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Joint Energy and Spectrum Cooperation for Cellular
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Yinghao Guo, Jie Xu, Lingjie Duan, and Rui Zhang

Abstract—Powered by renewable energy sources, cellular com-
munication systems usually have different wireless trafficloads
and available resources over time. To match their traffics, it is
beneficial for two neighboring systems to cooperate in resource
sharing when one is excessive in one resource (e.g., spectrum),
while the other is sufficient in another (e.g., energy). In this paper,
we propose a joint energy and spectrum cooperation scheme
between different cellular systems to reduce their operational
costs. When the two systems are fully cooperative in nature
(e.g., belonging to the same entity), we formulate the cooperation
problem as a convex optimization problem to minimize their
weighted sum cost and obtain the optimal solution in closed
form. We also study another partially cooperative scenario
where the two systems have their own interests. We show
that the two systems seek for partial cooperation as long as
they find inter-system complementarity between the energy and
spectrum resources. Under the partial cooperation conditions,
we propose a distributed algorithm for the two systems to
gradually and simultaneously reduce their costs from the non-
cooperative benchmark to the Pareto optimum. This distributed
algorithm also has proportional fair cost reduction by reducing
each system’s cost proportionally over iterations. Finally, we
provide numerical results to validate the convergence of the
distributed algorithm to the Pareto optimality and compare the
centralized and distributed cost reduction approaches forfully
and partially cooperative scenarios.

Index Terms—Energy harvesting, energy and spectrum coop-
eration, convex optimization, distributed algorithm.

I. I NTRODUCTION

With the exponential increases of the wireless subscribers
and data traffic in recent years, there has also been a tremen-
dous increase in the energy consumption of the cellular sys-
tems and energy cost constitutes a significant part of wireless
system’s operational cost [1]. To save operational costs, more
and more cellular operators are considering to power their
systems with renewable energy supply, such as solar and
wind sources. For instance, Huawei has adopted renewable
energy solution at cellular base stations (BSs) in Bangladesh
[2]. Nevertheless, unlike the conventional energy from grid,
renewable energy (e.g., harvested through solar panel or
wind turbine) is intermittent in nature and can have different
availabilities over time and space. Traditional methods like
energy storage with the use of capacity-limited and expensive
battery are far from enough for one system to manage the
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fluctuations. To help mitigate such uncertain renewable energy
fluctuations and shortage,energy cooperationby sharing one
system’s excessive energy to the other has been proposed for
cellular networks (see [3], [4]). However, one key problem
that remains unaddressed yet to implement this cooperationis
how to motivate one system to share its energy to the other
system with some benefits in return (e.g., collecting some other
resource from the other system).

Besides energy, spectrum is another important resource for
the operation of a cellular system and the two resources
can complement each other. For example, to match peak-
hour wireless traffics with limited spectrum, one system can
increase energy consumption for transmission at a high op-
erational cost [1]. As it is unlikely that the two neighboring
systems face spectrum shortage at the same time, it is helpful
for them to share spectrum. Note that the similar idea of
spectrum cooperation can be found in the context of cog-
nitive radio networks [5]. However, like energy cooperation,
spectrum cooperation here also faces the problem of how to
motivate one system to share spectrum with the other.1

To the best of our knowledge, this paper is the first
attempt to study the joint energy and spectrum cooperation
between different cellular systems powered by both renewable
and conventional energy sources. The main contributions are
summarized as follows:

• Joint energy and spectrum cooperation scheme:In Sec-
tions II andIII , we propose a joint energy and spectrum
cooperation scheme between different cellular systems.
We provide a practical formulation of the renewable
energy availability, inefficient energy and spectrum coop-
eration and the conventional and renewable energy costs
in two systems’ operational costs.

• Centralized algorithm for full cooperation:In SectionIV,
we first consider the case offull cooperation, where two
systems belong to the same entity. We formulate the full
energy and spectrum cooperation problem as a convex
optimization problem, which minimizes the weighted sum
cost of the two systems. We give the optimal solution to
this problem in closed form. Our results show that it is
possible in this scenario, that one system shares both the
spectrum and energy to the other system.

• Distributed algorithm for partial cooperation:In Section
V, we further study the case ofpartial cooperation,
where the two systems belong to different entities and
have their own interests. We analytically characterize the
partial cooperation conditions for the two systems to

1It is possible for us to consider one resource’s cooperationover time
due to two systems’ independent traffic variations. Yet, such one-resource
cooperation scheme is not as widely used or efficient as the two-resource
cooperation scheme.
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exchange the two resources. Under these conditions, we
then propose a distributed algorithm for the two systems
to gradually and simultaneously reduce their costs from
the non-cooperative benchmark to the Pareto optimum.
The algorithm also takes fairness into consideration,
by reducing each system’s cost proportionally in each
iteration.

• Performance Evaluation:In SectionVI, we provide nu-
merical results to validate the convergence of the dis-
tributed algorithm to the Pareto optimum and show a
significant cost reduction of our proposed centralized and
distributed approaches for fully and partially cooperative
systems.

In the literature, there are some recent works studying
energy cooperation in wireless systems (e.g., [3], [4], [6]). [3]
first considered the energy cooperation in a two-BS cellular
network to minimize the total energy drawn from conventional
grid subjected to certain requirements. Both off-line and on-
line algorithms for the cases of unavailable and available
future energy information were proposed. In [4], the authors
proposed a joint communication and energy cooperation ap-
proach in coordinated multiple-point (CoMP) cellular systems
powered by energy harvesting. They maximized the downlink
sum-rate by jointly optimizing energy sharing and zero-forcing
precoding. Nevertheless, both works [3], [4] only considered
the cooperation within one single cellular system instead of
inter-system cooperation. Another work worth mentioning is
[6], which studies the wireless energy cooperation in different
setups of wireless systems such as the one-way and two-
way relay channels. However, different from our paper, which
realizes the energy cooperation via wired transmission, the
energy sharing in [6] is enabled by wireless power transfer
with limited energy sharing efficiency and cooperation can
only happen in one direction.

The idea of spectrum cooperation in this paper is similar
to the cooperative spectrum sharingin the cognitive radio
network literature (e.g., [7]–[9]), where secondary users (SUs)
cooperate with primary users (PUs) to co-use PUs’ spectrum.
In order to create incentives for sharing, there are basically two
approaches:resource-exchange[7], [8] and money-exchange
[9]. For the resource-exchange approach, SUs relay traffics for
PUs in exchange for dedicated spectrum resources for SUs’
own communications [7], [8]. Specifically, in [7], the problem
is formulated as a Stackelberg game, where the PU attempts to
maximize its quality of service (QoS), while the SUs compete
among themselves for transmission within the shared spectrum
from the PU. In [8], the PU-SU interactions under incomplete
information are modelled as a labor market using contract
theory, in which the optimal contracts are designed. For the
money-exchange approach, PU sells its idle spectrum to SUs.
The authors in [9] model the spectrum trading process as
a monopoly market and accordingly design a monopolist-
dominated quality price contract, where the necessary and
sufficient conditions for the optimal contract are derived.

It is worth noting that there has been another line of research
on improving the energy efficiency in wireless networks by
offloading traffic across different transmitters and/or systems
[10]–[12]. [10] studied a cognitive radio network, where the

PU reduces its energy consumption by offloading part of their
traffic to the secondary user (SU), while in return the PU shares
its licensed spectrum bands to the SU. [11] and [12] considered
a single cellular system, in which some BSs with light traffic
load can offload its traffic to the neighboring BSs and then
turn off for saving energy. Although these schemes can be
viewed as another approach to realize the spectrum and energy
cooperation, they are different from our solution with direct
joint energy and spectrum sharing. In these works, there is no
direct energy transfer between systems and the systems needs
to be significantly changed in order to realize the proposed
protocol.

Compared to the above existing works, the novelty of this
paper is twofold. First, we provide a comprehensive study
on the joint energy and spectrum cooperation by taking the
uncertainty of renewable energy and the relationship between
the two resources into account. Second, we consider the con-
flict of interests between systems and propose both centralized
and distributed algorithms for the cases of fully and partially
cooperative systems.

II. SYSTEM MODEL

We consider two neighbouring cellular systems that operate
over different frequency bands. The two systems can either
belong to the same entity (e.g., their associated operatorsare
merged as a single party like Sprint and T-Mobile in some
states of US [13]) or relate to different entities. For the purpose
of initial investigation, as shown in Fig.1, we focus our study
on the downlink transmission of two (partially) overlapping
cells each belonging to one cellular system.2 In each cell
i ∈ {1, 2}, there is a single-antenna BS servingKi single-
antenna mobile terminals (MTs). The sets of MTs associated
with the two BSs are denoted byK1 and K2, respectively,
with |K1| = K1 and |K2| = K2. We consider that the two
BSs purchase energy from both conventional grid and their
dedicated local renewable utility firms. For example, as shown
in Fig. 1, the local utility firm with solar source connects to
BS 1 via a direct current (DC)/DC converter, the other one
with wind source connects to BS 2 through an alternating
current (AC)/DC converter, and power grid connects to both
BSs by using AC/DC converters. By combining energy from
the two different supplies, BS 1 and BS 2 can operate on their
respective DC buses. Here, different power electronic circuits
(AC/DC converter, DC/DC converter, etc.), which connect the
BSs, renewable utility firms and the grids, are based on the
types of power line connections (AC or DC buses) and the
properties of different nodes (e.g., the BS often runs on a DC
bus [2]).

We consider a time-slotted model in this paper, where the
energy harvesting rate remains constant in each slot and may
change from one slot to another. In practice, the harvested
energy from solar and wind remains constant over a window
of seconds and we choose our time slot of the same duration.3

2Our results can be extended to the multi-cell setting for each system by
properly pairing the BSs in different systems.

3Without loss of generality, we can further normalize the duration of each
slot to be a unit of time so that the terms “power” and “energy”can be used
interchangeably.
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Fig. 1: Two neighbouring cellular systems powered by power grid and renewable energy with joint energy and spectrum
cooperation.

We further assume that a BS’s operation in one time slot is
based on its observation of the energy availability, channel
conditions, traffic loads, etc., and is independent from its
operation in another time slot. This is reasonable as current
energy storage devices are expensive and often capacity-
limited compared to power consumption of the BSs and many
cellular systems do not rely on storage for dynamic energy
management.4 Therefore, we can analyze the two systems’
cooperation problem in each time slot individually. In the
following, we first introduce the operation details of two
systems’ energy and spectrum cooperation, and then propose
the downlink transmission model for both systems.

