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Abstract

We develop several lower bounds on the capacity of binamytispmmetric output channels with synchronization
errors which also suffer from other types of impairmentshsas substitutions, erasures, additive white Gaussian
noise (AWGN) etc. More precisely, we show that if the chanmigh synchronization errors can be decomposed
into a cascade of two channels where only the first one suffers synchronization errors and the second one
is a memoryless channel, a lower bound on the capacity of tiginal channel in terms of the capacity of the
synchronization error-only channel can be derived. To aqish this, we derive lower bounds on the mutual
information rate between the transmitted and received esezps (for the original channel) for an arbitrary input
distribution, and then relate this result to the channebhcép. The results apply without the knowledge of the exact
capacity achieving input distributions. A primary apptioa of our results is that we can employ any lower bound
derived on the capacity of the first channel (synchroniregiwor channel in the decomposition) to find lower bounds
on the capacity of the (original) noisy channel with synctization errors. We apply the general ideas to several
specific classes of channels such as synchronization dresmels with erasures and substitutions, with symmetric
g-ary outputs and with AWGN explicitly, and obtain easy-tmgpute bounds. We illustrate that, with our approach,
it is possible to derive tighter capacity lower bounds coragato the currently available bounds in the literature
for certain classes of channels, e.g., deletion/substitithannels and deletion/AWGN channels (for certain digna

to noise ratio (SNR) ranges).
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. INTRODUCTION

Depending on the transmitting medium and the particulargdedifferent limiting factors degrade the perfor-
mance of a general communication system. For instance riegt@lignment of the transmitter and receiver clocks
may be one such factor resulting in a synchronization ern@moel modeled typically through insertion and/or
deletion of symbols. Other factors include the effects daditak noise at the receiver etc. The main objective of
this paper is to study the combined effects of the synchetioiz errors and additive noise type impairments and in
particular to “decouple” the effects of the synchronizat@rors from the other parameters and obtain expressions
relating the channel capacity of the combined model and yhetsonization error-only channel.

We focus on achievable rates for channels which can be cenesics a concatenation of two independent channels
where the first one is a binary channel suffering only fromcéyanization errors and the second one is either a
memoryless binary input symmetricary output channel (BSQC) or a binary input AWGN (BI-AWGN)annel.

For instance, the first channel can be a binary insertioetidel channel and the second one can be a binary
symmetric channel (BSC) or a substitution/erasure chatméérnary output channel = 3). Our development
starts with the ternaryg(= 3) and quaternaryg(= 4) output cases, respectively, then we generalize the segult

a generalg-ary output case. Specifically, we obtain achievable radeshfe concatenated channel in terms of the
capacity of the synchronization error channel by lower loliog the information rate of the concatenated channel for
input distributions which achieve the capacity of the syoaization error-only channel and the parameters of the
memoryless channel. The lower bounds are derived witheutigle of the exact capacity achieving input distribution
of the synchronization error channel, hence any existimgetdbound on the capacity (of the synchronization error-
only channel) can be employed to obtain an achievable raaeacterization for the original channel model of
interest.

By channels with synchronization errors we refer to the tyimaemoryless channels with synchronization errors
as described by Dobrushin iE| [1] where every transmittedisbindependently replaced with a random number
of symbols (possibly empty string, i.e. a deletion eventlé® allowed), and the transmitter and receiver have no
information about the position and/or the pattern of thesitisns/deletions. Different specific models on channels
with synchronization errors are considered in the liteatinsertion/deletion channels are used as common models
for channels with synchronization errors, e.g., the Galtagsertion/deletion channfm [2], the sticky chanv@l [3]
and the segmented insertion/deletion charuel [4].

Dobrushin [[—Jl] proved that Shannon’s theorem applies for aorgless channel with synchronization errors by
demonstrating that information stability holds for memegsg channels with synchronization errors. That is, for the
capacity of the synchronization error chanr@l,we can writeC; = lim max %I(X; Y), whereX andY are

N—oo p(X
the transmitted and received sequences, respectivelyNaigdthe length of the transmitted sequence. Therefore,



the information and transmission capacities of the meness/channels with synchronization errors are equal and
we can employ any lower bound on the information capacity &svaer bound on the transmission capacity of a
channel with synchronization errors.

There are manyﬂza ers deriving upper and/or lower bounds@rcdpacity of the insertion/deletion channels,

c.g. seells)a 1

10]; however, only a very few reswitstdor insertion/deletion channels with substitution
errors, e.gHZHl] or in the presence of AWGN, , O3Jr interest is on the latter, in fact, on more general
models incorporating erasures as wellgaary channel outputs.

Let us review some of the existing relevant results on im@@deletion channels in a bit more detail. H [2],
Gallager considers a channel model with substitution asdrtion/deletion errors (sub/ins/del) where each bit gets
deleted with probabilityp,, replaced by two random bits with probabilipy, correctly received with probability
pe = (1 —pg —pi)(1 — ps), and changed with probability; = (1 — p; — p;)ps, and derives a lower bound on the

channel capacity (in bits/use) given by

C > 1+ pglogpg + pilog p; + pelogpe + pylog(py), (1)

wherelog(.) denotes logarithm in base 2. Fertonani and DumavEL [11]Idpveeveral upper and lower bounds
on the capacity of the ins/del/sub channel, where they gmalgenie-aided decoder that is supplied with side
information about some suitably selected random proce$besefore, an auxiliary memoryless channel is obtained
in such a way that the Blahut-Arimoto algorithm (BAA) can bemoyed to obtain upper bounds on the capacity
of the original channel. Furthermore, it is shown that bytsatiing some quantity from the derived upper bounds
which is, roughly speaking, more than extra informationvied by the side information, lower bounds on the
capacity can also be derived. [13], Monte Carlo simulatiased results are used to estimate information rates of
different insertion and/or deletion channels in the absencpresence of intersymbol interference (ISI) in addition
to AWGN with independent uniformly distributed (i.u.d.)put sequences. Ir[iZ], the synchronization errors are
modeled as a Markov process and simulation results are vsednipute achievable information rates of an ISl
channel with synchronization errors in the presence of AWGN10], Rahmati and Duman compute analytical
lower bounds on the capacity of the i.i.d. del/sub and idel/AWGN channels, by lower bounding the mutual
information rate between the transmitted and receivedessaps for i.u.d. input sequences focusing on small deletion
probabilities.

The paper is organized as follows. In Sectioh Il, we formajiye the models for binary input symmetrie
ary output channels with synchronization errors and Bl-AWe€hannels with synchronization errors.[Inl lll, we
give two lemmas and one proposition which will be useful ie troof of the result on BSQC channels with

synchronization errors. In SectignllV, we initially focus @ substitution/erasure/synchronization error channel
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Fig. 1. Binary input symmetrig-ary output channel with synchronization errors.

