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Abstract

We develop several lower bounds on the capacity of binary input symmetric output channels with synchronization

errors which also suffer from other types of impairments such as substitutions, erasures, additive white Gaussian

noise (AWGN) etc. More precisely, we show that if the channelwith synchronization errors can be decomposed

into a cascade of two channels where only the first one suffersfrom synchronization errors and the second one

is a memoryless channel, a lower bound on the capacity of the original channel in terms of the capacity of the

synchronization error-only channel can be derived. To accomplish this, we derive lower bounds on the mutual

information rate between the transmitted and received sequences (for the original channel) for an arbitrary input

distribution, and then relate this result to the channel capacity. The results apply without the knowledge of the exact

capacity achieving input distributions. A primary application of our results is that we can employ any lower bound

derived on the capacity of the first channel (synchronization error channel in the decomposition) to find lower bounds

on the capacity of the (original) noisy channel with synchronization errors. We apply the general ideas to several

specific classes of channels such as synchronization error channels with erasures and substitutions, with symmetric

q-ary outputs and with AWGN explicitly, and obtain easy-to-compute bounds. We illustrate that, with our approach,

it is possible to derive tighter capacity lower bounds compared to the currently available bounds in the literature

for certain classes of channels, e.g., deletion/substitution channels and deletion/AWGN channels (for certain signal

to noise ratio (SNR) ranges).
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I. INTRODUCTION

Depending on the transmitting medium and the particular design, different limiting factors degrade the perfor-

mance of a general communication system. For instance, imperfect alignment of the transmitter and receiver clocks

may be one such factor resulting in a synchronization error channel modeled typically through insertion and/or

deletion of symbols. Other factors include the effects of additive noise at the receiver etc. The main objective of

this paper is to study the combined effects of the synchronization errors and additive noise type impairments and in

particular to “decouple” the effects of the synchronization errors from the other parameters and obtain expressions

relating the channel capacity of the combined model and the synchronization error-only channel.

We focus on achievable rates for channels which can be considered as a concatenation of two independent channels

where the first one is a binary channel suffering only from synchronization errors and the second one is either a

memoryless binary input symmetricq-ary output channel (BSQC) or a binary input AWGN (BI-AWGN) channel.

For instance, the first channel can be a binary insertion/deletion channel and the second one can be a binary

symmetric channel (BSC) or a substitution/erasure channel(a ternary output channelq = 3). Our development

starts with the ternary (q = 3) and quaternary (q = 4) output cases, respectively, then we generalize the results to

a generalq-ary output case. Specifically, we obtain achievable rates for the concatenated channel in terms of the

capacity of the synchronization error channel by lower bounding the information rate of the concatenated channel for

input distributions which achieve the capacity of the synchronization error-only channel and the parameters of the

memoryless channel. The lower bounds are derived without the use of the exact capacity achieving input distribution

of the synchronization error channel, hence any existing lower bound on the capacity (of the synchronization error-

only channel) can be employed to obtain an achievable rate characterization for the original channel model of

interest.

By channels with synchronization errors we refer to the binary memoryless channels with synchronization errors

as described by Dobrushin in [1] where every transmitted bitis independently replaced with a random number

of symbols (possibly empty string, i.e. a deletion event is also allowed), and the transmitter and receiver have no

information about the position and/or the pattern of the insertions/deletions. Different specific models on channels

with synchronization errors are considered in the literature. Insertion/deletion channels are used as common models

for channels with synchronization errors, e.g., the Gallager insertion/deletion channel [2], the sticky channel [3]

and the segmented insertion/deletion channel [4].

Dobrushin [1] proved that Shannon’s theorem applies for a memoryless channel with synchronization errors by

demonstrating that information stability holds for memoryless channels with synchronization errors. That is, for the

capacity of the synchronization error channel,Cs we can writeCs = lim
N→∞

max
P(X)

1

N
I(X ;Y ), whereX andY are

the transmitted and received sequences, respectively, andN is the length of the transmitted sequence. Therefore,
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the information and transmission capacities of the memoryless channels with synchronization errors are equal and

we can employ any lower bound on the information capacity as alower bound on the transmission capacity of a

channel with synchronization errors.

There are many papers deriving upper and/or lower bounds on the capacity of the insertion/deletion channels,

e.g., see [5, 6, 7, 8, 9, 10]; however, only a very few results exist for insertion/deletion channels with substitution

errors, e.g. [2, 11] or in the presence of AWGN, e.g. [12, 13].Our interest is on the latter, in fact, on more general

models incorporating erasures as well asq-ary channel outputs.

Let us review some of the existing relevant results on insertion/deletion channels in a bit more detail. In [2],

Gallager considers a channel model with substitution and insertion/deletion errors (sub/ins/del) where each bit gets

deleted with probabilitypd, replaced by two random bits with probabilitypi, correctly received with probability

pc = (1− pd − pi)(1− ps), and changed with probabilitypf = (1− pd − pi)ps, and derives a lower bound on the

channel capacity (in bits/use) given by

C ≥ 1 + pd log pd + pi log pi + pc log pc + pf log(pf ), (1)

where log(.) denotes logarithm in base 2. Fertonani and Duman in [11] develop several upper and lower bounds

on the capacity of the ins/del/sub channel, where they employ a genie-aided decoder that is supplied with side

information about some suitably selected random processes. Therefore, an auxiliary memoryless channel is obtained

in such a way that the Blahut-Arimoto algorithm (BAA) can be employed to obtain upper bounds on the capacity

of the original channel. Furthermore, it is shown that by subtracting some quantity from the derived upper bounds

which is, roughly speaking, more than extra information provided by the side information, lower bounds on the

capacity can also be derived. In [13], Monte Carlo simulation based results are used to estimate information rates of

different insertion and/or deletion channels in the absence or presence of intersymbol interference (ISI) in addition

to AWGN with independent uniformly distributed (i.u.d.) input sequences. In [12], the synchronization errors are

modeled as a Markov process and simulation results are used to compute achievable information rates of an ISI

channel with synchronization errors in the presence of AWGN. In [10], Rahmati and Duman compute analytical

lower bounds on the capacity of the i.i.d. del/sub and i.i.d.del/AWGN channels, by lower bounding the mutual

information rate between the transmitted and received sequences for i.u.d. input sequences focusing on small deletion

probabilities.

The paper is organized as follows. In Section II, we formallygive the models for binary input symmetricq-

ary output channels with synchronization errors and BI-AWGN channels with synchronization errors. In III, we

give two lemmas and one proposition which will be useful in the proof of the result on BSQC channels with

synchronization errors. In Section IV, we initially focus on a substitution/erasure/synchronization error channel
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Fig. 1. Binary input symmetricq-ary output channel with synchronization errors.

(abbreviated as sub/ers/synch channel) which is a binary input symmetric ternary output channel, and then on a

binary input symmetric quaternary output channel. After that we extend the results to the case of more general

symmetricq-ary output channels. In Section V, we lower bound the capacity of a synchronization error channel

with AWGN (abbreviated as AWGN/synch channel) in terms of the capacity of the underlying synchronization

error only channel. More precisely, we generalize the results on BSQC channels with synchronization errors when

q goes to infinity. We present several numerical examples illustrating the derived results in Section VI. Finally, we

conclude the paper in Section VII.

II. CHANNEL MODELS

A general memoryless channel with synchronization errors [1] is defined via a stochastic matrix{p(yi|xi), yi ∈

Y, xi ∈ X} whereX is the input alphabet (e.g., for a binary input channelX = {0, 1}), andY is (possibly empty)

the set of output symbols,0 ≤ p(yi|xi) ≤ 1, and
∑

yi∈Y p(yi|x) = 1. As a particular instance of this channel, if

p(yi = ∅|xi) = pd (∅ denoting the null string) andp(yi = xi) = 1− pi, we obtain an i.i.d. deletion channel.

