(15)

whereδk is thek-th row of−(∆H)−1. Note that problem (15)
is equivalent to the problem (8); thus, it does not require any
condition such asL ≥ K+Z. Unfortunately, directly tackling
(15) is still very difficult. This is becauseΛ1/2 defined by
(13) is non-convex inxj . Also, the third constraint of (15) is
non-convex inxj and η. Even if we assume other variables
are fixed exceptxj , the problem (15) becomes non-convex in
xj , which is very difficult to solve.

In the following, based on (15), we propose an alternating
algorithm which is asymptotically optimal. Specifically, we
consider the asymptotic situationPtot → ∞, which means that
the total power of FJ and BS can be large. Before proposing
an asymptotically optimal algorithm, in the following lemma,
we first derive an important property of optimal{xj} when
Ptot → ∞.

Lemma 4: When the condition of (9) is satisfied, the
optimal solution {xj} to the problem (15) must satisfy
limPtot→∞ xj → ∞, j = 1, · · · , Z.

Proof: See Appendix F.
When Ptot → ∞, it follows from Lemma 4 that

limPtot→∞
x2

j

σ2+x2

j

= 1. Using this asymptotic result in (15), it
is possible to derive an asymptotic version of the alternating
algorithm. Denoting̃c := [‖c1‖2, · · · , ‖cK‖2]T , we can write
p = [p1, p2, · · · , pK ]T , wherepk = δH

k (c̃ + σ2
1). Also, we

write Σ(Γ) = Γ
H
Γ, whereΓ can be determined by given

c̃ and {xj : j = 1, · · · , Z}. Then we propose an alternating
algorithm to obtaiñc and{xj : j = 1, · · · , Z}.

Alternating Algorithm:

• Initialize c̃ = 0.
• In each iteration:

- Step 1: Giveñc, {xj : j = 1, · · · , Z} are updated
by the following convex optimization problem:

{xj} = arg{xj} min
{xj≥0},Γ,η

η

s.t. GH
Γ
H = [diag{x1, · · · , xZ},0]T ,

tr{ΓH
Γ} ≤ Ptot −

K
∑

k=1

δHk (c̃ + σ2
1),

Z
∑

j=1

|akj |2
x2
j

≤ η

δHk (c̃ + σ21)
, k = 1, · · · ,K,

[

bH1 Γ
H
Γb1, · · · , bHKΓ

H
ΓbK

]T

� c̃.

(16)
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- Step 2: Given{xj : j = 1, · · · , Z}, c̃ is updated by
the following convex optimization problem:

c̃ =argc̃ min
c̃,Γ,η

η

s.t. GH
Γ
H = [Λ1/2,0]T ,

[

bH1 Γ
H
Γb1, · · · , bHKΓ

H
ΓbK

]T

� c̃

tr{ΓH
Γ}+

K
∑

k=1

δH
k (c̃+ σ2

1) ≤ Ptot,

0 ≤ δHk (c̃+ σ2
1) ≤ η

∑Z
j=1

|akj |2
x2

j

, k = 1, · · · ,K.

(17)

Note that above alternating algorithm must converge to a
critical point, since in each step the value of objective function
is monotonically decreasing and the optimal value is bounded.
More importantly, the proposed alternating algorithm doesnot
require any condition on the number of antennas at FJ, and
thus, it can be applied to bothL ≥ K + Z andL < K + Z.

Although the alternating algorithm gives a suboptimal so-
lution to (8), we can prove that ifL ≥ K + Z, the proposed
alternating algorithm is asymptotically optimal asPtot → ∞,
which is given in the following Lemma:

Lemma 5: When L ≥ K + Z and the condition (9) is
satisfied, the proposed alternating algorithm is asymptotically
optimal in the sense that asPtot → ∞, its solution converges
to the optimal solution.

Proof: See Appendix G.

From Lemma 5, one knows that, whenL ≥ K + Z, the
proposed alternating algorithm is asymptotically optimalin
the sense ofPtot → ∞. Then a natural question arising is
whether the proposed alternating algorithm is still asymp-
totically optimal in any sense whenL < K + Z. In the
following, we answer this question. Specifically, the answer is
that, whenL < K + Z, the proposed alternating algorithm is
asymptotically optimal in the sense ofB → 0 andPtot → ∞.
Note thatB → 0 is an important asymptotic case for the
following reason. As discussed before, whenL < K +Z, the
zero-forcing is not optimal, meaning that, whenL < K + Z,
the jamming signal must be received by the users with the
optimal CJ. Thus, whenL < K + Z, using CJ becomes
more effective only when the channelB from FJ to the users
becomes weaker, i.e.,B → 0. On the other hand, when
L < K+Z, if B → ∞, using CJ is not an effective approach
because the users will be significantly affected by the jamming
signal. WhenL < K + Z, therefore,B → 0 is an important
asymptotic case where adopting the approach of CJ is justified
and recommended.