(abbreviated as subl/ers/synch channel) which is a bingnytisymmetric ternary output channel, and then on a
binary input symmetric quaternary output channel. Aftaatttve extend the results to the case of more general
symmetricg-ary output channels. In Sectigd V, we lower bound the capaxfia synchronization error channel
with AWGN (abbreviated as AWGN/synch channel) in terms af trapacity of the underlying synchronization
error only channel. More precisely, we generalize the tesah BSQC channels with synchronization errors when
q goes to infinity. We present several numerical examplestithting the derived results in Sectionl V1. Finally, we

conclude the paper in Sectién VII.

[I. CHANNEL MODELS

A general memoryless channel with synchronization erib}ss] defined via a stochastic matrpp(y;|x;), y; €
Y, xz; € X} whereX is the input alphabet (e.g., for a binary input chantie: {0,1}), and) is (possibly empty)
the set of output symbols) < p(y;|z;) <1, and}_, . p(vilz) = 1. As a particular instance of this channel, if

p(y; = 0|x;) = pg (0 denoting the null string) angd(y; = x;) = 1 — p;, we obtain an i.i.d. deletion channel.

A. Binary Input Symmetrig-ary Output Channel with Synchronization Errors

By a binary input symmetrig-ary output channel (BSQC) with synchronization errors, refer to a channel
which can be considered as a concatenation of two indepéntlannels, depicted in Fig 1, such that the first one
is a channel with only synchronization errors with inputsergceX and output sequenc, and the second one is
a BSQC with input sequenc& and output sequen& (@), where by a symmetric channel we refer to the definition
given in [14, p. 94]. In other words, a channel is symmetribyifdividing the columns of the transition matrix into
sub-matrices, in each sub-matrix, each row is a permutatfcany other row and each column is a permutation
of any other column. For example, a channel with independahstitution, erasure and synchronization errors
(sub/ers/synch channel) can be considered as a concatewéta channel with only synchronization errors with
input sequence& and output sequencE and a substitution/erasure channel (binary input ternatpuws channel)
with input sequenc® and output sequend&(®). In a substitution/erasure channel, each bit is indepetydiipped
with probability p; or erased with probability., as illustrated in Figl12. (a). Another example is a binaruin
symmetric quaternary output channel with synchronizagoors which can be decomposed into two independent
channels such that the first one is a memoryless synchramizatror channel and the second one is a memoryless

binary input symmetric quaternary output channel shownign[B. (b).
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Fig. 2. (a) Input-output relation in the substitution/emchannelB(Yi“) |Y;) for all 1 <4 <|y]). (b) Input-output relation in the binary
input quaternary output channelP(Y,L.“) |Y;) forall 1 < < |y]).
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Fig. 3. AWGN channel with synchronization errors.

B. BI-AWGN Channels with Synchronization Errors

In a BI-AWGN channel with synchronization errors, bits a@nsmitted using binary phase shift keying (BPSK)
and the received signal contains AWGN in addition to the Bymgization errors. As illustrated in Figl 3, this
channel can be considered as a cascade of two independemethavhere the first one is a synchronization error
channel and the second one is a BI-AWGN channel. WeXis® denote the input sequence to the first channel
which is a BPSK modulated version of the binary input seqaekg i.e., X; = 1 — 2X; andY to denote the
output sequence of the first channel and input to the secoadYoris the output sequence of the second channel
that is the noisy version oY, i.e.,

i;id:Yvid_‘_Ziv

where Z;'s are i.i.d. zero mean Gaussian random variables with ne€ia?, andY; and V¢ are thei*” received

and transmitted bits of the second channel, respectively.

C. Simple Example of a Synchronization Error Channel Deasitipn into Two Independent Channels

The procedure in finding the capacity bounds used in this mpegre be employed for any channel which can be
decomposed into two independent channels such that therfiess a memoryless synchronization error channel and
the second one is a symmetric memoryless channel with noteffethe length of the input sequence. Therefore, if
we can decompose a given synchronization error channehimt@hannels with described properties, we can derive
lower bounds on the capacity of the synchronization err@nalel. The advantage of this decomposition is that
decomposing the original synchronization error chanrel &nwell characterized synchronization error channel and
a memoryless channel could be done in such a way that lowardioy the capacity of the new synchronization

error channel be simpler than the capacity analysis of tiginal synchronization error channel. In Taljle I, we



TABLE |
TRANSITION PROBABILITIES OF THE HYPOTHETICAL SYNCHRONIZATON ERROR CHANNEL

P(Y;|X;)
X Y =0 Y, =1 Y, =00 Y, =01, =10 Y, =11
0| (3—(a+8) (1+25) | G- (+8) (1-/=5) | o 3 3 N
L G-e+8)(1-y55) | G-+8) (1+y55) | 8 8 o
TABLE I
TRANSITION PROBABILITIES OF TWO INDEPENDENT CHANNELS GIVINKG RISE TO THE SYNCHRONIZATION ERROR CHANNEL GIVEN IN
TaBLE [l
P(Z;|X;) - o P(Y;|Z;) —
X; Zj =0 Z;i=1 Z;=00|2;=11 J i - j= -
a— a—
0 [1-2(a+p) 0 ot B | atp 0 | 0.5+05\/25 | 05—0.5,/22
1 0 1—2(a+ a+ o+ —5 >
(@+5) s s 1 05-05/28 ] 05+05,/22

provide an example of a hypothetical channel with synclaation errors that can be decomposed into a different
synchronization error channel and a memoryless binary stmienchannel (BSC). In Tablelll, the two channels

used in the decomposition are given.

I1l. ENTROPY BOUNDS FORBINARY INPUT g-ARY OUTPUT CHANNELS WITH SYNCHRONIZATION ERRORS

In the following two lemmas, we provide a lower bound on thepati entropy and an upper bound on the
conditional output entropy of the binary inpgtary output channel in terms of the the corresponding output
entropies of the synchronization error channel, respelgtivWe then give a proposition that will be useful in the
proof of the result on BSQC channels with synchronizatiaworsr (note that the following two lemmas hold for

any binary inputg-ary output channels with synchronization errors regasitef any symmetry).

Lemma 1. In any binary inputg-ary output channel with synchronization errors and for atin-negative integer

values ofg, we have

HYD)>HY)-EpgSlog [ Y > py @)y, M)p(y'?|M) | ¢, 2
YO Yp(y)#£0

where M is the random variable denoting the length of the receiveglisace,Y denotes the output sequence
of the synchronization error channel and the input sequesfcie binary inputg-ary output channel, and (@

denotes the output sequence of the binary inpaty output channel.