A. Binary Input Symmetricq-ary Output Channel with Synchronization Errors

By a binary input symmetricq-ary output channel (BSQC) with synchronization errors, werefer to a channel

which can be considered as a concatenation of two independent channels, depicted in Fig 1, such that the first one

is a channel with only synchronization errors with input sequenceX and output sequenceY , and the second one is

a BSQC with input sequenceY and output sequenceY (q), where by a symmetric channel we refer to the definition

given in [14, p. 94]. In other words, a channel is symmetric ifby dividing the columns of the transition matrix into

sub-matrices, in each sub-matrix, each row is a permutationof any other row and each column is a permutation

of any other column. For example, a channel with independentsubstitution, erasure and synchronization errors

(sub/ers/synch channel) can be considered as a concatenation of a channel with only synchronization errors with

input sequenceX and output sequenceY and a substitution/erasure channel (binary input ternary output channel)

with input sequenceY and output sequenceY (3). In a substitution/erasure channel, each bit is independently flipped

with probability ps or erased with probabilitype, as illustrated in Fig. 2. (a). Another example is a binary input

symmetric quaternary output channel with synchronizationerrors which can be decomposed into two independent

channels such that the first one is a memoryless synchronization error channel and the second one is a memoryless

binary input symmetric quaternary output channel shown in Fig. 2. (b).
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Fig. 2. (a) Input-output relation in the substitution/erasure channel (P (Y
(3)
i

|Yi) for all 1 ≤ i ≤ |y|). (b) Input-output relation in the binary
input quaternary output channel (P (Y

(4)
i

|Yi) for all 1 ≤ i ≤ |y|).
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Fig. 3. AWGN channel with synchronization errors.

B. BI-AWGN Channels with Synchronization Errors

In a BI-AWGN channel with synchronization errors, bits are transmitted using binary phase shift keying (BPSK)

and the received signal contains AWGN in addition to the synchronization errors. As illustrated in Fig. 3, this

channel can be considered as a cascade of two independent channels where the first one is a synchronization error

channel and the second one is a BI-AWGN channel. We useX̄ to denote the input sequence to the first channel

which is a BPSK modulated version of the binary input sequence X, i.e., X̄i = 1 − 2Xi and Ȳ to denote the

output sequence of the first channel and input to the second one. Ỹ is the output sequence of the second channel

that is the noisy version of̄Y , i.e.,

Ỹ d
i = Ȳ d

i + Zi,

whereZi’s are i.i.d. zero mean Gaussian random variables with varianceσ2, and Ỹ d
i and Ȳ d

i are theith received

and transmitted bits of the second channel, respectively.

C. Simple Example of a Synchronization Error Channel Decomposition into Two Independent Channels

The procedure in finding the capacity bounds used in this paper can be employed for any channel which can be

decomposed into two independent channels such that the firstone is a memoryless synchronization error channel and

the second one is a symmetric memoryless channel with no effect on the length of the input sequence. Therefore, if

we can decompose a given synchronization error channel intotwo channels with described properties, we can derive

lower bounds on the capacity of the synchronization error channel. The advantage of this decomposition is that

decomposing the original synchronization error channel into a well characterized synchronization error channel and

a memoryless channel could be done in such a way that lower bounding the capacity of the new synchronization

error channel be simpler than the capacity analysis of the original synchronization error channel. In Table I, we
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TABLE I
TRANSITION PROBABILITIES OF THE HYPOTHETICAL SYNCHRONIZATION ERROR CHANNEL.

P (Yj|Xj)

Xj Yj = 0 Yj = 1 Yj = 00 Yj = 01 Yj = 10 Yj = 11

0
(
1
2 − (α+ β)

) (
1 +

√
α−β
α+β

) (
1
2 − (α+ β)

) (
1−

√
α−β
α+β

)
α β β α

1
(
1
2 − (α+ β)

) (
1−

√
α−β
α+β

) (
1
2 − (α+ β)

) (
1 +

√
α−β
α+β

)
α β β α

TABLE II
TRANSITION PROBABILITIES OF TWO INDEPENDENT CHANNELS GIVING RISE TO THE SYNCHRONIZATION ERROR CHANNEL GIVEN IN

TABLE I.

P (Zj |Xj)

Xj Zj = 0 Zj = 1 Zj = 00 Zj = 11

0 1− 2(α+ β) 0 α+ β α+ β

1 0 1− 2(α+ β) α+ β α+ β

P (Yj|Zj)

Zj Yj = 0 Yj = 1

0 0.5 + 0.5
√

α−β
α+β

0.5− 0.5
√

α−β
α+β

1 0.5 − 0.5
√

α−β
α+β

0.5 + 0.5
√

α−β
α+β

provide an example of a hypothetical channel with synchronization errors that can be decomposed into a different

synchronization error channel and a memoryless binary symmetric channel (BSC). In Table II, the two channels

used in the decomposition are given.

III. E NTROPY BOUNDS FORBINARY INPUT q-ARY OUTPUT CHANNELS WITH SYNCHRONIZATION ERRORS

In the following two lemmas, we provide a lower bound on the output entropy and an upper bound on the

conditional output entropy of the binary inputq-ary output channel in terms of the the corresponding output

entropies of the synchronization error channel, respectively. We then give a proposition that will be useful in the

proof of the result on BSQC channels with synchronization errors (note that the following two lemmas hold for

any binary inputq-ary output channels with synchronization errors regardless of any symmetry).

Lemma 1. In any binary inputq-ary output channel with synchronization errors and for allnon-negative integer

values ofq, we have

H(Y (q)) ≥ H(Y )− EM



log



∑

y(q)

∑

y,p(y)6=0

p(y(q)|y,M)p(y(q)|M)






 , (2)

whereM is the random variable denoting the length of the received sequence,Y denotes the output sequence

of the synchronization error channel and the input sequenceof the binary inputq-ary output channel, andY (q)

denotes the output sequence of the binary inputq-ary output channel.

Proof: By using two different expansions ofH(Y (q),M), we have

H(Y (q),M ) = H(Y (q)) +H(M |Y (q))

= H(Y (q)|M) +H(M). (3)
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Hence, we can write

H(Y (q)) = H(Y (q)|M) +H(M ), (4)

where we used the fact that by knowingY (q), random variableM is also known, i.e.H(M |Y (q)) = 0. By using

the same approach forH(Y ), we have

H(Y ) = H(Y |M) +H(M). (5)

Finally, we can write

H(Y (q))−H(Y ) = H(Y (q)|M )−H(Y |M)

=
∑

m

p(m)
[
H(Y (q)|M = m)−H(Y |M = m)

]
, (6)

wherep(m) = P (M = m). On the other hand, due to the definition of the entropy, we canwrite

H(Y (q)|M = m)−H(Y |M = m) = E
Y

(q){− log(p(Y (q)))|M = m} − EY {− log(p(Y ))|M = m}

= E
(Y ,Y

(q)
)

{
− log

(
p(Y (q))

p(Y )

)∣∣∣∣M = m

}

= −
∑

y(q)

∑

y,p(y)6=0

p(y(q)|y,M = m)p(y|M = m) log

(
p(y(q)|M = m)

p(y|M = m)

)
,

whereEZ{.} denotes the expected value with respect to the random variable Z. Now due to the fact that− log(x)

is a convex function ofx, we apply Jensen’s inequality to write

H(Y (q)|M = m)−H(Y |M = m) ≥ − log



∑

y(q)

∑

y,p(y)6=0

p(y(q)|y,M = m)p(y|M = m)
p(y(q)|M = m)

p(y|M = m)




= − log




∑

y(q)

∑

y,p(y)6=0

p(y(q)|y,M = m)p(y(q)|M = m)



 . (7)

By substituting this result into (6), the proof follows.