In order to show the asymptotic optimality of the proposed
alternating algorithm in the sense ofB → 0 andPtot → ∞, we
first study the extreme case that the channelB is completely
blocked, i.e.,B = 0 andPtot → ∞.

Lemma 6: If B = 0 and the condition of (9) is satisfied,
the asymptotically optimal solution to (8) whenPtot → ∞ can

be obtained by the following convex optimization problem:

min
Γ,{xj},η

η s.t. GH
Γ
H = [Λ1/2,0]TV H ,

tr{ΓH
Γ} − σ2‖(∆H)−1

1‖1 ≤ Ptot,

pk

Z
∑

j=1

|akj |2
x2
j

≤ η, k = 1, · · · ,K.

(18)

Proof: SubstitutingB = 0 into (15) and using the
asymptotic resultσ2 + x2

j → x2
j , it is easy to see that

{ck = 0 : k = 1, · · · ,K} is optimal. Then we obtain (18),
which is a convex optimization problem ofΓ, {xj}, andη.

WhenB = 0, the result of Lemma 6 can be directly used.
On the other hand, for the case ofB → 0 (but B 6= 0)
which we are interested in, the result of Lemma 6 cannot be
directly used since the interference to the legitimate users must
be taken into account. The usefulness of Lemma 6 is that it
can be used to prove an asymptotic optimality of the proposed
alternating algorithm for the caseB → 0.

In the following lemma, we prove that the solution obtained
by the proposed alternating algorithm converges to the asymp-
totically optimal solution in Lemma 6 whenB → 0.

Lemma 7: When B → 0, the proposed alternating algo-
rithm in (16) and (17) is asymptotically optimal in the sense
that its solution converges to the optimal solution of Lemma
6 asPtot → ∞.

Proof: See Appendix H.
From the results of Lemmas 5 and 7, the proposed alternating
algorithm can be considered as a very effective suboptimal
method. Specifically, ifL ≥ K + Z the performance of
the proposed alternating algorithm converges to the optimal
performance given by Theorem 1 asPtot → ∞. Also, if
L < K + Z and the channelB between FJ and legitimate
users is weak, the performance of the proposed suboptimal
algorithm converges to optimal performance given by Lemma
6 whenPtot → ∞. These results will be numerically confirmed
in Section IV.

D. Comparison with Existing CJ

Most of the existing work on CJ, such as [1]–[3], [5], did
not consider multiple users or multiple data streams. Only
recently, the design of CJ for multiple users with multiple
streams has been studied in [11], [12]. However, the problem
of (7) and the obtained results are substantially different
from those of the existing CJ methods such as [11] and
[12]. In [11], the problem of minimizing the CJ power was
considered when multiple eavesdroppers existed. Since the
cost function considered in [11] is different from that of this
paper, the CJ solution in [11] is not comparable with the
results in this paper. Also, the limitation of [11] is that the
obtained CJ power could be very high, which may not be
practical. On the other hand, the problem in [12] is similar
to problem (8) of this paper: the problem is to minimize the
maximum achievable SINR at Eve subject to the CJ power is
constrained. The differences between [12] and this paper are as
follows: First, the optimization problems are different. In [12],
we considered to minimize the total power under the SINR
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constraints on legitimate users and eavesdropper, However, in
(8) , joint design of the power allocation and CJ is considered
to minimize a upper bound of the SINR at eavesdropper.
Furthermore, we also give an equivalent formulation of our
design problem in terms of the lower bound of the achievable
secrecy rate. Second, the precoding matrixW was assumed
to be known in [12], which means that no joint optimization
was considered at all between the BS and the FJ. Since fully
joint design ofW and CJ is analytically intractable in general,
we consider a balanced problem in this paper to design the
CJ and partialW . Furthermore, in [12] the CJ was simply
made orthogonal to the users’ channel without proving its
optimal sense. On the other hand, in this paper, it is proved
that such zero-forcing is optimal only whenL ≥ K + Z.
We also consider the caseL < K + Z which is much more
difficult thanL ≥ K+Z and an asymptotic optimal algorithm
is derived. Moreover, in [12] the SINR in the form of (2) was
used in the objective function, rather than the upper bound
of the SINR of (4), meaning that the results of [12] might be
rather optimistic from the perspective of the users. If the upper
bound of the SINR is used in [12], it can be shown that the
result of [12] is a special case of the result in this paper.

Lemma 8: When the upper bound of the SINR (4) is used
in the problem [12, Eq. (1)], by replacingR0 by I in [12],
the solution given by [12, Eq. (2) and Eq. (3)] is still valid,
which can be written as the same forms of (12) and (13), in
which x is determined by:

x = arg min
0Z×1≺x� 1

σ2
1Z×1,η

η

s.t.
Z
∑

j=1

φjxj
−1 ≤ σ2

Z
∑

j=1

φj + Pmax
tot ,

Z
∑

j=1

|√pkakj |2xj ≤ η, k = 1, · · · ,K,

(19)

wherePmax
tot is the CJ power constraint.