A. Energy Cooperation Model

Recall that each BS can purchase energy from both con-
ventional grid and renewable utility firms. The two different
types of energy supplies are characterized as follows.

• Conventional energy from the power grid: Let the energy
drawn by BSi ∈ {1, 2} from the grid be denoted byGi ≥
0. Since the practical energy demand from an individual
BS is relatively small compared to the whole demand
and production of the power grid network, the available
energy from grid is assumed to be infinite for BSi. We
denoteαG

i > 0 as the price per unit energy purchased
from grid by BSi. Accordingly, BSi’s payment to obtain
energy from grid isαG

i Gi.
• Renewable energy from the renewable utility firm: Let the

energy purchased by BSi ∈ {1, 2} from the dedicated

4Note that the existing storage devices in the wireless systems today are
generally utilized for backup in case of the power supply outage, instead of for
dynamic energy management with frequent power charing and discharging.
On the other hand, the energy storage devices able to charge and discharge
on the small time scales are capacity-limited compared to power consumption
of the BSs and are also expensive. Hence, in this paper, we assume that the
storage is not used at the BS, provided that the power supply from the grid
is reliable.

local renewable utility firms be denoted asEi > 0. Dif-
ferent from conventional energy from the grid, the local
renewable energy firm is capacity-limited and subject to
uncertain power supply due to environmental changes.
Therefore, BSi cannot purchase more than̄Ei, which is
the electricity production of the utility firm produces in
the corresponding time slot. That is,

Ei ≤ Ēi, i ∈ {1, 2}. (1)

Furthermore, we denoteαE
i > 0 as the price of renewable

energy at BSi and BSi’s payment to obtain energy from
renewable utility firm isαE

i Ei.
By combing the conventional and renewable energy costs, the
total cost at BSi to obtain energyGi +Ei is thus denoted as

Ci = αE
i Ei + αG

i Gi, i ∈ {1, 2}. (2)

The price to obtain a unit of renewable energy is lower than
that of conventional energy (i.e.,αE

i < αG
i , ∀i ∈ {1, 2}).

This can be valid in reality thanks to governmental subsidy,
potential environmental cost of conventional energy, and the
high cost of delivering conventional energy to remote areas,
etc.

Next, we consider the energy cooperation between the two
systems. Let the transferred energy from BS 1 to BS 2 be
denoted ase1 ≥ 0 and that from BS 2 to BS 1 ase2 ≥
0. Practically, the energy cooperation between two systems
can be implemented by connecting the two BSs to a common
aggregator as shown in Fig.1.5 When BS i wants to share

5 Aggregator is a virtual entity in the emerging smart gird that aggregates
and controls the generation and demands at distributed end users (e.g., BSs
in cellular systems) [14]. In order to manage these distributed loads more
efficiently, the aggregator allows the end users to either draw or inject energy
from/to it under different demand/supply conditions, by leveraging the two-
way information and energy flows supported by the emerging smart grid
[15]. By utilizing the two-way energy transfer between the end users and
the aggregator, the energy sharing between the BSs can be enabled. With the
advancement of smart grid technologies, we envision that the two-way energy
transfer here would not induce additional cost.
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Fig. 2: Energy management schematic of BSi.

energy with BS̄ı, where ı̄ ∈ {1, 2} \ {i}, BS i first notifies
BS ı̄ the transmitted energy amountei. Then, at the appointed
time, BS i injectsei amount of energy to the aggregator and
BS ı̄ drawsβEei amount of energy out. Thus, energy sharing
without disturbing balance in the total demand and supply
can be accomplished via the aggregator. Here,0 ≤ βE ≤ 1 is
the energy transfer efficiency factor between the two BSs that
specifies the unit energy loss through the aggregator for the
transferred amount of power.6

As depicted in Fig.2, the energy management scheme at
each BSi ∈ {1, 2} operates as follows. First, at the beginning
of each time slot, BSi purchases the conventional energy
Gi and the renewable energyEi. Second, it performs energy
cooperation by either transferringei amount of energy to BS
ı̄ or collecting the exchanged energyβEeı̄ from BS ı̄. Finally,
BS i consumes a constant non-transmission powerPc,i to
maintain its routine operation and a transmission powerPi for
flexible downlink transmission. By considering transmission
power, non-transmission power, and shared power between
BSs, we can obtain the total power consumption at BSi, which
is constrained by the total power supply:

1

η
Pi + Pc,i ≤ Ei +Gi + βEeı̄ − ei, i ∈ {1, 2}, (3)

where0 < η ≤ 1 is the power amplifier (PA) efficiency. Since
η is a constant, we normalize it asη = 1 in the sequel.

B. Spectrum Cooperation Model

We now explain the spectrum cooperation by considering
two cases: adjacent and non-adjacent frequency bands. First,
consider the case of adjacent frequency bands in Fig.3a.
As shown in Fig.3a, BS 1 and BS 2 operate in the blue
and red shaded frequency bandsW1 and W2, respectively.
BetweenW1 andW2 a guard bandWG is inserted to avoid
interference due to out-of-band emissions. Let the shared
spectrum bandwidth from BS 1 to BS 2 be denoted asw1 ≥ 0
and that from BS 2 to BS 1 asw2 ≥ 0. In this case, the
shared bandwidth from BSi (i.e.,wi) can be fully used at BS
ı̄, i ∈ {1, 2}. This can be implemented by carefully moving
the guard band as shown in Fig.3a. When BS 2 shares a
bandwidthw2 to BS 1, the green shaded guard band with

6 It is worth noting that there also exists an alternative approach to realize
the energy sharing by direct power-line connection betweenthe BSs [3]. In
this approach, since dedicated power lines may need to be newly deployed,
it may require higher deployment cost than the aggregator-assisted energy
sharing. Note that such an approach has been implemented in the smart grid
deployments, e.g., to realize the energy transfer among different micro-grids
[16].

   

  

 

(a) Adjacent frequency bands.
  

 

  

(b) Non-adjacent frequency bands.
Fig. 3: An example of spectrum cooperation between two BSs.

bandwidthWG is moved accordingly betweenW1 + w2 and
W2 − w2, such that the shared spectrum is fully utilized.

Next, consider the case of non-adjacent frequency bands in
Fig. 3b. For this non-adjacent frequency band, a guard band
is also needed to avoid the inter-system interference. Fig.3b
shows an example of the spectrum cooperation when BS 2
shares a bandwidthw2 to BS 1. After spectrum cooperation,
the total usable spectrum of BS 1 isW1 +w2 −WG, since a
green shaded guard bandWG is inserted betweenW1 +w2 −
WG andW2 − w2 to avoid the inter-system interference. As
a result, spectrum cooperation loss will occur.7

For the ease of investigation, in this paper we only focus
on the former case of adjacent frequency bands.8 We define a
spectrum cooperation factorβB ∈ {0, 1}, for which βB = 1
denotes that spectrum cooperation is implementable between
BSs andβB = 0 represents that spectrum cooperation is
infeasible. Considering the spectrum cooperation betweenthe
BSs, the bandwidth used by BSi can be expressed as

Bi ≤ Wi + βBwı̄ − wi, i ∈ {1, 2}. (4)

Note that in our investigated spectrum cooperation, the
(shared) spectrum resources can only be utilized by either BS
1 or BS 2 to avoid the interference between the two systems. If
the same spectrum resources can be used by the two systems
at the same time, then the spectrum utilization efficiency
can be further improved while also introducing inter-system
interference [18]. In this case, more sophisticated interference
coordination should be implemented, which is beyond the
scope of this work.

C. Downlink Transmission Under Energy and Spectrum Co-
operation

We now introduce the downlink transmission at each BS
by incorporating the energy and spectrum cooperation. We
consider a flat fading channel model for each user’s downlink
transmission, and denote the channel gain from BSi ∈ {1, 2}
to its associated MTk as gk, k ∈ Ki, which in general
includes the pathloss, shadowing and antenna gains. Within

7 It is technically challenging to gather non-adjacent pieces of bandwidth
together at one BS. To overcome this issue, the carrier aggregation solution
for the LTE-Advanced system [17] can be utilized here.

8It should be noticed that our result can also be extended to the non-adjacent
bandwidth case by considering the bandwidth loss due to the guard band.
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each system, we assume orthogonal transmission to support
multiple MTs, e.g., by applying orthogonal frequency-division
multiple access (OFDMA). Accordingly, the signal-to-noise-
ratio (SNR) at each MTk is given by

SNRk =
gkpk
bkN0

, k ∈ K1 ∪ K2, (5)

whereN0 denotes the power spectral density (PSD) of the
additive white Gaussian noise (AWGN),pk ≥ 0 and bk ≥ 0
denote the allocated power and bandwidth to MTk ∈ K1∪K2,
respectively. We can aggregate all the transmission power and
bandwidth used by each BS as (cf. (3) and (4))

Pi =
∑

k∈Ki

pk, Bi =
∑

k∈Ki

bk, i ∈ {1, 2}.

Note that the bandwidth and power allocation are performed
in each slot on the order of seconds, which is much longer
than the coherence time of wireless channels (on the order
of milliseconds). As a result, the SNR defined in (5) is time-
averaged over the dynamics of wireless channels, and thus the
fast fading is averaged out from the channel gaingk’s.

To characterize the QoS requirements of each MT, we define
its performance metric as a utility functionuk(bk, pk), and
assume that it satisfies the following three properties:

1) The utility function is non-negative, i.e.,uk(bk, pk) ≥
0, ∀pk ≥ 0, bk ≥ 0, where uk(0, pk) = 0 and
uk(bk, 0) = 0;

2) The utility increases as a function of allocated power and
bandwidth, i.e.,uk(bk, pk) is monotonically increasing
with respect tobk andpk, ∀pk ≥ 0, bk ≥ 0;

3) The marginal utility decreases as the allocated power
and bandwidth increase, i.e.,uk(bk, pk) is jointly concave
over bk andpk, ∀pk ≥ 0, bk ≥ 0.