Lemma 2. In any binary inputq-ary output channel with synchronization errors and for anyinput distribution, we

have

H(Y (q)|X) ≤ H(Y |X) + E{M}H(Y
(q)
j |Yj), (8)

whereYj denotes thej-th output bit of the synchronization error channel andj-th input bit of the binary input

q-ary output channel andY (q)
j denotes the output symbol of the binary inputq-ary output channel corresponding

to the input bitYj.
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Proof: For the conditional output entropy, we can write

H(Y (q),Y |X) = H(Y (q)|X) +H(Y |Y (q),X)

= H(Y |X) +H(Y (q)|Y ,X)

= H(Y |X) +H(Y (q)|Y ), (9)

where the last equality follows sinceX → Y → Y (q) form a Markov chain. Therefore,

H(Y (q)|X) = H(Y |X) +H(Y (q)|Y )−H(Y |X,Y (q))

≤ H(Y |X) +H(Y (q)|Y ). (10)

On the other hand, by using the fact that by knowingY , M is also known, we have

H(Y (q)|Y ) = H(Y (q)|M ,Y ). (11)

Furthermore, since the second channel is memoryless, we obtain

H(Y (q)|Y ,M ) =
∑

m

p(m)H(Y (q)|Y ,M = m)

=
∑

m

p(m)mH(Y
(q)
j |Yj)

= EM {M}H(Y
(q)
j |Yj), (12)

which concludes the proof.

By combining the results of Lemmas 1 and 2, we obtain

I(X;Y q) ≥ I(X ;Y )− EM



log




∑

y(q)

∑

y,p(y)6=0

p(y(q)|y,M )p(y(q)|M )







− E{M}H(Y

(q)
j |Yj), (13)

which gives a lower bound on the mutual information between the transmitted and received sequences of the

concatenated channelI(X ;Y q) in terms of the mutual information between the transmitted and received sequences

of the synchronization error channelI(X ;Y ).

Proposition 1. For anyX , Y andY (q) forming a Markov chainX → Y → Y (q), if

I(X;Y (q)) ≥ I(X;Y ) +A,

whereA is a constant, then the capacity of the channelsX → Y (q) (C
X→Y

(q) ) andX → Y (CX→Y ) satisfy

C
X→Y

(q) ≥ CX→Y +A. (14)
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Proof: Using the input distribution which achieves the capacity ofthe channelX → Y , P (X), we can write

lim
n→∞

1

n
I(X ;Y (q)(X)) ≥ lim

n→∞
1

n
I(X ;Y (X)) +A

= CX→Y +A. (15)

Hence, for the capacity of the channelX → Y (q), we have

C
X→Y

(q) = lim
n→∞

1

n
max
P (X)

I(X;Y (q))

≥ lim
n→∞

1

n
I(X ;Y (q)(X))

≥ CX→Y +A. (16)

Due to the result in (13) and the result of Proposition 1, the capacity of the concatenated channel can be lower

bounded in terms of the capacity of the synchronization error channel and the parameters of the second (memoryless)

channel.

IV. A CHIEVABLE RATES OVER BINARY INPUT SYMMETRIC q-ARY OUTPUT CHANNELS WITH

SYNCHRONIZATION ERRORS

In this section, we focus on BSQC channels with synchronization errors (as introduced in Section II-A) and

provide lower bounds on their capacity. We first develop the results for sub/ers/synch channel and binary input

symmetric quaternary output channel, respectively. Then give the results for general (odd and even)q, respectively.

A. Substitution/Erasure Channels with Synchronization Errors

The following theorem gives a lower bound on the capacity of the sub/ers/synch channel with respect to the

capacity of the synchronization error channel. In a sub/erschannel, every transmitted bit is either flipped with

probability ofps, or erased with probability ofpe or received correctly with probability of1− ps− pe independent

of each other.

Theorem 1. The capacity of the sub/ers/synch channelCses can be lower bounded by

Cses ≥ Cs − r
[
H(ps, pe, 1− ps − pe) + log

(
(1− pe)

2 + 2p2e
)]

, (17)

whereCs denotes the capacity of the synchronization error channel,r = limn→∞
E{M}

n
, n and m denote the

length of the transmitted and received sequences, respectively.
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Before giving the proof of Theorem 1, we consider some special cases of this result. Since we have considered

the general synchronization error channel model of Dobrushin [1], the lower bound (17) holds for many different

models on channels with synchronization errors. A popular model for channels with synchronization errors is the

Gallager’s ins/del model1 in which every transmitted bit is either deleted with probability of pd or replaced with

two random bits with probability ofpi or received correctly with probability of1 − pd − pi independent of each

other while neither the transmitter nor the receiver have any information about the insertion and/or deletion errors.

If we employ the Gallager’s model in deriving the lower bounds, for the parameterr, we have

r = lim
n→∞

E{M}
n

= lim
n→∞

1

n
nE{|sj |}

= 1− pd + pi, (18)

where |sj| denotes the length of the output sequence in one use of the ins/del channel, and the equality results

since the channel is memoryless. By utilizing the result of (18) in (17), we obtain the following two corollaries.

Corollary 1. The capacity of the sub/ers/ins/del channelCseid is lower bounded by

Cseid ≥ Cid − (1− pd + pi)
[
H(ps, pe, 1− ps − pe) + log

(
(1 + pe)

2 + 2p2e
)]

, (19)

whereCid denotes the capacity of an insertion/deletion channel withparameterspd and pi.

Taking pe = 0 in this channel model gives the ins/del/sub channel, hence we have the following corollary.

Corollary 2. The capacity of the ins/del/sub channelCids can be lower bounded by

Cids ≥ Cid − (1− pd + pi)Hb(ps), (20)

To prove Theorem 1, we need the following two lemmas. In the first one we give a lower bound on the output

entropy of the sub/ers/synch channel related to the output entropy of the insertion/deletion channel, while in the

second one we give an upper bound on the conditional output entropy of the sub/ers/synch channel, related to the

conditional output entropy of the insertion/deletion channel.

Lemma 3. For a sub/ers/synch channel, for any input distribution, wehave

H(Y (3)) ≥ H(Y )− E{M} log
(
(1− pe)

2 + 2p2e
)
, (21)

whereY denotes the output sequence of the synchronization error channel and input sequence of the substitu-

1In fact, Gallager’s model in general refers to a channel withinsertion, deletion and substitution errors, but with Gallager’s ins/del model
we refer to the case withps = 0 (i.e., substitution error probability being zero).
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tion/erasure channel, andY (3) denotes the output sequence of the substitution/erasure channel.