Proof: By using two different expansions df (Y (9, M), we have

HYY M) = HY9)+HM|Y®)

= H(Y9D|M)+ H(M). (3)



Hence, we can write

H(Y'") = HY'W|M) + H(M), (4)

where we used the fact that by knowit(?), random variableM is also known, i.e H(M|Y (@) = 0. By using

the same approach fdf (Y ), we have
HY)=H(Y|M)+ H(M). (5)
Finally, we can write

HYYY—H(Y) = HYY|M)-H(Y|M)

= 2plm ) [HY @M =m) ~ H(Y|M =m)], (6)
wherep(m) = P(M = m). On the other hand, due to the definition of the entropy, weveaie
H(YD|M =m) - HY|M =m) = Eyw{-log(p(Y'?))|M = m} - Ey{~log(p(Y))|M = m}

p(y(q))
(Y,Y(q)) {—log< p(Y) ) 'M :m}
@M =m)

==> > p@ 90y, M =m)p(y|M =m)log <p;3(!y‘M —) ) :

Y@ Y,p(Y)#0

whereE 7 {.} denotes the expected value with respect to the random ‘@atNow due to the fact that log(x)

is a convex function of:, we apply Jensen’s inequality to write

(9) -
HY@DM=m)-HYM=m) > —log|> > pu?y,M=m)p (y|M:m)p(y M =m)
p(y|M =m)
Y@ Y,p(Y)#0
= —log (Z > py 9y, M =m)p <y<q>Mm>). (7)
Y@ Y,p(Y)#0
By substituting this result intd {6), the proof follows. |

Lemma 2. In any binary inputg-ary output channel with synchronization errors and for angut distribution, we
have

H(Y'W|X) < H(Y|X) + E{M}H(Y;"|Y), ®)

whereY; denotes thej-th output bit of the synchronization error channel ajpdh input bit of the binary input
g-ary output channel and’j(q) denotes the output symbol of the binary ingtdry output channel corresponding

to the input bitY;.



Proof: For the conditional output entropy, we can write

HYW Y|X) = HYYDX)+HY|Y? X)
= H(Y|X)+H(YYY, X)

= H(Y|X)+HY|Y), ©)
where the last equality follows sinc€ — Y — Y (@ form a Markov chain. Therefore,

HYWX) = HY|X)+HYYY)-HY|X,Y¥)

< HY|X)+HYWD|Y). (10)
On the other hand, by using the fact that by knowkig M is also known, we have
HYYY)=HYDM,Y). (11)
Furthermore, since the second channel is memoryless, veénobt
HYD Y, M) = Y pm)HYD|Y, M =m)

= Y p(m)mH(Y,?|Y))

= Epp{MYHYV|Y;), (12)

which concludes the proof. |

By combining the results of Lemmas$ 1 and 2, we obtain

I(X;Y) > I(X;Y) — Epg {1og (Z 3 p<y<q>y,M>p<y<q>M>> } — B{M}H(Y,"|Y;), (13)
Y@ Y,p(Y)#0

which gives a lower bound on the mutual information betwedasm transmitted and received sequences of the
concatenated channg| X ; Y'9) in terms of the mutual information between the transmitted 1®eceived sequences

of the synchronization error channElX;Y).

Proposition 1. For any X, Y and Y@ forming a Markov chainX — Y — Y@ if
I(X; YD) > I(X,Y) + A,
where A is a constant, then the capacity of the chann&ls— Y (% (CX_>Y<q)) and X — Y (Cx_ y) satisfy

CX—)Y(q) 2 CX_>Y + A (14)



Proof: Using the input distribution which achieves the capacityhaf channelX — Y, P(X), we can write

lim ~I(X;YO(X) > lim ~I(X;Y(X)) + A

n—oo n n—oo n
- Ox .y +A (15)
Hence, for the capacity of the chann¥l — Y (@, we have
C @ = lim l max I(X'Y(q))
XY™ n—00 N P(X) ’
> lim lI(X;Y(q)(X))

- n—oon

> CXéy-l-A. (16)

[ |
Due to the result in[(13) and the result of Proposifibn 1, thpacity of the concatenated channel can be lower
bounded in terms of the capacity of the synchronizatiorreiannel and the parameters of the second (memoryless)

channel.

IV. ACHIEVABLE RATES OVERBINARY INPUT SYMMETRIC ¢-ARY OUTPUT CHANNELS WITH

SYNCHRONIZATION ERRORS

In this section, we focus on BSQC channels with synchroitimagrrors (as introduced in Sectién 1I-A) and
provide lower bounds on their capacity. We first develop thsuits for sub/ers/synch channel and binary input

symmetric quaternary output channel, respectively. Thea the results for general (odd and evenyespectively.

A. Substitution/Erasure Channels with Synchronizatioroisr

The following theorem gives a lower bound on the capacityh&f sub/ers/synch channel with respect to the
capacity of the synchronization error channel. In a subéb@nnel, every transmitted bit is either flipped with
probability of p,, or erased with probability gf. or received correctly with probability of — p; — p. independent

of each other.

Theorem 1. The capacity of the sub/ers/synch chan@el; can be lower bounded by

Cses = Cs — 1 [H(ps, pe, 1 — ps — pe) +1og (1 — pe)® + 2p2)], (17)

where C; denotes the capacity of the synchronization error channek lim,, . M, n and m denote the

n

length of the transmitted and received sequences, respécti
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Before giving the proof of Theorefll 1, we consider some speeises of this result. Since we have considered
the general synchronization error channel model of Dobrufd], the lower bound[(1l7) holds for many different
models on channels with synchronization errors. A populadehfor channels with synchronization errors is the
Gallager’s ins/del moﬂlin which every transmitted bit is either deleted with proligbof p, or replaced with
two random bits with probability op; or received correctly with probability of — p; — p; independent of each
other while neither the transmitter nor the receiver haweiaformation about the insertion and/or deletion errors.
If we employ the Gallager’s model in deriving the lower boantbr the parameter, we have

= lim EAM}

n—oo n

.1
= lim —nE{|s;|}
where |s;| denotes the length of the output sequence in one use of thdeinshannel, and the equality results

since the channel is memoryless. By utilizing the resul{l&) (in (I7), we obtain the following two corollaries.

Corollary 1. The capacity of the sub/ers/ins/del chantkgl;; is lower bounded by

Cseid > Cia — (1= pa+p;) [H(ps, pe, 1 — ps — pe) + log (1 + pe)® + 2p7)] (19)

whereC;,; denotes the capacity of an insertion/deletion channel wahameters,; and p;.
Taking p. = 0 in this channel model gives the ins/del/sub channel, hered&ave the following corollary.