For example, the achievable data rate at MTk defined as
follows is a feasible utility function that satisfies the above
three properties [19]

uk(bk, pk) = bk log2(1 + SNRk) = bk log2

(

1 +
gkpk
bkN0

)

.

(6)

In the rest of this paper, we employ the utility function in (6)
for all MTs in the two systems and averting to another function
will not change our main engineering insights. Due to the
fact that most cellular network services are QoS guaranteed
(e.g., minimum date rate in video call), we ensure the QoS
requirement at each MTi by setting a minimum utility
thresholdrk > 0, k ∈ K1 ∪ K2. The value ofrk is chosen
according to the type of service at MTk. Accordingly, the
resultant QoS constraint is given by

bk log2

(

1 +
gkpk
bkN0

)

≥ rk, ∀k ∈ K1 ∪ K2. (7)

III. PROBLEM FORMULATION

We aim to reduce the costsC1 andC2 in (2) at both BSs
while guaranteeing the QoS requirements of all MTs. We
denote the intra-system decision vector for BSi ∈ {1, 2} as
x
in
i , which consists of its energy drawn from renewable energy

TABLE I: List of notations and their physical meanings
Ēi Maximum purchasable renewable energy at BSi
Wi Available bandwidth at BSi
Pc,i Constant non-transmission power consumption at BSi

αE
i Price of per-unit renewable energy for BSi

αG
i Price of per-unit conventional energy for BSi

βE Energy cooperation efficiency between two BSs
βB Spectrum cooperation factor between two BSs
rk QoS requirement of MTk
Ei Renewable energy drawn at BSi
Gi Conventional energy drawn from the grid by BSi
pk Allocated power to MTk
bk Allocated bandwidth to MTk
ei Shared energy from BSi to BS ı̄
wi Shared spectrum from BSi to BS ı̄

x
in
i Intra-network energy and bandwidth allocation vector at BSi

consisting ofGi, Ei, pk andbk, ∀k ∈ Ki

xex Inter-network energy and spectrum cooperation vector consisting
of e1, e2, w1 andw2

x An aggregated vector consisting all the decision variablesof the
two BSs

Ei, energy drawn from the gridGi, power allocationpk ’s,
and bandwidth allocationbk ’s with k ∈ Ki. We also denote
x
ex = [e1, e2, w1, w2]

T as the inter-system energy and spec-
trum cooperation vector. For convenience, we aggregate allthe
decision variables of the two BSs asx , [xin

1
T
,xin

2
T
,xexT ]T .

All the notations used in this paper are summarized and
explained in TableI for the ease of reading.

It can be shown that the two systems (if not belonging to
the same entity) have conflicts in cost reduction under the
joint energy and spectrum cooperation. For example, if BS 1
shares both energy and spectrum to BS 2, then the cost of BS
2 is reduced while the cost of BS 1 increases. To characterize
such conflicts, we define the achievable cost region under the
joint energy and spectrum cooperation as the cost tuples that
the two BSs can achieve simultaneously, which is explicitly
characterized by

C ,
⋃

x≥0,x∈X

{(c1, c2) : Ci(x) ≤ ci, i ∈ {1, 2}}, (8)

whereX is the feasible set ofx specified by (1), (3), (4) and
(7), andCi(x) is the achieved cost of BSi ∈ {1, 2} in (2)
under givenx. The boundary of this region is then called the
Pareto boundary, which consists of the Pareto optimal cost
tuples at which it is impossible to decrease one’s cost without
increasing the other’s. Since the feasible regionX can be
shown to be convex and the cost in (2) is affine, the cost region
in (8) is convex. Also, because the Pareto optimal points of any
convex region can be found by solving a series of weighted
sum minimization problems with different weights [20], we
can achieve different Pareto optimal cost tuples by solvingthe
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following weighted sum cost minimization problems

(P1) : min.
x≥0

2
∑

i=1

γi(α
E
i Ei + αG

i Gi) (9a)

s.t.
∑

k∈Ki

pk + Pc,i ≤ Ei +Gi + βEeı̄ − ei, ∀i ∈ {1, 2},

(9b)
∑

k∈Ki

bk ≤ Wi + βBwı̄ − wi, ∀i ∈ {1, 2}, (9c)

Ei ≤ Ēi, ∀i ∈ {1, 2}, (9d)

bk log2

(

1 +
gkpk
bkN0

)

≥ rk, ∀k ∈ K1 ∪ K2,

(9e)

whereγi ≥ 0, i ∈ {1, 2} is the cost weight for BSi, which
specifies the trade-offs between the two BSs’ costs. By solving
(P1) given differentγi’s, we can characterize the entire Pareto
boundary of the cost region. For the solution of the optimiza-
tion problem, standard convex optimization techniques such
as the interior point method can be employed to solve (P1)
[20]. However, in order to gain more engineering insights, we
propose an efficient algorithm for problem (P1) by applying
the Lagrange duality method in SectionIV. Before we present
the solution for (P1), in this section, we first consider a special
case where there is neither energy nor spectrum cooperation
between the two systems (i.e.,βE = βB = 0). This serves as a
performance benchmark for comparison with fully or partially
cooperative systems in SectionsIV andV.

A. Benchmark Case: Non-cooperative Systems

With βE = βB = 0, the two systems will not cooperate and
the optimal solution of (P1) given anyγi’s is attained with
zero inter-system exchange, i.e.,w1 = w2 = e1 = e2 = 0.
In this case, the constraints in (9b) and (9c) reduce to
∑

k∈Ki
pk+Pc,i ≤ Ei+Gi and

∑

k∈Ki
bk ≤ Wi, ∀i ∈ {1, 2},

respectively. It thus follows that the intra-system energyand
bandwidth allocation vectorsxin

1 and x
in
2 are decoupled in

both the objective and the constraints of problem (P1). As a
result, (P1) degenerates to two cost-minimization problems as
follows (one for each BSi ∈ {1, 2}):

(P2) : min.
xin

i
≥0

αE
i Ei + αG

i Gi

s.t.
∑

k∈Ki

pk + Pc,i ≤ Ei +Gi, (10a)

Ei ≤ Ēi, (10b)
∑

k∈Ki

bk ≤ Wi, (10c)

bk log2

(

1 +
gkpk
bkN0

)

≥ rk, ∀k ∈ Ki. (10d)

Note that Problem (P2) is always feasible due to the fact
that the BS can purchase energy from the grid without limit.
Therefore, we can always find one feasible solution to satisfy
all the constraints in (10a)-(10d). It is easy to show that at the
optimality of problem (P2), the constraints (10c) and (10d) are

both tight, otherwise, one can reduce the cost by reducing the
allocated powerpk (and/or increasing the allocated bandwidth
bk) to MT k. Then, the power allocation for each user can be
expressed as

pk =
bkN0

gk

(

2
rk
bk − 1

)

, ∀k ∈ Ki. (11)

By substituting (11) into (P2) and applying the Karush-Kuhn-
Tucker (KKT) condition, we have the closed-form optimal
solution to (P2) in the following proposition. Note that the
optimal solution is unique, since the constraints in (10d) are
strictly convex overbk’s andpk ’s, ∀k ∈ K.

Proposition3.1: The optimal bandwidth allocation for (P2)
is given by

b⋆k =
ln 2 · rk

W(1
e
(
ν⋆
i
gk

N0
− 1)) + 1

, ∀k ∈ Ki, (12)

whereW(·) is LambertW function [21] and ν⋆i ≥ 0 denotes
the water level that satisfies

∑

k∈Ki
b⋆k = Wi. Furthermore,

the optimal power allocation and energy management in (P2)
are given by

p⋆k =
b⋆kN0

gk

(

2
rk
b⋆
k − 1

)

, ∀k ∈ Ki,

E⋆
i = max

(

∑

k∈Ki

p⋆k + Pc,i, Ēi

)

,

G⋆
i = max

(

∑

k∈Ki

p⋆k + Pc,i − Ēi, 0

)

.

Proof: See AppendixA.
In Proposition 3.1, the bandwidth allocationb⋆k can be

interpreted as waterfilling over different MTs withν⋆i being
the water level, and the power allocationp⋆k follows from (11).
Furthermore, the optimal solution ofE⋆

i andG⋆
i indicate that

BS i first purchases energy from the renewable energy firm,
and (if not enough) then from the grid. This is intuitive due
to the fact that the renewable energy is cheaper (αE

i < αG
i ).

IV. CENTRALIZED ENERGY AND SPECTRUM

COOPERATION FORFULLY COOPERATIVE SYSTEMS

In this section, we consider problem (P1) with given weights
γ1 andγ2 for the general case ofβB ∈ {0, 1} and0 ≤ βE ≤ 1.
This corresponds to the scenario where the two BSs belong to
the same entity and thus can fully cooperate to solve (P1) to
minimize the weighted sum cost. Similar to (11) in (P2), we
can show that the QoS constraints in (9e) should always be
tight for the optimal solution of (P1). As a result, the power
allocation for each MT in (P1) can also be expressed as (11)
for all i ∈ {1, 2}. By substituting (11) into the power constraint
(9b) in (P1) and then applying the Lagrange duality method,
we obtain the closed-form solution to (P1) in the following
proposition.
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Proposition4.1: The optimal bandwidth and power alloca-
tion solutions to problem (P1) are given by

b⋆k =
ln 2 · rk

W
(

1
e

(

λ⋆
i
gk

µ⋆
i
N0

− 1
))

+ 1
, ∀k ∈ K1 ∪K2,

p⋆k =
b⋆kN0

gk

(

2
rk
b⋆
k − 1

)

, ∀k ∈ K1 ∪ K2,

whereλ⋆
i andµ⋆

i are non-negative constants (dual variables)
corresponding to the power constraint (9b) and the bandwidth
constraint (9c) for BS i ∈ {1, 2}, respectively.9 Moreover, the
optimal spectrum sharing between the two BSs are

w⋆
i = max

(

−
∑

k∈Ki

b⋆k +Wi, 0

)

, ∀i ∈ {1, 2}. (13)

Finally, the optimal energy decisions at two BSs{E⋆
i }, {G

⋆
i }

and{e⋆i } are the solutions to the following problem.

(P3) :

min.
{Ei,Gi,ei}

2
∑

i=1

γi(α
E
i Ei + αG

i Gi)

s.t.
∑

k∈Ki

p⋆k + Pc,i = Ei +Gi + βEeı̄ − ei, ∀i ∈ {1, 2},

0 ≤ Ei ≤ Ēi, Gi ≥ 0, ei ≥ 0, ∀i ∈ {1, 2}.