Proof: Using the result of Lemma 1, we only need to obtain an upper bound on

∑

y(3)

∑

y,p(y)6=0

p(y(3)|y,M = m)p(y(3)|M = m)

for all values ofm. On the other hand forp(y(3)|y,M = m), we have

p(y(3)|y,M = m) =

m∏

i=1

p(Y
(3)
i |Yi)

= pj1e p
j2
s (1− ps − pe)

m−j1−j2 , (22)

wherej1 denotes the number of transitions0 → − or 1 → − and j2 denotes the number of transitions0 → 1 or

1 → 0. E.g.,p(011−|0000) = p(0|0)p(1|0)p(1|0)p(−|0) = pep
2
s(1−pe−ps). On the other hand, for a fixed output

sequencey(3) of lengthm with j1 erased symbols“− ”, there are2j1
(
m−j1
j2

)
possibilities among allm-tuples such

that d(y(3))e = j1, i.e., the number of erased symbols iny(3), andd(y,y(3))s = j2, i.e., the number of positions

in y andy(3) in which Y
(3)
j ’s are the flipped versions ofYj , therefore we can write

∑

y,p(y)6=0

p(y(3)|y,M = m) ≤
m−j1∑

j2=0

2j1
(
m− j1

j2

)
pj1e p

j2
s (1− ps − pe)

m−j1−j2

= 2j1pj1e (1− pe)
m−j1 . (23)

Note that in deriving the inequality in (7), the summation istaken over the values ofy with p(y) 6= 0. However,

in (23) the summation is taken over all possible values ofy of lengthm (over all m-tuples), i.e.p(y) = 0 or

p(y) 6= 0, which results in the lower bound in (23). Furthermore, by using the fact that the probability of having

j1 erasures in a sequence of lengthm is equal to
(
m
j1

)
p
j1
e (1− pe)

m−j1 , we obtain

∑

y(3)

p(y(3)|M = m)
∑

y,p(y)6=0

p(y(3)|y,M = m) ≤
∑

y(3)

P (d(y(3))e = j1|M = m)2j1pj1e (1− pe)
m−j1

=

m∑

j1=0

(
m

j1

)
pj1e (1− pe)

m−j1(2pe)
j1(1− pe)

m−j1

=
(
(1− pe)

2 + 2p2e
)m

. (24)

By substituting this result into (2), we arrive at

H(Y (3))−H(Y ) ≥ −E{M} log
(
(1 + pe)

2 + 2p2e
)
, (25)

concluding the proof.

It is also worth noting that any capacity achieving input distribution over a discrete memoryless channel results in
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strictly positive output probabilities for possible output sequences of the channel ([14, p. 95]). Therefore, for special

synchronization error channel models in which for any possible length of the output sequencem, all them-tuple

output sequences are probable, e.g. i.i.d. deletion channel or i.i.d. random insertion channel, capacity achieving

input distributions (p(x)) would result in strictly positive output probability distributions for all m-tuple output

sequences, i.e.p(yq) > 0 for all yq of lengthm and all possiblem. Hence, the bounds in (23) and (24) can be

thought as equalities for these cases.

Lemma 4. In any sub/ers/synch channel and for any input distribution, we have

H(Y (3)|X) ≤ H(Y |X) + E {M}H(pe, ps, 1− pe − ps). (26)

Proof: Due to the result of Lemma 2 and the fact that in a substitution/erasure channel, regardless of the

distribution ofY j, we can write

H(Y
(3)
j |Yj) = H(pe, ps, 1− pe − ps), (27)

hence the proof follows.

We can now complete the proof of the main theorem.

Proof of Theorem 1 : By substituting the results of Lemmas 3 and 4 into the definition of mutual information,

for the same input distribution given to both synchronization error and sub/ers/synch channels, we obtain

I(X;Y (3)) ≥ I(X ;Y )− E{M}
[
H(ps, pe, 1− ps − pe) + log

(
(1 + pe)

2 + 2p2e
)]

. (28)

By using the result of Proposition 1, the proof is completed. �

B. Binary Input Symmetric Quaternary Output Channels with Synchronization Errors

In this subsection, we consider a binary input symmetric quaternary output channel with synchronization errors

as described in Section II.

Theorem 2. The capacity of the binary input symmetric quaternary output channel with synchronization errors

Csq can be lower bounded by

Csq ≥ Cs − r
[
H(p1, p2, p3, p4) + log

(
(p1 + p3)

2 + (p2 + p4)
2
)]

, (29)

whereCs denotes the capacity of the synchronization error only channel, andr is as defined in(17).

Note that, the presented lower bound is true for all memoryless synchronization error channel models. Therefore,

similar to the sub/ers/synch channel we can specialize the results to the Gallager insertion/deletion channel as given

in the following corollary.



13

Corollary 3. The capacity of binary input symmetric quaternary output channel with insertion/deletion errors

(following Gallager’s model)Cqid is lower bounded by

Cqid ≥ Cid − (1− pd + pi)
[
H(p1, p2, p3, p4) + log

(
(p1 + p3)

2 + (p2 + p4)
2
)]

. (30)

To prove Theorem 2, we need the two lemmas below where the firstone gives a lower bound on the output

entropy of the binary input quaternary output channel with synchronization errors related to the output entropy of

the synchronization error channel, and the second one givesan upper bound on the conditional output entropy of

the binary input quaternary output channel with synchronization errors, related to the conditional output entropy of

the synchronization error channel.

Lemma 5. In any binary input quaternary output channel with synchronization errors and for any input distribution,

we have

H(Y (4)) ≥ H(Y )− E {M} log
(
(p1 + p3)

2 + (p2 + p4)
2
)
, (31)

whereY denotes the output sequence of the synchronization error channel and input sequence of the binary input

quaternary output channel, andY (4) denotes the output sequence of the binary input quaternary output channel

corresponding to the input sequenceY .

Proof: Similar to the proof of Lemma 3, we use the result of Lemma 1 by taking the summation over all

possible sequences of lengthm, i.e., regardless ofp(y) = 0 or p(y) 6= 0, which results into a looser lower bound.

On the other hand, forp(y(4)|y,M = m), we have

p(y(4)|y,M = m) =

m∏

i=1

p(Y
(4)
i |Yi)

= p
j1
1 p

j2
2 p

j3
3 p

m−j1−j2−j3
4 , (32)

where j1 denotes the number of transitions0 → 0− or 1 → 1−, j2 denotes the number of transitions0 →

0+ or 1 → 1+, and j3 denotes the number of transitions0 → 1− or 1 → 0−. E.g., p(0−1+0+1−|0000) =

p(0−|0)p(1+|0)p(0+|0)p(1−|0) = p1p2p3p4. Furthermore, for a fixed output sequencey(4) of length m with

j 0− symbols,k 0+ symbols,l 1− symbols andm − j − k − l 1+ symbols, there are
(
j
i1

)(
k
i2

)(
l
i3

)(
m−j−k−l

i4

)

possibilities among allm-tuples (fory) such thatd(y,y(4))0→0− = i1, d(y,y(4))0→0+ = i2, d(y,y(4))0→1− = i3

and d(y,y(4))0→1+ = i4. By definingm−(y(4)) = #{t ≤ m|y(4)t ∈ {0−, 1−}}, i.e., the number of the times

y
(4)
t = 0− or y(4)t = 1−, andm+(y(4)) = #{t ≤ m|y(4)t ∈ {0+, 1+}}, i.e., the number of the timesy(4)t = 0+ or
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y
(4)
t = 1+, we can write

∑

y,p(y)6=0

p(y(4)|y,M = m)

≤
j∑

i1=0

(
j

i1

)
pi11 p

j−i1
3

k∑

i2=0

(
k

i2

)
pi22 p

k−i2
4

l∑

i3=0

(
l

i3

)
pi33 p

l−i3
1

m−j−k−l∑

i4=0

(
m− j − k − l

i4

)
pi44 p

m−j−k−l−i4
2

= (p1 + p3)
j+l(p2 + p4)

m−j−l

= (p1 + p3)
m−(y(4))(p2 + p4)

m+(y(4)). (33)

By taking the summation over all possible output sequences of lengthm, and using the fact that the probability of

having the outputy(4) with lengthm containingm− 0− or 1− is
(
m
m−

)
(p1 + p3)

m−

(p2 + p4)
m−m−

, we obtain

∑

y(4)

p(y(4)|M = m)
∑

y

p(y(4)|y,M = m) =
∑

y(4)

p(y(4)|M = m)(p1 + p3)
m−(y(4))(p2 + p4)

m+(y(4))

=

m∑

m−=0

(
m

m−

)
(p1 + p3)

m−

(p2 + p4)
m−m−

(p1 + p3)
m−

(p2 + p4)
m−m−

=
(
(p1 + p3)

2 + (p2 + p4)
2
)m

(34)

By substituting the result of (34) into the result of Lemma 1,we obtain

H(Y (4)) ≥ H(Y )− EM {M} log
(
(p1 + p3)

2 + (p2 + p4)
2
)
, (35)

which concludes the proof.