Proof: From the definition of̃akj in [12], one can see
that ãkj =

√
pkakj . Thus, whenp is given, the problem (14)

becomes equivalent to [12, Eq. (3)] by denoting(Ptot −‖p‖1)
asPmax

tot and (x−1
j − 1) asλj .

Comparing (19) to (14), one can see that (14) is more general
than (19) in the sense that the individual powerpk is optimized
in (14) along with (11), whereas the individual power is
assumed to be simply given in (19). If the power allocation
vectorp in (14) is assumed to be given without optimization,
then (14) reduces to (19). Therefore, the result of [12] can be
seen as a special case of the result of this paper.

IV. SIMULATIONS

In this section, we investigate the performance of the
proposed algorithms numerically. We set the noise power
σ2 = −10 dBm. The channel matricesH , G, B, andF are
generated according to Rayleigh fading such that the power
gain of each element of the matrices is0 dB. For the BS, we
assume the normalized linear precoding vectors are obtained
by the very well-known channel inversion algorithm [30], i.e.,
uk = ũk

‖ũk‖ where ũk is the k-th column ofF (FHF )−1.
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Fig. 2. Upper bound of the SINR at Eve versus the number of antennas at
Eve. Proposed optimal solution and the existing method [12].
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Fig. 3. Upper bound of the SINR at Eve versus the total power ofFJ and
BS. Proposed optimal solution and the existing method [12].

Monte Carlo experiments consisting of103 independent trials
are performed to obtain the average results. Note that the
complexity of optimal solution mainly depends on (i) the
computation ofΣopt, which is O(L3), and (ii) solving x

by convex optimization problem withZ variables, which is
about O(Z3). For the proposed suboptimal algorithm, the
computational complexity of the iterative algorithm mainly
depends on (i) the number of iterations, which is around5−15
in our examples, and (ii) the complexity of solving two convex
optimization problems, each withL2/2 + Z variables in an
single alternating iteration. So the computational complexity
is aboutO(L6), which is about102 times of the optimal
algorithm in our numerical examples.

The optimal algorithm whenL ≥ K + Z is investigated
in the first three examples and the minimized upper bound
of the SINR at Eve by (8) is demonstrated. We setN = 20,
K = 10, andL = 35 as default values, and change the values
of Ptot, τ , andZ in different examples. For comparison, we
also included the existing CJ in [12] using the upper bound
of the SINR of (4) as secure metric, which is also given in
(19). For (19), we assume half power ofPtot is allocated to
the BS and the other half ofPtot is allocated to the FJ, i.e.,
Pmax

tot = 1
2Ptot. In the first example, the numberZ of antennas

at Eve, is varied from5 to 20 and the upper bound of the SINR
defined by (4) is plotted in Fig. 2. From the figure, one can see
that the upper bound of the SINR increases by nearly10 dB
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Fig. 5. Lower bound of secrecy rate versus the total power of FJ and BS.

whenZ increases from5 to 20. Also, the upper bound of the
SINR at Eve is lower whenPtot is larger orτ is lower. In the
second example, we varyPtot from 15 dBm to35 dBm, which
is shown in Fig. 3 for different cases ofZ andτ . According
to the figure, increasingPtot is an effective way to reduce the
upper bound of the SINR at Eve, enhancing the security of the
network. We can also see from Fig. 3 that upper bound of the
SINR increases if more antennas are employed at Eve. In the
third example, the QoS threshold,τ , for users is changed from
5 dB to 20 dB. The corresponding upper bound of the SINR
at Eve is shown in Fig. 4. It is shown that by increasing the
QoS for users, the upper bound of the SINR at Eve increases
as well. This is because the power of data streams received by
Eve increases and also the capability of CJ is limited since the
power for CJ is reduced. Note that in all the three examples,
the proposed optimal CJ is always better than the existing CJ
of (19), because the optimal power allocation between the BS
and FJ is jointly designed with CJ in the proposed algorithm.