Proof: See AppendixB.
Note that problem (P3) is a simple linear program (LP)

and thus can be solved by existing software such as CVX
[22]. Also note that there always exists an optimal solution of
{e⋆i } in (P3) with e⋆1 · e⋆2 = 0.10 It should be noted that the
optimal solution in Proposition4.1 can only be obtained in a
centralized manner. Specifically, to perform the joint energy
and spectrum cooperation, the information at both systems
(i.e., the energy priceαE

i and αG
i , the available renewable

energyĒi, the circuit power consumptionPc,i, the channel
gain gk and their QoS requirement̄rk, ∀k ∈ Ki, i ∈ {1, 2})
should be gathered at a central unit, which can be one of
the two BSs or a third-party controller. Since the limited
information is exchanged over the time scale of power and
bandwidth allocation, which is on the order of second, while
the communication block usually has a length of several
milliseconds, the information exchange can be efficiently
implemented.

It is interesting to make a comparison between the optimal
solution of problem (P1) in Proposition4.1and that of problem
(P2) in Proposition3.1. First, it follows from the solution
of w⋆

i in (13) that if βB = 1, then the bandwidth can be
allocated in the two systems more flexibly, and thus resulting
in a spectrum cooperation gain in terms of cost reduction as
compared to the non-cooperative benchmark in Proposition
3.1. Next, from the LP in (P2) with0 < βE ≤ 1, it is
evident that the BSs will purchase energy by comparing the

9The optimal dual variables{λ⋆
i }

2
i=1 and {µ⋆

i }
2
i=1 can be obtained by

solving the dual problem of (P1) as explained in AppendixB.
10 If e⋆1 · e

⋆
2 = 0 does not hold, we can find another feasible energy

cooperation solutione⋆
′

i = e⋆i−min(e⋆1, e
⋆
2), ∀i ∈ {1, 2}, with e⋆

′

1 ·e
⋆′

2 = 0,
to achieve no larger weighted sum cost.

weighted energy prices given asγiαE
i and γiα

G
i , i ∈ {1, 2}.

For instance, when systemi’s weighted renewable energy price
γiα

E
i is higher thanγı̄αE

ı̄ of the other system, then this system
i will try to first request the other system’s renewable energy
rather than drawing energy from its own dedicated renewable
utility firm. In contrast, for the non-cooperative benchmark in
Proposition3.1, each BS always draws energy first from its
own renewable energy, and then from the grid. Therefore, the
energy cooperation changes the energy management behavior
at each BS, and thus results in an energy cooperation gain in
terms of cost reduction. It is worth noting that to minimize
the weighted sum cost in the full cooperative system, it is
possible for one system to contribute both spectrum and energy
resources to the other (i.e.,w⋆

i > 0 and e⋆i > 0 for any
i ∈ {1, 2}), or one system exchanges its energy while the
other shares its spectrum in return (i.e.,w⋆

i > 0 and e⋆ı > 0
for any i ∈ {1, 2}). These two scenarios are referred to
asuni-directional cooperationandbi-directional cooperation,
respectively.

V. D ISTRIBUTED ENERGY AND SPECTRUM COOPERATION

FOR PARTIALLY COOPERATIVE SYSTEMS

In the previous section, we have proposed an optimal cen-
tralized algorithm to achieve the whole Pareto boundary of the
cost region. However, this requires the fully cooperative nature
and does not apply to the scenario where the two systems have
their own interests (e.g., belonging to different selfish entities).
Regarding this, we proceed to present a partially cooperative
system that implements the joint energy and spectrum coop-
eration (0 < βE ≤ 1, βB = 1) to achieve a Pareto optimum
with limited information exchange in coordination. Different
from the fully cooperative system that can perform both uni-
directional and bi-directional cooperation, the partially coop-
erative systems seek mutual benefits to decrease both systems’
cost simultaneously, in which only bi-directional cooperation
is feasible.11 In the following, we first analytically characterize
the conditions for partial cooperation. Then, we propose a
distributed algorithm that can achieve the Pareto optimality.

A. Conditions for Partial Cooperation

We define a functionC̄i(x
ex) to represent the minimum

cost at BSi under any given energy and spectrum cooperation
schemexex, which is given as:

C̄i(x
ex) = min.

xin
i
≥0

αE
i Ei + αG

i Gi

s.t. (9b), (9c), (9d) and (9e). (14)

Note that based on Proposition 4.1, we only need to consider
x
ex with e1 · e2 = 0 andw1 ·w2 = 0 without loss of optimal-

11 Due to the mutual benefit, we believe that both systems have incentives
for partial cooperation. Moreover, such incentives can be further strengthened
in the future wireless systems envisioned to have more expensive energy and
spectrum.
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ity.12 The problem in (14) has a similar structure as problem
(P2), which is a special case of (14) with x

ex = 0. Thus,
we can obtain its optimal solution similarly as in Proposition
3.1 and the details are omitted here. We denote the optimal
solution to problem (14) by E

(xex)
i , G

(xex)
i , {b

(xex)
k }, and

{p
(xex)
k } and the bandwidth water-levelν(x

ex)
i . Furthermore,

let the optimal dual solution associated with (9b) and (9d) be
denoted byλ(xex)

i andµ
(xex)
i , respectively. Then, it follows

that13

µ
(xex)
i =

{

αE
i ,

∑

k∈Ki
p
(xex)
k + Pc,i − βEeı̄ + ei ≤ Ēi

αG
i ,

∑

k∈Ki
p
(xex)
k + Pc,i − βEeı̄ + ei > Ēi

.

(15)

λ
(xex)
i = ν

(xex)
i · µ

(xex)
i (16)

It is easy to verify thatC̄i(x
ex), i ∈ {1, 2}, is a convex

function of xex. Therefore, under any givenxex, two BSs
can reduce their individual cost simultaneously if and only
if there existsxex′ = x

ex + ∆x
ex 6= x

ex with ∆x
ex =

[∆e1,∆e2,∆w1,∆w2]
T sufficiently small andxex′ ≥ 0 and

x
ex′ 6= 0 such that C̄i(x

ex′) < C̄i(x
ex), ∀i ∈ {1, 2}.

In particular, by considering the non-cooperative benchmark
system withxex = 0, it is inferred that partial cooperation is
feasible if and only if there existsxex′ ≥ 0 andxex′ 6= 0 such
that C̄i(x

ex′) < C̄i(0). Based on these observations, we are
ready to investigate the conditions for partial cooperation by
checking the existence of suchxex′. First, we derive BSi’s
cost changēCi(x

ex′)− C̄i(x
ex) analytically when the energy

and spectrum cooperation decision changes from any given
x
ex to x

ex′ = x
ex +∆x

ex with sufficiently small∆x
ex. We

have the following proposition.
Lemma5.1: Under any givenxex, BS i’s cost change by

adjusting the energy and spectrum cooperation decisions is
expressed as

C̄i(x
ex +∆x

ex)− C̄i(x
ex) = ∇C̄i(x

ex)T∆x
ex, (17)

where∆x
ex is sufficiently small,xex +∆x

ex ≥ 0, and

∇C̄i(x
ex) =

[

∂C̄i(x
ex)

∂e1
,
∂C̄i(x

ex)

∂e2
,
∂C̄i(x

ex)

∂w1
,
∂C̄i(x

ex)

∂w2

]T

.

(18)

Here, ∂C̄i(x
ex)

∂ei
= µ

(xex)
i , ∂C̄i(x

ex)
∂eı̄

= −βEµ
(xex)
i , ∂C̄i(x

ex)
∂wi

=

λ
(xex)
i and ∂C̄i(x

ex)
∂wı̄

= −λ
(xex)
i can be interpreted as the

marginal costs at BSi with respect to the energy and spectrum
cooperation decisionsei, eı̄, wi andwı̄, respectively.

Proof: See AppendixC.

12 For any given energy and spectrum cooperation schemexex with e1 ·
e2 6= 0 or w1 · w2 6= 0, we can always trivially find an alternative scheme
x
ex′ = [e′1, e

′
2, w

′
1, w

′
2]

T with e′i = ei − min(e1, e2) and w′
i = wi −

min(w1, w2) to achieve the same or smaller cost at both systems as compared
to x

ex, i.e., C̄i(x
ex′

) ≤ Ci(x
ex), i = 1, 2. Sincee′1 · e

′
2 = 0 and w′

1 ·
w′

2 = 0 always hold, it suffices to only considerxex with e1 · e2 = 0 and
w1 · w2 = 0.

13As will be shown later,µ(xex)
i and λ

(xex)
i can be interpreted as the

marginal costs with respect to the shared energy and bandwidth between two
BSs, respectively. Therefore, the result in (15) is intuitive, since the marginal
cost should be the energy price ofαE

i if the renewable energy is excessive
to support the energy consumption and energy exchange, while the marginal
cost should beαG

i if the renewable energy is insufficient.

Next, based on Lemma5.1, we obtain the conditions for
which the two BSs’ costs can be decreased at the same
time under any givenxex, by examining whether there exists
sufficiently small∆x

ex 6= 0 with x
ex +∆x

ex ≥ 0 such that
∇C̄i(x

ex)T∆x
ex < 0 for both i = 1, 2.

Proposition5.1: For any givenx
ex, the necessary and

sufficient conditions that the two BSs’ costs can be decreased
at the same time are given as follows:

• λ
(xex)
1 /µ

(xex)
1 > λ

(xex)
2 /(µ

(xex)
2 βE) or λ

(xex)
2 /µ

(xex)
2 >

λ
(xex)
1 /(µ

(xex)
1 βE), if e1 = e2 = 0;

• λ
(xex)
1 /µ

(xex)
1 6= λ

(xex)
2 /(µ

(xex)
2 βE), if e1 > 0;

• λ
(xex)
2 /µ

(xex)
2 6= λ

(xex)
1 /(µ

(xex)
1 βE), if e2 > 0.