Corollary 2. The capacity of the ins/del/sub chanig};, can be lower bounded by

Cigs > Cig — (1 — pa + pi) Hy(ps), (20)

To prove Theorerh]1, we need the following two lemmas. In the ine we give a lower bound on the output
entropy of the sub/ers/synch channel related to the outpmbmy of the insertion/deletion channel, while in the
second one we give an upper bound on the conditional outpramnof the sub/ers/synch channel, related to the

conditional output entropy of the insertion/deletion cheln

Lemma 3. For a sub/ers/synch channel, for any input distribution, waye
H(Y®) > H(Y) - E{M}log (1 - pc)* +2p7) , (21)
whereY denotes the output sequence of the synchronization erranrad and input sequence of the substitu-

1In fact, Gallager's model in general refers to a channel wittertion, deletion and substitution errors, but with Ggéir's ins/del model
we refer to the case with; = 0 (i.e., substitution error probability being zero).
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tion/erasure channel, ani ®) denotes the output sequence of the substitution/erasaneneth

Proof: Using the result of Lemmil 1, we only need to obtain an uppent@n

SN pyPy, M =m)p(y® | M =m)
YO Y.p(y)#£0

for all values ofm. On the other hand fop(y® |y, M = m), we have

pyOly, M =m) = [[ov"v)
=1

= Pﬁlp]f(l — Ds — pe)m_jl_jza (22)

where j; denotes the number of transitiois— — or 1 — — and j» denotes the number of transitiofs— 1 or

1 — 0. E.g.,p(011 —{0000) = p(0]0)p(1|0)p(1]0)p(—|0) = pep?(1 — pe — ps). OnN the other hand, for a fixed output
sequence/® of lengthm with j; erased symbol§—”, there are2’: (mj‘zjl) possibilities among alin-tuples such
that d(y®), = ji, i.e., the number of erased symbolsyf?), andd(y, y®), = js, i.e., the number of positions

in y andy® in which Yj(?’)'s are the flipped versions df;, therefore we can write

m—ji .
Z p(y(?»)’% M = m) < Z 2j1 <m] Lh)pilpgz(l — s — pe)m_jl—jz
Y.p(Y)#0 j2=0 2

= 2j1p£1 (1 — pe)m_jl. (23)

Note that in deriving the inequality i l(7), the summatiortaken over the values @f with p(y) # 0. However,
in (23) the summation is taken over all possible valueg aéf length m (over all m-tuples), i.e.p(y) = 0 or
p(y) # 0, which results in the lower bound if_(23). Furthermore, bingghe fact that the probability of having

41 erasures in a sequence of lengthis equal to(g’f)p? (1 — pe)™ 71, we obtain

> op@PM=m) Y7 pyPly,M=m) < Y Py =j|M =m)2pl(1-p)"

Yy Y.p(Y)#0 y®
= Z < : >pé1(1 = pe)" 7 (2pe ) (1 — pe)™
— \J1
J1=0
= ((1—pe)*+2p2)". (24)

By substituting this result intd {2), we arrive at
HY®)—H(Y) > —E{M}log ((1+p.)*+2p?), (25)

concluding the proof. |

It is also worth noting that any capacity achieving inputriisition over a discrete memoryless channel results in
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strictly positive output probabilities for possible outmequences of the channel ([14, p. 95]). Therefore, foriapec
synchronization error channel models in which for any gassiength of the output sequenge all the m-tuple
output sequences are probable, e.g. i.i.d. deletion chamne.d. random insertion channel, capacity achieving
input distributions $(x)) would result in strictly positive output probability digiutions for all m-tuple output
sequences, i.ea(y?) > 0 for all y? of lengthm and all possiblen. Hence, the bounds i (23) arld {24) can be

thought as equalities for these cases.

Lemma 4. In any sub/ers/synch channel and for any input distributae have
H(Y(3)|X) §H(Y|X)—I—E{M}H(pe,ps,l—pe—ps). (26)

Proof: Due to the result of Lemm@l 2 and the fact that in a substitigimsure channel, regardless of the
distribution of Y';, we can write

HY,PY;) = H(pe,ps, 1 — pe — ps), (27)

hence the proof follows. [ |
We can now complete the proof of the main theorem.
Proof of Theorem[d] : By substituting the results of Lemmak 3 ddd 4 into the dédimibf mutual information,

for the same input distribution given to both synchronmaterror and sub/ers/synch channels, we obtain
I(X; Y(g)) > I(X; Y) - E{M} [H(pmpea 1—ps— pe) + log ((1 + pe)2 + 2173)] . (28)
By using the result of Propositidd 1, the proof is completed. |

B. Binary Input Symmetric Quaternary Output Channels withcBronization Errors

In this subsection, we consider a binary input symmetricteymary output channel with synchronization errors

as described in Sectidn II.
Theorem 2. The capacity of the binary input symmetric quaternary otiighannel with synchronization errors

(s, can be lower bounded by

Csq = Cs — 1 [H(p1,p2,p3,p41) + log (p1 + p3)* + (p2 + pa)?)] . (29)

whereC; denotes the capacity of the synchronization error only dednandr is as defined ir(17).

Note that, the presented lower bound is true for all memesy&/nchronization error channel models. Therefore,
similar to the sub/ers/synch channel we can specializeghidts to the Gallager insertion/deletion channel as given

in the following corollary.
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Corollary 3. The capacity of binary input symmetric quaternary outpuargiel with insertion/deletion errors

(following Gallager's model(;, is lower bounded by

Cyia > Cig — (1 — pa + pi) [H(p1,p2. ps, pa) +1og ((p1 + p3)* + (p2 +p1)?)] - (30)

To prove Theoreni]2, we need the two lemmas below where theofistgives a lower bound on the output
entropy of the binary input quaternary output channel withchironization errors related to the output entropy of
the synchronization error channel, and the second one givagper bound on the conditional output entropy of
the binary input quaternary output channel with synchratnin errors, related to the conditional output entropy of

the synchronization error channel.

Lemma5. In any binary input quaternary output channel with synchration errors and for any input distribution,
we have

HY®) > H(Y) — E{M}log ((p +ps)* + (p2 + ps)?) . (31)

whereY denotes the output sequence of the synchronization eremred and input sequence of the binary input
quaternary output channel, an¥f () denotes the output sequence of the binary input quaternayud channel

corresponding to the input sequenke

Proof: Similar to the proof of Lemmal3, we use the result of Lenimha 1 dking the summation over all
possible sequences of length i.e., regardless gf(y) = 0 or p(y) # 0, which results into a looser lower bound.
On the other hand, fop(yY|y, M = m), we have

pyDNy, M =m) = [[pv"|v:)

=1
j1,.92, 93, M—j1—Jj2—J3 (32)

= DP1P3P3DPy )
where j; denotes the number of transitiols— 0~ or 1 — 17, jo denotes the number of transitiofs —
0t or 1 — 1T, and j3 denotes the number of transitiofs— 1~ or 1 — 0~. E.g., p(0~110717]0000) =
p(0710)p(1F]0)p(0F|0)p(17]0) = pipopsps. Furthermore, for a fixed output sequengé) of length m with
j 0~ symbols,k 0% symbols, 1~ symbols andm — j — k — I 1* symbols, there aré/) () (}) (" ")
possibilities among alin-tuples (fory) such thatd(y, y™)o_o- = i1, d(y, y®)oosor = 4, d(y,yM)o_1- = i3
and d(y, y™®)o_1+ = is. By definingm=—(y@) = #{t < m|y? € {0-,17}}, i.e., the number of the times

g = 0= ory™ =17, andm*(y@) = #{t < mly!*) € {0+,17}}, i.e., the number of the timeg " = 0* or
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yt(4) = 1T, we can write

Y.p(Y)#0
e kol L/ I i — k=1
ey i ki s lis —7—k— i m—j—k—l—i4
(i i (o8
11=0 1 12=0 2 13=0 '3 14=0 4
_ 7+l m—j—l
= (p1 +p3)’ " (p2 + pa)
= (p1+p3)™ Y (g + po)™ Y, (33)