Lemma 6. For a binary input quaternary output channel with synchronization errors, for any input distribution,

we have

H(Y (4)|X) ≤ H(Y |X) + EM {M}H(p1, p2, p3, p4). (36)

Proof: Substituting the straightforward resultH(Y
(4)
j |Yj) = H(p1, p2, p3, p4) in the result of Lemma 2

concludes the proof.

We can now complete the proof of Theorem 2.

Proof of Theorem 2 : Using the results of Lemmas 5 and 6, we obtain

I(X ;Y (4)) ≥ I(X;Y )− nr
[
H(p1, p2, p3, p4) + log

(
(p1 + p3)

2 + (p2 + p4)
2
)]

. (37)

Hence, due the result in Proposition 1, the proof is complete. �
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TABLE III
TRANSITION PROBABILITIES FOR ABINARY INPUT 5-ARY OUTPUT CHANNEL.

P (Y
(q)
j |Ȳj)

Yj Y
(q)
j = −2 Y

(q)
j = −1 Y

(q)
j = 0 Y

(q)
j = 1 Y

(q)
j = 2

−1 p2 p1 p0 p−1 p−2

1 p−2 p−1 p0 p1 p2

TABLE IV
TRANSITION PROBABILITIES FOR A BINARY INPUT SYMMETRIC6-ARY OUTPUT CHANNEL.

P (Y
(q)
j |Ȳj)

Yj Y
(q)
j = −3 Y

(q)
j = −2 Y

(q)
j = −1 Y

(q)
j = 1 Y

(q)
j = 2 Y

(q)
j = 3

−1 p3 p2 p1 p−1 p−2 p−3

1 p−3 p−2 p−1 p1 p2 p3

C. Binary Input Symmetricq-ary Output Channel with Synchronization Errors (Oddq Case)

In this subsection, we consider a binary input symmetricq-ary output channel with synchronization errors for

an arbitrary odd value ofq, where we represent the transition probability valuesP
(
Y

(q)
j = k|Ȳj = b

)
for different

values ofb ∈ {−1, 1} and k = {− q−1
2 , · · · ,−1, 0, 1, · · · , q−1

2 } by P
(
Y

(q)
j = k|Ȳj = b

)
= pk×b. For instance,

Table III shows transition probabilities for a binary input5-ary output channel.

The main result on the BSQC channel with synchronization errors with oddq is a generalized version of the

result in Theorem 1.

Theorem 3. The capacity of the BSQC channel with synchronization errorsCQs for an oddq can be lower bounded

by

CQs ≥ Cs − r



H(p− q−1

2
, · · · , p q−1

2
) + log



2p20 +

q−1

2∑

k=1

(pk + p−k)
2







 , (38)

whereCs denotes the capacity of the binary input synchronization error channel.

Proof: The proof of the theorem is given in Appendix A.

D. Binary Input Symmetricq-ary Output Channel with Synchronization Errors (Evenq Case)

We now consider the generalization of the result of Theorem 2for evenq. For the transition probabilities of

the binary inputq-ary output channel, we defineP
(
Y

(q)
j = k|Ȳj = b

)
= pk×b, where b ∈ {−1, 1} and k =

{− q
2 , · · · ,−1, 1, · · · , q2}. For instance, Table IV shows transition probabilities fora binary input 6-ary output

channel.

The main result on the BSQC channel with synchronization errors for anyq is given in the following theorem.

Theorem 4. Capacity of the BSQC channel with synchronization errorsCQs, for any evenq can be lower bounded
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by

CQs ≥ Cs − r



H(p− q

2
, · · · , p−1, p1, · · · , p q

2
) + log




q

2∑

k=1

(pk + p−k)
2







 , (39)

whereCs denotes the capacity of the binary input synchronization error channel.

Proof: The proof of Theorem 4 is given in Appendix B.

V. ACHIEVABLE RATES OVER BI-AWGN CHANNELS WITH SYNCHRONIZATION ERRORS

In this section, a binary synchronization error channel in the presence of AWGN is considered as defined in

Section II-B. We present two different lower bounds on the capacity of the AWGN/synch channel.

Before giving the main results on AWGN/synch channel, we would like to make some comments on its

information stability.

A. Information Stability of Memoryless Discrete Input Continuous Output Channels with Synchronization Errors

It is shown in [15] that the Shannon’s theorem holds in any information stable channel. In [1], the information

stability of the memoryless discrete input discrete outputchannels with synchronization errors is proved which

shows that the Shannon’s theorem holds in such a channel. It can be observed that the proofs used in [1] can be

also generalized to the continuous output case as discussedin this section.

To prove the information stability, it is sufficient to provethe existence of the limit

C = lim
N→∞

1

N
CN = lim

N→∞
1

N
max
P (X)

I(X ; Ỹ ), (40)

which is the information capacity of the channel, and the existence of an information stable sequence of two random

variables
(
X, Ỹ

)
, which achieves the capacity of the channel.

The only difference between the channel considered here with the channel considered by Dobrushin in [1], is that

in the continuous output case the output symbols belong to aninfinite set. However, this difference does not have

any effect on the steps of proofs. The existence of the limit in [1, Section IV] is proved based on the memoryless

property of the channel which also holds in the continuous output case.

In the case of the existence of an information stable sequence achieving the capacity ([1, Section V]), there is

no need to condition on the discrete output symbol values, and all the reasoning hold for the continuous output

case as well. The key point in the proof is that the channel is stationary which also holds for the continuous output

case, such that the same genie-aided channel as the one considered for the discrete output channel can also be

considered for our case. The genie-aided channel is obtained by inserting markers through the transmission after

transmitting each block of lengthk, where the entire length of transmission isK = gk + l (l < k).
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The other point in the proof is the number of possibilities inconverting the output of the original channelỸ

into the output of the genie-aided channelỸ
′
, i.e., |f−1(Ỹ )| where Ỹ = f(Ỹ ′). Since for the continuous output

case we still havelim
g→∞

max
Ỹ
|f−1(Ỹ )|
g

→ 0, the proof holds.

Since, both capacity convergence and existence of an information stable sequence which achieves the capacity

remain valid in the continuous output case as well, we can conclude that the memoryless discrete input continuous

output channels with synchronization errors are also information stable and, as a result, the Shannon’s theorem

applies in such a channel.

B. Capacity Lower Bounds for AWGN/Synch Channels

Here, we present two results on the capacity of an AWGN/synchchannel. Both results are generalizations of

results for the discrete output channels when the number of quantization levels goes to infinity. The first result is

obtained by employing a uniform quantizer while in derivingthe second result a non-uniform quantizer is employed

which provides a tighter lower bound.

Theorem 5. Capacity of the AWGN/synch channelCAs can be lower bounded by

CAs ≥ Cs − r log

(√
e

2
(1 + e−

1

σ2 )

)
, (41)

whereCs denotes the capacity of the synchronization error channel.