Proof: See AppendixD.
Remark5.1: Proposition5.1can be intuitively explained as

follows by takingλ
(xex)
1 /µ

(xex)
1 > λ

(xex)
2 /(µ

(xex)
2 βE) when

e1 = e2 = 0 as an example. Other cases can be understood
by similar observations. Whene1 = e2 = 0, this condition
of λ

(xex)
1 /µ

(xex)
1 > λ

(xex)
2 /(µ

(xex)
2 βE) implies that we can

always find ∆x
ex = [∆e1,∆e2,∆w1,∆w2]

T sufficiently
small with ∆e1 > 0,∆e2 = 0,∆w1 = 0 and ∆w2 > 0
such thatλ(xex)

1 /µ
(xex)
1 > ∆e1/∆w2 > λ

(xex)
2 /(µ

(xex)
2 βE).

In other words, there exists a new joint energy and spectrum
cooperation scheme for the costs of both systems to be reduced
at the same time, i.e.,∇C̄1(x

ex)T∆x
ex = µ

(xex)
1 ∆e1 −

λ
(xex)
1 ∆w2 < 0 and ∇C̄2(x

ex)T∆x
ex = λ

(xex)
2 ∆w2 −

µ
(xex)
2 βE∆e1 < 0. By using the marginal cost interpretation

in Proposition5.1, the costs at both BSs can be further reduced
by transferring∆e1 amount of energy from BS 1 to BS 2 and
sharing∆w2 amount of spectrum from BS 2 to BS 1.

Finally, we can characterize the conditions for partial coop-
eration by examiningxex = 0 in Proposition5.1. We explicitly
give the conditions as follows.

Corollary 5.1: Partial cooperation is feasible if and only if

λ
(0)
1 /µ

(0)
1 > λ

(0)
2 /(µ

(0)
2 βE) or λ(0)

2 /µ
(0)
2 > λ

(0)
1 /(µ

(0)
1 βE).

Corollary5.1is implied by Proposition5.1. More intuitively,
under the condition ofλ(0)

1 /µ
(0)
1 > λ

(0)
2 /(µ

(0)
2 βE), it follows

from Remark5.1 that BS 1 is more spectrum-hungry than BS
2, while BS 2 is more insufficient of energy than BS 1. Hence,
the costs at both BS can be reduced at the same time by BS 1
transferring spectrum to BS 2 and BS 2 transferring energy to
BS 1. Similarly, ifλ(0)

2 /µ
(0)
2 > λ

(0)
1 /(µ

(0)
1 βE), the opposite is

true. This shows that partial cooperation is only feasible when
two systems find inter-system complementarity in energy and
spectrum resources.

Example5.1: We provide an example in Fig.4 to illustrate
partial cooperation conditions in Corollary5.1. We plot the
Pareto boundary achieved by full cooperation, non-cooperation
benchmark and the point corresponding to the minimum total
cost (full cooperation withγ1 = γ2 = 1). The joint energy
and spectrum cooperation results in two scenarios as shown
in Figs. 4a and 4b, which correspond to cases where partial
cooperation is feasible and infeasible, respectively.

• Fig. 4ashows the feasible partial cooperation scenario, in
which the partial cooperation conditions are satisfied. In
this scenario, the non-cooperative benchmark is observed
to lie within the Pareto boundary of cost region. As a
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(b) Partial Cooperation Infeasible Scenario.
Fig. 4: Two different scenarios with joint energy and spectrum cooperation.

result, from the non-cooperative benchmark, the costs of
both BSs can be reduced at the same time until reaching
the Pareto boundary.

• Fig. 4b shows the scenario when the partial cooperation
conditions are not satisfied, where the non-cooperation
benchmark is observed to lie on the Pareto boundary.
From this result, it is evident that the two BSs’ costs
cannot be reduced at the same time. That is, the partial
cooperation is infeasible.

• In both scenarios of Figs.4a and 4b, it is observed
that the minimum total cost point differs from the non-
cooperation benchmark. This shows that full cooperation
can decrease the total cost at two BSs from the non-
cooperative benchmark even when partial cooperation
is infeasible, which can be realized by uni-directional
cooperation (e.g., in Fig.4b).

The results in this example motivate us to propose distributed
algorithms for the partial cooperation scenario to reduce two
BSs’ costs from non-cooperative benchmark to Pareto opti-
mality, as will be discussed next.

B. Distributed Algorithm

In this subsection, we design a distributed algorithm to im-
plement the energy and spectrum cooperation for two partially
cooperative systems (satisfying Corollary5.1).14 Since the two
systems are selfish, we need to ensure that they can improve
their performance fairly. We design our algorithm based on the
proportionally fair cost reduction, which is defined as follows.

Definition 5.1: Proportional fair cost reduction is achieved
by both systems if, for the resultant cost tuple(C̃1, C̃2), the
cost reduction ratio between two BSs equals the ratio of their
costs in the non-cooperative scenario, i.e.,

C̄1(0)− C̃1

C̄2(0)− C̃2

=
C̄1(0)

C̄2(0)
. (19)

14As long as each system agrees to install the algorithm to benefit from its
efficiency and fairness, the system will not make any deviation in its decisions
as the algorithm runs automatically.

Next, we proceed to elaborate on the key issue of the update
of the energy and spectrum cooperation decision vectorx

ex to
have proportionally fair cost reductions. Our algorithm begins
with the non-cooperative benchmark (i.e.,x

ex = 0). Then, the
inter-system energy and spectrum cooperation is adjusted to
decrease the costs at both BSs in each iteration. Specifically,
under any givenxex, if the conditions in Proposition5.1 are
satisfied, then the two BSs cooperate by updating their energy
and spectrum cooperation decision vector according to

x
ex′ = x

ex + δd, (20)

where δ > 0 is a sufficiently small step size andd ∈ R
4

is the direction of the update that satisfies∇C̄i(x
ex)Td < 0

(cf. (17)). It can be observed that there are multiple solutions
satisfying this condition. Here, we choosed in each iteration
as follows:

• If λ
(0)
1 µ

(0)
2 βE > λ

(0)
2 µ

(0)
1 holds, which means that costs

of both systems can be reduced by system 1 sharing
energy to system 2 and system 2 sharing spectrum to
system 1 (cf. Corollary5.1), then we choose

d =sign
(

λ
(xex)
1 µ

(xex)
2 βE − λ

(xex)
2 µ

(xex)
1

)

·
[

ρλ
(xex)
2 + λ

(xex)
1 , 0, 0, µ

(xex)
1 + ρβEµ

(xex)
2

]T

.

(21)

• If λ
(0)
2 µ

(0)
1 βE > λ

(0)
1 µ

(0)
2 holds, which means that costs

of both systems can be reduced by system 1 sharing
spectrum to system 2 and system 2 sharing energy to
system 1 (cf. Corollary5.1), then we choose

d =sign
(

λ
(xex)
2 µ

(xex)
1 βE − λ

(xex)
1 µ

(xex)
2

)

·

×
[

0, ρλ
(xex)
2 + λ

(xex)
1 , µ

(xex)
1 + ρβEµ

(xex)
2 , 0

]T

.

(22)

Here, sign(x) = 1 if x ≥ 0 and sign(x) = −1 if x < 0,
andρ is a factor controlling the ratio of cost reduction at both
BSs in each update. With the choice ofd as shown above, the
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decrease of cost for each BS in each update is
[

C̄1(x
ex′)− C̄1(x

ex)
C̄2(x

ex′)− C̄2(x
ex)

]

=

[

∇C̄1(x
ex)Td

∇C̄2(x
ex)Td

]

= σ

[

ρ
1

]

,

(23)

whereσ ≤ 0 is obtained by substituting (20) into (17), given
by

σ =































−(λ
(xex)
1 µ

(xex)
2 βE − λ

(xex)
2 µ

(xex)
1 ),

λ
(xex)
1 µ

(xex)
2 βE ≥ λ

(xex)
2 µ

(xex)
1

−(λ
(xex)
2 µ

(xex)
1 βE − λ

(xex)
1 µ

(xex)
2 ),

λ
(xex)
2 µ

(xex)
1 βE ≥ λ

(xex)
1 µ

(xex)
2

0, otherwise

.

From (23), it follows that the cost reduction in each iteration
satisfiesρ = C̄1(x

ex)−C̄1(x
ex′)

C̄2(xex)−C̄2(xex′)
. Using this fact together with

the proportional fairness criterion in Definition 5.1,ρ is
determined as

ρ =
C̄1(0)

C̄2(0)
. (24)

Remark5.2: Generally, it follows from (23) thatρ controls
the ratio of cost reduction at the two BSs. Besides the
proportionally fair choice ofρ in (23), we can set other values
of ρ > 1 (or ρ < 1) to ensure that a larger (or smaller) cost
decrease is achieved for BS 1 compared to BS 2 (provided that
the step sizeδ is sufficiently small). By exhaustingρ from zero
to infinity, we can achieve all points on the Pareto boundary
that have lower costs at both BSs than the non-cooperative
benchmark.

TABLE II: Distributed Algorithm for Partial Cooperation

Algorithm I

a) Each BSi ∈ {1, 2} initializes from the non-cooperative benchmark by
settingei = wi = 0 (i.e., xex = 0). Each BSi solves the problem in
(14) for obtainingλ(0)

i andµ
(0)
i , and sends them to the other BSῑ.

b) Each BS i ∈ {1, 2} tests the conditions in Corollary5.1. If
λ
(0)
1 µ

(0)
2 βE > λ

(0)
2 µ

(0)
1 , then choosed in (21) as the the update

vector in the following iterations. Ifλ(0)
2 µ

(0)
1 βE > λ

(0)
1 µ

(0)
2 , then

choosed in (22). Otherwise, the algorithm ends. Setsρ as in (24).
c) Repeat:

1) Each BSi ∈ {1, 2} computes the dual variablesλ(xex)
i and

µ
(xex)
i by solving the problem in (14), and sends them to the

other BSı̄;
2) BSi ∈ {1, 2} updates the energy and spectrum cooperation vector

asxex′ = xex + δd;
3) x

ex ← x
ex′.

d) Until the conditions in Proposition5.1 are satisfied.

To summarize, the distributed algorithm for partial cooper-
ation is presented in TableII as Algorithm I and is described
as follows. Initially, each BSi ∈ {1, 2} begins from the non-
cooperation benchmark case withxex = 0 and determines
the update vectord that will be used in each iterations.
Specifically, each BS computesλ(0)

i andµ(0)
i , and shares them

with each other. Ifλ(0)
1 µ

(0)
2 βE > λ

(0)
2 µ

(0)
1 , then choosed in

(21) as the update vector; while ifλ(0)
2 µ

(0)
1 βE > λ

(0)
1 µ

(0)
2 ,

then choosed in (22). We set the cost reduction ratio as in (24).
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Fig. 5: Simulation Setup.

