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Abstract

We consider energy-efficient wireless resource managementin cellular networks where BSs are

equipped with energy harvesting devices, using statistical information for traffic intensity and harvested

energy. The problem is formulated as adapting BSs’ on-off states, active resource blocks (e.g. subcarriers)

as well as power allocation to minimize the average grid power consumption in a given time period

while satisfying the users’ quality of service (blocking probability) requirements. It is transformed into

an unconstrained optimization problem to minimize a weighted sum of grid power consumption and
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blocking probability. Atwo-stage dynamic programming (DP)algorithm is then proposed to solve this

optimization problem, by which the BSs’ on-off states are optimized in the first stage, and the active

BS’s resource blocks are allocated iteratively in the second stage. Compared with the optimal joint BSs’

on-off states and active resource blocks allocation algorithm, the proposed algorithm greatly reduces

the computational complexity, while at the same time achieves close to the optimal energy saving

performance.

Index Terms

Energy harvesting, resource allocation, base station sleeping, dynamic programming.

I. INTRODUCTION

Exploiting renewable energy (e.g. solar energy, wind energy and so on) from the surrounding

environment to support wireless transmission data transmission, known asenergy harvesting

technology, can support the operation of battery powered devices. Intelligently adapting the

resource allocation of base stations (BSs) with energy harvesting equipment is a candidate

solution to reduce the network energy consumption [1]. However, due to the limited availability

of harvested energy as well as the uncertainty about the timing and the quantity of energy

collected, there is a tradeoff between the quality of service (QoS) and the available power

budget. Specifically, increasing the active wireless resource enhances the system capacity and

users’ service experience, but at the same time increases the probability of energy depletion,

which will ultimately degrade users’ QoS since the wirelessresources may have to be powered

down. Hence, in energy harvesting systems, wireless resource allocation should be optimized

jointly considering the traffic profile, the users’ QoS requirement, and the renewable energy

statistics.

Resource allocation for energy harvesting systems has be extensively studied recently. J. Yang

et. al. analyzed the offline optimal power allocation policy in a non-fading channel [2]. In the

fading channel, the optimal power allocation is interpreted as thedirectional water-fillingpolicy
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[3]. The offline analysis is extended to broadcast channel [4], multiple access channel [5] and

MIMO channel [6]. However, in practice, the energy arrival profile can not be known in advance

due to uncertainty concerning the energy source. Consequently, the offline optimal policy is not

applicable in real systems.

A practical way is to optimize the resource allocation usingstatistical information for harvested

energy, for instance, the average arrival rate or the statistical distribution. Ref. [7] considers a

cross-layer resource allocation problem to maximize the total system utility using a Markov de-

cision process (MDP) approach [8]. The packet dropping and blocking probabilities are analyzed

with different sleep and wake-up strategies using queuing theory in sensor/mesh networks with

solar power [9]. In [10], it is shown that the wireless link performance is strongly influenced by

the renewable energy profile, and parameter adaptation is considered to improve the performance.

The closed-form maximum stable throughput is studied and derived in cognitive radio networks

[11] and cooperative networks [12], respectively. Nevertheless, most of existing work focuses on

link level analysis, while the problem of how to efficiently allocate wireless resources according

to the network traffic profile and the harvested energy profilefrom network point of view still

remains open.

Based on the measured data, the statistics of the network traffic profile [13], [14] and the

harvested energy profile [15], [16] have been studied. In this paper, we make use of the statistical

information for traffic intensity and harvested energy to study the wireless resource allocation

problem in cellular networks. A mixed power supply from bothrenewable energy sources and

power grid is adopted, which is considered as a candidate solution to minimize the energy

consumption while at the same time guaranteeing users’ QoS.Specifically, the reliable grid

power guarantees that the service requirement is satisfied,while effective renewable energy

allocation policy reduces the grid power consumption. In the literature, power allocation [17],

coordinated MIMO [18] and network planning [19] has been studied in the mixed power scenario.

Different from the existing work, we aim to optimize the network operation according to the
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long-term network information with mixed power supply. Specifically, we consider the grid power

minimization problem with users’ QoS constraints in a downlink cellular network by adjusting

BSs’ on-off states and resource blocks allocation, where the BSs are equipped with energy

harvesting devices. The preliminary results in single-cell case have been presented in [20]. This

paper extensively studies the problem in multi-cell case. The main contents and contributions

are listed as follows:

• We formulate the problem of average grid power minimizationtaking into account the users’

QoS (weighted blocking probability) constraints for a pre-defined time period (e.g. 24 hours),

using knowledge of the traffic load profile and the energy harvesting statistics. The blocking

probability is analyzed based on Erlang’s approximation method [21] jointly considering

the BSs’ on-off states and the harvested energy profile.

• The grid power minimization problem is transformed into an unconstrained problem of

minimizing a weighted combination of grid power consumption and blocking probability,

which can be solved by a dynamic programming (DP) approach [8].

• A two-stage DP algorithm, which determines the BSs’ on-off state in the first stage, and

then optimizes per-BS resource allocation in the second stage, is proposed to reduce the

computational complexity. The performance of the proposedalgorithm is evaluated by

simulations and compared with the optimal DP algorithm and some heuristic algorithms.

The rest of the paper is organized as follows. Section II introduces the system model. The

blocking probability is defined and analyzed in Section III.In Section IV, we study the average

grid power minimization problem with a weighted blocking probability constraint. Numerical

results are presented in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider a wireless cellular system with a total ofB BSs denoted asB = {1, 2, . . . , B},

each of which is powered jointly by an energy harvesting device and the power grid. The
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operational time line (e.g. a period of 24 hours) is divided into T time slots. The power model,

the traffic model and the channel model are detailed as follows.