We give an outline of the proof and defer its details to Appendix C. We consider a quantized version of the

output symbols via a2M -levels uniform quantizer by quantization intervals of length ∆ with M going to infinity

and∆ going to zero. Therefore, forpm (m = {−M, · · · ,−1, 1, · · · ,M}) which denotes the probability that the

continuous output symbol,̃Yj , being quantized to thebm-th quantization level (b ∈ {−1, 1}) conditioned onX̄j = b

being transmitted, we obtain

pm =





Q(1−m∆

σ
)−Q(1−(m−1)∆

σ
) , m > 0

Q(1+(|m|−1)∆
σ

)−Q(1+|m|∆
σ

) , m < 0
, (42)

whereQ(.) is the right tail probability of the standard normal distribution. By substituting (42) into the result of

Theorem 4, we can write

CAs ≥ Cs − r lim
M→∞,∆→0

[
H(p−M , · · · , p−1, p1, · · · , pM ) + log

(
M∑

m=1

(pm + p−m)2

)]
. (43)

Finally, by using the fact that whenM → ∞ and∆ → 0, we havepm ∼= f(1−m∆)∆, with f(x) = 1√
2πσ

e−
x2

2σ2 ,

after some algebra (detailed in Appendix C), we obtain the result in (41).

This result is obtained as a straightforward generalization of the discrete output channel results by employing a
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Fig. 4. Symmetric non-uniform quantizer step sizes.

symmetric uniform quantizer, but the result may not be tight. For instance, forσ = 0, i.e. the noiseless scenario,

the result does not match with the trivial result which isCAs = Cs for σ = 0. We expect that if we apply an

appropriate non-uniform quantizer on the output symbols ofthe AWGN/synch channel, we can achieve a tighter

lower bound on its capacity (which also agrees with the trivial result forCAs = Cs for σ = 0). By using this

idea, we present our main result on the capacity of an AWGN/synch channel in the following theorem by using a

symmetric non-uniform quantizer.

Theorem 6. LetCs denote the capacity of the synchronization error channel, then for the capacity of the AWGN/synch

channelCAs, we obtain

CAs ≥ Cs − r

[
log(e)

(
2√
2πσ

e−
1

2σ2 − 2

σ2
Q

(
1

σ

))
+ log

(
1 +Q

(
1

σ

)
+ e

4

σ2 Q

(
3

σ

))]
. (44)

Proof: To prove the theorem, we first define an appropriate symmetricnon-uniform quantizer with2M

quantization levels. Then, by lettingM go to infinity and employing the result of Theorem 4, we complete the

proof.

In general, by utilizing any symmetric quantizer with2M quantization levels on the output symbolsỸj, for the

transition probabilities of the resulting binary input symmetric 2M -ary output channel, we have

pm = P (Y (2M) = bm|X̄j = b) =





P (tm−1 < Ỹj < tm) , 0 < m ≤ M

P (−tm < Ỹj < −tm−1) , −M ≤ m < 0
, (45)

where t−m = −tm, t0 = 0 and tm−1 < tm for m = {1, · · · ,M}. We choose the quantization step sizes, i.e.,

∆m = tm− tm−1 for m = {1, · · · ,M}, to satisfyp1 = p2 = · · · = pM . Note that due to symmetry of the quantizer

∆−m = ∆m (as illustrated in Fig. 4). On the other hand, by definingP = Q( 1
σ
), we have

M∑

m=1

p−m = P and

M∑

m=1

pm = 1− P which results inpm = 1−P
M

for m = {1, · · · ,M}.

Using the result of Theorem 4, to derive a lower bound on the capacity of the channel with2M -level quantized

outputs, we need to obtainH(p−M , · · · , p−1, p1, · · · , pM ) + log
(∑M

m=1(pm + p−m)2
)

. In the following, we first
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compute the exact values ofHM = H(p−M , · · · , p−1, p1, · · · , pM ) − log(M) and log
(∑M

m=1(pm + p−m)2
)
+

log(M). For HM , we have

HM = −
M∑

m=1

pm log(pm)−
M∑

m=1

p−m log(p−m)− log(M)

= −(1− P ) log(1− P )−
M∑

m=1

p−m log(Mp−m). (46)

To calculate−∑M
m=1 p−m log(Mp−m), we first derive a relation betweenpm and p−m by using the fact that

∆m = ∆−m. For largeM andm = {1, · · · ,M}, we havepm ∼= f(1− tm)∆m andp−m
∼= f(1 + tm)∆m, where

f(x) = 1√
2πσ

e−
x2

2σ2 . Furthermore, sincepm = 1−P
M

for m = {1, · · · ,M} and f(1+tm)
f(1−tm)

∼= e−
2tm
σ2 , we can write

p−m
∼= f(1 + tm)

f(1− tm)
pm

=
1− P

M
e−

2tm
σ2 , (47)

with the understanding that the approximation becomes exact asM → ∞. By using this result, we obtain

lim
M→∞

−
M∑

m=1

p−m log(Mp−m) = lim
M→∞

−
M∑

m=1

p−m log (1− P )− lim
M→∞

M∑

m=1

p−m log
(
e−

2tm
σ2

)

= −P log (1− P )− lim
M→∞

M∑

m=1

p−m log
(
e−

2tm
σ2

)
, (48)

where we used the fact that
∑M

m=1 p−m = P . On the other hand, forlim
M→∞

−
M∑

m=1

p−m log
(
e−

2tm
σ2

)
, we can write

lim
M→∞

−
M∑

m=1

p−m log
(
e−

2tm
σ2

)
= lim

M→∞
log(e)

M∑

m=1

f(1 + tm)∆m
2tm
σ2

= log(e)

∫ ∞

0
f(1 + t)

2t

σ2
dt

= log(e)
2

σ2

∫ ∞

0

t√
2πσ

e−
(t+1)2

2σ2 dt

= log(e)

(
2√
2πσ

e−
1

2σ2 − 2

σ2
P

)
. (49)

By substituting (49) and (48) into (46), we obtain

lim
M→∞

HM = − log(1− P ) + log(e)

(
2√
2πσ

e−
1

2σ2 − 2

σ2
P

)
. (50)
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At this point, we only need to obtain the exact value of
∑M

m=1(pm + p−m)2, where we have

M∑

m=1

M(pm + p−m)2 =

M∑

m=1

M(p2m + 2pmp−m + p2−m)

= (1− P )2 + 2P (1 − P ) +

M∑

m=1

Mp2−m. (51)

Furthermore, if we letM go to infinity, for
∑M

m=1 Mp2−m, we can write

lim
M→∞

M∑

m=1

Mp2−m = lim
M→∞

M∑

m=1

Mf(1 + tm)∆m
f(1 + tm)

f(1− tm)
pm

= lim
M→∞

(1− P )

M∑

m=1

1√
2πσ

e−
(tm+1)2

2σ2 e−
2tm
σ2 ∆m

= (1− P )

∫ ∞

0

1√
2πσ

e−
(t+1)2

2σ2 e−
2t

σ2 dt

= (1− P )

∫ ∞

0

1√
2πσ

e−
(t+3)2−8

2σ2 dt

= (1− P )e
4

σ2 Q

(
3

σ

)
. (52)

Using the results of (52) and (50), we obtain

lim
M→∞

(
H(p−M , · · · , p−1, p1, · · · , pM ) + log

(
M∑

m=1

(pm + p−m)2

))
= lim

M→∞

(
HM + log

(
M∑

m=1

M(pm + p−m)2

))

= log(e)

(
2e−

1

2σ2

√
2πσ

− 2

σ2
P

)
+ log

(
1 + P + e

4

σ2 Q

(
3

σ

))
(53)

Finally, by substituting this result into (39), the proof follows.

By employing a symmetric non-uniform quantizer, we achievea tighter lower bound on the capacity of the

AWGN/synch channel compared to the lower bound in Theorem 5.The result is also in agreement with the trivial

resultCAs = Cs (σ = 0). A primary advantage of the derived lower bound in (44) is that we can use any lower

bound on the capacity of the synchronization error only channel to lower bound the capacity of the AWGN/synch

channel.