By taking the summation over all possible output sequentéength m, and using the fact that the probability of

having the outpuy® with lengthm containingm™= 0~ or 17 is (" )(p1 + p3)™ (p2 + pa)™ ™™ , we obtain

ST pDIM =m) > plyPly, M =m) =" py®|M = m)(p1 +ps)™ Y (p2 + pa)™ YY)

yw Y Yo
= Z (;ﬁ) (1 +p3)" (p2+pa)"™™ (P1+p3)™ (p2+pa)™™ ™
m~—=0
= ((m +p3)® + (p2 +p4)2)m (34)

By substituting the result of (34) into the result of Lemhlank obtain
H(YW) > H(Y) — Epg {M}log ((p1 +ps)* + (p2 +p1)?) (35)

which concludes the proof. [ |

Lemma 6. For a binary input quaternary output channel with synchmation errors, for any input distribution,
we have

HYW|X) < HY|X) + Epg {M} H(p1,p2,p3,p1). (36)

Proof: Substituting the straightforward resuH(Yf“\Yﬂ = H(p1,p2,ps3,p4) in the result of Lemmadl2
concludes the proof. [ |
We can now complete the proof of Theoréin 2.

Proof of Theorem[2 : Using the results of Lemmas 5 ahtl 6, we obtain
I(X;YW) > I(X;Y) — nr [H(p1, p2, 03, pa) + log ((p1 + p3)* + (p2 +p4)?)] - (37)

Hence, due the result in Propositioh 1, the proof is complete |
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TABLE 11l
TRANSITION PROBABILITIES FOR ABINARY INPUT 5-ARY OUTPUT CHANNEL.

PV, 1Y)
—1 D2 D1 Do D1 D2
1 P—2 P-1 Do P1 D2
TABLE IV
TRANSITION PROBABILITIES FOR A BINARY INPUT SYMMETRIC6-ARY OUTPUT CHANNEL.
Py "7))
1/], 1/7(‘1) —— }/7(Q) - _9 1/7(‘1) —— }/7(Q) =1 }/7(Q) =9 }/7(Q) =3
—1 D3 D2 D1 P-1 P2 P-3
1 P-3 P2 p-1 p1 P2 P3

C. Binary Input Symmetrig-ary Output Channel with Synchronization Errors (OgdCase)

In this subsection, we consider a binary input symmejrary output channel with synchronization errors for
an arbitrary odd value aof, where we represent the transition probability vaI%éYj(q) =klY; = b) for different
values ofb € {-1,1} andk = {-%*,---,~1,0,1,--- , %1} by P (Yj(q) = k|Y; = b) — prxp. FOr instance,
Table[Ill shows transition probabilities for a binary ingasary output channel.

The main result on the BSQC channel with synchronizatioorerwith oddq is a generalized version of the

result in Theoreml1.

Theorem 3. The capacity of the BSQC channel with synchronization eit@jy, for an oddg can be lower bounded

by

qg—1

Cos = Cs—r | H(p_szr, -+ ,pas) +log | 200+ ) (o +p-1)7 | | (38)
k=1

whereCy denotes the capacity of the binary input synchronizatianrechannel.

Proof: The proof of the theorem is given in Appendix A. |

D. Binary Input Symmetrig-ary Output Channel with Synchronization Errors (EvgiCase)

We now consider the generalization of the result of Thedréfor2evengq. For the transition probabilities of
the binary inputg-ary output channel, we defing (Yj(q) =k|Y; = b) = prxp Whereb € {—1,1} andk =
{-4,---,-1,1,--- ,1}. For instance, Table_IV shows transition probabilities #ominary input 6-ary output
channel.

The main result on the BSQC channel with synchronizatioarserfor anygq is given in the following theorem.

Theorem 4. Capacity of the BSQC channel with synchronization er@gs, for any every can be lower bounded
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by

a
2

CQSECS_T H(p—%a"' yP—1,P1," " ap%)—’_log Z(pk +p—k)2 ) (39)
k=1

whereC denotes the capacity of the binary input synchronizatianrechannel.

Proof: The proof of Theorerl4 is given in AppendiX B. |

V. ACHIEVABLE RATES OVERBI-AWGN CHANNELS WITH SYNCHRONIZATION ERRORS

In this section, a binary synchronization error channelhia presence of AWGN is considered as defined in
SectionII-B. We present two different lower bounds on thpazdty of the AWGN/synch channel.
Before giving the main results on AWGN/synch channel, we ldike to make some comments on its

information stability.

A. Information Stability of Memoryless Discrete Input donbus Output Channels with Synchronization Errors

It is shown in [15] that the Shannon’s theorem holds in angrmfation stable channel. Inl[1], the information
stability of the memoryless discrete input discrete outghéinnels with synchronization errors is proved which
shows that the Shannon’s theorem holds in such a channelnlbe observed that the proofs usedLlin [1] can be
also generalized to the continuous output case as discusskid section.

To prove the information stability, it is sufficient to protlee existence of the limit

1 1 ~
— lim —Cy = lim — I(X;Y 40
C= i Oy = Jm 5 mex [(X:Y), (40)

which is the information capacity of the channel, and thetexice of an information stable sequence of two random
variables(X,?), which achieves the capacity of the channel.

The only difference between the channel considered hefetldt channel considered by Dobrushinlin [1], is that
in the continuous output case the output symbols belong tofarite set. However, this difference does not have
any effect on the steps of proofs. The existence of the limjtli Section IV] is proved based on the memoryless
property of the channel which also holds in the continuouputucase.

In the case of the existence of an information stable sequanhieving the capacity ([1, Section V]), there is
no need to condition on the discrete output symbol valued,ainthe reasoning hold for the continuous output
case as well. The key point in the proof is that the channehisomary which also holds for the continuous output
case, such that the same genie-aided channel as the oneéeredsfor the discrete output channel can also be
considered for our case. The genie-aided channel is olbtdipenserting markers through the transmission after

transmitting each block of length, where the entire length of transmissionis= gk + 1 (I < k).
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The other point in the proof is the number of possibilitiesconverting the output of the original chanr¥l
into the output of the genie-aided chanél, i.e., |f~!(Y)| whereY = f(¥”). Since for the continuous output
. . maxy |[f7H(Y)
case we still havelim —————

g—00 g
Since, both capacity convergence and existence of an iatizm stable sequence which achieves the capacity

— 0, the proof holds.

remain valid in the continuous output case as well, we carlode that the memoryless discrete input continuous
output channels with synchronization errors are also méiion stable and, as a result, the Shannon’s theorem

applies in such a channel.

B. Capacity Lower Bounds for AWGN/Synch Channels

Here, we present two results on the capacity of an AWGN/syi@nnel. Both results are generalizations of
results for the discrete output channels when the numbeuantigation levels goes to infinity. The first result is
obtained by employing a uniform quantizer while in derivihg second result a non-uniform quantizer is employed

which provides a tighter lower bound.