A. Power Consumption Model

In slot t, the average harvested power of BSb is denoted byP (b)
H,t, and the grid power is

P
(b)
G,t. Assume the harvested energy is stored in an infinite capacity battery. The assumption is

reasonable as the harvested energy is generally not sufficient for reliable network operation.

Hence, in a real system, even though the battery capacity is finite, there is only a very low

probability of battery overflow. The BS energy consumption in active modeis modeled as a

constant power term plus a radio frequency (RF) related power [14], which is

P
(b)
BS,t = P0 +∆PP

(b)
RF,t, (1)

whereP0 is the constant power including the baseband processor, theconverter, the cooling

system, and etc.,∆P is the inverse of power amplifier efficiency factor, andP (b)
RF,t is the total

RF transmit power.

Assume the total wireless bandwidthW0 is divided intoN orthogonal subcarriers. The network

will decide which BSs are powered on and how many subcarriersof these BSs are activated.

The RF power is a linear function of the number of active subcarriers n(b)
t , i.e.,

P
(b)
RF,t =

n
(b)
t

N
PT , n

(b)
t ≤ N, (2)

wherePT is the constant transmit power level. SubstitutingP (b)
RF,t in (1) with (2), we get

P
(b)
BS,t = P0 +

n
(b)
t

N
∆PPT . (3)

In order to balance the performance among different time slots, the harvested energy may be

reserved in the energy battery for future use by reducing thenumber of active subcarriers or

by switching tosleep mode. In this paper, two types of sleep modes are considered. The first

one is deep sleep mode, in which a BS is completely turned off for a time slot. In this sleep
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mode, the BS power consumption is negligible and the users inthe sleeping cell are served by

the neighboring BSs. The second one isopportunistic sleep mode. An active BS will turn to

opportunistic sleep mode for a time ratioϕ(b)
t ∈ [0, 1) of the active period due to the lack of

available energy input. It can be realized by time domain BS sleep [22] where some subframes

are turned off. We assume the power consumption in opportunistic sleep mode isPS. Denote

S
(b)
t as the state of BSb at timet, which equals 1 if it is in active mode, and equals 0 otherwise.

We summarise the BS state and power consumption model as follows:

P
(b)
BS,t =























P0 +
n
(b)
t

N
∆PPT , if S(b)

t = 1,

PS, if S(b)
t = 1 with opportunistic sleep,

0, if S(b)
t = 0.

(4)

In reality, a BS in sleep mode still consumes a certain amountof power so that it can be

reactivated. However, the power to reactivate a BS is negligible compared with the power

consumption in active mode. Hence, the sleep mode power consumption is approximated as

zero.

B. Traffic Model

In the following part of this section, we ignore the time index t for simplicity. The users

are sorted into groups according to their rate requirementsand locations [23]. Assume there

areK classes of users, each of which shares the same data rate requirementRk, k = 1, . . . , K.

The network is further divided intoM disjoint regions, whose areas are denoted byAm, m =

1, . . . ,M . In each regionm, the users from classk are uniformly distributed and randomly arrive

according to a Poisson distribution with arrival rateλmk. Correspondingly, the service rate is

denoted byµmk. Hence, the traffic intensity of user classk in aream is calculated by

ρmk =
λmk

µmk

. (5)

All the traffic in each area is served by the BS with largest signal strength. Once the BSs’

active/sleep states are fixed, the serving BS for each user ineach area is decided. The resource
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allocation of each BS follows the processor-sharing queueing model [24], i.e., the active sub-

carriers are allocated to each user to meet its data rate requirement. Hence, a newly arrived

user will be blocked if the available subcarriers are not sufficient to satisfy its rate requirement.

Intuitively, when the network traffic load is high, more BSs and subcarriers should be active

so that each BS takes care of a smaller area to guarantee the QoS. Otherwise, fewer BSs and

subcarriers are required to be active, and hence the power consumption can be reduced.

C. Channel Model

We assume small-scale fast fading will average out as we consider the long time-scale

performance, and large-scale shadowing will average out for sufficient cell realisation. Hence,

we mainly focus on pathloss effects. The received SINR of user u in the coverage of active BS

b is

SINRu =
PTβ(d

(b)
u )−α

σ2 +
∑

b′:S(b′)=1,b′ 6=b
n(b′)

N
PTβ(d

(b′)
u )−α

, (6)

whereβ is the pathloss constant,α is the pathloss exponent,d(b)u is the distance between BSb

and useru, andσ2 is the noise power. Notice that we assume the interference isaveraged over

the whole bandwidth. That is, the perceived interference power is scaled by the ratio of active

subcarriersn
(b′)

N
. Then the maximum achievable transmission rate is

ru =
n(b)W0

N
log2(1 + SINRu). (7)

In the next section, we select the blocking probability as the QoS metric, and study the

relationship between the blocking probability and the energy consumption.

III. B LOCKING PROBABILITY ANALYSIS

The blocking probability is defined as the probability that anewly arrived user is blocked due

to the lack of required radio resources. In energy harvesting systems, a blocking event may be

caused by two factors. The first one is the high traffic load which results in that the required
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subcarriers are not available. We call the blocking due to the high traffic load as theservice

blocking probability. The second one is the BS’s opportunistic sleep mode in whicha newly

arrived user will be blocked. Hence, the blocking probability caused by opportunistic sleep is

equal to the sleep ratioϕ(b)
t . We first analyze the service blocking probability, and thencalculate

the overall blocking probability.