VI. N UMERICAL EXAMPLES

In this section, we give several numerical examples of the lower bounds on the capacity of the ins/del/sub and

del/AWGN channel and compare them with the existing ones in the literature. To the best of our knowledge, there

are no existing results on lower bounding the capacity of theins/del/sub/ers and ins/del/AWGN channels, therefore,

our results will provide a benchmark for these general cases.
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A. Insertion/Deletion/Substitution Channel

In Table V, we compare the lower bound on the capacity of the ins/del/sub channel (20) with the existing lower

bounds in [2, 11] for several values ofpd, pi and ps. We employ the lower bound derived in [6] as the lower

bound on the capacity of the deletion channel and the lower bound in [11] as the lower bound on the capacity of

the ins/del channel in (20). Note that the Gallager’s model in [2] by parameterspd, pi andpc can be considered as

concatenation of an ins/del channel with parameterspd andpi, and a BSC channel with cross error probability of

ps whereps is the solution ofpc = (1 − ps)(1 − pd − pi). The advantage of the lower bound (20) is in using the

tightest lower bound on the capacity of the ins/del channel in lower bounding the capacity of the overall channel,

i.e., the information rate of the overall channel is lower bounded for the input distribution which results in the

tightest lower bound on the capacity of the ins/del channel.We observe that forpi = 0, a fixedpd and small values

of ps, the lower bound (20) improves the lower bound given in [11].This is not unexpected, because for small

values ofps the input distribution achieving the capacity of the i.i.d.deletion channel is not far from the optimal

input distribution of the del/sub channel. We also observe that the lower bound (20) outperforms the lower bound

given in [2]. However, for the casepi 6= 0 it does not improve the lower bound given in [11], since as thelower

bound on the capacity of ins/del channel we used the result in[11] and lower bounded further to achieve lower

bound on the capacity of the overall channel.

TABLE V
COMPARING THE LOWER BOUND DERIVED ON THE CAPACITY OF THE INS/DEL/SUB CHANNEL WITH EXISTING LOWER AND UPPER

BOUNDS (BOLDFACE NUMBERS SHOW THE BEST BOUNDS).

pd pi ps LB from [2] LB (20) LB from [11] UB from [11]

0.001 0.00 0.001 0.9772 0.9775 0.9773 0.9856
0.001 0.00 0.01 0.9079 0.9082 0.9081 0.9163
0.001 0.00 0.1 0.5201 0.5204 0.5210 0.5292
0.01 0.00 0.001 0.9079 0.9107 0.9091 0.9586
0.01 0.00 0.01 0.839 0.842 0.842 0.886
0.01 0.00 0.10 0.454 0.458 0.466 0.510
0.10 0.000 0.001 0.5207 0.5514 0.5346 0.7300
0.10 0.00 0.01 0.458 0.489 0.492 0.644
0.10 0.00 0.10 0.108 0.140 0.211 0.363
0.10 0.10 0.001 0.0689 0.1678 0.1761 0.4504
0.10 0.10 0.01 0.013 0.0984 0.139 0.438

B. Insertion/Deletion/AWGN Channel

We now give several numerical examples of the lower bound (44) on the capacity of the ins/del/AWGN channel

and compare them with existing results. In the literature, there are only a few results on the capacity of the

deletion/AWGN channel, e.g., the simulation based bound of[13] which is the achievable information rate of the



22

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Deletion-AWGN Channel

1

2σ2 (dB)

C
ap

ac
it
y

pd = 0.01 (LB from [13])

pd = 0.01 LB (47)

pd = 0.05 (LB from [13])

pd = 0.05 LB (47)

pd = 0.1 (LB from [13])

pd = 0.1 LB (47)

0.54

0.55

0.56

0.71

0.72

0.73

Fig. 5. Comparison between the lower bound (44) with the lower bound in [13] versus SNR for different deletion probabilities.

deletion/AWGN channel for i.u.d. input sequences obtainedby Monte-Carlo simulations and the analytical result

given in [10] which is a lower bound on the information rate for i.u.d. input sequences, and no previous results are

available for the ins/del/AWGN case.

Fig. 5 shows a comparison of the lower bound on the capacity ofthe del/AWGN channel in (44) with the results

in [13]. We observe from Fig. 5 that the lower bound (44) is faraway from the simulation based results of [13] for

largeσ2 values and small deletion probabilities. This is not unexpected, because in [13], the achievable information

rate for i.u.d. input sequences are obtained (through lengthy Monte-Carlo simulations) and i.u.d. inputs are close

to optimal. However, the procedure employed in [13] is only useful for computing capacity lower bounds for small

values of deletion probabilities, e.g.pd ≤ 0.1, while the lower bound in (29) holds for the entire range of deletion

probabilities by employing any lower bound on the capacity of the deletion channel in lower bounding the capacity

of the deletion/AWGN channel. We also observe that, since inderiving the lower bound (44) on the capacity of the

deletion/AWGN channel, we employ the tightest lower bound presented on the capacity of the deletion channel,

for small values ofσ2, the lower bound (44) improves the lower bound given in [13].

VII. SUMMARY AND CONCLUSIONS

In this paper, we presented several lower bounds on the capacity of binary input symmetric output channels with

synchronization errors in addition to substitutions, erasures or AWGN. We showed that the capacity of any channel
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with synchronization errors which can be considered as a cascade of two channels (where only the first one suffers

from synchronization errors and the second one is a memoryless channel) can be lower bounded in terms of the

capacity of the first channel and the parameters of the secondchannel. We considered two classes of channels:

binary input symmetricq-ary output channels (e.g., forq = 3 a binary input channel with substitutions and erasures)

with synchronization errors and BI-AWGN channels with synchronization errors. We gave the first lower bound on

the capacity of substitution/erasure channel with synchronization errors and the first analytical result on the capacity

of BI-AWGN channel with synchronization errors. We also demonstrated that the lower bounds developed on the

capacity of the del/AWGN channel for smallσ2 values and the del/sub channel for small values ofps improve the

existing results.

APPENDIX A

PROOF OFTHEOREM 3

We first give a lower bound on the output entropy of the binary input q-ary output channel with synchronization

errors related to the output entropy of the binary synchronization error channel, then give an upper bound on

the conditional output entropy of the binary inputq-ary output channel with synchronization errors related tothe

conditional output entropy of the binary synchronization error channel.

Lemma 7. For a binary inputq-ary output channel with synchronization errors, for any input distribution and any

odd q, we have

H(Y (q)) ≥ H(Y )− E{M} log



2p20 +

q−1

2∑

k=1

(pk + p−k)
2



 , (54)

whereY denotes the output sequence of the synchronization error channel and input sequence of the binary input

symmetricq-ary output channel, andY (q) denotes the output sequence of the binary input symmetricq-ary output

channel.

Proof: For p(y(q)|y,M = m), we have

p(y(q)|y,M = m) =

q−1

2∏

k=− q−1

2

p
jk
k , (55)

wherejk denotes the number of transitionsb → k
b
. E.g., in a binary input 5-ary output channel we havep(−1102|1111) =

p−1p1p0p2. Therefore, for a fixed output sequencey(q) of length m with jk symbols of k, since there are
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2j0
∏ q−1

2

k=1

(
jk
ik

)(
j
−k

i
−k

)
possibilities fory such thatd(y,y(q))b→0 = j0 andd(y,y(q))b→ k

b

= ik, we can write

∑

y,p(y 6=0)

p(y(q)|y,M = m) ≤ 2j0pj00

q−1

2∏

q=1

jk∑

ik=0

(
jk

ik

)
pikk p

jk−ik
−k

j
−k∑

i
−k=0

(
j−k

i−k

)
p
i
−k

−k p
j
−k−i

−k

k

= 2j0pj00

q−1

2∏

k=1

(pk + p−k)
jk+j

−k

= 2m0pm0

0

q−1

2∏

k=1

(pk + p−k)
mk(y(q)), (56)

wheremk(y
(q)) = #{t ≤ m|y(q)t ∈ {k,−k}}, i.e., the number of the timesY (q)

t = k or Y (q)
t = −k. Hence,

∑

y(q)

p(y(q)|M = m)
∑

y,p()6=0

p(y(q)|y,M = m) ≤
∑

y(q)

p(y(q)|M = m)(2p0)
m0

q−1

2∏

k=1

(pk + p−k)
mk(y(q))

=
∑

m0+···+m q−1
2

=m

(
m

m0, · · · ,m q−1

2

)
pm0

0

q−1

2∏

l=1

(pl + p−l)
ml


(2p0)

m0

q−1

2∏

k=1

(pk + p−k)
mk




=



2p20 +

q−1

2∑

k=1

(pk + p−k)
2




m

. (57)

By substituting the result of (57) in the result of Lemma 1, weobtain

H(Y (q)) ≥ H(Y )− E{M} log



2p20 +

q−1

2∑

k=1

(pk + p−k)
2





= −E{M} log



2p20 +

q−1

2∑

k=1

(pk + p−k)
2



 , (58)

which concludes the proof.