Theorem 5. Capacity of the AWGN/synch chanr@hs can be lower bounded by

Cas > Co — rlog <\/§(1 " e—ﬁ>> , (41)

whereC denotes the capacity of the synchronization error channel.

We give an outline of the proof and defer its details to Appef@ We consider a quantized version of the
output symbols via M -levels uniform quantizer by quantization intervals ofdémA with M going to infinity
and A going to zero. Therefore, foy,, (m = {—-M,--- ,—1,1,--- , M }) which denotes the probability that the
continuous output symbof{j, being quantized to thien-th quantization levely( € {—1,1}) conditioned on¥; = b

being transmitted, we obtain

_ ) et -eErE) Lm0 -
Ppm = Q(LEm=DAy _ pldmlay g ’ (42)

where@(.) is the right tail probability of the standard normal distriion. By substituting[(42) into the result of

Theoreni 4, we can write

M
> _ i ... ... 2 .

Cys>Cs—r M_};O{HA_)O H(p—J\/la yP—1,P1, >p1\/[) + IOg <mz::1 (pm + p—m) )] (43)

Finally, by using the fact that wheh/ — co and A — 0, we havep,, = f(1 — mA)A, with f(z) = 217“76_;7,

after some algebra (detailed in Appenfik C), we obtain tiseilten (41).

This result is obtained as a straightforward generalipatibthe discrete output channel results by employing a
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-1 = tm

Fig. 4. Symmetric non-uniform quantizer step sizes.

symmetric uniform quantizer, but the result may not be tigidr instance, foer = 0, i.e. the noiseless scenario,
the result does not match with the trivial result which(s, = Cs for ¢ = 0. We expect that if we apply an
appropriate non-uniform quantizer on the output symbolshef AWGN/synch channel, we can achieve a tighter
lower bound on its capacity (which also agrees with thedtivesult forCys = Cs for ¢ = 0). By using this
idea, we present our main result on the capacity of an AWGMisychannel in the following theorem by using a

symmetric non-uniform quantizer.

Theorem 6. LetC; denote the capacity of the synchronization error chanhelntfor the capacity of the AWGN/synch

channelC 45, we obtain

G%ZC&—TP@@)(¢;b67%—72Q<§>>+kg<1+@<%>+e%Q<§>>} (44)

Proof: To prove the theorem, we first define an appropriate symmaetit-uniform quantizer with2 M

guantization levels. Then, by lettinyy/ go to infinity and employing the result of Theorém 4, we cortmline
proof.
In general, by utilizing any symmetric quantizer wi2li/ quantization levels on the output symbg’fﬁ for the

transition probabilities of the resulting binary input aymtric 2M -ary output channel, we have

_ Plty1<Y; <t ., 0<m<M

P(—ty, <Y; < —tpm-1) , —M <m<0
wheret_,, = —t,, to = 0 andt,,,—1 < t,, for m = {1,--- , M}. We choose the quantization step sizes, i.e.,
Ay =ty —tm—1 form={1,--- , M}, to satisfyp; = po = --- = pps. Note that due to symmetry of the quantizer

M
A_,, = A, (as illustrated in Figl14). On the other hand, by definiAig= Q(%), we havez p_m = P and

m=1
M

me = 1 — P which results inp,, = 15F for m = {1,--- , M}.
=1
" Using the result of Theoref 4, to derive a lower bound on tipaciy of the channel witl2 M/ -level quantized

outputs, we need to obtail (p_s, -+ ,p—1,p1, - ,Pm) + log (Z%zl(pm +p_m)2). In the following, we first
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compute the exact values éfy; = H(p_p,--- ,0-1,01," - ,pm) — log(M) and log (an‘le(pm —I—p_m)2> +

log(M). For Hys, we have
melog (Pm) Zp m10g(p_m) — log(M)

=—(1—P)log(1—P) — Z Pm log(Mp_p,). (46)

m=1
To calculate— Z%I:lp_m log(Mp_.,), we first derive a relation betweem, andp_,, by using the fact that

A, =A_,,. ForlargeM andm = {1,--- , M}, we havep,, = f(1 — t;,)A,, andp_,, = f(1 + t,n) A, Where

f(z) = \/21706‘%. Furthermore, since,,, = 13~ for m = {1,--- , M} and ; f (Lt ; ~ ¢~ ¥, we can write
Do S+ tm)p
A= tw) "
1—-—P _2t,
=37 e o2, 47)

with the understanding that the approximation becomestesat/ — oo. By using this result, we obtain

M M M
N}gnoo—n;p-m log(Mp_m) = N}gnoo—n;p-m log (1 - P) — A}gnoon;p-m log (e - )
— —Plog(1- P —N}gnOOZp mlog (75, (48)
M 2tm
where we used the fact thdf_, p_,, = P. On the other hand, forlim — > pomlog ( ) we can write
m=1
lim — S poml (—22—’?):1' 1 14 tn) Ay 20
Jim mz::lp og (e Jim Og(e)n;f( + tm) Am
© 2t
=1 1+1¢t)—=dt
og(e) ; FA+1)—
2 [t (t+1)?
= log(e)— e 20
A
2 1 2
= log(e e 22 ——P|. 49
o) (e - 51 (49)

By substituting [(4B) and (48) int¢_(%6), we obtain

2 1 2
lim Hy = —log(1 — P) + log(e) < e 2% — —P) . (50)
M —o00 2
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At this point, we only need to obtain the exact valuezﬁ (pm + p—m)?, where we have

M
> M(ppm+p-m)® =Y M}, + 2Dmp-m + p°)

m=1 m=1

=(1-P)?+2P1-P —i—ZMp_ . (51)
Furthermore, if we letM go to infinity, for an\/{:l Mpz_m, we can write

M
1
lim EZI Mp*,, = J\/}lm E Mf(l + tm)Amif(l — )pm

M—oo

. (Pm+1) 2Pm
= lim (1-P E 207 2 A,

J\/[—)oo

& 1 D2 2
—(1- p)/ e—%e—?dt
0

2o
> 1 t+3)% -8
=(1—-—P T2 dt
( )/0 \/271'06
=(1-P)eQ <§> . (52)
o

Using the results of (52) and_(50), we obtain

M M
. 2 IRT
Jim <H(p_M,~- s P—1,P1," "+ ,pm) + log (Z(perp_m) )) = lim <HM+10g <ZM Pm +P-m ))

m=1 m=1
257 2 .
= log(e) <7 — —2P> + log <1 +P+e>2Q ( >> (53)
2ro o
Finally, by substituting this result int¢_(B9), the proofifovs. [ |

By employing a symmetric non-uniform quantizer, we achiavéghter lower bound on the capacity of the
AWGN/synch channel compared to the lower bound in Thedrkirh8. result is also in agreement with the trivial
resultCss = Cs (0 = 0). A primary advantage of the derived lower bound[inl (44) isttlve can use any lower
bound on the capacity of the synchronization error only alehto lower bound the capacity of the AWGN/synch

channel.