A. Service Blocking Probability

Denote the instantaneous set of users of classk in aream by Umk, which are uniformly

distributed in aream, and the user number byUmk = |Umk|. We calculate the normalized

bandwidth requirement of useru of classk in aream by

Φmk(u) =
Rk

ru
. (8)

As each BS has a limited available bandwidth, the admission condition is that the total normalized

bandwidth requirement denoted byzb, should not exceed 1, i.e.,

zb =
∑

m∈M(b)

K
∑

k=1

∑

u∈Umk

Φmk(u) < 1, (9)

where BSb is assumed to be always active (S(b) = 1, ϕ(b) = 0). Hence, the service blocking

probability can be expressed as

psv,mk =Pr(zb < 1, zb + Φmk(u) ≥ 1) (10)

=Pr(1− Φmk(u) ≤ zb < 1), (11)

where (10) means that the total normalized bandwidth does not exceed 1 until a useru of

classk arrives in aream. Calculation of the blocking probability (11) requires theintegration

of the probability over all the possible quantities and locations of users served by BSb, for

which it is difficult to find analytical expressions. We make use of theErlang’s approximation

method proposed in [21] and extend to our multi-class multi-area scenario. The basic idea of

Erlang’s approximation method is to average the users’ bandwidth requirements over all the
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possible positions. Assuming that all the users in the area have the same bandwidth requirement,

the blocking probability can be calculated by Erlang’s formula [24]. Specifically, the average

normalized bandwidth requirement of classk users in aream is

Φ̄mk =

∫

Am

Rk

ru(a)Am

da. (12)

whereru(a) is the achievable data rate of useru at positiona, which is expressed as (7). Hence,

the admission condition (9) is changed to

∑

m∈M(b)

K
∑

k=1

UmkΦ̄mk < 1, (13)

whereUmk is the number of active users of classk in aream. At the same time, the blocking

probability of a user of classk in aream is modified as

psv,mk = Pr(1− Φ̄mk ≤
∑

m′∈M(b)

K
∑

k′=1

Um′k′Φ̄m′k′ < 1). (14)

According to the queueing theory [24], the stationary probability of active user stateU (b) =

{Umk}m∈M(b),k=1,...,K associating to BSb is

π(b)(U (b)) =
∏

m∈M(b)

K
∏

k=1

ρUmk

mk

Umk!





∑

U(b)∈U(b)

∏

m∈M(b)

K
∏

k=1

ρUmk

mk

Umk!





−1

, (15)

whereU (b) = {U (b)|
∑

m∈M(b)

∑K

k=1 UmkΦ̄mk < 1} is the set of all possible active user states

which satisfy the bandwidth constraint (13). As a consequence, the blocking probability can be

calculated as

psv,mk =
∑

U(b)∈Ū(b)
mk

π(b)(U (b)), m ∈ M(b), (16)

where Ū
(b)
mk = {U (b) : 1 − Φmk ≤

∑

m′∈M(b)

∑K
k′=1Um′k′Φ̄m′k′ ≤ 1} is the set of active user

states where the newly arrived user of classk in aream is blocked. In addition, the probability

that a newly arrived user in the coverage of BSb is blocked is

p(b)sv =

∑

m∈M(b)

∑K

k=1 psv,mkρmk
∑

m∈M(b)

∑K
k=1 ρmk

(17)

Notice that the service blocking probability can be tuned byadapting the BSs’ working states

S(b), b = 1, . . . , B and the number of active subcarriers in the active BSsn(b), b ∈ {b : S(b) = 1}.
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B. Relation betweenP (b)
G andϕ(b)

Recall that the BS in active mode can turn to opportunistic sleep mode with time ratioϕ(b).

DenoteP (b)
In as the total input power for transmission. According to the balance between power

input and consumption, we have

P
(b)
In = (1− ϕ(b))P

(b)
BS + ϕ(b)PS, P

(b)
In ≤ P

(b)
BS (18)

Then the relation between the opportunistic sleep time ratio and the input power is

ϕ(b) =
P

(b)
BS − P

(b)
In

P
(b)
BS − PS

. P
(b)
In ≤ P

(b)
BS (19)

We now discuss the relationship between the opportunistic sleep time ratio and the grid power

consumption according to the available harvested power.

1) Case 1:If the harvested energy is sufficient for the required input power, i.e.,P (b)
C +P

(b)
H ≥

P
(b)
In , whereP (b)

C is the power supply from the battery. Then we have

P
(b)
G = 0, ∀ 0 ≤ ϕ(b) ≤ 1, (20)

which means that the grid power input is not needed.

2) Case 2: On the other hand, for the case whereP (b)
C + P

(b)
H < P

(b)
In , then grid power is

needed. And the opportunistic sleep time ratio can be expressed in terms of the grid powerP (b)
G

as

ϕ(b) =
P

(b)
BS − (P

(b)
C + P

(b)
H + P

(b)
G )

P
(b)
BS − PS

, P
(b)
G ≤ P

(b)
BS − (P

(b)
C + P

(b)
H ). (21)

C. Overall Blocking Probability

In an energy harvesting system, if the BS is in opportunisticsleep mode due to the lack of

energy, a newly arrived user of classk in aream served by BSb will be blocked with probability

1. Otherwise, it will be blocked with probabilitypsv,mk. As a consequence, the overall blocking
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probability can be calculated as

pblk,mk = ϕ(b) + (1− ϕ(b))psv,mk

= 1− (1− psv,mk)(1− ϕ(b)). (22)

If we focus on the blocking probability for BSb, then we have

p
(b)
blk =

∑

m∈M(b)

∑K

k=1 pblk,mkρmk
∑

m∈M(b)

∑K

k=1 ρmk

= 1− (1− p(b)sv )(1− ϕ(b)), (23)

wherep(b)sv is expressed as (17). Notice that if BSb is in sleep mode (S(b) = 0), the users in

the sleeping cell must be associated with the other active BSs. Hence, no blocking events are

counted for this sleeping BS.