Then, the following procedures are implemented iteratively. In
each iteration, according to the current energy and spectrum
cooperation vectorxex, each BS computes the dual variables
λ
(xex)
i andµ

(xex)
i by solving the problem in (14) and sends

them to the other BS. After exchanging the dual variables, the
two BSs examine the conditions in Proposition5.1 individu-
ally. If the conditions are satisfied, then each BS updates the
cooperation schemexex according to (20). The procedure shall
proceed until the two BSs cannot decrease their costs at the
same time, i.e., conditions in Proposition5.1 are not satisfied.
Due to the fact that the algorithm can guarantee the costs to
decrease proportionally fair at each iteration and the Pareto
optimal costs are bounded, the algorithm can always converge
to a Pareto optimal point with proportional fairness provided
that the step sizeδ is sufficiently small. Note that Algorithm
I minimizes both systems’ costs simultaneously based on the
gradients of two convex cost functions in (14), which differs
from the conventional gradient descent method in convex
optimization which minimizes a single convex objective [20].

Compared to the centralized joint energy and spectrum
cooperation scheme, which requires a central unit to gatherall
channel and energy information at two systems, the distributed
algorithm only needs the exchange of four scalers (i.e. the
marginal spectrum and energy pricesλ

(xex)
i andµ

(xex)
i , ∀i ∈

{1, 2}) between two BSs in each iteration. As a result, such
distributed algorithm can preserve the two systems’ privacy
and greatly reduce the cooperation complexity (e.g., signaling
overhead).

VI. N UMERICAL RESULTS

In this section, we provide numerical results for evaluating
the performance of our proposed joint energy and spectrum
cooperation. For the simulation setup, we assume that BS 1
and BS 2 each covers a circular area with a radius of 500
meters (m) as shown in Fig.5. K1 = 10 and K2 = 8
MTs are randomly generated in the two cells. We consider
a simplified path loss model for the wireless channel with the
channel gain set asgk = c0(

dk

d0
)−ζ , wherec0 = −60dB is

a constant path loss at the reference distanced0 = 10 m,
dk is the distance between MTk and its associated BS in
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Fig. 6: Energy cost region for the case of joint energy
and spectrum cooperation versus the case without energy or
spectrum cooperation.

meter andζ = 3 is the path loss exponent. The noise PSD
at each MT is set asN0 = −150 dBm/Hz. Furthermore,
we set the non-transmission power consumption for the BSs
as Pc,1 = Pc,2 = 100 Watts(W). The maximum usable
renewable energy at the two BSs arēE1 = 190 W and
Ē2 = 130 W, respectively. We set the energy price from
renewable utility firm and power grid asαE

i = 0.2/W and
αG
i = 1/W, respectively, where the price unit is normalized

for simplicity. The bandwidth for the two BSs areW1 = 15
MHz andW2 = 20 MHz, respectively.

Fig. 6 shows the BSs’ optimized costs by the proposed
joint energy and spectrum cooperation in full cooperation with
βB = 1 and βE = 0.8 compared with the non-cooperation
benchmark. Notice that Fig.6 only shows a cooperation case
at a time slot that BS 2 has relatively more bandwidth (con-
sidering its realized traffic load) than BS 1 and the spectrum
cooperation is from BS 2 to BS 1. Yet, in other time slots
two different BSs’ traffic loads and channel realizations can
change and their spectrum cooperation may follow a different
direction. It is observed that the non-cooperation benchmark
lies within the Pareto boundary achieved by full cooperation,
while the partial cooperation lies on that Pareto boundary.This
indicates the benefit of joint energy and spectrum cooperation
in minimizing the two systems’ costs. It is also observed
that the Pareto boundary in full cooperation is achieved by
either uni-directional cooperation with BS 2 transferringboth
energy and spectrum to BS 1 (i.e.,e1 = 0, e2 > 0 and
w1 = 0, w2 > 0) or bi-directional cooperation with BS 1
transferring energy to BS 2 and BS 2 transferring spectrum to
BS 1 (i.e.,e1 > 0, e2 = 0 andw1 = 0, w2 > 0). Specifically,
the energy costs at both BSs are decreased simultaneously
compared to the non-cooperation benchmark only in the case
of bidirectional cooperation. This is intuitive, since otherwise
the cost of the BS that shares both resources will increase.
Furthermore, for our proposed distributed algorithm, it is
observed that it converges to the proportional fair result with
ρ = 1.5, which lies on the Pareto boundary in this region.
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Fig. 7: Convergence of the distributed algorithm under differ-
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Fig. 8: Comparison of the sum energy cost under different
Ēi’s with Ē1 + Ē2 = 120 W.

This is also expected, since partial cooperation is only feasible
when both systems find complementarity between energy and
spectrum resources.

In Fig. 7, we show the convergence of the partially coop-
erative distributed algorithm under step-sizesδ = 0.05 and
δ = 0.02, andρ = 1.5 is chosen to achieve the proportional
fairness. It is observed that under different step-sizes, the costs
at two BSs converge to different points on the Pareto boundary.
Specifically, givenδ = 0.05, the cost reductions at BS 1 and
BS 2 are observed to be 11.7606 (from 29.8092 to 18.0423)
and 7.9825 (from 20.0860 to 12.1035), respectively, with the
cost reduction ratio being 11.7606/7.9825=1.4733; while given
δ = 0.02, the cost reductions at BS 1 and BS 2 are observed
to be 11.7968(from 29.8092 to 18.0124) and 7.9625 (from
20.0860 to 12.1235), respectively, with the cost reduction
ratio being 11.7968/7.9625=1.4815. By comparing the cost
reduction ratios in two cases withρ = 1.5, it is inferred that the
proportional fairness can be better guaranteed with smaller δ.
This also validates thatδ should be sufficiently small to ensure
the proportionally cost reduction in each iteration step (see
Section V). It is also observed that the algorithm converges
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after about 40 iterations forδ = 0.05. This indicates that under
proper choice ofδ, the convergence speed is very fast provided
that certain proportional fairness inaccuracies are admitted.

In Fig. 8, we compare the achieved total costs of two BSs
by different schemes (i.e.,C1+C2 with weightsγ1 = γ2 = 1)
versus the renewable energy level at BS 1 (i.e.,Ē1) subject
to Ē1 + Ē2 = 120 W. From this figure, it is observed
that the fully cooperative scenario outperforms both the non-
cooperative benchmark and the partially cooperative scenario,
especially when the available renewable energy amounts at
two BSs are not even (e.g.,̄E1 = 0 W and Ē2 = 120 W,
as well as,Ē1 = 120 W and Ē2 = 0 W). This is intuitive,
since in this case, the partially cooperative systems may have
limited incentives for cooperation, while the fully cooperative
systems can implement uni-directional energy and spectrum
cooperation to reduce the total cost. It is also observed that
the performance gap between fully and partially cooperative
scenario becomes smallest whenĒ1 = 90 W. This is because
the partially cooperative scenario can find the best comple-
mentarity to bidirectionally exchange the two resources asin
full cooperation scenario. More specifically, in this case,the
cost reduction ratio between two BSs for the fully cooperative
scheme is most close to the cost ratio between two BSs
in the non-cooperative benchmark. Hence, full cooperation
in this case results in an inter-system energy and spectrum
cooperation scheme that is consistent with the proportionally
fair criterion in partial cooperation (see Definition5.1).

Finally, we show the optimized costs at both BSs over
time by considering stochastically varying traffic load and
harvested renewable energy. We assume that BS 1 and BS 2
are powered by solar and wind energy, respectively, and their
energy harvesting rates are based on the real-world solar and
wind data from Elia, a Belgium electricity transmission system
operator.15 For demonstration, we use the average harvested
energy over one hour as̄Ei at each slot, as shown in Fig.
9a, and thus our studied 24 slots correspond to the energy
harvesting profile over one day. Furthermore, we consider
the number of MTs served by each BS,Ki’s, over slots as
shown in Fig.9b, which are randomly generated based on
a discrete uniform distribution over the interval [40, 60] for
simplification. Under this setup, Fig.10 shows the optimized
costs of the two BSs by different schemes. It is observed
that over the 24 slots the full and partial cooperation achieve
55.68% and 33.75% total cost reduction for the two BSs
as compared to the no cooperation benchmark, respectively.
It is also observed that for partial cooperation, the energy
costs of both BSs are reduced at the same time, while for
full cooperation, at certain slots, i.e., slots 22, the costof
one BS is reduced significantly at the expense of the cost
increase of the other BSs. The reason is as follows. In partial
cooperation, the two systems seek for mutual benefits and
thus only bidirectional cooperation is feasible. For instance,
at time slot 6, BS 1 shares bandwidth to BS 2 and BS 2
transfers energy to BS 1. In contrast, under full cooperation,
it is not required that the costs of both BSs be reduced at the
same time and the common goal is to reduce the sum energy

15See http://www.elia.be/en/grid-data/power-generation/

costs. Hence, in this case, it is possible that uni-directional
cooperation happens where one BS sacrifices its interest to
another one in order to reduce the sum energy cost.

VII. C ONCLUSIONS

In this paper, we propose a joint energy and spectrum co-
operation approach to reduce the energy costs at two wireless
cellular systems that are powered by both energy harvesting
and power grid. We minimize the costs at both systems by
considering two scenarios where the wireless systems belong
to the same entity and different entities, respectively. Inthe
former case with full cooperation, we propose an optimal
centralized algorithm for achieving the minimum weighted
sum energy cost at two BSs. In the latter case with partial
cooperation, we develop a distributed algorithm to achieve
the Pareto optimal energy costs with proportional fairness.
Our results provide insights on the design of cooperative
cellular systems with both energy and spectrum cooperation.
Nevertheless, due to the space limitation, there are still several
important issues on joint energy and spectrum cooperation that
are not addressed in this paper, some of which are briefly
discussed as follows to motivate future work:

• In this paper, we consider energy cooperation without
storage at BSs. However, when energy storage is im-
plemented in the systems, the energy management of
the BS can have more flexibility such that the energy
supply variations in time can be mitigated and energy
cooperation between the two systems can more efficiently
exploit the geographical energy diversity. For example, at
any given slot, a BS with sufficient renewable energy
can either share them to other BSs with insufficient
renewable energy, or store them for future use. However,
under the setup with storage, the joint optimization of
the energy and spectrum cooperation over space and the
storage management over time requires the prediction of
the energy price, renewable energy availability and the
user traffic in the future. The design will be a stochastic
dynamic programming problem, whose optimal solution
is still unknown and worth pursuing.