In the next three examples, we investigate the proposed
suboptimal alternating algorithm and the maximum of the
lower bound of the secrecy rate by (7) is demonstrated. Each
element of channelB is generated such that the power gain
of each element ofB is −30 dB. We setN = 10, K = 3,
Z = 15, and τ = 10 dB as default values, and changeL
andPtot in each example. First, we changePtot for different
values ofL, which is shown in Fig. 5. In the figure, the optimal
algorithm is plotted forL = 20 > K+Z andL = K+Z = 18
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Fig. 7. Lower bound of secrecy rate versus the channelB between FJ and
legitimate users.

for comparison, and the suboptimal alternating algorithm is
plotted forL = K + Z = 18 andL = 17 < K + Z. We also
included the lower bound of the secrecy rate when there is no
CJ. According to Fig. 5, the lower bound of the secrecy rate
is increasing whenPtot is increasing. From the caseL = 18,
one can see that the proposed suboptimal alternating algorithm
converges to the optimal algorithm whenPtot is large, e.g.,
larger than5 dBm in our example, the performance of two
algorithms is very close to each other. Next, we changeL
from 15 to 21 and fixPtot equals to20 dBm or 40 dBm. The
resulting lower bound of the secrecy rate is shown in Fig.
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Fig. 8. Imperfect CSI and asymptotic performance ofL → ∞.
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6. In the figure, the optimal algorithm is shown only when
L ≥ K+Z, whose performance is essentially the same as the
performance of the proposed alternating algorithm. One can
also see that the effect of transmitting CJ is severely limited
by the numberL. For example, whenL = 15 even if we
set Ptot = 40 dBm, the lower bound of the secrecy rate is
almost the same as the case when no CJ is transmitted, which
is close to0 bps/Hz. Thus, the CJ is not very useful whenL
is much lower thanK + Z. Finally, lettingK = 3, Z = 15,
andL = 17 < K + Z, we generateB according to Rayleigh
fading with different power gain, from10 dB to −80 dB. The
performance of the suboptimal algorithm is plotted compared
with the asymptotic caseB = 0 in Fig. 7. One can see that
asB → 0, the proposed suboptimal algorithm asymptotically
converge to the optimal performance whenB = 0. This means
even ifL < K+Z, the proposed suboptimal algorithm can be
very effective when the channel between the FJ and legitimate
users is very weak.

In the last example, we considered the Eve’s channels
G and B are perturbed by a Gaussian noise with variance
ξ2 = −10 dB, i.e. Ĝ = G + ∆G, B̂ = B + ∆B , where
G ∼ CN (0, I), B ∼ CN (0, I), ∆G ∼ CN (0, 0.1I), and
∆B ∼ CN (0, 0.1I). From the results in Fig. 8, one can see
that the performance of the proposed optimal CJ scheme dete-
riorates with imperfect CSI. However, the performance is still
much better than the case of no jamming. We also include the
performance limit forL → ∞. WhenL → ∞, the channels of
{bk} and{gj} tend to be uncorrelated. Thus, we haveΓ

H
opt ≈

(√
x−1

1
−σ2

|g
1
|2 g1, · · · ,

√
x−1

Z
−σ2

|gZ |2 gZ

)

andφj can be replaced by

1
|gj |2

since the matrix

[

GHG−GHB
(

BHB
)−1

BHG

]−1

reduces to diag{ 1
|g

1
|2 , · · · , 1

|gZ |2 } when L → ∞. However,
asymptotically 1

‖gj‖2 → 0 as L → ∞. Thus,η → 0. From
Fig. 8, one can see that, asL increases, the performance of
the proposed optimal algorithm gets close to the performance
limit of L → ∞.

V. CONCLUSION

We have proposed optimal and suboptimal algorithms for
joint design of the power allocation between different users
at BS and the CJ at the FJ to maximize a lower bound of
secrecy rate. Compared to existing works, our problem is more
general in the sense that joint optimizations are carried out. We
demonstrated the proposed CJ could effectively interfere Eve
to help the BS communicate confidentially with the legitimate
users. In particular, in order to make the CJ strategy effective,
it is important to employ enough number of antennas at the FJ.
Moreover, increasing the total power and choosing relatively
small τ could also enhance the security level. Finally, if the
channelB is weak, the CJ could also be effective even if
L < K + Z.

APPENDIX A

Let sk(t) denote thek-th stream with|sk(t)|2 = 1; then
the received signal of thek-th stream at Eve can be written
as r(t) =

∑K
k=1

√
pkH

Huksk(t) + n(t) + GHJ(t). Note

that sinceJ(t) is Gaussian, the termn(t) + GHJ(t) can
be seen as a colored Gaussian noise with covariance matrix
σ2I +GH

ΣG. Denotingak = HHuk, the ML detection at
Eve can be written as

max
{sk(t):k=1,··· ,K}

1

det(π
(

σ2I +GH
ΣG

)

)

· e−tr[(r(t)−
∑

K
k=1

√
pkaksk(t))

H
Σ

−1(r(t)−
∑

K
k=1

√
pkaksk(t))].

(A.1)

If we consider the upper bound of the SINR, the received
signal at Eve can be written asrk(t) =

√
pkH

Huksk(t) +

n(t) +GHJ(t). Then the ML detection at the eavesdropper
for the k-th stream can be written as

max
sk(t)

1

det(π
(

σ2I +GH
ΣG

)

)

· e−tr[(rk(t)−
√
pkaksk(t))

H
Σ

−1(rk(t)−
√
pkaksk(t))].