IV. POWER GRID ENERGY M INIMIZATION

A. Problem Formulation

In this section, we formulate the grid power minimization problem. The traffic intensity in

time slot t for the K classes of users andM regions is denoted by anM × K matrix ρt =

{ρmk,t}m=1,...,M,k=1,...,K . The energy harvesting power is denoted by a1 × B vector PH,t =

[P
(1)
H,t, P

(2)
H,t, . . . , P

(B)
H,t ]. The values ofρt andPH,t are assumed to be constant for each slott, but

can vary among slots. By adjusting the BSs’ on-off statesSt = [S
(1)
t , S

(2)
t , . . . , S

(B)
t ], the number

of active subcarriers of active BSsnt = [n
(1)
t , n

(2)
t , . . . , n

(B)
t ], and the opportunistic sleep time

ratio ϕt = [ϕ
(1)
t , ϕ

(2)
t , . . . , ϕ

(B)
t ], we can adapt the grid power input as well as the total power

usage in all the slotst = 1, 2, . . . , T .

The following optimization problem is considered: given the traffic profileρ1,ρ2, . . . ,ρT and

the renewable energy profilePH,1,PH,2, . . . ,PH,T , adjust the BSs’ working stateS1,S2, . . . ,ST ,

the resource allocationn1,n2, . . . ,nT and the sleep ratioϕ1,ϕ2, . . . ,ϕT to minimize the

average grid power consumption while satisfying the weighted blocking probability. Denote

May 23, 2013 DRAFT
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S = {S1,S2, . . . ,ST},n = {n1,n2, . . . ,nT},ϕ = {ϕ1,ϕ2, . . . ,ϕT}, then the problem can be

formulated as

min
S,n,ϕ

∑T

t=1 Lt

∑B

b=1 P
(b)
G,t

∑T
t=1 Lt

(24)

s.t.

T
∑

t=1

B
∑

b=1

ω
(b)
t p

(b)
blk,t ≤ ptarget, (25)

whereLt denotes the length of slott, the blocking probabilityp(b)blk,t is expressed as (23), and

the weighting factorω(b)
t , which satisfies

∑T

t=1

∑B

b=1 ω
(b)
t = 1, reflects the system sensitivity to

the blocking probability in each slot. The weighting factorallows for the case where users may

require higher QoS at some particular times of the day. For instance, if higher QoS is required

during peak load times (e.g. day time) than low load times (e.g. night time), we can set the

weighting factor for the day time to be larger than that for night time. The influence of the

weighting factor settings is studied in the simulations.

B. Optimal DP Algorithm

The optimal solution for the problem (24) with the constraint (25) can be found by exhaustive

search through all possible policies. However, this approach is not practical due to its high

complexity. The DP approach [8], which divides the whole problem into simple per-stage

sub-problems, is a candidate approach to find the optimal policy. We consider the following

unconstrained optimization problem with a weighted combination of the power consumption

and the blocking probability

min
S,n,ϕ

∑T

t=1 Lt

∑B

b=1 P
(b)
G,t

∑T
t=1 Lt

+ β

T
∑

t=1

B
∑

b=1

ω
(b)
t p

(b)
blk,t, (26)

where the factorβ > 0 plays the role of a Lagrangian multiplier and indicates the relative

importance of the blocking probability with respect to the average grid power consumption.

Denote the minimum objective value of problem (26) for a given β asP ∗
Gave,β + βp∗blk,β, where

P ∗
Gave,β and p∗blk,β represent the average grid power and the weighted blocking probability,
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respectively. As the objective (26) is minimized,P ∗
Gave,β must be the minimum average grid

power to guarantee that the blocking probability is no more thanp∗blk,β. Hence, the solution for

(26) is also the one for (24) whereptarget = p∗blk,β.

DenotePGave(pblk) as the minimum average grid power such that the blocking probability

does not exceedpblk. Hence, we havePGave(p
∗
blk,β) = P ∗

Gave,β. By adjusting the value ofβ and

solving the corresponding problem (26), we can find a set of points for the functionPGave(pblk).

By joining these points which indicate the minimum average grid power for a given target

blocking probability, we get a lower bound curve of the grid power consumption for the target

blocking probability. Any achievable pair of grid power consumption and blocking probability

values must lie above this curve. Notice that it is not guaranteed that all the values ofPGave(pblk)

can be found. Hence, for a given target blocking probabilityptarget, if a corresponding point can

be found by setting appropriate value ofβ, the optimal solution for the original problem (24)

with constraint (25) is found. Otherwise, we can just get a suboptimal result by adopting the

policy related to the point with the largest blocking probability less thanptarget.

The DP algorithm contains three key components: state, action and cost function. In the

problem (26), the state is the amount of energyEC,t = [E
(1)
C,t, E

(2)
C,t, . . . , E

(B)
C,t ] in the battery at

the beginning of slott. For each BSb, E(b)
C,t evolves to slott+ 1 as follows:

E
(b)
C,t+1 = E

(b)
C,t + Lt(P

(b)
H,t + P

(b)
G,t)−

[(

1− ϕ
(b)
t

)

LtP
(b)
BS,t + ϕ

(b)
t LtPS

]

, (27)

where the energy consumption in slott can not exceed the energy available, i.e.,

[(

1− ϕ
(b)
t

)

LtP
(b)
BS,t + ϕ

(b)
t LtPS

]

≤ E
(b)
C,t + Lt(P

(b)
H,t + P

(b)
G,t), (28)

and the power grid is not plugged in until the harvested energy is not enough:

P
(b)
G,t ≤ max

{(

1− ϕ
(b)
t

)

LtP
(b)
BS,t + ϕ

(b)
t LtPS − E

(b)
C,t − LtP

(b)
H,t

}

. (29)

The actions are the BSs’ working stateSt, the number of active subcarriersnt, and the sleep

ratio ϕt. Notice that ifS(b)
t = 0, there is no active subcarrier (n(b)

t = 0), and the BS keeps sleep
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during the slott (ϕ(b)
t = 1). The per-stage cost is the weighted combination of the average grid

power and the blocking probability, denoted as a function ofthe current action and state

ct(St,nt,ϕt,EC,t) =
Lt

∑B
b=1 P

(b)
G,t

∑T

t=1 LtB
+ β

B
∑

b=1

ω
(b)
t p

(b)
blk,t. (30)

The DP algorithm breaks the original problem down into sub-problems with respect to the stage,

where the objective is to minimize the cost of each time slot plus that of the following slots.