VI. NUMERICAL EXAMPLES

In this section, we give several numerical examples of theetcbounds on the capacity of the ins/del/sub and
del/AWGN channel and compare them with the existing onesénliterature. To the best of our knowledge, there
are no existing results on lower bounding the capacity ofrib&lel/sub/ers and ins/del/AWGN channels, therefore,

our results will provide a benchmark for these general cases
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A. Insertion/Deletion/Substitution Channel

In Table[M, we compare the lower bound on the capacity of tiséd&l/sub channel (20) with the existing lower
bounds in [2) 11] for several values ¢f, p; and p;. We employ the lower bound derived in [6] as the lower
bound on the capacity of the deletion channel and the lowantban [11] as the lower bound on the capacity of
the ins/del channel in(20). Note that the Gallager's moddR| by parameterg,, p; andp. can be considered as
concatenation of an ins/del channel with parameggrand p;, and a BSC channel with cross error probability of
ps Wherep; is the solution ofp. = (1 — ps)(1 — pq — pi). The advantage of the lower bourid](20) is in using the
tightest lower bound on the capacity of the ins/del chanmdbiver bounding the capacity of the overall channel,
i.e., the information rate of the overall channel is lowenbded for the input distribution which results in the
tightest lower bound on the capacity of the ins/del charel.observe that fop; = 0, a fixedp,; and small values
of ps, the lower bound[({20) improves the lower bound givenlin [I0His is not unexpected, because for small
values ofp, the input distribution achieving the capacity of the i.idtletion channel is not far from the optimal
input distribution of the del/sub channel. We also obsehat the lower bound_(20) outperforms the lower bound
given in [2]. However, for the casg; # 0 it does not improve the lower bound given in|[11], since asltveer
bound on the capacity of ins/del channel we used the resyltlhand lower bounded further to achieve lower
bound on the capacity of the overall channel.

TABLE V

COMPARING THE LOWER BOUND DERIVED ON THE CAPACITY OF THE INADEL/SUB CHANNEL WITH EXISTING LOWER AND UPPER
BOUNDS(BOLDFACE NUMBERS SHOW THE BEST BOUND)S

[ pa | pi | ps [LBfrom[2] [ LB @0) | LB from [11] [ UB from [11] |

0.001| 0.00 | 0.001 0.9772 0.9775 0.9773 0.9856
0.001| 0.00 | 0.01 0.9079 0.9082 0.9081 0.9163
0.001| 0.00 | 0.1 0.5201 0.5204 0.5210 0.5292
0.01 | 0.00 | 0.001 0.9079 0.9107 0.9091 0.9586
0.01 | 0.00 | 0.01 0.839 0.842 0.842 0.886
0.01 | 0.00 | 0.10 0.454 0.458 0.466 0.510
0.10 | 0.000| 0.001 0.5207 0.5514 0.5346 0.7300
0.10 | 0.00 | 0.01 0.458 0.489 0.492 0.644
0.10 | 0.00 | 0.10 0.108 0.140 0.211 0.363
0.10 | 0.10 | 0.001 0.0689 0.1678 0.1761 0.4504
0.10 | 0.10 | 0.01 0.013 0.0984 0.139 0.438

B. Insertion/Deletion/AWGN Channel

We now give several numerical examples of the lower boln}l ¢hdthe capacity of the ins/del/AWGN channel
and compare them with existing results. In the literaturere are only a few results on the capacity of the

deletion/AWGN channel, e.g., the simulation based bounfL®&f which is the achievable information rate of the
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Dele‘tioan\’\"GN Cha‘nnel

Capacity

—O— ps = 0.01 (LB from [13])
= 9= ps=0.011B (47)
—8—p,; = 0.05 (LB from [13])
- 8= p,;=0.05LB (47)
—P— pys = 0.1 (LB from [13])

- = ps=0.1LB (47)

Il
7o 1 2 3 4 5 6 7 8 9 10
1
7= (dB)

Fig. 5. Comparison between the lower bouhd] (44) with the toaand in [13] versus SNR for different deletion probakskt

deletion/AWGN channel for i.u.d. input sequences obtaibgdonte-Carlo simulations and the analytical result
given in [10] which is a lower bound on the information rate fai.d. input sequences, and no previous results are
available for the ins/del/AWGN case.

Fig.[3 shows a comparison of the lower bound on the capacitjetiel/ AWGN channel i (44) with the results
in [13]. We observe from Fid.]5 that the lower boufd](44) isdamy from the simulation based results |of| [13] for
large o2 values and small deletion probabilities. This is not unexge, because in [13], the achievable information
rate for i.u.d. input sequences are obtained (through hgnigtonte-Carlo simulations) and i.u.d. inputs are close
to optimal. However, the procedure employed.in [13] is orggful for computing capacity lower bounds for small
values of deletion probabilities, e.g; < 0.1, while the lower bound in (29) holds for the entire range deten
probabilities by employing any lower bound on the capacitthe deletion channel in lower bounding the capacity
of the deletion/AWGN channel. We also observe that, sinageiriving the lower bound(44) on the capacity of the
deletion/AWGN channel, we employ the tightest lower boumnelspnted on the capacity of the deletion channel,

for small values of-?, the lower bound[(44) improves the lower bound given_in [13].

VIl. SUMMARY AND CONCLUSIONS

In this paper, we presented several lower bounds on the itapéddinary input symmetric output channels with

synchronization errors in addition to substitutions, eras or AWGN. We showed that the capacity of any channel
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with synchronization errors which can be considered as eacsof two channels (where only the first one suffers
from synchronization errors and the second one is a menszrylbannel) can be lower bounded in terms of the
capacity of the first channel and the parameters of the secbadnel. We considered two classes of channels:
binary input symmetrig-ary output channels (e.g., for= 3 a binary input channel with substitutions and erasures)
with synchronization errors and BI-AWGN channels with dyramization errors. We gave the first lower bound on
the capacity of substitution/erasure channel with syrnmizedgion errors and the first analytical result on the caygaci
of BI-AWGN channel with synchronization errors. We also demstrated that the lower bounds developed on the
capacity of the del/AWGN channel for smalf values and the del/sub channel for small valueg.dimprove the

existing results.

APPENDIXA

PROOF OFTHEOREM[3

We first give a lower bound on the output entropy of the binapui g-ary output channel with synchronization
errors related to the output entropy of the binary synclnation error channel, then give an upper bound on
the conditional output entropy of the binary inpgary output channel with synchronization errors relatedht®

conditional output entropy of the binary synchronizatiaroe channel.

Lemma 7. For a binary inputg-ary output channel with synchronization errors, for anpun distribution and any

odd ¢, we have

g—1

HY®) > H(Y) — E{M}log 23+ 3 (w4 p-1)? | (54)
k=1

whereY denotes the output sequence of the synchronization eremred and input sequence of the binary input
symmetricg-ary output channel, an® (9 denotes the output sequence of the binary input symmg#iy output

channel.