(A.2)

Let PU-ML
s denotes the SER of (A.2). Then it is obvious that

PU-ML
s ≤ PML

s .
Next, we prove thatPU-SINR

s = PU-ML
s . Note that (A.2) is

equivalent to

min
sk(t)

‖
(

σ2I +GH
ΣG

)−1/2

rk(t)

−
(

σ2I +GH
ΣG

)−1/2 √
pkaksk(t)‖2.

(A.3)

Let r̂k(t) :=
(

σ2I +GH
ΣG

)−1/2

rk(t) and âk :=

√
pk

(

σ2I +GH
ΣG

)−1/2

ak; then the ML estimate is

ŝk(t) =
âH

k

‖âk‖2 r̂k(t). We can show that ŝk(t) ∼
CN

(

sk(t),
1

‖ãk‖2

)

, and the SINR which is actually SNR, is

given by‖ãk‖2 = pka
H
k

(

σ2I +GH
ΣG

)−1

ak.
On the other hand, by maximizing the upper bound of the

SINR, we get

pku
H
k HH

(

pkH
Huku

H
k H + σ2I +GH

ΣG
)−1

Huk

=
pka

H
k

(

σ2I +GH
ΣG

)−1

ak

1 + pkaH
k

(

σ2I +GH
ΣG

)−1

ak

.

(A.4)

Then SINRUe,k(pk,Σ) = pka
H
k

(

σ2I +GH
ΣG

)−1

ak. Thus,
ML decoding is equivalent to optimal receive beamforming
when the upper bound of the SINR is used, which means
PU-SINR
s = PU-ML

s ≤ PML
s .

APPENDIX B
PROOF OFLEMMA 1

The existence condition of (7) is equivalent to the existence
condition forp � 0 andΣ that satisfies both‖p‖1 + tr(Σ) ≤
Ptot and SINRk(p,Σ) ≥ τ . Note that‖p‖1 ≤ Ptot − tr(Σ) ≤
Ptot and τ ≤ SINRk(p,Σ) ≤ SINRk(p,0). Thus, the exis-
tence condition forp is equivalent to the condition that satisfies
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‖p‖1 ≤ Ptot and τ ≤ SINRk(p,0), which is the traditional
non-secure problem for linear precoding design [35], [36].
The constraintsτ ≤ SINRk(p,0) for k = 1, · · · ,K can be
written as∆Hp + σ2

1 � 0. Thus, we can prove that‖p‖1
is minimized when the equality in∆Hp + σ2

1 � 0 holds.

Finally, the existence condition is‖−σ2
(

∆
H
)−1

1‖1 ≤ Ptot

and‖ − σ2
(

∆
H
)−1

1‖1 � 0.

APPENDIX C
PROOF OFLEMMA 2

We prove Lemma 2 by two steps. First, assumingΣ =
Γ
H
Γ, we reformulate the equivalent problem (8) so that

bHk Γ
H are denoted as new variables. Next, we prove

‖bHk Γ
H‖2 = 0, for all k = 1, · · · ,K, are satisfied for

the optimal solution, which impliesbHk Σbk = 0, for all
k = 1, · · · ,K. Thus, the propertyBH

Σ = 0 holds.

A. Step 1: Reformulation of (8)

we can introduce another variableη as η =
maxk{SINRU

e,k} and add the following new constraints:

pku
H
k HH

(

pkH
Huku

H
k H + σ2I +GH

ΣG
)−1

Huk ≤
η

1+η . Note that the CJ is only determined byGH
ΣG

which is a Z × Z matrix; thus, the rank ofΣ equals
to Z, which is smaller thanL. Using ak = HHuk,
Σ = Γ

H
Γ, and Q = ΓG, from the result in

Appendix A, the SINR constraint at Eve is equivalent

to pka
H
k

(

GH
ΣG+ σ2I

)−1

ak ≤ η, which can be written

as pk

σ2

[

aH
k ak − aH

k QH
(

QQH + σ2I
)−1

Qak

]

≤ η.

We denote the eigenvalue decomposition ofQQH as
QQH = V ΛV H , then

pk
σ2

aH
k

[

I −Λ
1/2

(

σ2I +Λ
)−1

Λ
1/2

]

ak

=

Z
∑

j=1

(

1− λj

σ2 + λj

)

pk|akj |2
σ2

=

Z
∑

j=1

pk|akj |2
σ2 + λj

,
(C.1)

whereλj is the j-th eigenvalue ofQQH . Next, we consider
the QoS constraints at the users:

pk|fH
k uk|2

∑

i6=k pi|fH
k ui|2 + bHk Σbk + σ2

≥ τ

⇔ pk
|fH

k uk|2
τ

≥
∑

i6=k

pi|fH
k ui|2 + ‖bHk Γ

H‖2 + σ2 ⇔
[

|fH
k u1|2, · · · , |fH

k uk−1|2,−
|fH

k uk|2
τ

, |fH
k uk+1|2, · · · , |fH

k uK |2
]

p

+ ‖bHk Γ
H‖2 + σ2 ≤ 0.