The per-slot sub-problems are solved recursively. Thecost-to-gofunction is defined recursively

as

Jt(EC,t) =











min
St,nt,ϕt

ct(St,nt,ϕt,EC,t), t = T

min
St,nt,ϕt

{ct(St,nt,ϕt,EC,t)+Jt+1(EC,t+1)} , t < T
(31)

which denotes the minimum cost of the sub-problem with slott as its initial stage. Performing

a backward induction of the cost-to-go functions (31) from time slotT to slot 1, we can obtain

the minimum cost equal toJ1(0).

Assume the number of examined sleep ratiosϕ
(b)
t is Nϕ. Then, the cardinality of the ac-

tion space for each cost-to-go function is(NNϕ + 1)B. Note that the number of BS actions

(S
(b)
t , n

(b)
t , ϕ

(b)
t ) is (NNϕ + 1) instead of2NNϕ, as the BSs in sleep mode have only a single

state. Hence, given the state in time slott, the cardinality of the state space in slot(t+1) is no

more than(NNϕ + 1)B. That is, if the harvested energy of all BSs is enough for any resource

allocation policy, each policy corresponds to a unique next-stage state. Otherwise, some policies

result in the same state, so the state space is less than(NNϕ + 1)B.

Both the action space and the state space dimensions increase exponentially with the number

of BSs B in the network, which, due to thecurse of dimensionality[8], will result in an

overwhelming computational complexity to find the optimal control policy if the network size is

large. As a consequence, the proposed DP optimal algorithm is difficult to implement in practical

systems, and low-complexity solutions are required. In thefollowing, a two-stage optimization

algorithm is proposed to reduce the size of state and action space.
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C. Two-stage DP Algorithm

The basic idea of the two-stage optimization algorithm is todivide the action process into

two steps. In the first stage, we assume that the number of active subcarriers in active BSs are

alwaysN , i.e., subcarrier allocation is not considered in this stage. In addition, the active BS

sleep ratioϕ(b)
t is assumed to be 0 for all theb = 1, . . . , B, which means the required power is

always available. As a result, the actions at this stage onlyconsist of the BSs’ working states

S. The optimization problem can be written as

min
S

∑T
t=1 Lt

∑B
b=1 P

(b)
G,t

∑T

t=1 Lt

+ β

T
∑

t=1

B
∑

b=1

ω
(b)
t p

(b)
blk,t

∣

∣

∣

nt=N ,ϕt=0,∀t
, (32)

whereN = NSt, and 0 = 1 − St. Hence, the conditionnt = N ,ϕt = 0 means for any

b = 1, 2, . . . , B, if S(b)
t = 1, the corresponding number of active subcarriers isn

(b)
t = N , and

the sleep ratio isϕ(b)
t = 0, i.e., BSb activates all the subcarriers for the whole time slott. The

cost-to-go function is

Jt(EC,t)|nt=N ,ϕt=0

=











min
St

ct(St,nt = N ,ϕt = 0,EC,t), t = T

min
St

{

ct(St,nt = N ,ϕt = 0,EC,t)+Jt+1(EC,t+1)|nt+1=N ,ϕt+1=0

}

, t < T
(33)

Remark 1: The action space of each cost-to-go function in (33) is2B, and given the state in

time slot t, the maximum state space in time slot(t + 1) is reduced from(NNϕ + 1)B to 2B.

The problem (32) can be solved by the standard DP algorithm with a much lower complexity

compared to the original DP problem (26). In the second stage, given the BSs’ working state

S∗ = {S∗
1 ,S

∗
2 , . . . ,S

∗
T} obtained from the first stage, we adjust the number of active subcar-

riers and power allocation for each BS separately. Since thesubcarrier adaptation changes the

interference profile, the per-BS resource allocation correlates with one another. We propose an

iterative resource allocation algorithm, which updates the per-BS resource allocation based on

the allocation results of the other BSs, and then iterates the process until the resource allocation
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solution does not change between two consecutive iterations. The per-BS resource allocation

optimization problem can be formulated as

min
n
(b)
t ,ϕ

(b)
t

∑T

t=1 Lt

∑B

b=1 P
(b)
G,t

∑T
t=1 Lt

+ β
T
∑

t=1

B
∑

b=1

ω
(b)
t p

(b)
blk,t

∣

∣

∣

S∗,n
(b′)
t ,ϕ

(b′)
t ,∀t,b′ 6=b

. (34)

The problem can also be solved by the DP algorithm where the cost-to-go function is

J
(b)
t (E

(b)
C,t)|S∗

t ,n
(b′)
t ,ϕ

(b′)
t ,b′ 6=b

=



















min
n
(b)
t ,ϕ

(b)
t

ct(St = S∗
t ,n

(b)
t ,ϕ

(b)
t ,E

(b)
C,t)|n(b′)

t ,ϕ
(b′)
t ,b′ 6=b

, t = T

min
n
(b)
t ,ϕ

(b)
t

{

ct(St = S∗
t ,n

(b)
t ,ϕ

(b)
t ,E

(b)
C,t)|n(b′)

t ,ϕ
(b′)
t ,b′ 6=b

+Jt+1(EC,t+1)|S∗

t ,n
(b′)
t+1,ϕ

(b′)
t+1,b

′ 6=b

}

, t < T

(35)

Remark 2: The action space of each cost-to-go function in (35) is eitherNNϕ (S(b)∗
t = 1) or

1 (S(b)∗
t = 0), and given the state in time slott, the maximum state space in time slot(t+ 1) is

no more thanNNϕ.