Lemma 8. For a binary input q-ary output channel with synchronization errors, for any odd q and any input

distribution, we have

H(Y (q)|X) ≤ H(Y |X) + E{M}H(p− q−1

2

, · · · , p q−1

2

). (59)

Proof: By using the result of Lemma 2, we can write

H(Y (q)|X) ≤ E{M}H(Y
(q)
j |Yj) +H(Y |X)

= E{M}H(p− q−1

2
, · · · , p q−1

2
) +H(Y |X). (60)

Obviously, by employing the results of Lemmas 7 and 8 and using the same approach as in the proof of Theorem 1,
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the proof of Theorem 3 is complete.

APPENDIX B

PROOF OFTHEOREM 4

We need the following two lemmas to proof Theorem 4. In the first one, a lower bound on the output entropy of

the binary inputq-ary output channel with synchronization errors is derivedrelating with the output entropy of the

binary synchronization error channel. In the second one, wegive an upper bound on the conditional output entropy

of the binary inputq-ary output channel with synchronization errors related tothe conditional output entropy of

the binary synchronization error channel. By employing theresult of two following lemmas and using the same

approach as in the proof of Theorem 2, Theorem 4 is proved.

Lemma 9. For a binary inputq-ary output channel with synchronization errors, for any input distribution and any

evenq, we have

H(Y (q)) ≥ H(Y )− E{m} log




q

2∑

k=1

(pk + p−k)
2


 , (61)

whereY denotes the output sequence of the synchronization error channel and input sequence of the binary input

symmetricq-ary output channel, andY (q) denotes the output sequence of the binary inputq-ary output channel.

Proof: Due to the result of Lemma 1, we have

H(Y (q))−H(Y ) ≥ −EM



log




∑

y(q)

∑

y,p(y 6=0)

p(y(q)|y,M = m)p(y(q)|M = m)







 . (62)

On the other hand forp(y(q)|y,M = m), we have

p(y(q)|y,M = m) =

q

2∏

1

p
jk
k p

j
−k

−k , (63)

wherejk denotes the number of transitionsb → k
b
. For instance, in a binary input 6-ary output channel we have

p(−11−32|1111) = p−1p1p−3p2. On the other hand, for a fixed output sequencey(q) of lengthm with jk symbols of

k, there are
∏ q

2

k=1

(
jk
ik

)(
j
−k

i
−k

)
possibilities fory such thatd(y,y(q))b→ k

b

= ik. By definingmk(y
(q)) = #{t ≤ m|y(q)t ∈ {k,−k}},



26

i.e., the number of the timesY (q)
t = k or Y (q)

t = −k, we can write

∑

y,p(y 6=0)

p(y(q)|y,M = m) ≤
q

2∏

k=1

jk∑

ik=0

(
jk

ik

)
pikk p

jk−ik
−k

j
−k∑

i
−k=0

(
j−k

i−k

)
p
i
−k

−k p
j
−k−i

−k

−k

=

q

2∏

k=1

(pk + p−k)
jk+j

−k

=

q

2∏

k=1

(pk + p−k)
mk(y(q)), (64)

Furthermore, by taking the summation over all the possibilities of y(q) in (64), we obtain

∑

y(q)

p(y(q)|M = m)
∑

y,p(y)6=0

p(y(q)|y,M = m) ≤
∑

y(q)

p(y(q)|M = m)

q

2∏

k=1

(pk + p−k)
mk

=
∑

m1+···+m q
2
=m

(
m

m1, · · · ,m q

2

) q

2∏

l=1

(pl + p−l)
ml

q

2∏

k=1

(pk + p−k)
mk

=




q

2∑

k=1

(pk + p−k)
2




m

. (65)

By substituting the result of (65) in (62), we obtain

H(Y (q))−H(Y ) ≥ − log




q

2∑

k=1

(pk + p−k)
2



∑

m

mp(m)

= −E{M} log




q

2∑

k=1

(pk + p−k)
2



 , (66)

which concludes the proof.

Lemma 10. In any binary inputq-ary output channel with synchronization errors, for any input distribution and

any evenq, we have

H(Y (q)|X) ≤ H(Y |X) + E{M}H(p− q

1
, · · · , p−1, p1, · · · , p q

2
). (67)

Proof: The proof is similar to the proof of Lemma 8.

APPENDIX C

PROOF OFTHEOREM 5

We first computeH∆ = H(p−M , · · · , p−1, p1, · · · , pM ) + log(∆) and
∑M

m=1
1
∆ (pm + p−m)2 for M → ∞ and

∆ → 0. Then by employing the result of Theorem 4, we prove the theorem.

For largeM , we havepm ∼= f(1 − m∆)∆ with the understanding that the approximation becomes exact as
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∆ → 0 wheref(x) = 1√
2πσ

e−
x2

2σ2 . Therefore, forH∆ = H(p−M , · · · , p−1, p1, · · · , pM ) + log(∆), we can write

lim
M→∞,∆→0

H∆ = lim
M→∞,∆→0

−
M∑

m=1

[
f(1−m∆) log(f(1−m∆)) + f(1 +m∆) log(f(1 +m∆))

]
∆

=

∫ ∞

0

[
f(1− x)

(
log(

√
2πσ) +

(1− x)2

2σ2
log(e)

)
+ f(1 + x)

(
log(

√
2πσ) +

(1 + x)2

2σ2
log(e)

)]
dx

=

∫ ∞

−∞
f(1− x)

(
log(

√
2πσ) +

(1− x)2

2σ2
log(e)

)
dx

= log(
√
2πσ) +

log(e)

2
. (68)

On the other hand, for
∑M

m=1
1
∆ (pm + p−m)2, by lettingM → ∞ and∆ → 0, we obtain

lim
M→∞,∆→0

M∑

m=1

1

∆
(pm + p−m)2 = lim

M→∞,∆→0

M∑

m=1

(f(1−m∆) + f(1 +m∆))2 ∆

=

∫ ∞

0
(f(1− x) + f(1 + x))2 dx

=
1√
2πσ

∫ ∞

0

(
f(
√
2(1− x)) + f(

√
2(1 + x)) + e−

1

σ2 f(
√
2x)
)
dx

=
1

2
√
πσ

(1 + e−
1

σ2 ). (69)

Using the results of (68) and (69), we can write

lim
M→∞,∆→0

(
H(p−M , · · · , p−1, p1, · · · , pM ) + log

(
M∑

m=1

(pm + p−m)2

))

= lim
M→∞,∆→0

(
H∆ + log

(
M∑

m=1

1

∆
(pm + p−m)2

))

= log

(√
e

2
(1 + e−

1

σ2 )

)
. (70)

Finally, by substituting this result into (39), the proof follows.
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