(C.2)

Using the definition of∆ ∈ C
K×K , we can write all users’

SINR constraints together. Denotingck = Γbk, the design

problem can be written as

min
{ck},p,Γ,η

η

s.t. GH
Γ
H =

(

V Λ
1/2

)H

, λj ≥ 0, j = 1, · · · , Z,
‖Γ‖2 + ‖p‖1 ≤ Ptot, bHk Γ

H = cHk , k = 1, · · · ,K,

pk

Z
∑

j=1

|akj |2
σ2 + λj

≤ η, k = 1, · · · ,K,

∆
Hp+

(

‖c1‖2, · · · , ‖cK‖2
)H

+ σ2
1 � 0, p � 0.

(C.3)

Note that for any orthogonal matrix̃V , we always have
‖ΓH Ṽ ‖2 = ‖Γ‖2 and ‖ck‖2 = ‖bHk Γ

H‖2 = ‖bHk Γ
H Ṽ ‖2.

Thus, we can simply removeV by replacingΓHV by Γ
H .

B. Step 2: Proving ‖ck‖2 = 0 for k = 1, · · · ,K
We first assumep is given. DenotingC = [c1, · · · , cK ],

we have

min
{ck},Γ,η

η s.t. GH
Γ
H = Λ

1/2, tr{ΓH
Γ} ≤ Ptot − ‖p‖1,

BH
Γ
H = CH , λj ≥ 0, j = 1, · · · , Z,

Z
∑

j=1

|akj |2
σ2 + λj

≤ η

pk
, k = 1, · · · ,K.

(C.4)

Note that the last constraint is only related toλj , which are
only used to determineΛ. Thus, we can first fixλj ; soΓ can
be obtained as a function ofλj as follows:

min
Γ

tr{ΓH
Γ} s.t.

[

GH

BH

]

Γ
H =

[

Λ
1/2

CH

]

. (C.5)

The solution to the above problem exists and has the following
closed form:

Γ
H =

[

G B
]

[

GHG GHB

BHG BHB

]−1 [
Λ

1/2

CH

]

. (C.6)

Then we have tr{ΓH
Γ} =

∑Z
j=1 φjλj + ‖Φ1/2

22 C‖2,
where φj is the j-th diagonal element of Φ11,

Φ11 :=

{

GH

[

I −B
(

BHB
)−1

BH

]

G

}−1

, and

Φ22 :=

{

BH

[

I −G
(

GHG
)−1

GH

]

B

}−1

. The variable

Γ can be replaced so that the residual variables areC, η, p,
andλj :

min
p�0,λj≥0,C

η

s.t. pk

Z
∑

j=1

|akj |2
σ2 + λj

≤ η, k = 1, · · · ,K,

Z
∑

j=1

φjλj + ‖Φ1/2
22 C‖2 + ‖p‖1 ≤ Ptot,

∆
Hp+

(

‖c1‖2, · · · , ‖cK‖2
)H

+ σ2
1 � 0.

(C.7)

Based on the above problem, we can prove that‖ck‖2 =
0 as follows: First of all, relax the constraint∆Hp +
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(

‖c1‖2, · · · , ‖cK‖2
)H

+ σ2
1 � 0 to ∆

Hp + σ2
1 � 0, then

it is easy to see that the optimal variablesλj , C, andp must
satisfyΦ1/2

22 C = 0 in the following relaxed problem:

min
p�0,λj≥0,C

η

s.t. pk

Z
∑

j=1

|akj |2
σ2 + λj

≤ η, k = 1, · · · ,K,

∆
Hp+ σ2

1 � 0

Z
∑

j=1

φjλj + ‖Φ1/2
22 C‖2 + ‖p‖1 ≤ Ptot.

(C.8)

Let C ′ = (c′1, · · · , c′K) and p′ be the optimal solution to
(C.7); then one can see thatC′ can be any matrix that satisfies
Φ

1/2
22 C ′ = 0 since the optimal value does not change once

Φ
1/2
22 C ′ = 0 is satisfied. Furthermore, if the optimalp′ for

(C.7) also satisfies∆Hp′+
(

‖c′1‖2, · · · , ‖c′K‖2
)H

+σ2
1 � 0,

the optimal solution to the relaxed problem (C.8) falls into
the feasible set of the problem (C.7). Obviously,{c′k = 0 :

k = 1, · · · ,K}, which satisfiesΦ1/2
22 C′ = 0, is the optimal

solution to the relaxed problem (C.7); and thus, they must be
the optimal solution to (C.8). Therefore, we have{‖ck‖2 =
0 : k = 1, · · · ,K}, which implies thatBH

Σ = 0.