• In this work, we consider that the two systems operate
over orthogonal frequency bands. In general, allowing
MTs associated with different BSs to share the same
frequency band may further improve the spectrum effi-
ciency. However, this formulation will turn the problem
into a challenging one related to the interference channel.
The optimal resource allocation scheme in this case is
unknown and difficult to solve.

• We have discussed the joint energy and spectrum sharing
for energy saving under the setup of hybrid energy supply.
In addition to this, another interesting work direction can
be the maximization of QoS performance with energy
cooperation subject to the resource (i.e., spectrum and
power) constraints. Depending on different application
scenarios, the QoS metrics can be delay [23], throughput
[24], and etc. The details on the optimal strategies in these
scenarios can be modeled and solved similarly as in this
paper.
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Fig. 9: Traffic and harvested renewable energy profile at the two systems for simulation.
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APPENDIX A
PROOF OFPROPOSITION3.1

First, we obtain the optimal bandwidth allocation{b⋆k}
and optimal power allocation{p⋆k}. Given that the non-
transmission power at BSi, Pc,i, is constant, it can be shown
that the objective of (P2), i.e., the cost at BSi, is a mono-
tonically increasing function of the sum transmission power
∑

k∈Ki
pk at BSi, no matter the power is purchased from the

conventional grid or the renewable utility firm. Thus, deriving
the optimal{b⋆k} and{p⋆k} to (P2) is equivalent to minimizing
∑

k∈Ki
pk at BSi subject to the bandwidth constraint in (10c)

and the QoS constraints in (10d). Using this argument together
with (11), we can obtain the optimal bandwidth allocation for
(P2) by solving the following problem:

min.
{bk≥0}

∑

k∈Ki

bkN0

gk

(

2
rk
bk − 1

)

s.t.
∑

k∈Ki

bk ≤ Wi. (25)

Since problem (25) is convex and satisfies the Slater’s
condition [20], the KKT conditions given as follows are
necessary and sufficient for its optimal solution.

N0

gk

(

2
rk
bk − 1

)

−
N0rk
gkbk

ln 2 · 2
rk
bk + νi − ζk = 0, ∀k ∈ Ki,

(26)

νi(
∑

k∈Ki

bk −Wi) = 0, νi ≥ 0, (27)

ζkbk = 0, ζk ≥ 0, bk ≥ 0, ∀k ∈ Ki, (28)

where νi ≥ 0 is the dual variable associated with the
bandwidth constraint in (25) andζk ≥ 0 is the dual variable for
bk ≥ 0, k ∈ Ki. Note that the optimal bandwidth allocation
{b⋆k} should satisfy thatb⋆k > 0, ∀k ∈ Ki, otherwise the
objective value in (25) will go to infinity, given the fact that
rk > 0, ∀k ∈ Ki. By using this together with (28), we thus
haveζ⋆k = 0, ∀k ∈ Ki. Accordingly, it follows from (26) that
b⋆k can be obtained as in (13), whereν⋆i > 0 is determined
by the equation

∑

k∈Ki
b⋆k = Wi. Furthermore, by substituting

the derived{b⋆k} into (11), the optimal{p⋆k} can be obtained.

Next, with {p⋆k} at hand, we proceed to obtain the optimal
energy allocationE⋆

i and G⋆
i . By usingαE

i < αG
i together

with the fact that the optimal solution of (P2) is attained when
the power constraint in (10a) is tight, it can be verified that the
optimal solutions ofE⋆

i andG⋆
i are obtained as in Proposition

3.1. Hence, the proof of Proposition3.1 is complete.



14

APPENDIX B
PROOF OFPROPOSITION4.1

By substituting (12) into the power constraint (9b) in (P1),
we can re-express (P1) as

(P1.1) : min.
x≥0

2
∑

i=1

γi(α
E
i Ei + α

G
i Gi)

s.t.
∑

k∈Ki

bkN0

gk

(

2
rk
bk − 1

)

+ Pc,i

≤ Ei +Gi + βEeı̄ − ei, i ∈ {1, 2}, (29)

(9c) and (9d).

Denote the dual variables associated with the constraints in
(29) and (9c) asµi ≥ 0 andλi ≥ 0, i ∈ {1, 2}, respectively.
The partial Lagrangian of (P1.1) is then expressed as:

L(x, {µi},{λi}) =

2
∑

i=1

Ei(γiα
E
i − µi) +

2
∑

i=1

Gi(γiα
G
i − µi)

+

2
∑

i=1

λi

2
∑

k∈Ki

bk +

2
∑

i=1

µi

2
∑

k∈Ki

bkN0

gk

(

2
rk
bk − 1

)

−

2
∑

i=1

λiWi +

2
∑

i=1

µiPc,i +

2
∑

i=1

wi(λi − βBλı̄)

+

2
∑

i=1

ei(µi − βEµı̄). (30)

Accordingly, the dual function can be obtained as

g({µi}, {λi}) = min.
x≥0

L(x, {µi}, {λi}) (31)

s.t. (9d).

Thus, the dual problem is expressed as

(P1.1−D) : max.
{µi},{λi}

g({µi}, {λi})

s.t. λi ≥ 0, µi ≥ 0, ∀i ∈ {1, 2}.

Since (P1.1) is convex and satisfies the Slater’s condition,
strong duality holds between (P1.1) and (P1.1-D) [20]. There-
fore, (P1.1) can be solved optimally by solving its dual
problem (P1.1-D) as follows. We first solve the problem in
(31) to obtain g({µi}, {λi}) for given {µi} and {λi}, and
then maximizeg({µi}, {λi}) over {µi} and{λi}.

We first give the following lemma.
LemmaB.1: In order forg({µi}, {λi}) to be bounded from

below, it follows that

γiα
G
i ≥ µi, βEµı̄ ≤ µi, βBλı̄ ≤ λi, ∀i ∈ {1, 2}. (32)

Proof: First, suppose thatγiαG
i < µi for any i ∈ {1, 2}.

In this case, it is easy to verify that the dual function
g({µi}, {λi}) will go to minus infinity asGi → ∞, i.e.,
g({µi}, {λi}) is unbounded from below. Hence,γiαG

i ≥
µi, i ∈ {1, 2}, should always hold.

Second, suppose thatβEµı̄ > µi for any i ∈ {1, 2}. In this
case, it is easy to verify that the dual functiong({µi}, {λi})
will go to minus infinity asei → ∞, i.e., g({µi}, {λi}) is

unbounded from below. Hence,βEµı̄ ≤ µi, i ∈ {1, 2}, should
always hold.

Last, suppose thatβBλı̄ > λi for any i ∈ {1, 2}. In this
case, it is easy to verify that the dual functiong({µi}, {λi})
will go to minus infinity aswi → ∞, i.e., g({µi}, {λi}) is
unbounded from below. Hence,βBλı̄ ≤ λi, i ∈ {1, 2}, should
always hold.

By combining the above three arguments, LemmaB.1 is
thus proved.

From Lemma B.1, it follows that the optimal solution
of (P1.1-D) is achieved when{µi} and {λi} satisfies the
inequalities in (32). As a result, we only need to solve problem
(31) with given {µi} and {λi} satisfying (32). In this case,
it can be observed that problem (31) can be decomposed into
the following subproblems:

min.
bk≥0

λibk + µi

(

bkN0

gk

(

2
rk
bk − 1

))

, k ∈ K1 ∪K2, (33)

min.
0≤Ei≤Ēi

Ei(γiα
E
i − µi), i ∈ {1, 2}, (34)

min.
Gi≥0

Gi(γiα
G
i − µi), i ∈ {1, 2}, (35)

min.
ei≥0

ei(µi − βEµı̄), i ∈ {1, 2}, (36)

min.
wi≥0

wi(λi − βBλı̄), i ∈ {1, 2}. (37)

For theK1+K2 subproblems in (33), the optimal bandwidth
allocation with given{µi} and{λi} can be obtained based on
the first order condition and is expressed as

b
(µi,λi)
k =







rk ln 2

W( 1
e
(

λigk
µiN0

−1))+1
, µi > 0

0, µi = 0
, k ∈ Ki, i ∈ {1, 2}.

(38)

Furthermore, the optimal solution to the subproblems in (34)-
(37) can be obtained as follows.

E
(µi)
i =

{

0, γiα
E
i ≥ µi

Ēi, γiα
E
i < µi

, i ∈ {1, 2}, (39)

G
(µi)
i = 0, i ∈ {1, 2}, (40)

e
(µi)
i = 0, i ∈ {1, 2}, (41)

w
(λi)
i = 0, i ∈ {1, 2}. (42)

Note that for the subproblems in (34) with any i ∈ {1, 2},
if γiα

E
i = µi, then the solution ofEi is non-unique and can

be any value within its domain. For convenience, we choose
E

(µi)
i = 0 in this case. The similar case holds for subproblems

in (35), (36) and (37) if βEµı̄ = µi, γiαG
i = µi andβBλı̄ =

λi, respectively. In these cases,G(µi)
i = 0, e

(µi)
i = 0 and

w
(µi)
i = 0, i ∈ {1, 2}, are chosen as the solution for simplicity.

Also note that the solutions in (38) - (42) are only for obtaining
the dual functiong({µi}, {λi}) under any givenµi andλi to
solve the dual problem (P1.1-D), while they may not be the
optimal solution to the original(primal) problem (P1) duo to
their non-uniqueness.