Remark 3: In summary, using the two-stage optimization algorithm, the action space of each

time slot optimization is reduced from(NNϕ + 1)B to 2BBNNϕ. Accordingly, given the state

in time slot t, the maximum state space in time slot(t + 1) is reduced from(NNϕ + 1)B to

2BBNNϕ.

The two-stage optimization algorithm is summarized as Algorithm 1.

D. Heuristic Algorithms

Motivated by the two-stage DP algorithm where the BSs’ on-off states are determined in the

first stage, and the per-BS resource allocation is determined in the second stage, we propose

some low-complex heuristic algorithms for comparison, which also operates in two-stage manner.

Specifically, the BSs’ on-off states can be adjusted by the following algorithms:

• Non-sleep policy. In this policy, all the BSs are active in each slot. It is the policy used in

the traditional cellular network, which can be viewed as a baseline strategy.
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Algorithm 1 Two-stage DP Optimization
The 1st stage:

Solve the problem (32) to findS∗.

The 2nd stage:

Setnt = N ,ϕt = 0,n′

t 6= nt,ϕ
′

t 6= ϕt, t = 1, . . . , T

while nt 6= n′

t or ϕt 6= ϕ′

t for somet = 1, . . . , T do

Setn′

t = nt,ϕ
′

t = ϕt, t = 1, . . . , T .

for b = 1 to N do

Setn(b) = {n
(b)
1 , n

(b)
2 , . . . , n

(b)
T },ϕ(b) = {ϕ

(b)
1 , ϕ

(b)
2 , . . . , ϕ

(b)
T }

Find n(b)∗,ϕ(b)∗ which solve the problem (34) by fixingn(b′) andϕ(b′), b′ 6= b.

Updatent,ϕt, t = 1, . . . , T by settingn(b) = n(b)∗,ϕ(b) = ϕ(b)∗.

end for

end while

• Threshold-based sleep policy. In this policy, the number of active BSs are decided by the

network traffic intensity. Basically, there is a minimum number of active BSs required,Bmin,

to guarantee the network coverage. We define a set of thresholds θ0(= 0), θ1, . . . , θQ, Q ≤

B − Bmin. The BSs’ on-off pattern is pre-defined for eachθi, 1 ≤ i ≤ Q. If the integrated

network traffic intensity satisfiesθi−1 <
∑

m

∑

k

ρmk ≤ θi, the corresponding BSs on-off

pattern is selected.

Once the BSs’ on-off states are decided, the number of activesubcarriers and the opportunistic

sleep ratio are tuned in each BS individually based on the algorithms listed below:

• Maximum resource block utilization. In this policy, all the blocks are activated for trans-

mission, i.e.,n(b)
t = N for all t. It can be considered as a baseline case.

• Traffic-aware resource block utilization. Based on the intuition that higher traffic intensity
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requires more wireless resources, we propose a policy wherethe number of activated

subcarriers is set proportional to the traffic intensity, i.e.,

n
(b)
t = min{N, ⌈η1ρtN⌉}, η1 > 0 (36)

where⌈x⌉ is the minimum integer no smaller thanx.

• Joint traffic-energy-aware resource block utilization. As the outages are caused not only by

the lack of wireless resources, but also by the lack of power,the power budget should be

taken into consideration. In this case, the number of activesubcarriers is also proportional

to the available power besides the traffic intensity:

n
(b)
t = min

{

N,

⌈

η2ρt
E

(b)
B,t + E

(b)
G,t + LtP

(b)
H,t

∑T
k=t Lk(P0 +∆PPT )

N

⌉}

, (37)

whereη2>0, and the grid energyE(b)
G,t evolves asE(b)

G,t+1=max{0, E
(b)
G,t−LtP

(b)
G,t}. Note that

P0 +∆PPT in the denominator is for normalization.

The sleep ratioϕ(b)
t in all these policies is decided as follows. Given the average grid power

P
(b)
Gave, the grid energy budget is initialized asE(b)

G,1=
∑T

t=1 LtP
(b)
Gave. We get

P
(b)
G,t=min

{

E
(b)
G,t

Lt

,max

{

0, P0+
n
(b)
t

N
∆PPT−

E
(b)
B,t

Lt

−P
(b)
H,t

}}

, (38)

i.e., the grid power is used to satisfy the power requirementas long as it is available.

Notice that given the parametersθi, η1, η2, the heuristic algorithms only depend on the traffic

and the energy conditions of current time slot. The complexity is much lower than the DP

algorithm. However, the QoS performance is not guaranteed,which is shown in the simulation

results in the next section.

V. NUMERICAL SIMULATIONS

We examine the performance of the proposed algorithms by numerical simulations. We adopt

the energy consumption model of the macro BS from the EARTH project [14], and the channel

model from 3GPP LTE [25]. In the macro-cell scenario, we haveP0 = 712.2W, ∆P = 15.96,
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R

2

2
R

Fig. 1. Single-cell Erlang’s approximation settings forM = 2.

the maximum transmit powerPmax = 40W, and the cell radiusR = 1000m. The opportunistic

sleep mode power isPS = 50W. The bandwidth is set toW0 = 10MHz and the number of

sub-carriers is set toN = 600. The path-loss isPLdB = 34.5 + 35 log10(l), and the noise

power density is−174dBm/Hz. We first study the relation between the QoS and the resource

allocation in single cell scenario, and evaluate the proposed DP algorithm in this setup. Then the

simulation is extended to sectorized multi-cell scenario to study the performance of the two-stage

DP algorithm.