APPENDIX D
PROOF OFTHEOREM 1

From (C.8) withC = 0, we can get the following non-
convex optimization problem

min
p�0,{λj}

η s.t. pk

Z
∑

j=1

|akj |2
σ2 + λj

≤ η, k = 1, · · · ,K,

Z
∑

j=1

φjλj + ‖p‖1 ≤ Ptot,∆
Hp+ σ2

1 � 0.

(D.1)

By solving the above problem, the optimal power
allocation p can be obtained and the optimal
CJ Σ can be computed asΣ = Γ

H
Γ, where

Γ
H =

[

G B
]

[

GHG GHB

BHG BHB

]−1 [
Λ

1/2

0

]

, in

which Λ
1/2 = diag{√λ1, · · · ,

√
λZ} and λj is the j-th

eigenvalue ofQQH . Using new variablesxj = 1
σ2+λj

and
yk = 1

pk
, the above problem turns to

min
{yk>0},{0<xj≤1}

η

s.t.
Z
∑

j=1

|akj |2xj − ηyk ≤ 0,

Z
∑

j=1

φj(
1

xj
− σ2) +

K
∑

k=1

1

yk
≤ Ptot,

yk ≤ |fH
k uk|2

τσ2 + τ
∑K

i=1,i6=k
|fH

k
ui|2
yi

, k = 1, · · · ,K.

(D.2)

Note that the above problem is a non-convex optimization
problem because the last constraint is non-convex. However,
we can prove that the equality of the last constraint must
hold, which makes it possible to reformulate the non-convex
optimization problem to a convex optimization problem.

First, we prove that if{x1, · · · , xZ , y1, · · · , yK} is a
feasible point of (D.2) and the last constraint is inactive
for a particular k that yk <

|fH
k uk|2

τσ2+τ
∑

K
i=1,i6=k

|fH
k

ui|
2

yi

,

then another feasible point can be obtained by replacing
yk with y′k where y′k :=

|fH
k uk|2

τσ2+τ
∑

K
i=1,i6=k

|fH
k

ui|
2

yi

> yk.

This is because all the constraints of (D.2) are satisfied:
∑Z

j=1 |akj |2xj − ηy′k <
∑Z

j=1 |akj |2xj − ηyk ≤ 0, and for

any j 6= k, yj ≤ |fH
j uj |2

τσ2+τ

(

∑

K
i=1,i6=j,i6=k

|fH
j

ui|
2

yi
+

|fH
j

uk|2

yk

) <

|fH
j uj |2

τσ2+τ

(

∑

K
i=1,i6=j,i6=k

|fH
j

ui|
2

yi
+

|fH
j

uk|2

y′
k

) . Next,

we note that the new feasible point
{x1, · · · , xZ , y1, · · · , yk−1, y

′
k, yk+1, · · · , yK} achieves

the lower value of objective function than
{x1, · · · , xZ , y1, · · · , yK}, since

∑Z
j=1 φj(

1
xj

− σ2) +
∑K

k=1
1
yk

is strictly decreasing withyk. Therefore, the
optimal {yk : k = 1, · · · ,K} must be achieved when the
last constraints for allk = 1, · · · ,K are active, which
means there areK variables andK equations for the
optimal yk =

|fH
k uk|2

τσ2+τ
∑

K
i=1,i6=k

|fH
k

ui|
2

yi

, k = 1, · · · ,K,

which is equivalent to∆Hp + σ2
1K×1 = 0. Thus,

we can solve the optimalp directly in closed form as
p = −σ2(∆H)−1

1K×1 � 0. Substituting the optimalp to
(D.1) and usingxj as variables instead ofλj , the obtained
problem is convex and then can be solved.

APPENDIX E
PROOF OFLEMMA 3

First, it can be readily shown that (7) and (6) are equivalent
if Ck = C for all k. Then it is suffices to show thatCk = C
holds for the proposed scheme whenL ≥ K + Z. Note that
in Lemma 2 of the paper, we have shown thatBH

Σopt = 0,
whereΣopt is the optimalΣ in (7). Therefore, SINRk(p,Σopt)
is only a function ofp. Furthermore, from Theorem 1 we
know that the optimalp in (7) can be computed bypopt =

−σ2
(

∆
H
)−1

1K×1. Substitutingpopt to SINRk(p,Σopt), one

can readily verify that SINRk(popt,Σopt) = τ , which means
Ck = C.