With the results in (38) − (42), we have obtained the dual
function g({µi}, {λi}) with given {µi} and {λi} satisfying
(32). Next, we maximizeg({µi}, {λi}) over{µi} and{λi} to
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solve (P1.1-D). Sinceg({µi}, {λi}) is convex but in general
not differentiable, subgradient based algorithms such as the
ellipsoid method [25] can be applied to solve (P1.1-D), where
the subgradients ofg({µi}, {λi}) for µi and λi are given

by −
∑

k∈Ki

b
(µi,λi)

k
N0

gk

(

2

rk

b
(µi,λi)
k − 1

)

− Pc,i + E
(µi)
i and

−
∑

k∈K1∪K2
b
(µi,λi)
k + Wi, i ∈ {1, 2}, respectively. As a

result, we can obtain the optimal dual solution as{µ⋆
i } and

{λ⋆
i }. Accordingly, the corresponding{b(µ

⋆
i ,λ

⋆
i )

k } becomes the
optimal bandwidth allocation solution for (P1.1) and thus (P1),
given by {b⋆k}. Substituting the obtained{b⋆k} into (11), the
optimal power allocation solution for (P1) is thus obtainedas
{p⋆k}.

However, it is worth noting that the other optimal optimiza-
tion variables for (P1), given by{E⋆

i }, {G
⋆
i }, {e

⋆
i } and{w⋆

i },
cannot be directly obtained from (39)−(42), since the solutions
in (39)−(42) are in general non-unique. Nevertheless, it can
be shown that the optimal solution of (P1) is always attained
when the inequality constraints in (9b) and (9c) are tight. Thus,
we have

∑

k∈Ki

p⋆k + Pc,i =E⋆
i +G⋆

i + βEe
⋆
ı̄ − e⋆i , i ∈ {1, 2}, (43)

∑

k∈Ki

b⋆k =Wi + βBw
⋆
ı̄ − w⋆

i , i ∈ {1, 2}. (44)

From (44) and using the fact thatw⋆
1 andw⋆

2 should not be
positive at the same time, the optimal solution of{w⋆

i } can be
obtained. Last, the optimal optimization variables{E⋆

i }, {G
⋆
i }

and{e⋆i } can be obtained by solving the LP in (P3). Therefore,
Proposition 4.1 is proved.

APPENDIX C
PROOF OFLEMMA 5.1

We prove Lemma5.1 by considering two cases. First,
considerxex with

∑

k∈Ki
p
(xex)
k +Pc,i−βEeı̄+ei 6= Ēi. In this

case, it is evident from (15) and (16) that the optimal solutions
µ
(xex)
i andλ(xex)

i are both unique, since the bandwidth water-
level νi is always unique. According to Theorem 1 in [26], the
left-partial derivative is equal to the right-partial derivative.
Hence,Ci(x

ex) is differentiable with the partial derivatives
given in Lemma5.1. Therefore, (17) follows directly based
on the first order approximation of̄Ci(x

ex +∆x
ex).

Next, considerxex with
∑

k∈Ki
p
(xex)
k +Pc,i−βEeı̄+ei =

Ēi. In this case, the optimal dual solution ofµx
ex

i in (15) is
not unique. More specifically, it can be shown thatµex

i can
be any real number betweenαE

i to αG
i . As a result,Ci(x

ex)
is not differentiable in such point. However, it follows from
[26] that the left- and right-hand derivatives ofCi(x

ex) with
respect toe1, e2, w1 andw2 still exist, which can be given

as

∂C̄i(x
ex)

∂e+i
= αG

i ,
∂C̄i(x

ex)

∂e−i
= αE

i

∂C̄i(x
ex)

∂e+ı̄
= −βEα

E
i ,

∂C̄i(x
ex)

∂e−ı̄
= −βEα

G
i

∂C̄i(x
ex)

∂w+
i

= αG
i ν

(xex)
i ,

∂C̄i(x
ex)

∂w−
i

= αE
i ν

(xex)
i

∂C̄i(x
ex)

∂w+
ı̄

= −αE
i ν

(xex)
i ,

∂C̄i(x
ex)

∂w−
ı̄

= −αG
i ν

(xex)
i .

By replacing the partial derivatives in (18) as the correspond-
ing left- or right-hand derivatives, (17) also follows from the
first order approximation of̄Ci(x

ex+∆x
ex). It is worth noting

that, in Lemma5.1, we do not introduce the left- and right-
hand derivatives for notational convenience.

Therefore, Lemma 5.1 is proved.

APPENDIX D
PROOF OFPROPOSITION5.1

Since the shared energy from BS 1 to BS 2 and that from
BS 2 to BS 1 cannot be zero at the same time, i.e.,e1 ·e2 = 0,
there exist three possible cases for the shared energy between
the two BSs, which are (a)e1 = e2 = 0, (b) e1 > 0, e2 = 0,
and (c) e1 = 0, e2 > 0. Similarly, there are three possible
cases for the shared bandwidth between the two BSs, i.e., (a)
w1 = w2 = 0, (b) w1 > 0, w2 = 0, and (c)w1 = 0, w2 > 0.
As a result, by combining the above energy and spectrum
cooperation, there are nine cases for the shared energy and
the shared bandwidth. Therefore, we prove this proposition
by enumerating the nine possible cases. In the following, we
consider the case ofe1 = e2 = w1 = w2 = 0 and show
that in this case,xex attains the Pareto optimality if and only
if λ

(xex)
1 /µ

(xex)
1 ≤ λ

(xex)
2 /(µ

(xex)
2 βE) andλ

(xex)
2 /µ

(xex)
2 ≤

λ
(xex)
1 /(µ

(xex)
1 βE). We prove the “only if” and “if” parts,

respectively.
First, we show the necessary part by contradiction. Suppose

that there exists an inter-system energy and bandwidth coop-
eration vector̄xex with ē1 = ē2 = w̄1 = w̄2 = 0 attains the
Pareto optimality, whereλ(x̄ex)

1 /µ
(x̄ex)
1 > λ

(x̄ex)
2 /(µ

(x̄ex)
2 βE)

or λ(x̄ex)
2 /µ

(x̄ex)
2 > λ

(x̄ex)
1 /(µ

(x̄ex)
1 βE). If λ

(x̄ex)
1 /µ

(x̄ex)
1 >

λ
(x̄ex)
2 /(µ

(x̄ex)
2 βE), then we can construct a new inter-system

energy and bandwidth cooperation vector as

x̃
ex = x̄

ex +∆x
ex, (45)

with ∆x
ex = (∆e1,∆e2,∆w1,∆w2)

T , where∆e2 = ∆w1 =
0, while ∆e1 > 0 and∆w2 > 0 are sufficiently small and
satisfy thatµ(x̄ex)

1 /λ
(x̄ex)
1 < ∆w2/∆e1 < βEµ

(x̄ex)
2 /λ

(x̄ex)
2 .

In this case, it can be shown from (17) that
[

∆C1

∆C2

]

=

[

C̄1(x̃
ex)− C̄1(x̄

ex)
C̄2(x̃

ex)− C̄2(x̄
ex)

]

=

[

µ
(x̄ex)
1 ∆e1 − λ

(x̄ex)
1 ∆w2

−βEµ
(x̄ex)
2 ∆e1 + λ

(x̄ex)
2 ∆w2

]

< 0, (46)

where the inequality is component-wise. In other words,
we have found a new inter-system energy and bandwidth
cooperation vector to achieve lower energy costs for both
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BSs. As a result,̄xex with ē1 = ē2 = w̄1 = w̄2 = 0
does not achieve the Pareto optimality. On the other hand,
if λ

(x̄ex)
2 /µ

(x̄ex)
2 > λ

(x̄ex)
1 /(µ

(x̄ex)
1 βE), then we can also

construct a new inter-system energy and bandwidth cooper-
ation vector as in (45), where ∆e1 = ∆w2 = 0, while
∆e2 > 0 and ∆w1 > 0 are sufficiently small and satisfy
that µ(x̄ex)

2 /λ
(x̄ex)
2 < ∆w1/∆e2 < βEµ

(x̄ex)
1 /λ

(x̄ex)
1 . Then,

it can be shown that under this choice, the energy costs
of the two BSs can be decreased at the same time. By
combining the results for the two cases ofλ

(x̄ex)
1 /µ

(x̄ex)
1 >

λ
(x̄ex)
2 /(µ

(x̄ex)
2 βE) andλ(x̄ex)

2 /µ
(x̄ex)
2 > λ

(x̄ex)
1 /(µ

(x̄ex)
1 βE),

a contradiction is induced. As a result, the presumption cannot
be true. Accordingly, the necessary part is proved.

Second, for the sufficient part, we can also show it by
contradiction. Suppose that for an inter-system energy and
bandwidth cooperation vector̄xex with ē1 = ē2 = w̄1 =

w̄2 = 0 satisfyingλ
(x̄ex)
1 /µ

(x̄ex)
1 ≤ λ

(x̄ex)
2 /(µ

(x̄ex)
2 βE) and

λ
(x̄ex)
2 /µ

(x̄ex)
2 ≤ λ

(x̄ex)
1 /(µ

(x̄ex)
1 βE), but does not achieve

the Pareto optimality. This case implies that the two BSs can
exchange energy and bandwidth to decrease energy cost of
both at the same time. In other words, there must exist a new
vector x̃ex given in (45) satisfying either∆e2 = ∆w1 = 0,
∆e1 > 0,∆w2 > 0 or ∆e1 = ∆w2 = 0, ∆e2 > 0,∆w1 > 0
such thatC̄1(x̃

ex) < C̄1(x̄
ex) and C̄2(x̃

ex) < C̄2(x̄
ex). If

∆e2 = ∆w1 = 0, ∆e1 > 0,∆w2 > 0, then it can be shown
from (46) thatλ(x̄ex)

1 /µ
(x̄ex)
1 < λ

(x̄ex)
2 /(µ

(x̄ex)
2 βE) must hold,

whereas if∆e1 = ∆w2 = 0, ∆e2 > 0,∆w1 > 0, then we
have λ

(x̄ex)
2 /µ

(x̄ex)
2 < λ

(x̄ex)
1 /(µ

(x̄ex)
1 βE). As a result, we

have a contradiction here and thus the presumption cannot be
true. Therefore, the sufficient part is proved.

By combing the two parts, we have verified the proposition
in the case ofe1 = e2 = w1 = w2 = 0.

Next, the other eight cases remain to be proved in order
to complete the proof of this proposition. Since the proof for
these cases can follow the same contradiction procedure as the
case ofe1 = e2 = w1 = w2 = 0, we omit the details here
for brevity. By combining the proof for the nine cases, this
proposition is verified.
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