A. Single-Cell Case

For the single-cell case, the superscriptb is ignored for simplicity. We set the number of user

classes asK = 1. The circular cell area are divided intoM = 2 regions with equal areas, as

shown in Fig. 1. It is easy to find that the inner circular region is of radius of
√
2
2
R. Accordingly,

the user data requirement isrK = r0 = 2Mbps, the user service rate isµ1K = µ2K = µ = 1s−1,

and the arrival rateλ1K = λ2K = λ
2
. The total traffic intensity is denoted byρ = λ/µ, and the total
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Fig. 2. Relationship between blocking probability and number of active subcarriers.ρ is the traffic intensity,PIn is the total

input power available. The “star” is the minimum blocking probability for each parameter settings.

input power is denoted byPIn, which includes harvested power, grid power and battery power.

The relation between the number of active subcarriers and the blocking probability is depicted

in Fig. 2. Takeρ = 5, PIn = 1 × 103W as an example. When the number of active subcarriers

is less than 300, the blocking is mainly caused by the limitedavailability of subcarriers. Hence,

the region wheren < 300 is called thebandwidth limitedregion. On the contrary, ifn ≥ 300,

the available power is insufficient to enable the active subcarriers to be always on, which means

ϕ > 0. Then the blocking is also caused by opportunistic sleep, which gradually becomes the

main blocking factor. Correspondingly, the region wheren ≥ 300 is called theenergy limited

region. As a result, there is a minimum outage probability working point as shown by the star

on each curve. In addition, if a certain blocking probability can be achieved in both bandwidth

limited region and energy limited region, the policy in bandwidth limited region consumes the

power less thanPIn, while that in energy limited region consumes all the available powerPIn.
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Fig. 3. Daily traffic (solid line) [14] and renewable energy profile (dashed line) [15].

Hence, subcarrier adaptation according to the traffic requirement and available energy is more

efficient than opportunistic sleeping. In the following simulation, we only consider subcarrier

adaptation optimization, i.e., we setϕ = 0 for all the conditions.

Then the performance of the DP algorithm to minimize the gridenergy consumption is

evaluated with a given traffic profile and energy arrival statistics for one day. We run the standard

DP algorithm (31) for the single-cell case as the computational complexity is affordable. The

traffic profile and renewable energy harvesting profile are taken from [14] and [15], respectively,

as shown in Fig. 3. We setT = 24, and the length of each slot isLt = 1 hour. The traffic profile

is λt = φtλmax, where the maximum traffic intensityλmax = 10s−1 and0 < φt ≤ 1.

The tradeoff between average blocking probability (ωt = 1/T ) and grid energy consumption

for different policies is depicted in Fig. 4. Notice that thetraffic-aware DPalgorithm firstly

optimizes the resource allocation via DP approach assumingonly grid power input, and then

calculates the actual grid power consumption considering the renewable energy profile. It can
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Fig. 4. Tradeoff curves between outage probability and gridenergy consumption with different policies.

be seen that the proposed DP based algorithm is the optimal solution, which verifies that the

traffic variation and the energy profile should be jointly considered. The comparison between the

traffic-aware heuristic algorithm and the traffic-energy-aware heuristic algorithm also confirms

this. Specifically, the joint traffic-energy-aware policy performs better than the traffic-aware policy

in almost all conditions by choosing properη2 (η2 = 0.26, 0.3 for η1 = 0.18, 0.22, respectively).

In addition, by adjusting the value ofη1 and η2, we obtain different curves. For instance, the

traffic-aware heuristic algorithm with a smaller value ofη1 (0.18) performs closer to the optimal

than that with larger value (0.22) for the low grid power input regime (< 610 Watt), and that

with largerη1 (0.22) is near optimal for the high grid energy input regime (> 610 Watt).

Fig. 5 shows the per-slot blocking performance of the DP algorithm for the same average

blocking probability target (1%). In this simulation, we set ωt = φj
t/

∑

t φ
j
t , wherej = 0, 1, 2.

The exponentj = 0 corresponds to the average blocking probability, andj = 1 means traffic
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Fig. 5. Per-slot outage probability with different weighting factorsωt = φj
t/

∑
t φ

j
t . The average outage probability is identical

as 1%.

weighted blocking. Asφt < 1, larger j implies a higher weight for the high traffic regime. It

can be seen that by adjusting the weighting factor, we can obtain different blocking profiles.

Specifically, the algorithm tends to increase the blocking probability in a low traffic load regime

if the corresponding weighting factor is large (j = 2).

B. 3-Sector Case

We now turn to multi-cell scenario. We consider the sectorized multi-cell setup as shown in

Fig. 6(a), where each cite has 3 co-located BSs. In this setup, the dominant interference for a

user in cell 1, 2, or 3 is from the other two cells. The interference from BSs at further locations

can be considered as a low-power background noise. Hence, the optimization can be done in

each 3-sector cluster individually.

The parameter settings are as follows. The regional division depends on the BSs’ on-off state.
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Fig. 6. Sectorized Multi-cell Erlang’s approximation settings.

Specifically, if only one BS is active, as shown in Fig. 6(b), the cluster is divided intoM = 2

regions. The first region is the original coverage of the active BS, and the second is that of the

others. If two BSs are active (Fig. 6(c)),M = 4. The coverage of the sleep BS is divided into

2 regions, which are served by the two active BSs, respectively. Finally, if all BSs are active

(Fig. 6(d)),M = 3, and each region is covered by its own BS. The service rate is assumed

the sameµK = 1s−1. The traffic in the studied area follows the profile illustrated in Fig. 3,

and each sector occupies part of it. Assume that the user arrival rate of sectorb in time slot

t is λ(b)t = ψ(b)λt, where0 ≤ ψ(b) ≤ 1,
∑

b ψ
(b) = 1. We run the simulations for two setups:

an asymmetric traffic distributionψ(1) : ψ(2) : ψ(3) = 1 : 2 : 3 and a symmetric distribution

ψ(1) : ψ(2) : ψ(3) = 1 : 1 : 1. The renewable energy profile is assumed identical among thethree

BSs as in reality, the renewable energy (ex. solar power) intensity will be almost the same in a

DRAFT May 23, 2013



SUBMITTED PAPER 25

10
−3

10
−2

10
−1

0

500

1000

1500

2000

2500

Blocking probability

A
ve

ra
ge

 g
rid

 p
ow

er
 c

on
su

m
pt

io
n 

(W
at

t)

 

 

BS on−off
Two−stage DP
DP optimal
Non−sleep
Threshold−based sleep

Fig. 7. Tradeoff curves between outage probability and gridenergy consumption for 3-sector case.K = 1, R1 = 2Mbps, ψ(1)
:

ψ(2)
: ψ(3)

= 1 : 2 : 3. The renewable energy profile as in Fig. 3 is the same for threeBSs.

cluster-sized region. In our simulation, the same energy profile depicted in Fig. 3 is adopted for

all the BSs.