APPENDIX F
PROOF OFLEMMA 4

When Ptot → ∞, the third constraint of (15) is relaxed.
Therefore, we can rewrite (15) as:

min
Γ,{ck},{xj≥0},

max
k







pk

Z
∑

j=1

|akj |2
σ2 + x2

j







s.t. GH
Γ
H = [diag{x1, x2, · · · , xZ},0]T ,

bHk Γ
H = cHk , k = 1, · · · ,K,

(F.1)
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where pk = δHk [‖c1‖ + σ2, · · · , ‖cK‖ + σ2]T . Note that

maxk

{

pk
∑Z

j=1
|akj |2
σ2+x2

j

}

is a decreasing function of{xj}.
Thus, by increasingxj , the objective function of (F.1) can
always be decreased, which means ifxj → ∞ for all
j = 1, · · · , Z is feasible, thenxj → ∞ for all j = 1, · · · , Z
must be optimal. In order to prove thatxj → ∞ for
all j = 1, · · · , Z is feasible, without loss of generality,
we can instead prove that for any given feasible pointΓ

and {x1, x2, · · · , xZ}, one can always find another feasible
pointΓ′ and{x1, x2, · · · , xj−1, x

′
j , xj+1, · · · , xZ} which can

achieve a lower or equal objective value compared to than
{x1, · · · , xZ}. Note that since the objective function of (F.1)
is non-decreasing inxj , we only need to prove that the solution
of Γ′ exists for{x1, x2, · · · , xj−1, x

′
j , xj+1, · · · , xZ}, where

x′
j > xj . This is equivalent to proving that there exists

Γ
′ which satisfiesGH(Γ′ − Γ)H = [diag{0, · · · , 0, x′

j −
xj , 0, · · · , 0},0]T . Since Γ

′ ∈ CZ×L, G ∈ CL×Z, and
L ≥ Z, the solution ofGH(Γ′ −Γ)H = [diag{0, · · · , 0, x′

j −
xj , 0, · · · , 0},0]T must exist.

APPENDIX G
PROOF OFLEMMA 5

Denote the optimalxj : j = 1, · · · , Z of (15) as x∗
j

and the optimalη as ηopt. Then it is easy to prove that
at least one of the followingK constraints must be active:
pk

∑Z
j=1

|akj |2
σ2+(x∗

j
)2 ≤ ηopt, k = 1, · · · ,K. Thus, we can

write ηopt as ηopt = maxk

{

pk
∑Z

j=1
|akj|2

σ2+(x∗
j
)2

}

. Since in the
first iteration of Step 1 in (16) we setc̃ = 0 as the initial set-
ting, which is optimal whenL ≥ K+Z, denoting the resulting
η of (16) with c̃ = 0 asηinit , one can easily prove thatηsub ≤
ηinit ≤ maxk

{

pk
∑Z

j=1
|akj |2
(x∗

j
)2

}

, whereηsub denotes the ob-
tainedη by the proposed suboptimal algorithm. Then we have
ηsub− ηopt ≤ maxk

{

pk

(

∑Z
j=1

|akj |2
(x∗

j
)2 −∑Z

j=1
|akj |2

σ2+(x∗
j
)2

)}

=

maxk

{

pk

(

∑Z
j=1

σ2|akj |2
(x∗

j
)2[σ2+(x∗

j
)2]

)}

. When Ptot → ∞, we
haveηsub− ηopt → 0 sincex∗

j → ∞. Thus, the proposed sub-
optimal algorithm is asymptotically optimal whenL ≤ K+Z
andPtot → ∞.

APPENDIX H
PROOF OFLEMMA 7

To prove Lemma 7, we use the same methodology as in
Appendix G. Denote the optimalη of (16) with c̃ = 0 asηinit ,
the optimalη of the proposed suboptimal algorithm asηsub,
and the asymptotic optimalη of (15) whenPtot → ∞ asηasy.
Then it is easy to prove thatηasy≤ ηsub≤ ηinit . WhenB → 0,
the problem (15) turns to

min
Γ,{ck},{xj≥0},η

η

s.t. GH
Γ
H = [Λ1/2,0]TV H ,

pk

Z
∑

j=1

|akj |2
σ2 + x2

j

≤ η, k = 1, · · · ,K,

tr{ΓH
Γ} − ‖(∆H)−1[‖c1‖+ σ2, ‖c2‖+ σ2, · · · , ‖cK‖+ σ2]T ‖1

≤ Ptot,
(H.1)

from which one can easily prove thatck = 0 is optimal. One
the other hand, whenB → 0, the problem (16) with̃c = 0

turns to
min

{xj},Γ,η
η

s.t. GH
Γ
H = [diag{x1, · · · , xZ},0]T ,

xj ≥ 0, j = 1, · · · , Z,

tr{ΓH
Γ} ≤ Ptot −

K
∑

k=1

δH
k (σ2

1),

Z
∑

j=1

|akj |2
x2
j

≤ η

δH
k (σ21)

, k = 1, · · · ,K,

(H.2)

which is the same problem as (H.1). Thus, whenPtot → ∞,
the problem (15) converges to the problem of (16), which
meansηasy→ ηinit . Sinceηasy≤ ηsub≤ ηinit , we can conclude
that ηsub → ηasy as B → 0. Thus, the proposed suboptimal
algorithm is asymptotically optimal whenB → 0.
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