Proof: For p(y@|y, M = m), we have

py Ny M=m)= [ »l (55)

—_g—1

wherej, denotes the number of transitiolns- % E.g., in a binary input 5-ary output channel we haye 1102|1111) =

p_1p1pope. Therefore, for a fixed output sequengé?) of length m with j, symbols of k, since there are



24

-1

2Jo H,E (”) (g::) possibilities fory such thatd(y, y'?),—0 = jo andd(y, y'?),_,» = iy, we can write

IN

T j J—k .
0,,JO Jk J—k L | —1_
> tlun—m < oo [TS (s 3 (1)
Y.p(Y#0) q=11ir=0 =0 N7k

g1
2

= 2°pp [ [ or + i)
k=1

g—1
2

— 2mopmg H(pk+p k)mk(y(q)), (56)
k=1

wheremy, (y(@) = #{t < m|y\? € {k,—k}}, i.e., the number of the timeg'? = k or ;¥ = —k. Hence,

Zp(y(q)’M =m) Z p(y Dy, M =m) Zp @M = m)(2po)™ H Pk + P—i) mk(ym)
y(Q) ’y,p()#O y(Q) k=1

— Z <m07 m ) ﬁ (i +p)™ (2170 ﬁ (Pr +P-k) ’“)

Mo+---+mg—1=m =1
2

k=1

= (21?3 + i(pk +pk)2) : (57)

By substituting the result of (57) in the result of Lemia 1, esain

HY'W) > H(Y)- E{M}log (2p% +> (o +pk>2)
k=1
= —E{M}log (21?3 +> (o +pk)2) : (58)
k=1
which concludes the proof. [ |

Lemma 8. For a binary inputg-ary output channel with synchronization errors, for anydag and any input
distribution, we have

H(YW|X) < H(Y|X) + E{M}H(p_ss, - ,pas). (59)
Proof: By using the result of Lemmid 2, we can write

HYW|X) < BE{MJHY"|Y;) + H(Y|X)

= E{M}H(p_ o1, ,pea) + HY|X). (60)

Obviously, by employing the results of Lemnids 7 Bhd 8 andgusia same approach as in the proof of Thedrem 1,
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the proof of Theorer]3 is complete.

APPENDIX B

PROOF OFTHEOREM[

We need the following two lemmas to proof Theoreim 4. In the 6ree, a lower bound on the output entropy of
the binary inputg-ary output channel with synchronization errors is deriveldting with the output entropy of the
binary synchronization error channel. In the second onegiwe an upper bound on the conditional output entropy
of the binary inputg-ary output channel with synchronization errors relatedhi® conditional output entropy of
the binary synchronization error channel. By employing tbsult of two following lemmas and using the same

approach as in the proof of Theoréin 2, Theotém 4 is proved.

Lemma 9. For a binary inputg-ary output channel with synchronization errors, for anpun distribution and any

eveng, we have

H(Y'9) > H(Y) — E{m}log (Z (pr. + pk>2> : (61)

k=1
whereY denotes the output sequence of the synchronization eremrad and input sequence of the binary input

symmetricg-ary output channel, an®@ (9 denotes the output sequence of the binary inpaty output channel.

Proof: Due to the result of Lemmd 1, we have

H(YYW) -~ H(Y)> ~Epg {log (Z Y py Py, M = m)p(y' | M = m)) } : (62)
Y@ Y,p(Y#0)

On the other hand fop(y(9 |y, M = m), we have
p(yPly, M =m) =[] pi'r’, (63)
1

where j;, denotes the number of transitiohs— % For instance, in a binary input 6-ary output channel we have

p(—11—32[1111) = p_1p1p_3po. On the other hand, for a fixed output sequepteé of lengthm with j;, symbols of

27

k, there areHE:1 () (") possibilities fory such thati(y, y(?), ,« = iy. By definingm (y(?) = #{t < mly\? e {k,—k}}
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i.e., the number of the timeE’t(q) =k or Yt(q) = —k, we can write

3w . J—k .
Ik i j—i J—k P C
S by, M =m) < Hz<ik>pzpf_kl T < k>p1,:pﬂ_g -

Y.p(y#0) k=1i1=0

= Tk +pr)™¥", (64)

Furthermore, by taking the summation over all the possisliof (@ in (64), we obtain

q

2

Y p DM =m) > pyDly, M =m) <> py?M =m) ][] +p_r)™
Y@ Y. p(Y)#0 Y@ k=1

- (mh_fmg)ﬂwﬁp_l)ml

m1+---+m%=m =1

= (i(pk +pk)2) : (65)

k=1

(pr +p—i)™

o
Il NS
—_

By substituting the result of (65) in_(62), we obtain

HYYW)-H(Y) > —log (Z(pk +pk)2) > " mp(m)
k=1 m
= —E{M}log (Z(pk +pk)2) ; (66)
k=1
which concludes the proof. |

Lemma 10. In any binary inputg-ary output channel with synchronization errors, for anypun distribution and

any every, we have

H(YY|X) < HY|X) + E{M}H(p-s,--- ,p_1,p1,--- :p1)- (67)
Proof: The proof is similar to the proof of Lemnia 8. |
APPENDIXC

PROOF OFTHEOREM[G

We first computeHa = H(p_pr, -+ ,p—1,P1, -+ ,0M) + log(A) and anvle % (Pm er_m)2 for M — oo and

A — 0. Then by employing the result of Theorém 4, we prove the grmor

For large M, we havep,, = f(1 — mA)A with the understanding that the approximation becomesteasc
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A — 0 where f(z) = \/21—7“76_%. Therefore, forHa = H(p_pr, -+ ,p—1,P1, - .M ) + log(A), we can write

M

M_)lgomA_)OHA = M—>1<>iomA—>0_ Z [f(l —mA)log(f(1 —mA))+ f(1+mA)log(f(1+ mA))] A
’ ’ m=1
00 T 2 T 2
:/ [f(l — ) <log(\/_a) u 5 2) log(e)> + f(1+2) <log(\/%a) + (12—;2) log(e)> }dw
— )2
/ f(l—x) <log(\/_ )+ (12 ) log(e )) dx
= log(V2ro) + 2( ). (68)

On the other hand, foE%:1 % (Pm +p_m)2, by letting M — oo and A — 0, we obtain

M M
Mo Z: (- p-m)” =, i, D (= mA)+ 7+ mA)TA
Z/Ooo(f(l—x)+f(1+x))2dx
1 o0 N
N 27‘(’0’/0 (f(ﬁ(l_x))+f(\/§(1+$))+e "2f(\/§33)>d3:
1 _
:2ﬁ0(1+e a2). (69)

Using the results of (68) and_(69), we can write

M
lim <H(p_M,~- sP—1,P1,+ ,pm) + log (Z(pm +p_m)2> )

M—o00,A—0
m=1
Mo
= i Ha +1 — —m)?
M—)oloI{lA—>0< A 1 log <m2::1 A(pm“‘p m) ))

= log <\/§(1 + e_<r12)> : (70)

Finally, by substituting this result intg_(B9), the proofléuvs.
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