The tradeoff between blocking probability and gird energy consumption under an asymmetric

traffic distribution for a single user class (K = 1) is shown in Fig. 7. Notice that theBS on-off

algorithm only optimizes the BS on-off state assuming all subcarriers are active (n(b)
t = N) so

there is no opportunistic sleep (ϕ(b)
t = 0). It is actually the first stage optimization in the two-stage

algorithm. Also notice that for the heuristic non-sleep andthreshold-based sleep algorithms, the

joint traffic-energy aware adaptation algorithm is used in the second stage as it is better than

the other heuristic algorithms. In the threshold-based sleep algorithm, we set two thresholds

θ1 < θ2. If λt ≤ θ1, only the BS with the heaviest traffic load is active. Ifθ1 < λt < θ2, the

only BS with the lightest load sleeps. Otherwise, all the BSsare active. In this figure, we set

λmax = 7.5, θ1 = 3, θ2 = 6. It can be seen that the proposed two-stage DP algorithm performs
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Fig. 8. Tradeoff curves between outage probability and gridenergy consumption for 3-sector case.K = 1, ψ(1)
: ψ(2)

: ψ(3)
=

1 : 1 : 1. The renewable energy profile as in Fig. 3 is the same for threeBSs.

close to the optimal DP algorithm, and is better than the BS on-off algorithm. Hence, in addition

to the BS on-off states, the adaptation of number of active subcarriers and opportunistic sleep

ratio further reduces grid power consumption. The threshold-based heuristic sleep algorithm

performs better than the non-sleep algorithm when grid power is less than 1550Watt.

Fig. 8 depicts the tradeoff curves of different algorithms for the symmetric traffic distribution

case. In this figure, it can be seen that the BS on-off algorithm and two-stage DP algorithm are

close to each other, which means that the performance improvement by the active subcarrier

adaptation and the opportunistic sleep ratio adjustment isnot significant. It can be explained as

follows. Reducing the number of active subcarriers reducesthe available wireless radio resources

(enhancing its own blocking probability) on the one hand, but on the other hand reduces the

interference to the neighbouring cells (reducing neighborcells’ blocking probability). In the

asymmetric traffic distribution scenario, if the number of active subcarriers of low traffic BS is
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Fig. 9. Tradeoff curves between outage probability and gridenergy consumption for 3-sector case.K = 2, ψ(1)
: ψ(2)

: ψ(3)
=

1 : 2 : 3. The renewable energy profile as in Fig. 3 is the same for threeBSs.

reduced, the effect of interference reduction outweighs that of radio resource reduction as the

blocking probability is quite low. As a result, we can adapt the number of active subcarriers to

approach the optimal bound. On the contrary, if all the threeBSs experience the same traffic

conditions, the blocking probability enhancement by the radio resource reduction is larger than

the decrease from the interference reduction. Hence, it is better to keep all the subcarriers active.

We also simulate the multiple user class case. Figs. 9 and 10 illustrate the tradeoff curves

with K = 2 user classes (rate requirements areR1 = 2MbpsR2 = 0.5Mbps) for the asymmetric

and the symmetric traffic distribution, respectively. We assumeλmax = 12, θ1 = 3, θ2 = 10,

and each user class occupies half of the traffic. It can be seenthat the performance is similar

with theK = 1 case for the symmetric traffic distribution, but is different for the asymmetric

traffic distribution. In particular, when a low blocking probability is targeted, the two-stage DP

algorithm is not close to the optimal solution any more. Fromthe result, we find that no matter
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Fig. 10. Tradeoff curves between outage probability and grid energy consumption for 3-sector case.K = 2, ψ(1)
: ψ(2)

:

ψ(3)
= 1 : 1 : 1. The renewable energy profile as in Fig. 3 is the same for threeBSs.

how largeβ is set, we can not activate all the three BSs by the BS on-off algorithm. The reason

is that we assume all subcarriers are active in this algorithm, which causes very high interference

when all the three BSs are active. However, the optimal DP algorithm can activate all three BSs

by jointly optimizing the number of active subcarriers to reduce interference.

VI. CONCLUSION

This paper studied the joint optimizing problem of BS sleeping and resource allocation in

a long-term point of view using the average network traffic profile and the harvested energy

profile. The proposed two-stage DP algorithm is shown to achieve near-optimal performance as

long as the first stage BSs’ on-off state adaptation achievesthe optimal result. In addition, for

the symmetric traffic distribution scenario, the results show that the active subcarrier adaptation

does not significantly improve performance, which means that we only need to determine BSs’
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on-off state and the active BSs activate all their subcarriers with sufficient power input. This can

greatly reduce the computational complexity for achievingthe optimal solution. On the contrary,

if the traffic is asymmetrically distributed, active subcarrier adaptation can effectively reduce

the interference while guaranteeing radio resources requirement. Hence, the performance can be

improved. For theK = 1 case, ifptarget = 1.25%, the two-stage DP algorithm reduced the grid

power consumption by about 50% comparing with the BS on-off algorithm.
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